

000 GSCV: COMPRESSING GAUSSIAN SPLATTING SE- 001 002 QUENCE WITH VIDEO CODEC 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 This paper presents a novel effective Gaussian Splatting (GS) sequence Compre-
012 sion method that utilizes the Video codec (GSCV). Existing video-based GS se-
013 quence compression relies on the Parallel Linear Assignment Sorting (PLAS) to
014 convert GS into smooth 2D maps. Using the vanilla PLAS, however, can gen-
015 erate images exhibiting weak inter-frame correlation, due to its stochastic nature.
016 GSCV incorporates a simple yet efficient Inter-PLAS method to produce close im-
017 ages between the I- and P-frames of GS, enhancing the inter-frame performance of
018 video codec greatly. GSCV also realizes a new pipeline based on the state-of-the-
019 art video codecs with high bit-depth GS images, achieving higher compressibil-
020 ity while simultaneously [providing a higher quality upper bound](#). [Experimental](#)
021 [results show](#) that the proposed GSCV exhibits obviously improved performance
022 over MPEG video and point cloud-based anchors in GS sequence compression.
023 The code will be released soon.

024 1 INTRODUCTION

025 3D Gaussian splatting (GS) (Kerbl et al., 2023) has greatly advanced novel view synthesis thanks
026 to its fast generation speed and impressive quality. However, the explicit GS primitive format in-
027 duces a large data volume, [which attracts considerable attention](#) for effective GS data compression
028 (Bagdasarian et al., 2025).

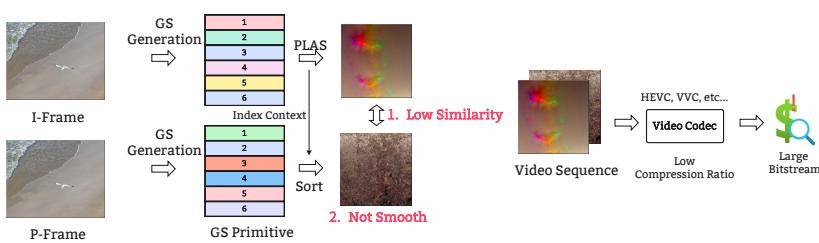
029 To facilitate GS compression standardization, the Moving Picture Experts Group (MPEG) has estab-
030 lished a GS compression Ad Hoc group and delineated two lines of investigation: the A-3DGS and
031 I-3DGS tracks (WG7, 2025). A-3DGS uses 2D videos/images as the input. With any agreed-upon
032 GS-related representation as the intermediate, A-3DGS involves training GS models as part of the
033 encoding process (i.e., optimization-based compression). I-3DGS aims to compress the trained GS
034 data (i.e., optimization-free compression), resulting in a symmetric output with the same format as
035 the input. At present, most GS compression efforts focus on A-3DGS. They include HAC (Chen
036 et al., 2024a) and CompGS (Liu et al., 2024). [Using an effective context model and rate-distortion](#)
037 [\(RD\) loss function](#), they can achieve a compression ratio of more than 60 to 100x without notice-
038 able distortion (Xing et al., 2025). However, these optimization-based algorithms typically involve
039 a complex coding process and rigid rate control (Yang et al., 2025) based on GPU, which restricts
040 their application to certain use cases. The lightweight requirement from the industry (WG4, 2025c)
041 promotes more attention devoted to I-3DGS. One promising approach to develop lightweight solu-
042 tions is to compress GS data using canonical codecs such as the video or point cloud (PC) codec
043 (Sullivan et al., 2012; Schwarz et al., 2019), where the compression is mainly performed on CPUs.

044 Video-based GS compression depends on the use of Parallel Linear Assignment Sorting (PLAS)
045 (Morgenstern et al., 2024) to convert GS data to a group of smooth 2D maps. PLAS is a progressive
046 process inspired by image sorting (Barthel et al., 2023). It first randomly puts the primitive attributes
047 into 2D grids, then gradually generates a smoother image via Gaussian blurring from being coarse to
048 fine as a target to sort the pixels until the 2D grids converge to a smooth distribution. For intra-frame
049 compression strategies, PLAS significantly improves the video codec performance, reporting 6 to
050 20x compression ratios on HEVC (Do et al., 2025). Based on the preliminary MPEG experiments,
051 for tracked GS sequence compression (see Section 6 for an explanation of “tracked”), the video-
052 based anchor (GSCodec Studio (Li et al., 2025)) is superior to the PC-based anchor (GPCC v1
053 (WG7, 2023)) owing to its efficient inter-frame compression (WG4, 2025b). However, few works

054 focused on GS inter-frame compression based on video codecs, and the current anchor has obvious
 055 limitations, which motivate the study of this paper.
 056

057 To the best of our knowledge, GSCodec Studio pioneered the open source solution that supports
 058 GS inter-frame compression based on video codecs. In its inter-prediction mode, PLAS is used
 059 for the first frame (i.e., the I-frame), and then the I-frame PLAS index is utilized for sorting the
 060 following frames (i.e., the P-frames) within the same group of pictures (GoP) to generate videos.
 061 This operation is built upon two assumptions: 1) the arrangement of the I- and P-frame primitives
 062 demonstrates an explicit spatial correspondence, whereby primitives with identical indices constitute
 063 spatial nearest neighbors sharing close attributes; and 2) directly using the I-frame PLAS index can
 064 generate smooth and close P-frame images.

065 Nevertheless, the above assumptions can be violated in practical applications, resulting in suboptimal
 066 results as shown in Fig. 1. For the first assumption, GS data is characterized by the permutation
 067 invariance as PC (Li et al., 2018). Even though the initial GS data might share some correspondence
 068 between adjacent frames (e.g., they may be generated from the same canonical reference after fine-
 069 tuning), a considerable number of preprocessing operations before compression, such as sampling
 070 and editing (Hanson et al., 2025; Chen et al., 2024b), can scramble the primitive order. Even a
 071 simple primitive shuffle operation, which does not change GS data and rendering results, can in-
 072 incur obvious performance degradation (see Section A.7). For the second assumption, GS data is not
 073 injective due to α -blending (Tewari et al., 2022), which means spatially neighboring primitives in
 074 the I- and P-frames may inherently possess substantially different attributes, especially in the large
 075 motion region. This observation implies that index-based primitive matching alone is insufficient to
 076 ensure that the P-frame images are smooth and close to the corresponding I-frame images. Besides,
 077 the current video-based anchor uses 16 bit depth (BD) for coordinates and 8 BD for quantising other
 078 attributes, which is not enough for complex GS scenes. Results from (Zaghetto et al., 2024) showed
 079 that the optimal coordinate quantization BD lies within the range of 14 to 18, depending on partic-
 080 ular datasets. Considering that GS is very sensitive to coordinate distortion, it would be better to use
 081 a larger BD during quantization and realize quality-bitstream balance via compression. Otherwise,
 082 the quality upper bound will be limited even under lossless compression.
 083



084
 085
 086
 087
 088
 089
 090 Figure 1: Examples of current inter-frame GS coding based on the video codecs.

091 To improve the GS sequence compression performance and robustness, we propose **GSCV**, a new
 092 pipeline for **GS** sequence **Compression** based on **V**ideo **c**odec. First, an effective and simple Inter-
 093 PLAS method, which consists of two steps, is proposed to reduce the PLAS image difference be-
 094 tween adjacent GS frames. Inter-PLAS adopts a spatial-stable initialization (SSI) module designed
 095 to address the GS permutation-invariance issue, leading to stable I-frame PLAS image generation
 096 without affecting the compression efficiency. It also enables initializing the P-frame with low com-
 097 plexity using the I-frame context. Additionally, Inter-PLAS has an anchor-based PLAS refinement,
 098 which is proposed to optimize the P-frame image for better inter-frame prediction. Second, we
 099 establish a new PLAS image compression framework compatible with the state-of-the-art (SOTA)
 100 video codecs, including HEVC and VVC (Bross et al., 2021). For a higher quality upper bound, 10
 101 BD images are used for video sequence generation after Inter-PLAS. The coordinate maps, which
 102 are quantized by 20 BD, are split into two 10 BD images. Channel padding is adopted for attributes
 103 (e.g., opacity and rotation) that are not integer multiples of three channels to simplify compression
 104 configuration, as well as making it compatible with different image or video codecs. GSCV reports
 105 superiority on both MPEG tracked and semi-tracked datasets over benchmark methods.
 106

107 Our contributions can be summarized as follows:
 108

- A new GS sequence compression pipeline based on video codecs, GSCV, is proposed to take advantage of advanced video codecs for efficient inter-frame GS sequence compression;

108 • We propose a simple yet effective Inter-PLAS scheme to generate close 2D maps for adjacent GS
 109 frames to improve the inter-frame prediction performance. We use high BD images to form video
 110 sequences, which can provide wider bitrate and quality ranges;
 111
 112 • The experiment results show that the proposed GSCV is superior to MPEG video- and PC-based
 113 anchors. Ablation study demonstrates the robustness and generalization capability of GSCV.

114
 115 **2 RELATED WORK**
 116

117 GS compression has witnessed impressive progress in the past two years. As introduced in Section
 118 1, GS compression can be divided into two tracks according to the MPEG community: A-3DGS and
 119 I-3DGS. We shall provide a summary in this section.

120 **A-3DGS:** A-3DGS optimizes the GS generation process by adding extra constraints during training
 121 to obtain a more compact data representation. Scaffold-GS (Lu et al., 2024) proposed an anchor-
 122 based latent representation for primitive description, which reduces the spatial redundancy and also
 123 serves as the baseline of HAC (Chen et al., 2024a) and HAC++ (Chen et al., 2025b). CompGS
 124 (Liu et al., 2024) also used an anchor-based approach with an entropy model to realize efficient ad-
 125 jacent primitive feature prediction. Another prevalent compact representation is using a codebook
 126 and vector quantization to map the GS attributes to a limited feature space, such as (Navaneet et al.,
 127 2025; Niedermayr et al., 2024). Considering that the GS densification process can generate many
 128 redundant primitives, LightGaussian (Fan et al., 2024) and EAGLES (Girish et al., 2025) developed
 129 effective GS pruning methods by calculating an importance score for each primitive. Empirical re-
 130 sults show that removing 50% to 60% of primitives followed by finetuning can still offer a quality
 131 comparable to that of the vanilla GS. In summary, A-3DGS methods can realize an impressive com-
 132 pression ratio without evident quality degradation, indicating there is a huge room to optimize the
 133 GS generation process, specifically over the densification and high-dimensional spherical harmonic
 134 (SH) coefficients. These advances also inspired the study of the I-3DGS approaches.

