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Abstract
Model-Agnostic Meta-Learning (MAML) and its
variants have shown remarkable performance in
scenarios characterized by a scarcity of labeled
data during the training phase of machine learn-
ing models. Despite these successes, MAML-
based approaches encounter significant challenges
when there is a substantial discrepancy in the
distribution of training and testing tasks, result-
ing in inefficient learning and limited general-
ization across domains. Inspired by classical
proportional-integral-derivative (PID) control the-
ory, this study introduces a Layer-Adaptive PID
(LA-PID) Optimizer, a MAML-based optimizer
that employs efficient parameter optimization
methods to dynamically adjust task-specific PID
control gains at each layer of the network, con-
ducting a first-principles analysis of optimal con-
vergence conditions. A series of experiments
conducted on four standard benchmark datasets
demonstrate the efficacy of the LA-PID opti-
mizer, indicating that LA-PID achieves state-of-
the-art performance in few-shot classification and
cross-domain tasks, accomplishing these objec-
tives with fewer training steps. Code is available
on https://github.com/yuguopin/LA-PID.

1. Introduction
Few-shot learning (Aggarwal et al., 2023; Luo et al., 2023;
Song et al., 2023) aims to adapt to new tasks by training a
new classifier with only a small set of labeled image sample,
and even generalizing to unseen query examples. From
this research, effectively leveraging prior knowledge and
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adaptively training a network with limited labeled samples
for new tasks is an increasingly significant challenge.
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Figure 1: Overview the proposed optimization algorithm for
few-shot classification tasks. (a) Traditional gradient-based
optimizer (e.g., SGD) updates parameters θ: multiple steps
needed to reach optimal values θ∗. (b) LA-PID achieves
optimal parameter values with just two gradient updates for
specific task Ti, the green box shows the proposed gradient
update rule.

Meta-learning has emerged as an effective approach for
the implementation of few-shot learning (Vettoruzzo et al.,
2024). This is attributable to its reinforcement of a model’s
capacity for heightened generalization and adaptability, con-
sequently enabling superior performance in tasks involving
limited sample sizes. Numerous studies in the field of meta-
learning have been structured around a dual-level paradigm:
the deliberate learning of a meta-level model for cross-task
performance (Qin et al., 2023; Lin et al., 2023) and the swift
acquisition of knowledge by a base-level model specific to
each task(Li et al., 2023; Richards et al., 2021; Li et al.,
2021; LI et al., 2023). Nevertheless, these studies usually
involve the fine-tuning of various hyperparameters, includ-
ing learning rate and task sampling strategies, to achieve
optimal performance. This can necessitate a plethora of
experiments and adjustments, thereby imposing an extra
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burden on researchers. Consequently, exploring a more
adaptable method for parameter optimization is a topic mer-
iting serious consideration.

The adoption of gradient (or optimization) within a meta-
learning framework has emerged as a prominent research
trend, driven by its notable flexibility and efficiency. Model-
agnostic meta-learning (MAML) has demonstrated remark-
able performance in few-shot learning (Finn et al., 2017).
Gradient descent algorithm holds a central role in deep learn-
ing, as it steers model parameters towards convergence to
either the local or global minimum of the loss function, thus
leading to the attainment of optimal model performance.
Following this trend, numerous recent studies have sought
to modify the meta-network structure to optimize the learn-
ing algorithm for quicker adaptation with limited examples
(An et al., 2023; Wang et al., 2023b). However, these re-
searches are mainly focused on learning a better initializa-
tion to achieve better generalization. Few researches have
studied better optimizer for achieving rapid adaptation to
new tasks, and some researches primarily focus on variants
of gradient descent’s weight updating step methods (Ada-
grad, Adam, RMS, and so on) (Jadon & Jadon, 2020). In
the case of non-convex optimization, the convergence of
these algorithms usually can not be guaranteed.

The application of a PID-based optimization algorithm for
updating network weights has been shown to outperform
other optimization methods (Wang et al., 2020a; Weng et al.,
2022; Ali & Li, 2020; Dunkin et al., 2024). These studies
have motivated us to seek an efficient optimization algo-
rithm in a new domain. The proportional-integral-derivative
(PID) control law, which has been widely used in various
industrial and engineering applications (Wang et al., 1995;
Li et al., 2020; Deng et al., 2023), has demonstrated ex-
ceptional performance in optimizing control system errors.
However, the manual adjustment of PID controller param-
eters remains a challenge. Therefore, there is a pressing
need to explore PID optimizers with parameters that can
be adaptively tuned for specific tasks. Moreover, in most
research, the convergence of the PID optimizer is solely
demonstrated through experimental validation. The theo-
retical proof of convergence serves as a crucial metric for
assessing the effectiveness of algorithms and also serves as
the inspiration for proposing new algorithms.

Regarding these outstanding issues, we propose a novel
PID-based optimization algorithm in MAML framework
for few-shot classification tasks. Layer-adaptive PID opti-
mizer (LA-PID) that dynamically updates weight parame-
ters for each step across different network layers, allowing
fast adaptability in each inner-loop gradient descent for the
specific task, the overview framework is shown in Fig. 1.
The main contributions of this paper can be summarized as
follows:

1. LA-PID considers both the historical accumulation
and future prediction of gradients, thus developing a
new gradient based parameter update strategy, and it
has stronger adaptability by adaptively adjusting the
three hyperparameters of the PID optimizer, which is
expected to expand the potential application scenarios
of few-shot learning for various downstream tasks;

2. With the help of rigorous mathematical derivation, LA-
PID has achieved a comprehensive analysis of the con-
vergence of the optimizer by utilizing the dynamic char-
acteristics of classical control systems, which provides
a beneficial opportunity for the collaborative develop-
ment of control theory and deep learning;

3. The comprehensive evaluation conducted on four
benchmark datasets has confirmed LA-PID’s state-
of-the-art performance in few-shot classification and
cross-domain tasks. This signifies that subsequent
MAML-based approaches can draw inspiration from a
broader spectrum of related disciplines, thereby offer-
ing a more diverse and promising research trajectory
for future endeavors.