135 **I-3DGS:** Different from A-3DGS, I-3DGS methods focus on how to compress trained GS data
 136 without resorting to training optimization that relies on the GPUs. GS data format is similar to that
 137 of PC. Therefore, an adaptive voxelization was designed in (Wang et al., 2025) for GS. It takes into
 138 consideration that the primitive distribution is irregular to facilitate the usage of the MPEG GPCC
 139 codec on GS compression. Also inspired by the PC compression (Shao et al., 2017), GGSC (Yang
 140 et al., 2024) used a graph signal processing (GSP)-based approach to compress GS attributes through
 141 discarding high-frequency components. HGSC (Huang et al., 2025) proposed an optimization-free
 142 GS pruning method based on LightGaussian, followed by a hierarchical strategy to divide primitives
 143 into different layers for progressive coding. FCGS (Chen et al., 2025a) used grids to establish an
 144 effective context model for learning-based GS compression. GSCodec Studio (Li et al., 2025) is
 145 the first modular framework that supports GS reconstruction, compression, and rendering, in which
 146 video- and PC-based GS compression are unified under this pipeline. Except for GSCodec Studio,
 147 other methods reviewed in this section all focus on GS intra-frame compression, which motivated
 148 us to further explore how to realize effective and stable GS inter-frame compression in this paper.

149
 150 **3 BRIEF REVIEW OF PLAS**
 151

152 PLAS is a heuristic algorithm to sort and map GS attributes into 2D maps. Ideally, the generated
 153 2D maps should be as smooth as possible so that they can be effectively compressed using video
 154 codecs. Given a GS data $G \in R^{n \times 59}$, where n represents the number of primitives in GS and
 155 59 is the number of feature channels, including 3, 3, 45, 1, 3, and 4 channels for 3D coordinates,
 156 color direct current (DC), color SH, opacity, scaling, and rotation. A simple pruning, which is based
 157 on the linear processing of scaling and opacity, is first applied so that after discarding a minimal
 158 set of GS, the remaining primitives can be accommodated in a square 2D grid. Next, a **random**
 159 **sorting** is used to map the primitive attributes onto 2D grids. m ($m \leq 59$) images are obtained
 160 as input for the downstream operations, where m corresponds to the number of attributes selected
 161 as references for smooth evaluation. For the pixel values that are from different images but have the
 same position, they originate from the same primitive, indicating that no extra signaling is needed
 for attribute alignment after sorting.

PLAS takes a progressive approach: 1) a set of Gaussian blur window radius sizes \mathbf{r} is selected based on the resolution of the image $I \in \mathbb{R}^{H \times W \times m}$. $\mathbf{r} = \{r_i, \tau\}$ with $r_1 = \max(H, W)/2 - 1$, and $r_i = r_{i-1} \times \tau$. $\tau \in (0, 1)$ is a decay factor, and the minimum value of r_i is set to be 1; 2) a set of block sizes B_i is calculated in accordance with the radius r_i . Specifically, $B_i = \max(B_{min}, \text{floor}(r_i \times 2 + 1) + 1)$. B_{min} is the minimum block size which is set to 16 in the vanilla PLAS. The definition of B_i ensures that the pixels in the blocks can be divided into groups, each of which has 4 elements; 3) for iteration i , a target smooth image T_i is generated from I_{i-1} . T_i is in fact the Gaussian blurred version of I_{i-1} with the kernel size $\sigma_i = \text{floor}(r_i \times 2 + 1)$, i.e., $T_i = \text{blur}(I_{i-1}, \sigma_i)$. The iteration starts with $I_0 = I$, the original image; 4) both T_i and I_{i-1} are divided into sub-images with size equal to the block size B_i for batch operation. PLAS permutes the pixels of the image from the previous iteration I_{i-1} within each block, making them as close as possible to those of the corresponding block in T_i . Note that the permutation is carried out for a group of 4 pixels selected randomly from I_{i-1} , leading to $4! = 24$ possible permutations. The one with the smallest L2 loss is chosen to produce I_i , the image to be passed on to the next iteration; 5) given that σ_i and block size B_i are monotonically decreasing with respect to the iteration index i , a coarse-to-fine permutation is applied for the original image I and results in the final PLAS image with smooth texture.

4 INTER-PLAS IMAGE GENERATION

Due to the use of random initialization and permutation, the vanilla PLAS generates different images for the same or close GS content, as shown in Fig. 2. These images are suitable for the intra-compression mode of the video codec but are challenging for inter-prediction. This motivates us to

Figure 2: PLAS results of “bartender” frames 1 and 2. From left to right: the GS rendering image, color DC PLAS image, and scale PLAS image.

design the new effective algorithm, Inter-PLAS. It has improved inter-prediction using two steps, namely SSI and anchor-based PLAS refinement. The diagram of Inter-PLAS is given in Fig. 3.

4.1 SPATIAL-STABLE INITIALIZATION (SSI)

PLAS applies random sorting as the initialization step, which can produce different results for even the same GS data. Even though we may fix the random seed, the permutation-invariant characteristic of GS data can still lead to different results, indicating current PLAS is non-deterministic and unstable. For GS sequence coding, a stable, simple, and effective initialization method is required for generating highly reproducible results. To simplify the problem, we use the I- and P-frames from video coding as the reference and target GS frames.

A reasonable assumption for the initialization process is that the spatially proximate primitives should have close attributes. This indicates that for each primitive from the P-frame, we can match it to the nearest neighbor from the I-frame and make them share the same image position. However, this one-to-one matching requires using Earth Mover’s Distance (EMD) whose complexity is $O(n^3)$ (Kuhn, 1955). For GS data that generally has hundreds of thousands to tens of millions of primitives, it is extremely expensive to evaluate the EMD (Yang et al., 2023). Considering that we only need a stable initialization rather than requiring this initialization to generate similar images for the I- and P-frames, we address the spatial matching problem with spatial sorting based on Morton code (Morton, 1966).

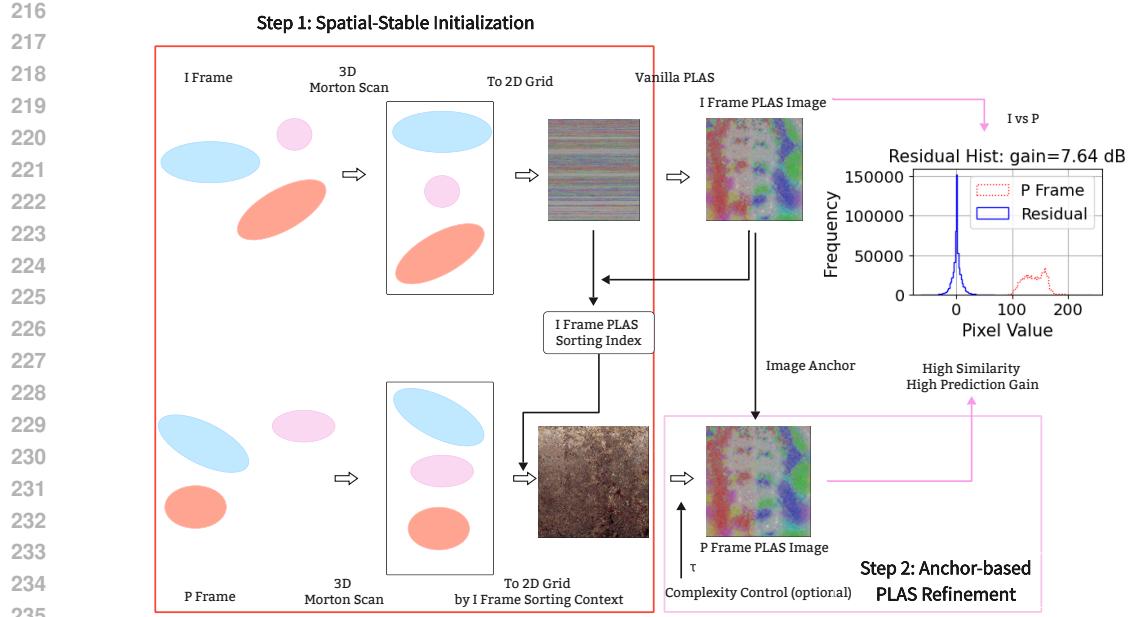


Figure 3: Framework of Inter-PLAS.

Morton code interleaves the binary representation of the 3D coordinates of the primitive. A smaller Z value reflects that the primitive is closer to the “initial position,” which is set to be the top-left corner or the original position. For the I- and P-frames, we first sort the primitives based on their Morton code. The primitives with the same sorting index from the I- and P-frames are roughly considered proximal to each other in the EMD sense. Morton code sorting is lightweight, e.g., it only requires around 0.1 seconds for GS with half a million primitives. Empirical results show that, compared with random initialization, using the Morton code-based sorting as initialization and then performing the vanilla PLAS can generate more similar images for the I and P-frames. Close I-frame all-intra compression performance can also be obtained (see Section 6.3.1), indicating that PLAS is robust to the initialization method in terms of all-intra compression.

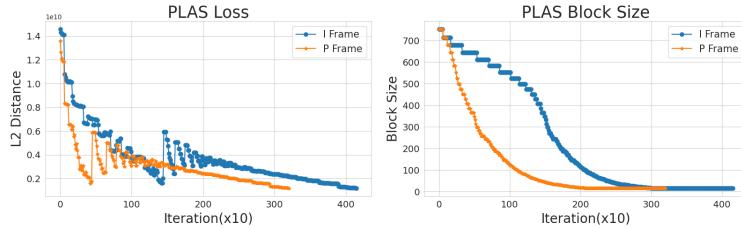


Figure 4: PLAS loss and block size variation curve of “bartender” frame 1 (I-frame) and 2 (P-frame).

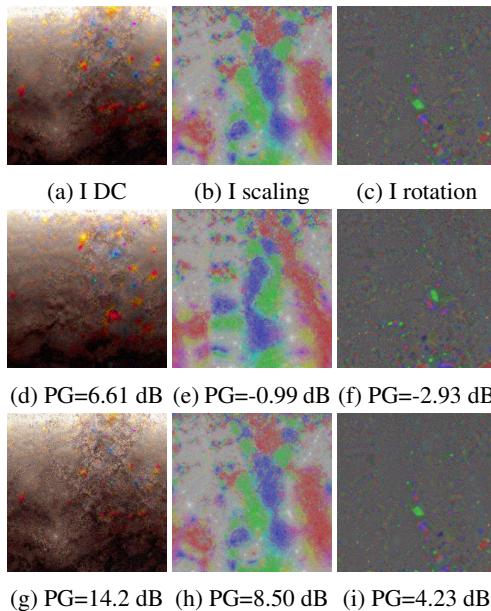
For the I-frame, we produce a 2D map I_{ini} in a row-by-row manner (see section 6.3.1 for other manners), with the row indices coming from the Morton code sorting results. Then, a vanilla PLAS is applied to obtain the attribute image I_{PLAS} . The I-frame PLAS sorting index Idx_{PLAS} is saved as the context for the P-frame initialization. For the P-frame, after 3D Morton code sorting to obtain P_{ini} , Idx_{PLAS} is used to re-arrange the index of the P_{ini} again and generate the 2D maps P'_{ini} as the initialized version. P'_{ini} , a smoother version of P_{ini} , can be fed into the vanilla PLAS to obtain P_{PLAS} , which saves around 15% GPU time. The benefit of this design is illustrated using the MPEG tracked dataset “bartender”: performing PLAS on I_{ini} takes 36s, while 30s for P'_{ini} . Based on the PLAS distance and block size variation curves shown in Fig. 4, we found that PLAS exhibits obviously faster convergence speed, especially for the large block size stage. For the I-frame, PLAS uses around 4,000 iterations to converge to the final results, while the P-frame only requires 3,000 iterations. This implies that a smoother initialization can reduce the time complexity of PLAS. Considering that the P-frame requires fewer iterations, especially for larger block sizes, we can use a smaller τ to accelerate block size convergence while ensuring satisfactory results.