2. Preliminaries
To facilitate understanding of the proposed method, this
section will provide a brief overview of related works in the
field of few-shot learning and elucidate relevant optimiza-
tion algorithms.

2.1. Related works

Few-shot learning, inspired by human-like reasoning and
analytical skills, has become particularly prominent in edge
computing scenarios. Initially, (Wang et al., 2020b) pro-
vided a comprehensive definition of few-shot learning in
terms of machine learning experience E, task T , and perfor-
mance P . As a seminal work in the field, (Finn et al., 2017)
introduced the model-agnostic meta-learning (MAML) al-
gorithm, where the model is trained by a meta-learner and
can be adapted to new tasks with just a few updates. Subse-
quent research has seen a surge of interest in MAML-based
algorithms. MAML++ (Antoniou et al., 2018) is a typical
enhanced iteration of MAML that has made comprehen-
sive improvements to address issues inherent in MAML,
such as instability during training, challenging hyperpa-
rameter searches, and computational expenses. (Raghu
et al., 2019) conducted an in-depth investigation into the ef-
ficacy of MAML and introduced a simplified variant named
ANIL, which nearly eliminated the inner loop for all while
demonstrating computational improvements over the orig-
inal MAML. In recent years, numerous researches have
highlighted several key challenges in training MAML and
its variants (Ye & Chao, 2021). To further enhance the
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generalization performance of MAML, numerous investiga-
tions have been conducted on hybrid methodologies (Wang
et al., 2023c; Jia et al., 2024). Nevertheless, this comes at
the expense of the applicability and flexibility of MAML.
The generalization performance sharply declines, especially
when encountering significant distributional shifts between
train and test tasks.

Despite the substantial focus on MAML-based algorithms,
the optimization of these methods, particularly in refining
weight-update rules, has received relatively less attention.
Many recent MAML-based approaches employ simplis-
tic inner-loop update rules without incorporating regular-
ization, neglecting potential benefits in preventing overfit-
ting during swift adaptation to tasks with limited samples.
Few researches aimed to enhance generality by incorpo-
rating evolving gradient within the inner loop (Chen et al.,
2023) and using regularization mechanism to regularize the
gradients (Wang et al., 2023a). These methods, however,
lack adaptability in inner-loop optimization, as their meta-
learned learning rates or regularization terms do not adjust
according to the specifics of each task.

Therefore, in this paper we propose a layer-adaptive PID
(LA-PID) optimizer by taking all information of the gradient
into consideration like PID controller. Notably, a generated
network is employed to adaptively tune the three hyper-
parameters of the PID optimizer for specific tasks. The
convergence of the LA-PID optimizer is systematically ana-
lyzed by leveraging the dynamic characteristics of classical
control system. Furthermore, we mathematically derive
the initial conditions that enable the LA-PID optimizer to
achieve optimal convergence performance for deep neural
networks. This novel design enables LA-PID to achieve
superior recognition accuracy in fewer training epochs, both
in few-shot classification and cross-domain tasks.

2.2. Controller & Optimizer

To facilitate subsequent comprehension, in this section we
briefly introduce the classical PID controller in the feed-
back control system and gradient-based optimizers in neural
network.

2.2.1. PID CONTROLLER

PID controller integrate proportional control (P ), integral
control (I), and derivative control (D) to holistically con-
sider error magnitude, integral value, and rate of change,
respectively (Li et al., 2016). P primarily ensures a prompt
response, I is applied to rectify static errors, and D focuses
on mitigating overshoot and suppressing oscillations. The
controller continuously assesses the error e(t) at every time
step t, making real-time adjustments within the feedback
control system to refine performance. The classical form of
PID controller can be expressed as follows.

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD
d

dt
e(t) (1)

where error e(t) is the difference between the desired output
and actual output. KP , KI and KD are the controller gain
coefficients of the P , I and D terms, respectively. Only
through appropriately tuning the three parameters can the
advantages of the controller be fully exploited, yielding a
optimal control performance.

2.2.2. GRADIENT-BASED OPTIMIZERS

Among gradient-based optimizers, stochastic gradient de-
scent (SGD) optimizer has gained widespread application
in updating neural network parameters due to its simplicity
and efficiency. Its objective is to iteratively minimize the
loss function Lt by adjusting the model parameters θt in
the direction that decreases the gradient of the loss. The lat-
est weight parameters θt+1 can be obtained using the SGD
update rule:

θt+1 = θt − r∂Lt/∂θt (2)

where r is the learning rate in deep neural network train-
ing, θt is the weight parameters at iteration t, i.e., θt =
{wab, wbc, wcd}, where a, b, c and d represent different
neural network layers. ∂Lt/∂θt is the gradient of neural
network.
Remark 2.1. Comparing the PID controller (1) with SGD
optimizer (2), the gradient ∂Lt/∂θt is similar with e(t).
Then the SGD optimizer is a kind of P controller with the
controller coefficient KP = r.

SGD-Momentum(SGD-M) is one of the successful varia-
tions of SGD. A momentum term accumulates history gra-
dients, is introduced in gradient updates. The SGD-M opti-
mizer ensures a more stable exploration of the optimization
space, thereby expediting the training process and enhancing
model performance. Its design methodology inspired our
approach, and we provide a detailed theoretical derivation
in Appendix A for reference. The update rule of network
parameters can be written as follows.