270 4.2 ANCHOR-BASED PLAS REFINEMENT
271

272 Although P_{PLAS} generated using SSI and the vanilla PLAS is smooth in a whole, and it is closer
273 to I_{PLAS} than applying the vanilla PLAS on the I- and P-frames separately, evident discrepancies
274 may continue to be present in some content or attributes. An example is shown in the first and
275 second rows of Fig. 5. Using a video codec such as HEVC in the inter-prediction mode only has
276 around 8% ~ 14% bitrate savings compared to the all-intra mode. This motivates us to propose an
277 anchor-based PLAS refinement to adjust P'_{ini} rather than directly using a vanilla PLAS. Specifically,
278 we disable the generation of the blurred target T_i in PLAS and use I_{PLAS} instead **as the anchor to**
279 **progressively smooth P'_{ini} , resulting in the proposed anchor-based PLAS refinement**. Fig. 5 third
280 row shows the results of applying the modified PLAS with the proposed anchor-based refinement to
281 P'_{ini} . A prediction gain (PG) is used to quantify the benefits of inter-frame compression:
282

$$283 PG(I, P) = 10\log_{10}(E_I/E_{res}), E_I = \text{var}(I), E_{res} = \text{var}(I - P), \quad (1)$$

284 where $\text{var}(\cdot)$ represents the variation operator. For the vanilla GS, only the color DC map has 6.61
285 dB PG, while scaling and rotation have negative PG, which means: 1) the pixel-to-pixel similarity
286 between the I- and P-frames is low; and 2) the inter-frame spatial correlation of color DC is more
287 pronounced. An obviously increased PG is observed for the anchor-based PLAS refinement, which
288 means I- and P-frames are now closer to each other, suggesting better inter-prediction potential.
289



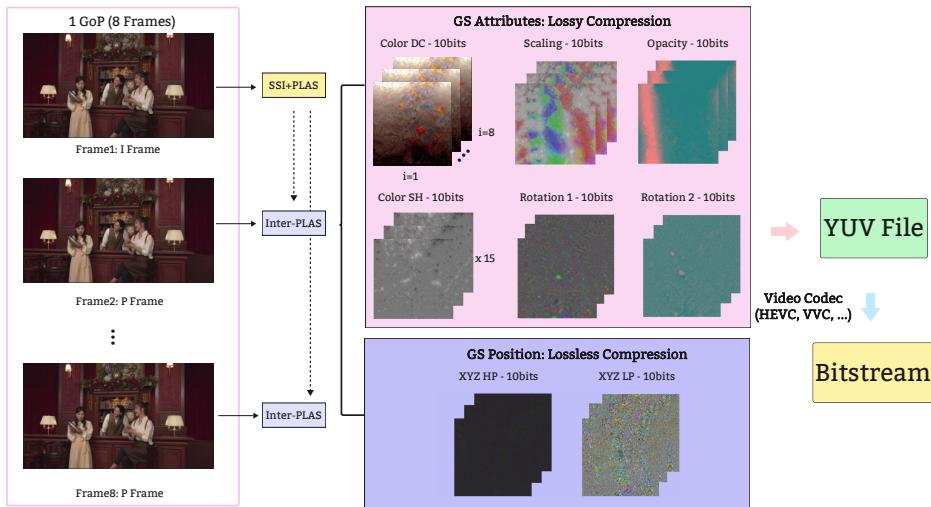
310 Figure 5: Anchor-based PLAS refinement. First row: PLAS results for the 1st frame of “bartender”;
311 second row: PLAS results for P'_{ini} ; third row: the proposed anchor-based PLAS refinement for P'_{ini} .
312

313 The vanilla PLAS and proposed anchor-based PLAS focus on different perspectives, namely intra-
314 frame smoothness v.s. inter-frame similarity. Based on Fig. 5 (g), high-frequency noise like
315 “salt&pepper” noise is observed, while Fig. 5 (d) is spatially smoother. For the video codecs in
316 the inter-prediction mode, both intra-frame content smoothness and inter-frame similarity will in-
317 fluence the P-frame compression efficiency. With the developed Inter-PLAS, higher inter-frame
318 similarity is achieved: over 20% bitrate saving can be obtained for P-frame coding.
319

320 One potential shortcoming of the anchor-based PLAS refinement comes from directly using a
321 smooth image as the target, which is inconsistent with PLAS having a coarse-to-fine process, lead-
322 ing to slow convergence. Fortunately, inspired by the discussion about Fig. 4, we find a very easy
323 method to realize complexity control without sacrificing the compression efficiency significantly,
which is reported in Section A.8.

324 5 GAUSSIAN SPLATTING SEQUENCE CODING USING VIDEO CODEC

326 Based on the images generated by Inter-PLAS, the proposed effective GS sequence compression
 327 scheme GSCV is established, as shown in Fig. 6. It can be seen that first, we combine 8 frames
 328 into 1 GoP, with the first frame designated as the I-frame and the rest 7 frames as the P-frames. SSI
 329 + Vanilla PLAS and Inter-PLAS are used for the I- and P-frames respectively to project primitives
 330 onto 2D grids. After that, 20 BD is used to quantize the coordinates and 10 BD is applied to quantize
 331 other attributes. For each GS frame, we generate 1, 15, and 1 frame images for the color DC, SH,
 332 and scaling. For opacity and rotation, we use the mid-value of BD to pad two channels to form 1
 333 and 2 images, respectively. Most video codecs cannot compress 20 BD images directly. To improve
 334 the compatibility of GSCV, we split the coordinates map into 2 images, namely the high part (HP)
 335 and low part (LP) of data. Each part takes 10 BD.



353 Figure 6: Diagram of the proposed GSCV.
 354

355 For each GS frame, 22 images are generated. We extract the corresponding images from each frame
 356 within a GoP to group 22 videos and save these videos in YUV444 format. Lossless compression is
 357 used for coordinates, while other attributes employ the lossy mode. Note that we directly consider
 358 the video data as YUV rather than RGB, omitting the operation that converts data from RGB to
 359 the YUV color space for YUV file generation. The reasons are twofold: 1) except for the color
 360 DC and SH, there is no inter-relationship analogous to the other attributes; applying an RGB-to-
 361 YUV transformation is thus redundant and offers no benefit for compression; 2) even with a lossless
 362 compression, the RGB-to-YUV transformation introduces inevitable calculation errors that result
 363 in noticeable quality degradation (especially for the coordinate HP image) at high bitrate due to
 364 the lossy forward and inverse processes. The influence of introducing RGB-to-YUV is reported in
 365 Section A.6.

366 6 EXPERIMENTS

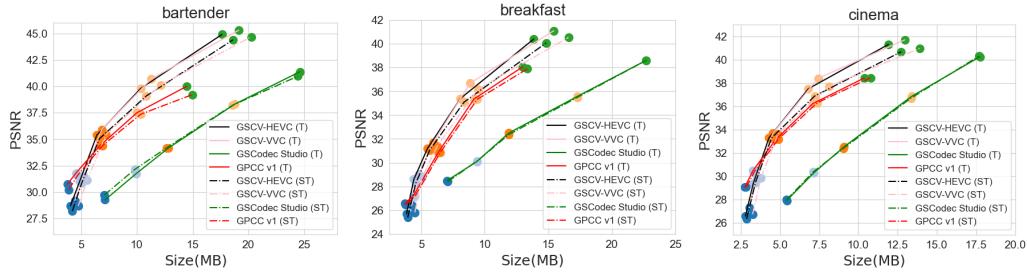
368 In this section, the performance of the proposed GSCV on an authoritative dataset from MPEG is
 369 reported. We compare it against two anchors adopted in the MPEG GS compression working group,
 370 namely GSCodec Studio and GPCC v1 (see Section A.2 for an introduction). The ablation study is
 371 presented at the end of this section to demonstrate the effectiveness of different modules.

373 6.1 DATASET AND GSCV IMPLEMENTATION

375 Three GS sequences with **tracked** and **semi-tracked** versions from the MPEG GS compression
 376 working group are used to test the proposed method: ‘‘bartender’’, ‘‘cinema’’, and ‘‘breakfast’’ (see
 377 Section A.3 for details). Each sequence has 32 frames and we use the first 8 frames as 1 GoP in the
 following experiment. Here, ‘‘tracked’’ means that 32 frames GS are refined from a shared canonical

378 GS model, which was trained using the merged point cloud with ground truth images from all
 379 viewpoints and time instants. Densification is disabled during the refinement process, ensuring that
 380 all the frames have the same number of primitives. “Semi-tracked” means densification is allowed
 381 during the refinement, which results in a different number of primitives for different frames. More
 382 details about the tracked and semi-tracked sequences generation can be found in (Jeong et al., 2025).
 383 To simulate the practically interesting situation that some operations might affect the permutation of
 384 primitives, we **shuffle** randomly the tracked data of each frame before testing. For video sequence
 385 generation, we use LightGaussian to **prune** the semi-tracked dataset to ensure frames within 1 GoP
 386 have the same number of primitives by removing the minimum element. **No shuffle** is introduced
 387 for semi-tracked data. The implementation of the proposed Inter-PLAS is based on the vanilla PLAS
 388 (HHI, 2024) realized in PyTorch. All the attributes are used in PLAS image generation, i.e., $m = 59$
 389 (see Section A.10 for other attribute settings). Two popular video codecs, HEVC reference software
 390 (HM) version 18.0 (H.265) and VVC reference software (VTM) version 23.11 (H.266), are used
 391 as the codec anchor of GSCV. The detailed codec configuration is presented in Section A.1. As
 392 suggested by (WG4, 2025a), we use views 9 and 11 for “bartender” and “cinema”, while views 6
 393 and 8 for “breakfast” to compute the quality metrics. The reported results are obtained on a single
 394 NVIDIA L40s GPU and AMD EPYC 7H12 CPU.