θt+1 = θt − r∂Lt/∂θt − r

t−1∑
m=0

∂Lm/∂θmαt−m. (3)

where α ∈ [0, 1] is the momentum coefficient, especially
when α = 0, SGD-M becomes mini-bach GD (Li et al.,
2014).
Remark 2.2. Comparing the PID controller (1) with SGD-
M optimizer (3), it is worth noting that the present gra-
dient ∂Lt/∂θt and the accumulation of history gradients∑t−1

m=0 ∂Lm/∂θiα
t−m are correspond to the proportional

item and integral item of PID controller, respectively.

From the aforementioned related works, it is evident that the
gradient optimizer plays a crucial role in the training process
of network weights. The update rules for network parame-
ters are primarily designed based on gradient information,
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sharing a similarity with the design of PID controllers that
rely on system error. Both approaches exhibit a common
thread in their design philosophy. These provide us with
insights for designing a novel optimizer in the next section.

3. Proposed Method
Building upon the preceding analyses of PID controllers and
gradient-based optimizers, this section presents the com-
prehensive design details of the LA-PID optimizer. The
proposed overview framework is shown in Fig. 1. The core
idea of this method is expedite the parameter updates of the
deep neural network. A PID-like optimizer is implemented
within the model architecture, which takes into account the
current, past, and future information of the gradient (i.e.,
the partial derivative of the loss function L with respect to
weight parameters θt), aiming to achieve adaptively rapid
convergence of weight parameters during the training pro-
cess.

3.1. LA-PID Optimizer

Inspired from PID controller (1), we integrate a differen-
tial item ϕt+1 into SGD-M optimizer, aiming to achieve
an excellent performance akin to PID control system, in-
cluding reduced overshoot and minimized steady-state error
in system state responses. For a new sampled task Ti, the
proposed LA-PID optimizer updates parameter θit according
to the following rules. For convenience, the superscript i is
abbreviated hereafter.
Mt+1 = αMt − r∂Lt/∂θt

ϕt+1 = αϕt + (1− α)(∂Lt/∂θt − ∂Lt−1/∂θt−1)

θt+1 = θt +Mt+1 +KDϕt+1.

(4)

where ϕt+1 is a term that predicts future gradients, KD is a
hyperparameter to be designed.

From (1), (2), (3) and (4), the latest network parameter θit+1

can be updated using the PID optimization rule:

θt+1 = θit −KP∂Lt/∂θt −KI

t−1∑
m=0

∂Lm/∂θmαt−m

−KD

t−1∑
m=0

(αt−m − αt−m−1)(∂Lt/∂θ
i
t − ∂Lt−1/θ

i
t−1)

(5)

where the three hyperparameters KP , KI and KD can be
generated by generated network fζi . Essentially, these hy-
perparameters are functions parameterized by the learning
rate r. For convenience, the superscript i is abbreviated
hereafter.

To address the challenge of tuning parameters in the classi-
cal PID controller, we employ a generated network fζi to

adaptively tune the three hyperparameters of the LA-PID
optimizer for specific tasks. We assert that distinct network
layers capture features at varying levels of granularity, neces-
sitating individualized learning rates and hyperparameters
for each layer.

Referring to the initialization of training weight parameter
θ in MAML, LA-PID is implemented in the inner-loop up-
dating. To enable the model equipped with the considerably
rapid learning ability that adapt to new scenario, we believe
that different layer of the base backbone should be endowed
with specific learning rate so that unleash the potential of
the entire network. Referring to the design of hyperparame-
ter generator in (Baik et al., 2023). The generated network
fζi has a two-layer MLP neural network with a ReLU ac-
tivation function connecting the layers. Furthermore, we
consider the prospective effective information of the net-
work is involved in the layer parameters: the mean, variance
and gradients which are taken of the input of fζi . The neural
network fζi with network parameters ζi can be written as
follows:

[KP ,KI ,KD] = fζ(θ̄t, θ̂t, Gt; ζ) (6)

where θ̄t = {θ̄kt }k=1,··· ,N , θ̂t = {θ̂kt }k=1,··· ,N , Gt =
{Gk

t }k=1,··· ,N , N is the number layers of the network back-
bone, θ̄t, θ̂t and Gt are the mean, variance and the gradient
at the k-th layer of backbone network parameters.

Besides, based on different specific tasks T ′
i and the opti-

mized base-learner Fθt , the generated network parameter ζi
update rule can be designed as

ζi ← ζi − β
∑
T ′
i

∂LT ′
i
/∂θt (7)

The base-learner Fθt is updated the network parameter by
using the LA-PID optimization rule (5).

The pseudo-codes for the training procedure of LA-PID
hyperparameters is summarized in Algorithm 1.

3.2. Initialization of Hyperparameters KP , KI , KD

In Theorem 3.1, we conclude the optimal theoretical hy-
perparameters initialization range for LA-PID optimizer.
And, the system dynamics can be characterized by these
hyperparameters.

Theorem 3.1. For some given positive real number α, r, if
there exist functions KP , KI and KD that depend on the
independent variable r, and they satisfy 0 < KP+1

2
√
KIKD

< 1,
such that the LA-PID optimizer is a second-order control
system, with the transfer function

WB(s) =
1

KD
· KI/KD

s2 + KP+1
KD

s+ KI

KD

(8)
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And, the dynamics is determined by the damping coefficient

ξ = KP+1
2
√
KIKD

, oscillation frequency ωn =
√

KI

KD
, over-

shoot σ% = exp

− π√
4KIKD
(KP +1)2

−1

× 100%, setting time

ts ≈ 6KD

KP+1 , oscillation period T = 2π√
ωn

√
1−ξ2

.

Algorithm 1 Layer-Adaptive PID (LA-PID) Learning

Require: Task distribution p(Ti), outer-loop optimization
rate β
Randomly initialize ζi.
while not converged do

Sample a new tasks Ti ∼ p(Ti)
for each sampled task Ti do

Random initialize θ0
for inner-loop optimization step t = 0 to STEP −1
do

Compute the loss function ∂LTi/∂θt
Compute fζi learning state [θ̄t, θ̂t, Gt]
Compute PID hyperparameters (KP ,KI ,KD)
Compute the latest weight parameter with LA-
PID optimization rule (5)

end for
Compute ∂L′

Ti
/∂θ′t by evaluating ∂LTi

/∂θt w.r.t. a
query set from T ′

i

end for
Perform gradient descent to update parameters: (7)

end while

The details of theoretical analyses are provided in Appendix
B. Generally, increasing the derivate term can speed up
neural network training, but excessive values may make
the system fragile. Referring to the Ziegler-Nichols rule
(Ziegler & Nichols, 1942), the optimal derivate-action coef-
ficient set KD = 1

3T . Simplifying the decay term α = 1 in
momentum, then we can get KP = r and KI = r from (3).
Combined with Theorem 3.1, the hyperparameter KD can
be derived in a specific solution form

KD =
1

4
r + (1 +

16

9
π2)

1

r
+

1

2
. (9)

Remark 3.2. The closed-loop transfer function (8) provides
an approximation of network parameter model from the per-
spective of a control system. The coverage performance of
the designed LA-PID controller is more excellent compared
to both the traditional PID controller and the original SGD
and SGD-M optimizer.
Remark 3.3. The stability of deep neural network model (4)
is not only affected by network architecture, but also the
setup of optimization strategy. LA-PID optimizer is initial-
ized with the ideal settings of hyperparameters KP , KI and
KD, and then adaptively tunes these three hyperparameters
of optimization rule for different application scenarios.

4. Experiments
In this section, we compare our proposed LA-PID opti-
mizer with recent state-of-the-art methods on several bench-
mark datasets for few-shot image classification. The results
demonstrate the effectiveness and superiority of our pro-
posed LA-PID algorithm in the realm of few-shot learning.
Even when tested in cross-domain scenarios with signifi-
cantly different distributions between training and testing
tasks, the neural network based on LA-PID can achieve
substantial classification accuracy with just fewer training
epochs. This indicates that the LA-PID-based gradient up-
date rule effectively enhances the generalization capabilities
of few-shot learning models.

4.1. Datasets

In our experiment, we preprocess the four benchmark
datasets as follows: mini-ImageNet (Vinyals et al., 2016)
consists of 100 classes with 60,000 RGB images of size 84
× 84. The dataset is partitioned into three non-overlapping
subsets: 64 classes for training, 16 for validation, and 20 for
testing. tiered-ImageNet (Ren et al., 2018) is composed of
608 classes with 1281 samples of 84 × 84 RGB images. To
maintain dissimilarity between the training and testing sets,
the dataset is divided into 20 training (351 classes), 6 valida-
tion (97 classes), and 8 test (160 classes) categories. CIFAR-
FS (Bertinetto et al., 2018) includes a total of 100 classes,
each with 600 images sized 32 × 32 pixels. The dataset is
typically split into training, validation, and test meta-sets,
with 64, 16, and 20 classes, respectively. FC100 (Oreshkin
et al., 2018) is composed of 100 classes with 60,000 images.
FC-100 contains a total of 20 super classes (60 classes), of
which 12/4/4 super classes for training/validation/test set.

Moreover, to evaluate the rapid learning and generalization
capabilities for few-shot models, a cross-domain scenario is
introduced in (Chen et al., 2019) to simulate real-world few-
shot tasks environment, in which the distribution between
training datasets and the test datasets are substantially differ-
ent. Specially, LA-PID was trained on the mini-ImageNet
but tested on CUB-200-2011(denoted as CUB) (Wah et al.,
2011), which is a fine-grained dataset involving with 200
birds classes.

4.2. Implementation details

For our network architecture, we employ a 4-layer Convo-
lutional Neural Network (4-CONV) and ResNet12 as the
feature extraction backbone, adhering to the same experi-
mental settings as in (Rusu et al., 2018; Sung et al., 2018).
The model is trained for 30 epochs and each epoch with 500
iterations, we set the batch size of 2 and 4 for 5-shot and
1-shot, respectively. For N-way K-shot classification tasks,
N categories are randomly selected, each categories with
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Figure 2: Test accuracy on 5-way classification for FC100 and CIFAR-FS with the backbone of 4-CONV and ResNet12.

Table 1: Test accuracy on 5-way classification for mini-ImageNet and tiered-ImageNet.

Backbone
mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

Random Init 4-CONV 24.85±0.43% 31.09±0.46% 26.55±0.44% 33.82±0.47%
LA-PID +Random Init 29.16±0.45% 38.43±0.48% 30.28±0.45% 47.73±0.49%

MAML 4-CONV 48.70±1.75% 63.11±0.91% 49.06±0.50% 67.48±0.47%
LA-PID +MAML 57.48±0.49% 72.02±0.44% 55.11±0.49% 71.99±0.44%

ALFA+MAML
4-CONV

50.58±0.51% 69.12±0.47% 53.16±0.49% 70.54±0.46%
L2TT+MAML 47.70±0.10% 64.75±0.09% - -

MAML+Finetune - 64.87±0.40% - -

Random Init ResNet12 31.23±0.46% 41.60±0.49% 33.46±0.47% 44.54±0.50%
LA-PID +Random Init 44.32±0.47% 51.46±0.49% 39.02±0.48% 55.05±0.49%

MAML ResNet12 58.37±0.49% 69.76±0.46% 58.58±0.49% 71.24±0.43%
LA-PID +MAML 63.29±0.48% 79.18±0.43% 64.77±0.47% 82.59±0.37%

ALFA+MAML
ResNet12

59.74±0.49% 77.96±0.41% 64.62±0.49% 82.48±0.38%
L2TT+MAML 60.82±0.11% 78.16±0.08% - -

MAML+Finetune - 73.13±0.40% - -

K labeled training samples, 15 query samples are sampled
from others samples for per category during each iteration.
Furthermore, we implement a cosine annealing learning rate
drop strategy for the meta-optimizer, starting with an ini-
tial learning rate of 0.01 and reducing it to a minimum of
5×10−4 in the outer-loop, The LA-PID optimizer is utilized
in the inner-loop to update the learnable parameters.