395 6.2 OVERALL EVALUATION



407 Figure 7: Performance comparison on MPEG dataset. “T” and “ST” mean tracked and semi-tracked.

408 Fig. 7 illustrates the rate (MB) vs. distortion (RD) curves of the proposed GSCV on the MPEG
 409 tracked and semi-tracked dataset. The results of rate (bits per primitive (BPP)) are shown in Section
 410 A.4, and the RD curves for per-components are shown in Section A.14. The quantization parameters
 411 (QPs) of five bitrates are presented in Section A.1. GSCV shows obvious superiority over GSCodec
 412 Studio and GPCC v1. For example, although both use video codecs, GSCV reports around 8 dB
 413 gain on “bartender” compared with GSCodec Studio when the bitstream is 10MB, thanks to the
 414 proposed Inter-PLAS and new compression framework. The inter-frame compression performance
 415 of GSCodec Studio highly relies on the initial primitive permutation between different frames as
 416 discussed in Section A.7. With VVC, close performance compared with HEVC is obtained. This is
 417 not consistent with the case of ordinary videos where VVC can achieve 50% gain over HEVC. The
 418 reason is that the current video codecs are optimized for natural images that are completely different
 419 from the PLAS images. Based on the residual analysis in Section A.13, the PLAS image shows
 420 a more pronounced heavy-tail behavior than natural images. The same phenomenon also occurs
 421 when using FFmpeg libx265 and libx264, as reported in Section A.16. This also demonstrates that
 422 the superiority of the proposed GSCV does not mainly come from using a better video codec than
 423 GSCodec Studio. Instead, it originates from the more effective and robust pipeline pivoting a better
 424 GS video generation.

425 Second, GSCV provides better performance than GPCC v1 with the middle to high bitstreams, while
 426 poorer results with the low bitstream. The underlying reasons are twofold: 1) the setting of the color
 427 DC QP is too large, leading to inappropriate bitrate distribution. We tried other QP and YUV
 428 modes in Section A.6, and 2) GPCC v1 is more effective in encoding the coordinate which is always
 429 lossless compressed. A greater proportion of geometry at lower bitrates can lead to improved GPCC
 430 performance. A detailed bitrate allocation and coding time are reported in Section A.5 and A.16
 431 with sample snapshots given in Section A.20. PALS coordinate LP images are close to noise maps,
 432 resulting in a limited performance when using video codecs. To solve this problem, we propose an
 433 optimized coordinate compression in Section A.15, in which we found that using 12 BD for HP and

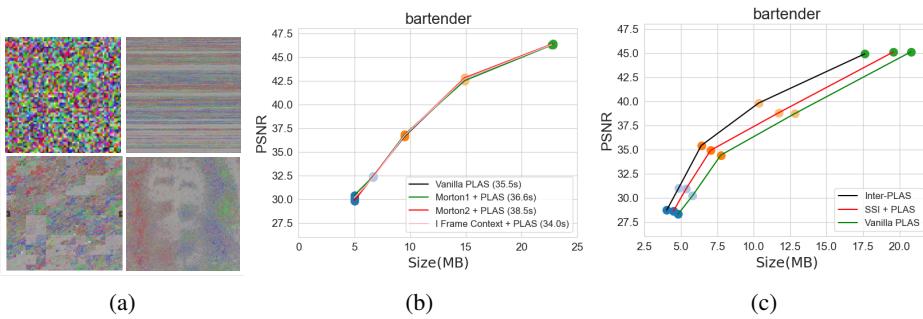
432 8 BD for LP, as well as using Lempel–Ziv–Markov chain Algorithm (LZMA) (Ziv & Lempel, 2003)
 433 to compress LP images can realize a higher compression ratio with faster coding speed.
 434

435 Third, GSCV reports consistent performance on both tracked and semi-tracked sequences, indicating
 436 the robustness of the proposed Inter-PLAS. Semi-tracked sequences are more challenging than the
 437 tracked version, indicating densification tends to amplify the inter-frame differences.

438 6.3 ABLATION STUDY

440 6.3.1 INFLUENCE OF PLAS INITIALIZATION ON IMAGE GENERATION AND COMPRESSION

442 The first step of Inter-PLAS provides a good initialization method to solve the problem introduced
 443 by GS permutation-invariant characteristics, generating a stable I-frame image as the P-frame’s con-
 444 text. The initialization should not damage the intra-frame compression effectiveness of the I-frame,
 445 considering that the I-frame occupies more bitstream than the P-frame. We compare the results of
 446 GSCV all-intra compression mode on PLAS image with different initialization methods followed by
 447 the vanilla PLAS with tracked sequences: 1) random initialization; 2) Morton1, using 3D Morton
 448 scan first and then generating 2D maps row by row; 3) Morton2, using 3D Morton scan first and then
 449 mapping it to 2D maps based on 2D Morton scan order; 4) using a PLAS index from another frame
 450 as context. The visualization of four initialization methods and RD are shown in Figs. 8 (a) and
 451 (b). We can see that the RD curves of different initialization methods are almost the same, indicat-
 452 ing that the PLAS is robust to initialization in all-intra compression. However, using another frame
 453 as context requires the shortest PLAS time, indicating that a smoother initialization can accelerate
 PLAS convergence to stable states.



465 Figure 8: Ablation study on (a)-(b): PLAS initialization and (c): effectiveness of Inter-PLAS.
 466

467 6.3.2 EFFECTIVENESS OF INTER-PLAS

468 Although GSCodec Studio also supports inter-prediction for GS sequences as GSCV, it directly uses
 469 the PLAS index from the I-frame to sort P-frames, which cannot ensure that the P-frame image aligns
 470 well with the I-frame. To highlight this problem, we use GSCV based on three different methods
 471 to generate images with tracked sequence: 1) using the vanilla PLAS on each frame separately;
 472 2) using SSI to initialize the P-frames followed by the vanilla PLAS to refine images; and 3) the
 473 proposed Inter-PLAS that uses the I-frame to refine P-frame images. The results are shown in Fig.
 474 8 (c). As we discussed for Fig. 2, directly using the vanilla PLAS will generate different images
 475 for close content due to the random process, resulting in the worst inter-prediction results. Using a
 476 good context to initialize the P-frame with PLAS can generate better P-frame images. However, the
 477 vanilla PLAS only focuses on intra-frame smoothness, while there is no supervision on inter-frame
 478 similarity, leading to limited gain for inter-prediction. The proposed Inter-PLAS solves the image
 479 alignment problem by a simple and effective strategy with high PG, showing an obvious gain on
 480 inter-prediction cases.

481 7 CONCLUSIONS

482 In this paper, we propose GSCV, an effective GS sequence compression pipeline based on video
 483 codecs. We design an Inter-PLAS method to generate high-correlation GS images, which can fa-
 484 cilitate the inter-frame compression for video codecs greatly. We also design a new GS image

486 compression pipeline based on SOTA video codecs. By using high BD images and being compatible
 487 with prevalent video codecs, GSCV reports obviously better performance on both tracked and
 488 semi-tracked sequences than video- and PC-based anchors used in the current MPEG standardization
 489 study.

490 **Limitations:** PLAS images are very different from natural images, leading to restricted compression
 491 ratios of the proposed GSCV, which is now based on generic video codecs. One potential enhance-
 492 ment to solve this problem is to use a “Sandwich network” (Guleryuz et al., 2024) to convert PLAS
 493 images to a data distribution more suitable for traditional video codec compression. Dividing the GS
 494 data into multiple video sequences and compressing them separately cannot fully utilize the primitive
 495 intra-channel correlations, especially for the color SH (see Section A.9). We will explore how
 496 to better group color SH images in future work. For tracked GS data after permutation, Inter-PLAS
 497 cannot completely recover the primitive correspondence due to its heuristic mechanism inherited
 498 from PLAS.

499

500

REFERENCES

501 AVS. Basketball, 2024. URL https://huggingface.co/datasets/BestWJH/VRU_Basketball.

502 Milena T Bagdasarian, Paul Knoll, Y Li, Florian Barthel, Anna Hilsmann, Peter Eisert, and Wieland
 503 Morgenstern. 3dgs. zip: A survey on 3d gaussian splatting compression methods. In *Computer
 504 Graphics Forum*, volume 44, pp. e70078. Wiley Online Library, 2025.

505 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
 506 360: Unbounded anti-aliased neural radiance fields. In *Proc. IEEE/CVF Conf. Computer Vision
 507 and Pattern Recognition*, pp. 5470–5479, 2022.

508 Kai Uwe Barthel, Nico Hezel, Klaus Jung, and Konstantin Schall. Improved evaluation and genera-
 509 tion of grid layouts using distance preservation quality and linear assignment sorting. In *Computer
 510 Graphics Forum*, volume 42, pp. 261–276. Wiley Online Library, 2023.

511 Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J Sullivan, and Jens-Rainer
 512 Ohm. Overview of the versatile video coding (vvc) standard and its applications. *IEEE Trans.
 513 Circuits and Systems for Video Technology*, 31(10):3736–3764, 2021.

514 Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid assisted
 515 context for 3d gaussian splatting compression. In *European Conference on Computer Vision*, pp.
 516 422–438. Springer, 2024a.

517 Yihang Chen, Qianyi Wu, Mengyao Li, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Fast feed-
 518 forward 3d gaussian splatting compression. In *The International Conference on Learning Repre-
 519 sentations*, 2025a.

520 Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac++: Towards 100x
 521 compression of 3d gaussian splatting. *arXiv preprint arXiv:2501.12255*, 2025b.

522 Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai,
 523 Lei Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing
 524 with gaussian splatting. In *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition*, pp.
 525 21476–21485, 2024b.

526 Ricardo L. De Queiroz and Philip A. Chou. Compression of 3d point clouds using a region-adaptive
 527 hierarchical transform. *IEEE Trans. Image Processing*, 25(8):3947–3956, 2016. doi: 10.1109/TIP.2016.2575005.

528 Jihoon Do, Jong-Beom Jeong, Hahyun Lee, and Gun Bang. [gsc][jee6.7-related] a lightweight 3d
 529 gaussian splats coding framework for 1f-vid track with a single video decoder instance. *ISO/IEC
 530 JTC 1/SC 29/WG 4 m73294*, 2025.

531 Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaus-
 532 sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. *Advances in Neural
 533 Information Processing Systems*, 37:140138–140158, 2024.

540 Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
 541 with lightweight encodings. In *European Conference on Computer Vision*, pp. 54–71. Springer,
 542 2025.