4.3. Experimental results

4.3.1. FEW-SHOT CLASSIFICATION

Table 1 and Fig. 2 present the results of testing LA-PID on
various datasets, including mini-ImageNet, tiered-ImageNet,
FC100, and CIFAR-FS, under different initialization set-
tings, such as Random Init, MAML, and ALFA. The experi-
ment also includes comparisons with other existing state-of-
the-art meta-learning algorithms (ALFA (Baik et al., 2023),

L2TT (Chen et al., 2019)), which used to prove the effec-
tiveness and superiority of the LA-PID when processing
few-shot learning tasks. Moreover, due to the differences
in both class-intra hierarchy and image resolution (84 × 84
and 32 × 32) between mini-ImageNet and tiered-ImageNet,
as well as FC-100 and CIFAR-FS, LA-PID enhances perfor-
mance significantly. This demonstrates the universality and
generalization of the proposed inner-loop gradient update
rule. Specially, LA-PID is trained for fewer epochs than
ALFA and MAML, indicating that the proposed method
possesses rapid learning abilities to adapt new domain tasks,
proving that robust gradient updating strategy is critical in
ensuring model stability, which can be clearly see in Fig 3.

To further evaluate the universality of the method, we test
LA-PID on mini-ImageNet by the 20-way 5-shot task, the re-
sults are exhibited in the Table 2, demonstrating that LA-PID
optimizer remains superior and effective even in unknown
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Table 2: 20-way classification 4-conv mini-ImageNet.

Model 1-shot 5-shot

MAML 15.21±0.36% 18.23±0.39%
ALFA+MAML 22.03±0.41% 35.33±0.48%

LA-PID +MAML 34.04±0.47% 43.66±0.43%

experiment settings. This finding reignites the effectiveness
of the PID gradient update mechanism in the backpropaga-
tion of neural networks.

To better visualize the classification performance of the
proposed optimization algorithm (LA-PID+MAML), we
randomly select 5 categories from the mini-ImageNet test
set and employ 4-CONV as backbone network. Subse-
quently, T-SNE is utilized to perform feature dimensionality
reduction on the output results for visualization purposes.
The distribution in the feature space is depicted in Fig. 4.
Despite the classification accuracy being 72.02% using the
proposed optimization algorithm (LA-PID+MAML), the
distinction between different clusters is clear.
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Figure 3: The training and validation curves of LA-PID
and ALFA on mini-ImageNet reveal that LA-PID achieves
convergence in significantly fewer training iterations.

Upon comparing the training and validation curves of LA-
PID and ALFA on mini-ImageNet, it becomes clear that LA-
PID converges more rapidly and attains a higher validation
accuracy than ALFA. This underscores the efficiency and su-
periority of the LA-PID method, which can be attributed to
its innovative gradient computation and parameter updating
mechanism.

4.3.2. CROSS-DOMAIN FEW-SHOT CLASSIFICATION

To further validate the generalization and rapid adaptation
capabilities of LA-PID’s gradient update mechanism, we
conduct experiments on cross-scenario tasks where there is a
significant distribution discrepancy between the training and
the testing dataset. Specifically, the model was trained on

Category
1
2
3
4
5

Figure 4: T-SNE Visualization of mini-lmageNet Dataset.

mini-ImageNet and tested on CUB, a fine-grained dataset fo-
cusing on birds with 11,788 images and 200 bird subclasses.
The test accuracy for 5-way 5-shot for cross-domain classifi-
cation with the 4-CONV backbone is exhibited in the Table
6, revealing that the classification accuracy decreases when
the training and testing tasks are inconsistent. Nonethe-
less, LA-PID’s performance surpasses current state-of-the-
art methods, highlighting the importance of the adaptive
gradient update rule in inner-loop for cross-domain tasks.
Surprisingly, even when using ResNet12 as the backbone
for feature extraction, the cross-domain classification accu-
racy exceeds that of ResNet18, further demonstrating the
superiority of the LA-PID method.

4.4. Ablation studies

In this section, we conduct ablation studies to gain a deeper
understanding of the effectiveness of the proposed LA-PID
optimizer. These studies are performed under experimental
settings designed for 5-way 1-shot and 5-shot classification
tasks on the mini-ImageNet dataset.

4.4.1. ABLATION STUDY ON HYPERPARAMETERS

In order to evaluate the impact of adaptively generated hy-
perparameters on classification accuracy, we fix hyperpa-
rameter KP = 1 and vary only the values of KI and KD.
The test accuracy experiments for 5-way 5-shot and 1-shot
scenarios on the mini-ImageNet, tiered-ImageNet, FC-100
and CIFAR-FS datasets are shown in Table 3. The results,
obtained using both the 4-CONV and ResNet12 backbones,
demonstrate a substantial performance improvement when
generating these hyperparameters simultaneously.