543

544 Onur G Guleryuz, Philip A Chou, Berivan Isik, Hugues Hoppe, Danhang Tang, Ruofei Du, Jonathan
 545 Taylor, Philip Davidson, and Sean Fanello. Sandwiched compression: Repurposing standard
 546 codecs with neural network wrappers. *arXiv preprint arXiv:2402.05887*, 2024.

547 ITU-T H.265. Hm reference software for HEVC. https://vcgit.hhi.fraunhofer.de/jvet/HM-18.0?ref_type=tags.

548

549 ITU-T H.266. Vtm reference software for VVC. https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM.

550

551 Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom Goldstein.
 552 Pup 3d-gs: Principled uncertainty pruning for 3d gaussian splatting. In *Proc. IEEE/CVF Conf.
 553 Computer Vision and Pattern Recognition Conference*, pp. 5949–5958, 2025.

554

555 Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
 556 tow. Deep blending for free-viewpoint image-based rendering. *ACM Trans. Graphics*, 37(6):
 557 1–15, 2018.

558

559 Fraunhofer HHI. Parallel linear assignment sorting (PLAS), 2024. URL <https://github.com/fraunhoferhhi/PLAS>.

560

561 Qiang Hu, Zihan Zheng, Houqiang Zhong, Sihua Fu, Li Song, Xiaoyun Zhang, Guangtao Zhai,
 562 and Yanfeng Wang. 4dgc: Rate-aware 4d gaussian compression for efficient streamable free-
 563 viewpoint video. In *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition*, pp. 875–
 564 885, 2025.

565

566 He Huang, Wenjie Huang, Qi Yang, Yiling Xu, and Zhu Li. A hierarchical compression technique
 567 for 3d gaussian splatting compression. In *IEEE Int. Conf. Acoustics, Speech and Signal Process-
 568 ing*, pp. 1–5, 2025.

569

570 Jun Young Jeong, Reagan Koo, Kwan-Jung Oh, Hong-Chang Shin, and Gwangsoon Lee.
 571 [gsc][jee6.1-related] training method for generating temporally consistent per-frame i-3dgs
 572 dataset. *ISO/IEC JTC 1/SC 29/WG 4 m71763*, 2025.

573

574 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 575 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

576

577 Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
 578 large-scale scene reconstruction. *ACM Trans. Graphics*, 36(4):1–13, 2017.

579

580 Harold W Kuhn. The hungarian method for the assignment problem. *Naval Research Logistics
 581 Quarterly*, 2(1-2):83–97, 1955.

582

583 Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis.
 584 In *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition*, pp. 9397–9406, 2018.

585

586 Sicheng Li, Chengzhen Wu, Hao Li, Xiang Gao, Yiyi Liao, and Lu Yu. Gscodec studio: A modular
 587 framework for gaussian splat compression. *arXiv preprint arXiv:2506.01822*, 2025.

588

589 Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
 590 3d scene representation via compressed gaussian splatting. In *Proc. ACM Int. Conf. Multimedia*,
 591 pp. 2936–2944, 2024.

592

593 Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
 594 Structured 3d gaussians for view-adaptive rendering. In *Proc. IEEE/CVF Conf. Computer Vision
 595 and Pattern Recognition*, pp. 20654–20664, 2024.

596

597 Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
 598 sentation via self-organizing Gaussian grids. In *European Conference on Computer Vision*, pp.
 599 18–34. Springer, 2024.

594 Guy M Morton. *A computer oriented geodetic data base and a new technique in file sequencing*.
 595 International Business Machines Company, 1966.
 596

597 KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsivash.
 598 Compgs: Smaller and faster gaussian splatting with vector quantization. In *European Conference
 599 on Computer Vision*, pp. 330–349. Springer, 2025.

600 Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
 601 for accelerated novel view synthesis. In *Proc. IEEE/CVF Conf. Computer Vision and Pattern
 602 Recognition*, pp. 10349–10358, 2024.

603

604 Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A.
 605 Chou, Robert A. Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, Joan Llach, Khaled Mam-
 606 mou, Rufael Mekuria, Ohji Nakagami, Ernestasia Siahaan, Ali Tabatabai, Alexis M. Tourapis,
 607 and Vladyslav Zakharchenko. Emerging mpeg standards for point cloud compression. *IEEE
 608 Journal on Emerging and Selected Topics in Circuits and Systems*, 9(1):133–148, 2019. doi:
 609 10.1109/JETCAS.2018.2885981.

610 Yiting Shao, Zhaobin Zhang, Zhu Li, Kui Fan, and Ge Li. Attribute compression of 3d point clouds
 611 using laplacian sparsity optimized graph transform. In *IEEE Visual Communications and Image
 612 Processing*, pp. 1–4, 2017. doi: 10.1109/VCIP.2017.8305131.

613

614 Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high effi-
 615 ciency video coding (HEVC) standard. *IEEE Trans. Circuits and Systems for Video Technology*,
 616 22(12):1649–1668, 2012.

617 Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Treitschke, Wang Yifan,
 618 Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, et al. Ad-
 619 vances in neural rendering. In *Computer Graphics Forum*, volume 41, pp. 703–735. Wiley Online
 620 Library, 2022.

621

622 Boyuan Tian, Qizhe Gao, Siran Xianyu, Xiaotong Cui, and Minjia Zhang. Flexgaussian: Flex-
 623 ible and cost-effective training-free compression for 3d gaussian splatting. *arXiv preprint
 624 arXiv:2507.06671*, 2025.

625

626 Gregory K. Wallace. The jpeg still picture compression standard. *Communications of the ACM*, 34
 627 (4):30–44, 1991. doi: 10.1145/103085.103089.

628

629 Chenjunjie Wang, Shashank N Sridhara, Eduardo Pavez, Antonio Ortega, and Cheng Chang.
 630 Adaptive voxelization for transform coding of 3d gaussian splatting data. *arXiv preprint
 631 arXiv:2506.00271*, 2025.

632

633 WG4. Description of jee 6.1 on data preparation. *ISO/IEC JTC1/SC29 WG4 Document N0676*,
 634 2025a.

635

636 WG4. [gsc][jee2] a potential video-based anchor for gaussian splats coding. *ISO/IEC JTC1/SC29
 637 WG4 Document m72063*, 2025b.

638

639 WG4. [gsc][jee6.4-related] on the use case and requirements for lightweight gsc. *ISO/IEC
 640 JTC1/SC29 WG4 Document m72430*, 2025c.

641

642 WG7. Revised text of iso/iec fdis 23090-9 geometry-based point cloud compression. *ISO/IEC
 643 JTC1/SC29 WG7 Document N0348*, 2023.

644

645 WG7. [gsc][jee6.4] draft use cases and requirements for gaussian splat coding. *ISO/IEC JTC1/SC29
 646 WG7 Document m71640*, 2025.

647

648 Adam Wieckowski, Jens Brandenburg, Tobias Hinz, Christian Bartnik, Valeri George, Gabriel Hege,
 649 Christian Helmrich, Anastasia Henkel, Christian Lehmann, Christian Stoffers, Ivan Zupancic,
 650 Benjamin Bross, and Detlev Marpe. Vvenc: An open and optimized vvc encoder implementation.
 651 In *Proc. IEEE Inter. Conf. Multimedia Expo Workshops*, pp. 1–2. doi: 10.1109/ICMEW53276.
 652 2021.9455944.

648 Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
 649 and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proc.
 650 IEEE/CVF Conf. Computer Vision and Pattern Recognition*, pp. 20310–20320, 2024.
 651

652 Yuke Xing, William Gordon, Qi Yang, Kaifa Yang, Jiarui Wang, and Yiling Xu. 3dgs-vbench:
 653 A comprehensive video quality evaluation benchmark for 3dgs compression. *arXiv preprint
 654 arXiv:2508.07038*, 2025.

655 Qi Yang, Yujie Zhang, Siheng Chen, Yiling Xu, Jun Sun, and Zhan Ma. Mped: Quantifying point
 656 cloud distortion based on multiscale potential energy discrepancy. *IEEE Trans. Pattern Analysis
 657 and Machine Intelligence*, 45(5):6037–6054, 2023. doi: 10.1109/TPAMI.2022.3213831.
 658

659 Qi Yang, Kaifa Yang, Yuke Xing, Yiling Xu, and Zhu Li. A benchmark for Gaussian splatting com-
 660 pression and quality assessment study. In *Proc. ACM Int. Conf. Multimedia in Asia*. Association
 661 for Computing Machinery, 2024. doi: 10.1145/3696409.3700172.
 662

663 Qi Yang, Le Yang, Geert Van der Auwera, and Zhu Li. Hybrids: High-efficiency gaussian splat-
 664 ting data compression using dual-channel sparse representation and point cloud encoder. In *The
 665 International Conference on Machine Learning*, 2025.

666 Alexandra Zaghetto, Danillo Graziosi, and Ali Tabatabai. 3dgs geometry quantization. *ISO/IEC
 667 JTC 1/SC 29/WG 7 m69034*, 2024.
 668

669 Xiaoyun Zheng, Liwei Liao, Xufeng Li, Jianbo Jiao, Rongjie Wang, Feng Gao, Shiqi Wang, and
 670 Ronggang Wang. Pku-dymvhumans: A multi-view video benchmark for high-fidelity dynamic
 671 human modeling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 672 Recognition*, pp. 22530–22540, 2024.
 673

674 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. *IEEE
 675 Trans. Information Theory*, 23(3):337–343, 2003.
 676

677

A APPENDIX

A.1 BITRATE SETTING DETAILS

681 In Table 1, we show the QP values of five bitstreams for GSCV. For HEVC lossy compression, “en-
 682 coder_randomaccess_main_rext.cfg” is used for inter-frame compression; for lossless compression,
 683 two flags are set: “TransquantBypassEnabledFlag = 1” and “CUTransquantBypassFlagForce = 1”.
 684 For VVC lossy compression, “encoder_randomaccess_vtm.cfg” is used; for lossless compression,
 685 “lossless444.cfg” and “lossless.cfg” are applied. We report using HM18.0 “encoder_low_delay”
 686 configuration with different coding sequencing in Section A.11.

Rate	Coordinate	QP				
		Color DC	Color SH (degree 1/2/3)	opacity	scale	rotation
R05	lossless	0	0/0/0	0	0	0
R04		7	7/12/17	7	7	2
R03		17	17/22/27	17	7	2
R02		37	22/27/32	17	12	7
R01		47	32/37/42	22	12	17

695 Table 1: QP of five bitrates of GSCV
 696
 697

A.2 BASELINE ANCHORS

698 **GSCodec Studio:** GSCodec Studio (Li et al., 2025) uses FFMPEG x265 codec, which supports
 699 GoP-wise compression with inter-prediction. The default GoP size is 16, and 8 BD is used to
 700 quantize the PLAS image. In our experiment, we change the GoP size to 8 for fair comparison.
 701

702 **GPCC v1:** GPCC v1 (WG7, 2023) was originally designed for PC data compression. MPEG ex-
 703 tended its interface that supports GS data loading and used it as the PC-based anchor for GS com-
 704 pression. The compression of coordinates and other attributes inherits the compression method of
 705 PC: Octree for coordinates and RAHT (De Queiroz & Chou, 2016) for attributes compression. It
 706 uses 18 bits to quantize coordinates and 12 bits for other attributes. Current GPCC v1 does not
 707 support GS inter-frame compression, therefore, we use all-intra mode in Section 6.