4.4.2. INNNER-LOOP STEP

To further dissect the efficiency of LA-PID’s learning pro-
cess step by step, we conducted 5-way 5-shot experiments
on mini-ImageNet using a 4-CONV network backbone. The
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Table 3: Ablation study on KI , KD for different datasets

KI KD
mini-ImageNet tiered-ImageNet FC100 CIFAR-FS

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

4-CONV ✓ 50.87±0.50% 68.34±0.46% 48.05±0.49% 68.83±0.46% 37.78±0.48% 53.36±0.49% 58.67±0.49% 75.09±0.43%
4-CONV ✓ 50.58±0.49% 68.52±0.46% 48.67±0.48% 69.04±0.46% 38.46±0.48% 53.56±0.49% 58.50±0.49% 74.72±0.43%
4-CONV ✓ ✓ 57.48±0.49% 72.02±0.44% 55.11±0.49% 71.99±0.44% 46.23±0.47% 59.59±0.49% 64.23±0.47% 78.90±0.45%

ResNet12 ✓ 58.17±0.49% 75.87±0.42% 61.75±0.48% 79.80±0.40% 41.47±0.49% 55.40±0.49% 68.16±0.46% 57.73±0.49%
ResNet12 ✓ 58.40±0.49% 73.96±0.43% 59.07±0.49% 79.67±0.40% 39.64±0.48% 55.21±0.49% 66.61±0.47% 57.72±0.49%
ResNet12 ✓ ✓ 63.29±0.48% 79.18±0.43% 64.77±0.47% 82.59±0.37% 47.75±0.49% 60.84±0.48% 71.44±0.45% 85.15±0.35%

Table 4: The number of inner-loop steps for fast adaptation.

MAML LA-PID+MAML

Step5 Step1 Step2 Step3 Step4 Step5 Step6

63.11±0.91% 70.21±0.45% 70.65±0.45 70.94±0.45% 71.19±0.45% 72.01±0.44% 72.02±0.44%
63.11±0.91% 66.37±0.47% 69.09±0.46 70.62±0.45% 71.68±0.45% 71.91±0.44% 71.94±0.44%

Table 5: Ablation study on fζ .

Input 5-way 5-shot

weight only 63.79±0.48%
gradient only 64.10±0.47%

weight + gradient (LA-PID) 72.02±0.44%

Table 6: Test accuracy on 5-way 5-shot cross-domain classi-
fication.

Backbone mini-ImageNet→CUB

MAML
4-CONV

52.70±0.32%
LA-PID +MAML 59.73±0.49%

ALFA+MAML 58.35±0.25%

MAML
ResNet12

53.83±0.32%
LA-PID +MAML 65.93±0.47%

ALFA+MAML 61.22±0.22%

Baseline
ResNet18

65.57±0.70%
Baseline++ 62.04±0.76%

MAML 51.34±0.72%

results in Table 4 reveal that with a single-step update in the
inner loop, the test set accuracy surpasses that of MAML
with five inner loop step updates. Moreover, comparing
the experimental outcomes of two instances of LA-PID,
it is evident that even if the initial update in the second
experiment fails to capture optimal features, leading to re-
duced recognition accuracy, subsequent updates can swiftly
adjust and attain high performance. Typically, parameter
convergence is achieved by the fourth inner loop update,
illustrating LA-PID’s rapid learning capability and its stable
gradient updating mechanism. The final results for both ex-
periments exhibit an absolute error within 0.1%, indicating
the robustness and stability of the proposed method. Even
with random disturbances in the hyperparameter-generating
network, network weight updating converges to the same
accuracy level under the LA-PID framework.

4.4.3. GENERATED NETWORK

To assess the influence of the input information on the hy-
perparameter generation network fζi , a 5-way 5-shot few-
shot classification experiment is conducted on the mini-

ImageNet using a 4-CONV backbone. The results, reported
in Table 5, demonstrate the effects of altering the input in-
formation for fζi for the final classification performance
on the test set. This experiment reveals that superior recog-
nition performance is achieved when the mean, variance,
and gradients of the θ are used as inputs to the generation
network fζi . This finding underscores the importance of
parameter information and their gradients in guiding the
learning direction of the network model.

It is noteworthy that the information contained in individual
parameters and gradients is relatively localized. Hence, em-
ploying them together provides a more comprehensive rep-
resentation of the overall learning direction of the network.
This aligns with our understanding that comprehending the
learning direction of the model is essential. Simultaneously,
understanding the current learning state of the network is
equally crucial. The combination of both aspects enables a
more comprehensive determination of the overall optimiza-
tion direction for the model.

4.4.4. MEMORY USAGE

Despite the significant performance enhancement achieved
by LA-PID in few-shot image classification and cross-
domain tasks, it is important to assess whether LA-PID
incurs a larger memory footprint. To this end, we conducted
tests on the mini-ImageNet dataset using both 4-CONV and
ResNet12 as the network backbone. We modified LA-PID
to calculate only the current and previous errors, omitting
the historical cumulative error, and refer to this variant as
LA-PID++. The experimental results, presented in the table
7, indicate that the memory usage of the LA-PID is nearly
on par with that of the baseline. Moreover, the enhanced
LA-PID++ exhibits a memory footprint that is virtually iden-
tical to the baseline, confirming LA-PID’s superiority and
effectiveness in terms of memory efficiency.
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Table 7: The memory footprint compared to the baseline

Dataset Method Exp-setting Backbone Batchsize Inputsize Learnableparams GPUmemory(M) Acc(%)

mini-ImageNet Baseline 5w1s 4-CONV 4 84×84×3 70145 2318 48.70
mini-ImageNet LA-PID 5w1s 4-CONV 4 84×84×3 70205 2944 57.48
mini-ImageNet LA-PID++ 5w1s 4-CONV 4 84×84×3 70205 2451 55.83

mini-ImageNet Baseline 5w1s ResNet12 4 84×84×3 7999473 9647 58.37
mini-ImageNet LA-PID 5w1s ResNet12 4 84×84×3 7999581 11966 63.29
mini-ImageNet LA-PID++ 5w1s ResNet12 4 84×84×3 7999581 9705 62.04

mini-ImageNet Baseline 5w5s 4-CONV 2 84×84×3 70145 1683 63.11
mini-ImageNet LA-PID 5w5s 4-CONV 2 84×84×3 70205 2094 72.02
mini-ImageNet LA-PID++ 5w5s 4-CONV 2 84×84×3 70205 1738 71.57

mini-ImageNet Baseline 5w5s ResNet12 2 84×84×3 7999473 6071 69.76
mini-ImageNet LA-PID 5w5s ResNet12 2 84×84×3 7999581 7482 79.18
mini-ImageNet LA-PID++ 5w5s ResNet12 2 84×84×3 7999581 6182 77.85