709 A.3 DATASET INFORMATION

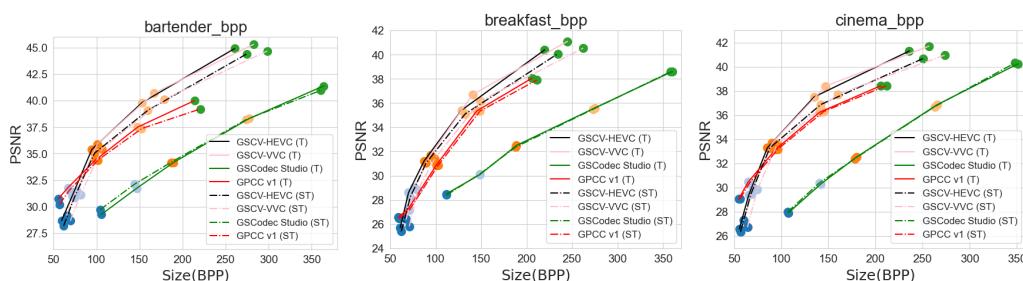
710 The number of primitives for MPEG tracked and semi-tracked sequences is shown in Table 2. For
 711 tracked sequences, the primitive number is the same for different frames. For semi-tracked se-
 712 quences, the red number is the minimum primitives within this GoP, which will be used as the target
 713 number after pruning. Considering that densification is allowed during refinement, semi-tracked
 714 sequences have more primitives than the tracked version.

Sequence	Primitive Number					
	Bartender		Breakfast		Cinema	
Frame Index	Tracked	Semi-tracked	Tracked	Semi-tracked	Tracked	Semi-tracked
1	567724	570255	528154	531263	423249	426968
2		570104		530997		426752
3		569842		530998		426497
4		569733		530857		426209
5		569556		530686		426145
6		569285		530582		425953
7		569299		530509		426035
8		569246		530524		426033

727 Table 2: Number of primitives for MPEG tracked and semi-tracked sequences.

730 A.4 BPP-BASED RD CURVE

732 The results of the rate (BPP) vs. distortion are summarized in Fig. 9. The primitive num-
 733 bers of the tracked and semi-tracked “bartender”, “breakfast”, and “cinema” are 567,724/569,246,
 734 528,154/530,509, and 423,249/425,953, respectively.

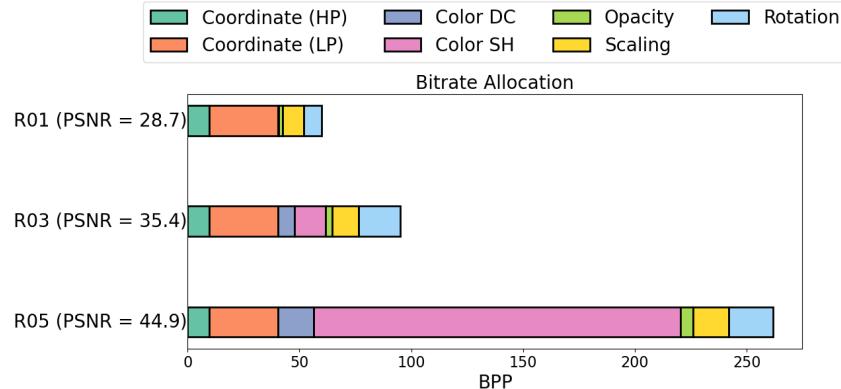
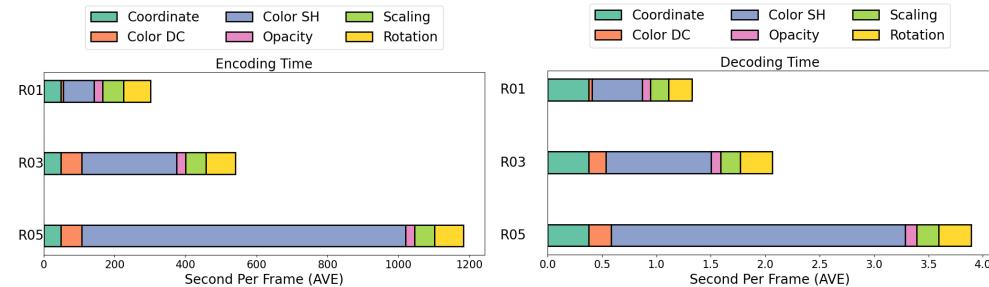


745 Figure 9: PSNR performance comparison on MPEG tracked and semi-tracked dataset.

748 A.5 BITRATE ALLOCATION

750 To illustrate the bitrate distribution for different components on GSCV, we use tracked “bartender”
 751 rate 1, 3, and 5 with HEVC as an example. The BPP is shown in Fig. 10. We can see that for high
 752 BPP, color SH occupies more bitstreams, while geometry-related features contribute more to low
 753 BPP. Considering that GS quality is more sensitive to geometry-related features, saving bitstream
 754 from color-related features can provide a better quality-bitstream tradeoff. The coding time, which
 755 is shown in Fig. 11, illustrates that the decoding is faster than encoding, and this coding time is
 thus only for complexity illustration purpose. Currently, we establish GSCV based on the HM or

756 VTM software, which is mainly used for standardization studies. The coding speed is relatively slow
 757 owing to the lack of engineering optimizations (e.g., using multithreaded processing). Faster coding
 758 speed can be achieved by choosing “encoder_lowdelay_main_rext.cfg” file or using optimized codec
 759 platforms (e.g., FFMPEG or VVdeC (Wieckowski et al.))
 760

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Figure 10: Bitrate allocation of GSCV.
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Figure 10: Bitrate allocation of GSCV.
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Figure 11: Coding time of GSCV.

A.6 BITRATE REDISTRIBUTION

791 In Fig. 7, we find that the proposed GSCV exhibits faster PSNR decay since the third bitrate point.
 792 The reason may be that we use a large QP for color DC, while color DC serves as a cornerstone for
 793 visual quality. Therefore, we try the other QP setting (noted as C2, while the QP reported in Table 1
 794 is referred to as C1): for R01 to R03, we use QP = 7 for color DC as suggested by (Do et al., 2025).
 795 Besides, color SH contributes to the majority of the overall bitstream as shown in Fig. 10. We use
 796 YUV420 to reduce the bits of chrominance from color SH, and use C1 and C2 to generate new RD
 797 curves. The results are shown in Fig. 15. We find that: 1) C2 yields better results than C1 at low
 798 to medium bitrates, indicating that more bitrates should be devoted to the color DC component; 2)
 799 using YUV420 for color SH demonstrates even better performance at low to medium bitrates, while
 800 the quality ceiling has been substantially decreased even though QP=0. It suggests that YUV444
 801 should be used if high quality is desired.

A.7 INFLUENCE OF DATA SHUFFLING

802 In Section 1, we highlight that GSCodec Studio directly uses the I-frame PLAS index for the P-frame
 803 image, exploiting the assumption that the arrangement of the I- and P-frame primitives demonstrates
 804 explicit spatial correspondence. The MPEG tracked GS data provides this spatial correspondence
 805 naturally due to its generation process (Jeong et al., 2025); therefore, GSCodec Studio reports im-
 806 pressive compression results on the vanilla MPEG tracked dataset. We test the GSCodec Studio
 807 with and without data shuffling on the MPEG tracked dataset. The results are shown in Fig. 13. We
 808 see that the GSCodec Studio reports obviously poorer performance when data shuffling is applied.
 809

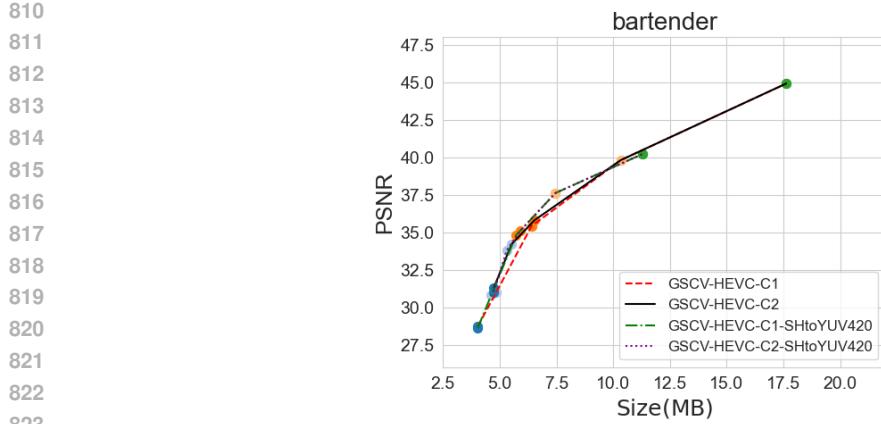


Figure 12: Additional RD curves of GSCV on tracked “bartender”.

827 Specifically, increasing the bitrate by four times is required for achieving the same PSNR compared
828 with the no-shuffle case. In order to ensure I- and P-frame alignment, GSCodec Studio uses primitive
829 padding rather than pruning for the square 2D grid requirement of PLAS, considering that even
830 a minor pruning difference of the I- and P-frames will result in incorrect overall index alignment and
831 the invalidation of index inheritance. The results of GSCodec Studio with pruning are also illustrated
832 in Fig. 13. The obtained observation is close to the shuffle case. Based on the finding from Light-
833 Gaussian (Fan et al., 2024) that GS might have many redundant primitives due to the incomplete
834 densification mechanism, the downstream codec should be compatible with primitive pruning for
835 more flexible rate control, which also highlights the significance and value of the proposed GSCV.
836 Note that if tracked information is available for GSCV (i.e., disable Inter-PLAS), GSCV can still
837 report better performance than GSCodec Studio because GSCV has better compression efficiency
838 with the same PLAS image input as shown in Section A.9.