4.5. Limitations

We visualize the parameters generated by the generation net-
work fζ . For a clearer view of specific parameter changes,
KP is fixed to 1. The generated values for KI and KD are
shown in Fig. 5. It can be observed that only a few layers
have non-zero values for the generated parameters. This
indicates that the generation algorithm does not fully utilize
information from the entire network but rather only had an
impact on certain layers. Future work would focus on opti-
mizing PID parameter generation to enhance the efficiency,
such as considering activation-based generation rather than
applying it to all layers.

Figure 5: Visualized the hyperparameters generated by the
LA-PID. Not every layer of the model needs to generate PID
parameters, as evidenced by the visualization of non-zero
PID parameters.

5. Conclusion
In this paper we explore the connection between gradient-
based parameter optimization strategy and PID control the-
ory, subsequently introduce a LA-PID optimizer within the
MAML framework. Our approach endows the network
model with the advantages of the classical PID control sys-
tem, including stability, accuracy, and rapidity. Notably,
the hyperparameters of proposed optimizer are adaptively
tuned through inner-loop optimization for specific tasks. Ex-
periment results demonstrate that our proposed algorithm
achieves a state-of-the-art performance across benchmark

datasets. We assert that setting a specific optimal weight-
update rule for different recognition tasks is as crucial as
designing complex network backbones. Nevertheless, the
generation algorithm does not fully leverage all available
network resources, this also serves as a direction for our
future work, aiming to leverage the latent information across
the entire network.
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A. SGD-M Optimizer
SGD-Momentum(SGD-M) is one of the successful variations of SGD. A momentum term Mt, which accumulates history
gradients, is introduced in gradient updates. The SGD-M optimizer ensures a more stable exploration of the optimization
space, thereby expediting the training process and enhancing model performance. The update rule of network parameters
can be written as follows. {

Mt+1 = αMt − r∂Lt/∂θt

θt+1 = θt +Mt+1

(10)

where α ∈ [0, 1] is the momentum coefficient, especially when α = 0, SGD-M becomes mini-bach GD (Li et al., 2014). Set
initial condition M0 = 0.

Referring to (Wang et al., 2020a), we conduct the following mathematical operations.

Dividing the first equation of (10) yields,
Mt+1

αt+1
=

Mt

αt
− r

∂Lt/∂θt
αt+1

. (11)

Expanding Equation (11) from iteration time t+ 1 to 1 yields
Mt+1

αt+1 − Mt

αt = −r ∂Lt/∂θt
αt+1

Mt

αt − Mt−1

αt−1 = −r ∂Lt−1/∂θt−1

αt

...
M1

α1 − M0

α0 = −r ∂L0/∂θ0
α1 .

(12)

Summarizing the equations (12) yields
Mt+1

αt+1
=

M0

α0
− r

t∑
i=0

∂Li/∂θi
αi+1

(13)

Under the initial condition M0 = 0, multiplying both sides of Equation (13) by αt+1 yields

Mt+1 = −r
t∑

m=0

αt−m∂Lm/∂θm (14)

Extracting the present gradient ∂Lt/∂θt from Equation (14), which is convenient to subsequent analysis. The finial form of
Mt+1 can be written as follows.

Mt+1 = −r∂Lt/∂θt − r

t−1∑
m=0

∂Lm/∂θmαt−m. (15)

Substituting (15) into (10), we can derive the standard SGD-M, which consists of present and history gradient information.

θt+1 = θt − r∂Lt/∂θt − r

t−1∑
m=0

∂Lm/∂θmαt−m. (16)

B. Proof for Theorem 3.1
Herein, we furnish an exhaustive proof for Theorem 3.1. The connection between the LA-PID optimizer and the PID
controller is established using Laplace transform. The detailed theoretical proofs unfold from Case 1 to Case 5, where Case
3 is the optimal convergence result.

Proof. Firstly, the initial state of θ(t) is defined as θ0, the optimal value of θ(t) is θ∗ can be obtained after enough epochs of
training.
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The Laplace transform is given as L(θ∗) = θ∗/s, L(θ(t)) = θ(s). Then, the time domain (1) can be transformed into
frequency domain as

L(u(t)) = L{KP e(t) +KI

∫ t

0

e(t)dt+KD
d

dt
e(t)} =

(
KP +KI

1

s
+KDs

)
E(s). (17)

where E(s) = θ∗

s − θ(s). Compare to control system, control signal u(t) is replaced to network parameter θ(t) in the deep
neural network model. Then, we can rewrite the Equation (17) as

θ(s) =

(
KP +KI

1

s
+KDs

)(
θ∗

s
− θ(s)

)
. (18)

Consequently, the standard closed-loop transfer function of LA-PID model is

E(s) =
Y (s)

X(s)
=

1

KD
· ω2

n

s2 + 2ξωns+ ω2
n

(19)

where {
(KP + 1)/KD = 2ξωn

KI/KD = ω2
n

(20)

Then, we have

ξ =
KP + 1

2
√
KIKD

, ωn =

√
KI

KD
. (21)

As a result, the characteristic equation can be given as follows.

s2 +
KP + 1

KD
s+

KI

KD
= 0 (22)

In the principles of automatic control, the distribution of poles of the closed-loop characteristic equation in the complex
plane (S-plane) plays a crucial role in determining the stability of second-order systems. The roots of the characteristic
equation (22) can be solved, and these roots are related to the damping ratio ξ.

With the help of the dynamic characteristics of a second-order system, the convergence of network parameter θ(t) (4) can be
systematically analyzed from Case 1 to Case 5, where Case 3, Case 4, and Case 5 are converged.

Case 1. Negative Damping: ξ < 0 (i.e., KP+1
2
√
KIKD

≤ 0)

In this case, the system has two real positive roots for the characteristic equation (22), and its unit step response can be
written as

y(t) = 1− e−ξωnt√
1− ξ2

sin(ωn

√
1− ξ2t+ β), t ≥ 0.

where β = arctan
(√

1− ξ2/ξ
)

.

Since the damping ratio ξ < 0, the exponential factor has a positive power index −ξωnt > 0, so the dynamic process of the
system is in the form of sinusoidal oscillation or monotonic divergence, indicating that the second-order system is unstable
when ξ < 0.

Case 2. Undamped: ξ = 0 (i.e., KP+1
2
√
KIKD

= 0)

In this case, the characteristic equation (22) has a complex conjugate pair of imaginary roots, i.e.,

s1,2 = ±jωn.

This corresponds to a complex conjugate pair of poles along the imaginary axis in the S-plane.

13
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And from its unit step response
y(t) = 1− cos(ωnt), t ≥ 0.

it can be observed that the system’s step response is characterized by continuous oscillation (unstable). In this scenario, the
system is equivalent to an undamped condition.

Case 3. Underdamped: 0 < ξ < 1 (i.e., 0 < KP+1
2
√
KIKD

< 1)

At this time, the characteristic equation (22) has a pair of conjugate negative roots with negative real parts

s1,2 = −ξωn ± jωn

√
1− ξ2 = −KP + 1

2KD
± j

√
4KIKD − (KP + 1)2

2KD
.

This result corresponds to complex conjugate poles situated in the left half-plane of the S-plane. And its unit step response
is manifested as a damped oscillatory process, which can be written as

y(t) = 1− e−ξωnt√
1− ξ2

sin

(
ωn

√
1− ξ2t+ arctan

√
1− ξ2

ξ

)

= 1− 2
√
KIKDe

−KP +1

2KD
t√

4KIKD − (KP + 1)2
sin

(√
4KIKD − (KP + 1)2

2KD
t+ arctan

√
4KIKD

(KP + 1)2
− 1

)
, t ≥ 0.

Under this result, we can derive the overshoot (σ%), setting time (ts) and oscillation period (T ) to describe the dynamics of
system (4).


σ% = exp

− π√
4KIKD
(KP +1)2

−1

× 100%,

ts ≈ 6KD

KP+1 ,

T = 2π√
ωn

√
1−ξ2

.

Case 4. Critically Damped: ξ = 1 (i.e., KP+1
2
√
KIKD

= 1)

In this case, the eigenvalues of the characteristic equation are

s1,2 = −KP + 1

2KD
.

From this result, the characteristic equation has two equal negative real roots, corresponding to two identical real poles
located on the negative real axis of the S-plane.

And under the unit step response, the system output can be described as

y(t) = 1− e−ωnt(1 + ωnt) = 1− e
−
√

KI
KD

t

(
1 +

√
KI

KD
t

)
, t ≥ 0.

From this mathematical terms, it can be observed that the step response asymptotically approaches a steady-state output
without periodic oscillations.

Case 5. Overdamped: ξ > 1 (i.e., KP+1
2
√
KIKD

> 1)

The system characteristic equation (22) can be solved two distinct negative real roots in this situation.

s1,2 = −ξωn ± ωn

√
ξ2 − 1 = −KP + 1

2KD
±
√
(KP + 1)2 − 4KIKD

2KD
.

This pair of solutions corresponds to two distinct real poles located on the negative real axis of the S-plane. Furthermore,
under the unit step response, the system output can be described as

y(t) = 1 +
e−t/T1

T2/T1 − 1
+

e−t/T2

T1/T2 − 1
, t ≥ 0.

14
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where T1 = 1

ωn(ξ−
√

ξ2−1)
, T2 = 1

ωn(ξ+
√

ξ2−1)
, ωn, ξ is defined in Equation(21).

It can be seen that the system corresponding unit step response also asymptotically approaches a steady-state output without
periodic oscillations, but with a slower response rate compared to the critically damped case.

C. Additional Experiments

Table C1. Test accuracy on 5-way classification for FC100 and CIFAR-FS.

Backbone
FC100 CIFAR-FS

1-shot 5-shot 1-shot 5-shot

Random Init 4-CONV 27.50±0.45% 35.37±0.48% 29.74±0.46% 39.87±0.49%
LA-PID +Random Init 32.42±0.46% 46.58±0.49% 38.28±0.45% 54.21±0.47%

MAML 4-CONV 36.67±0.48% 49.38±0.49% 56.80±0.49% 74.97±0.43%
LA-PID +MAML 46.23±0.47% 59.59±0.49% 64.23±0.47% 78.90±0.45%
23L2TT+MAML 4-CONV - - 58.50±0.11% 76.16±0.09%
ALFA+MAML 37.99±0.48% 53.01±0.49% 59.96±0.49% 76.79±0.42%

Random Init ResNet12 32.26±0.47% 42.00±0.49% 36.86±0.48% 49.46±0.50%
LA-PID +Random Init 34.72±0.47% 45.52±0.49% 44.79±0.48% 57.48±0.48%

MAML ResNet12 37.92±0.48% 52.63±0.50% 64.33±0.48% 76.38±0.42%
LA-PID +MAML 47.75±0.49% 60.84±0.48% 71.44±0.45% 85.15±0.35%
23L2TT+MAML ResNet12 - - 73.63±0.11% 85.76±0.08%
ALFA+MAML 42.46±0.49% 55.82±0.50% 66.79±0.47% 83.62±0.37%
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