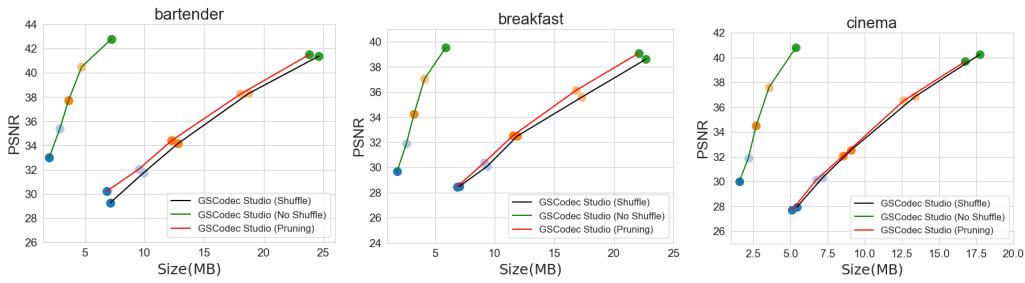


Figure 13: Influence of data shuffle on GSCodec Studio on tracked dataset.

A.8 EFFECTIVENESS OF ANCHOR-BASED PLAS REFINEMENT

853 As the prerequisite for realizing efficient inter-frame PLAS image prediction, anchor-based PLAS
854 refinement is important for aligning I- and P-frames. However, different from the vanilla PLAS,
855 which adopts a progressive coarse-to-fine blue image generation strategy to generate smooth intra-
856 frame images, using an I-frame PLAS image as a target to refine the P-frame is more challenging and
857 results in extended computation time requirements. For example, the vanilla PLAS on “bartender”,
858 which has around half a million primitives, requires around 30s GPU time, while anchor-based
859 PLAS refinement requires around 70s GPU time. Inspired by the PLAS loss and block size curves
860 shown in Fig. 4, we find that adapting the block size decay factor τ can result in an improved balance
861 between P-frame image compression effectiveness and generation speed. The default τ is 0.95 in
862 the vanilla PLAS. We try $\tau = 0.8, 0.7, 0.6$ and report the RD curve and PLAS time in Fig. 14.
863 When reducing τ from 0.95 to 0.6, we can save around half the GPU time with a minor performance
864 decrease. Therefore, we suggest choosing a proper τ for P-frame image generation if computation

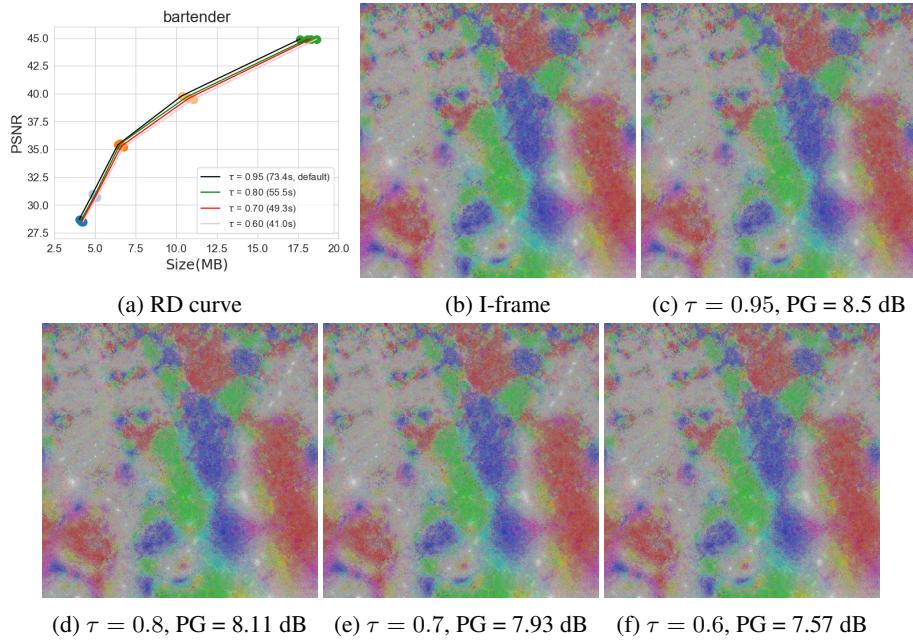


Figure 14: Ablation study of anchor-based PLAS refinement.

complexity is emphasized in certain use cases. Besides, we also explore the influence of using a dynamic τ according to the GS sequence length in Section A.12.

A.9 ALL-INTRA PERFORMANCE

The proposed GSCV is designed specifically for the GS sequence, while remaining compatible with single-frame compression. We use all-intra mode for GSCV to test the first frame of MPEG ‘‘bartender’’, and compare it with GSCodec Studio (all-intra mode), GPCC v1, HGSC (Huang et al., 2025), and FCGS (Chen et al., 2025a). We find that: 1) The FCGS reports obviously better performance than other methods. The reason is that FCGS is a learning-based method with complex context models. It uses a mask to divide the primitives into different groups and compress them in either the explicit or latent domain. Besides, the FCGS requires GPUs to realize data compression, which is expensive as reported in (Tian et al., 2025). 2) HGSC also requires GPUs to do the primitive pruning based on rendering results as one step of data compression. 3) GSCV, GSCodec Studio, and GPCC v1 are based on CPU, which is lightweight. Although GSCV and GSCodec require PLAS that is based on GPUs, this process is generally not regarded as part of the compression, particularly taking into account that PLAS images may be produced in the course of GS generation or directly thereafter (Morgenstern et al., 2024). 4) GSCV reports better all-intra performance than GSCodec Studio, indicating that GSCV can still offer better inter-prediction results if using the same PLAS videos as input.

A.10 INFLUENCE OF PLAS FEATURE CHANNEL

In Section 6, we use all the 59 GS features for Inter-PLAS image generation. The time of Inter-PLAS and compression ratio are highly related to the feature channels used in PLAS. To highlight this problem, three cases are proposed to generate PLAS images: 1) using all the features; 2) using coordinates and color DC, i.e., six channels; and 3) using all the attributes except color SH, i.e., fourteen channels. The results are shown in Fig. 16.

We see that employing more features leads to improved compression efficiency. However, more features result in more GPU time for Inter-PLAS. Using ‘‘bartender’’ as an example, applying Inter-PLAS to the I- and P-frames in the three cases considered takes 30.5s/73.4s, 7.9s/22.6s, 12.6s/32.0s. Therefore, besides using τ to control the Inter-PLAS complexity as reported in Section A.8, controlling the feature channels used in PLAS also deserves more investigations.

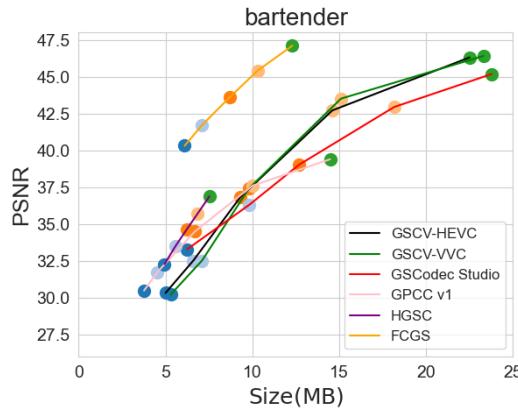


Figure 15: RD curves of single-frame results.

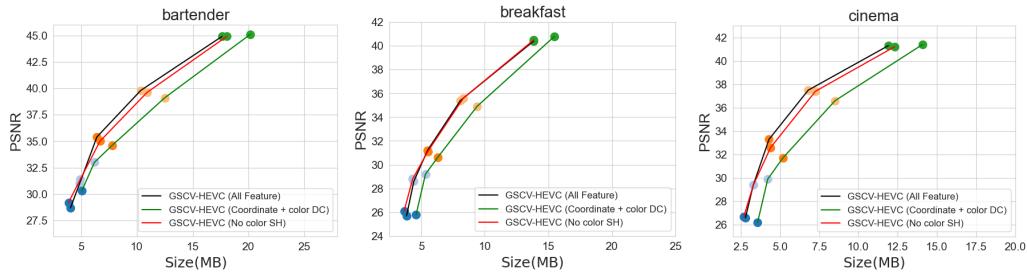


Figure 16: Influence of feature channels on Inter-PLAS

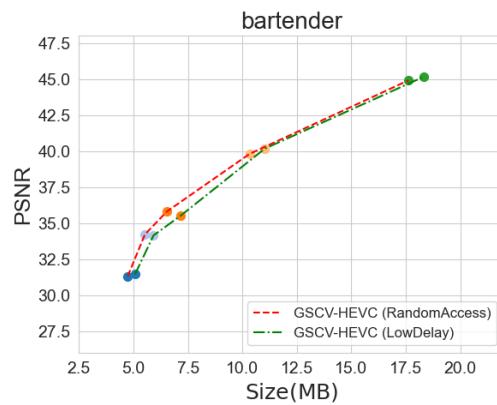
A.11 INFLUENCE OF COMPRESSION SEQUENCING

In Section 6, we choose the default “encoder_randomaccess” configuration to compress a GoP of PLAS images, in which the first frame is regarded as the I-frame, all the other frames are B-frames (i.e., bidirectionally predicted-coded frame) with compression sequencing as 0-4-2-1-3-6-5-7. We explore the influence of coding sequencing on final results in this section. We choose HEVC “encoder_low_delay” configuration and set frames 1 to 7 as P-frames (predictive-coded frame), the coding sequencing is 0-1-2-3-4-5-6-7. The results are shown in Fig. 17. We see that “RandomAccess” coding mode is slightly better than “low_delay” mode with 3.63% RD gains, indicating that using B-frames in compression can improve overall performance. However, introducing P-frames coding, which does not depend on frames in the future moment, generally requires less buffer time, therefore is more friendly for real-time applications.

A.12 THE INFLUENCE OF DYNAMIC DECAY FACTOR

We have discussed the influence of τ in Section A.8, where we find larger τ represents using more iterations for P-frame PLAS image generation, which generally produces a closer image compared with I-frame images, as well as longer computation time. Theoretically, τ should be increased with the increase of the length of IPPP sequences. The reason is that with the increase of the sequence length, the difference between the P-frames and I-frames increases, which means the Inter-PLAS requires more iterations to refine P-frames. We perform a new ablation study here. For P-frames of “bartender”, we set: 1) D1: initial τ_0 as 0.6, and $\tau_t = \min(\tau_0 \times 1.1^{t-1}, 0.95)$, $t \geq 1$, in which τ_t gradually increases to 0.95; and 2) D1: initial τ_0 as 0.95, and $\tau_t = \max(\tau_0 \times 0.9^{t-1}, 0.6)$, $t \geq 1$, in which τ_t gradually decreases to 0.6. The result is shown in Fig. 18.

We can see that using a fixed τ of 0.95 reports the best performance, while the case with an increased τ introduces around 2.12% gain compared with the case that uses a decreased τ . This corroborates our conclusion that for the GS sequences, the P-frames distant from the I-frames exhibit greater



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 17: RD curves of different coding sequencing.

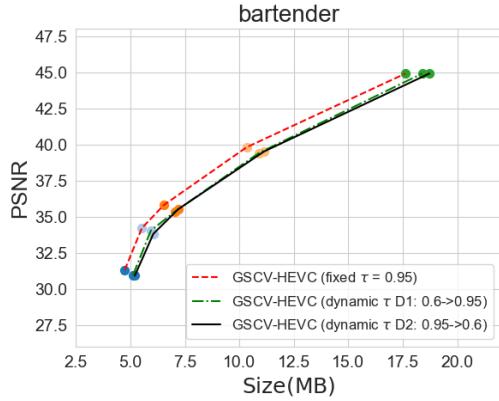


Figure 18: RD curves of dynamic τ .

differences and therefore should be assigned a larger τ . Considering D1 and D2 require a close overall inter-PLAS image generation time, D1 is a better choice given a relatively long GS sequence.

A.13 RESIDUAL ANALYSIS

Based on the results in Fig. 7, we find the results of HM18.0 and VTM23.11 close to each other, which is in conflict with the results on natural images. Therefore, we illustrate the residual map and the corresponding statistics histogram between frames 0 and 1 of ‘‘bartender’’ color DC and scaling as examples. For a fair comparison, we use the rendered ‘‘bartender’’ with view 9 as the representation of nature images.

Based on the histogram, we further provide fitted Gaussian and Laplace distribution curves. The results are shown in Fig. 19. We see that the natural image reports the smallest standard deviation (Std), and the corresponding histogram reveals smaller entropy. The larger Laplace scale parameter b also reflects that PLAS images demonstrate a more pronounced heavy-tail behavior, indicating more challenging compression conditions. Besides, natural images illustrate obvious motive texture, while PLAS images resemble residual signals that lack semantic content. Consequently, many advanced techniques used in video coding may not function effectively on such images, which can explain the reason that VTM23.11 reports close performance with HM18.0.

A.14 RD CURVE FOR DIFFERENT COMPONENTS

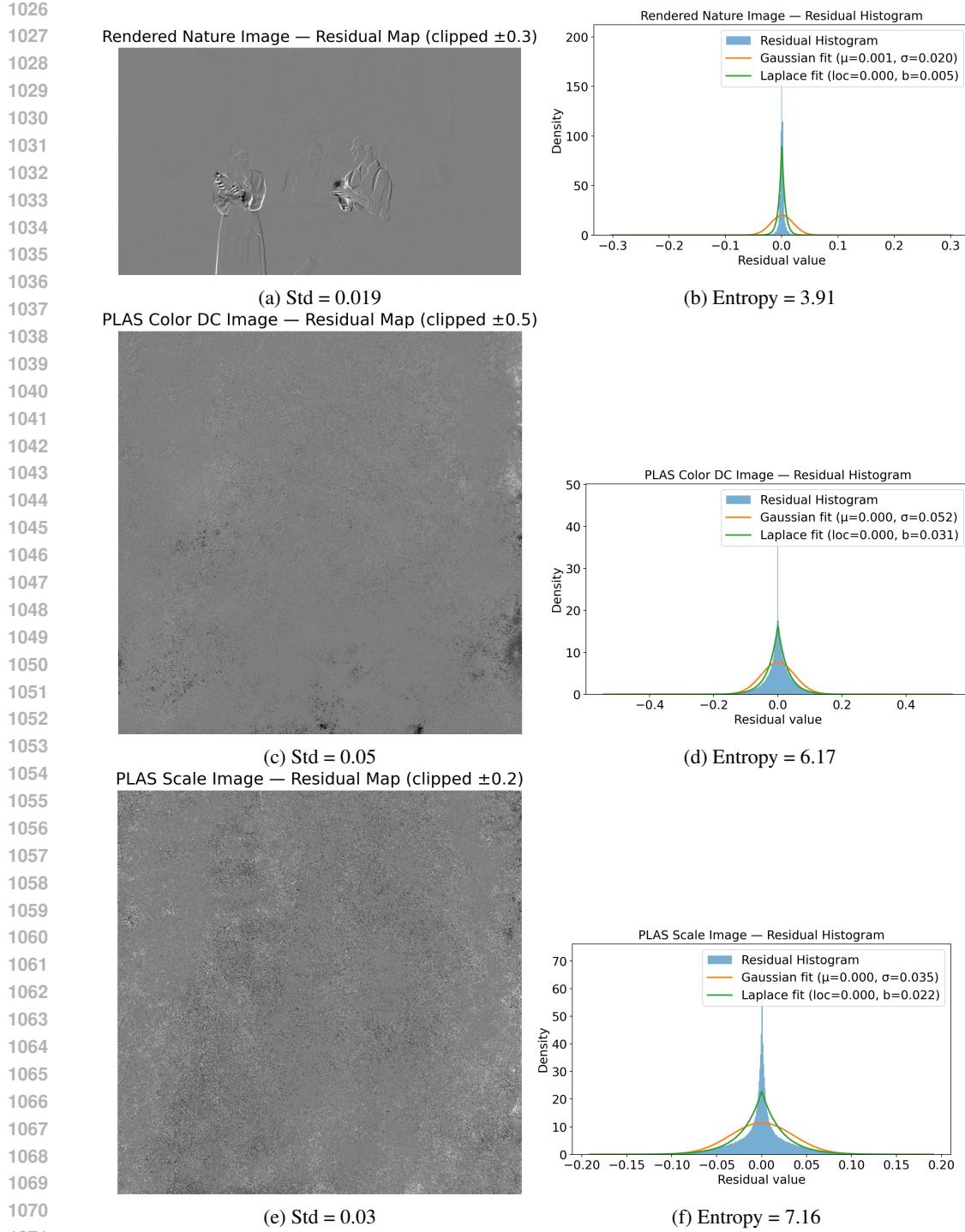
We illustrate the RD curves of different components in this section. First, we plot the RD curve for color DC, color SH, Opacity, Scaling, and Rotation of method in Fig. 9 as shown in Fig. 20. For certain regions of some features, a few vertically varying points appear because two adjacent bitrate points use the same QP value, while other attributes adopt different QPs.

To better visualize the influence of different components on quality, we perform new experiments: give a certain component, we fix the QP of all the other components as 0, and set five different QP for this certain component. The QP selection is shown in Table 3, and the corresponding RD curves are shown in Fig. 21.

We see that rendered quality is more sensitive to opacity, scaling, and rotation, considering smaller QPs of these components report close PSNR with larger QPs of color DC and SH. Therefore, we choose relatively smaller QP for opacity, scaling, and rotation in our main experiment results, i.e., Fig. 7.

A.15 BIT ALLOCATION OPTIMIZATION FOR COORDINATE

Based on Fig. 10, we find that coordinates occupy a relatively large bitrate due to the lossless compression, specifically for the LP part. Therefore, we further study this problem and give a new



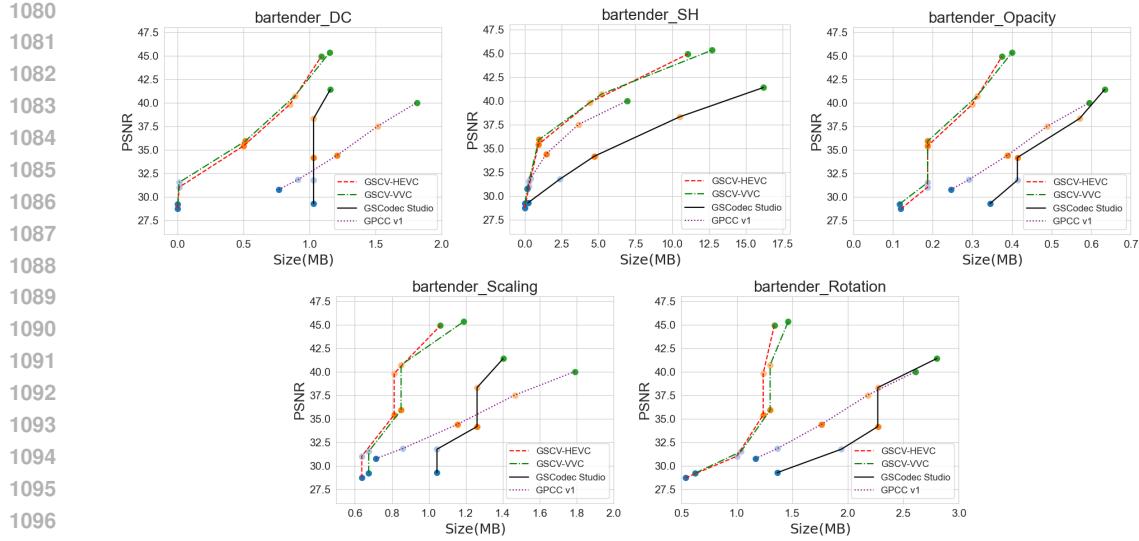


Figure 20: RD curves of different components.

Component		QP				
Color DC		0 22 27 37 47				
Color SH	degree1	0	7	17	22	32
	degree2	0	12	22	27	37
	degree3	0	17	27	32	42
Opacity		0	17	22	27	32
Scaling		0	7	12	17	22
Rotation		0	7	12	17	22

Table 3: QP of different components

P-frames, followed by LZMA compression. We report the bitstream (Bpp), encoding time, as well as the decoding time results in both all-intra and inter-prediction modes in Table 4.

Bit Allocation	Mode	HM			Time	LZMA		
		HP	LP	All		LP	All	Time
10:10	All-intra	13.80	31.50	45.30	3.52/0.26	32.00	45.80	0.92/0.08
	Inter	10.10	30.70	40.80	16.53/0.18	31.96	42.06	3.64/0.069
12:08	All-intra	19.50	25.60	45.10	3.44/0.22	24.00	43.50	0.36/0.005
	Inter	15.70	25.50	41.20	16.95/0.15	25.00	40.70	1.59/0.046
16:04	All-intra	31.80	13.60	45.40	3.50/0.18	12.50	44.30	0.44/0.04
	Inter	28.80	13.60	42.40	18.61/0.11	14.30	43.10	0.9/0.048

Table 4: Bit allocation optimization of the coordinate. All = HP + LP

We see that using 12:8 BD split is better than 10:10 and 16:4 under all the testing conditions. With a 12:8 split, using LZMA to compress LP map reports better performance than using HM18.0, as well as significantly improving encoding and decoding speed.

A.16 INFLUENCE OF VIDEO CODEC TYPES

In Section 6, we use HM18.0 and VTM23.11 as representations to test the proposed GSCV. Considering both HM18.0 and VTM23.11 are reference software for academic study, we further use FFmpeg libx265 and libx264 as codecs to test the performance of the proposed GSCV. The RD curves are shown in Fig. 22.



Figure 21: RD curves of different components with smooth QP variation.

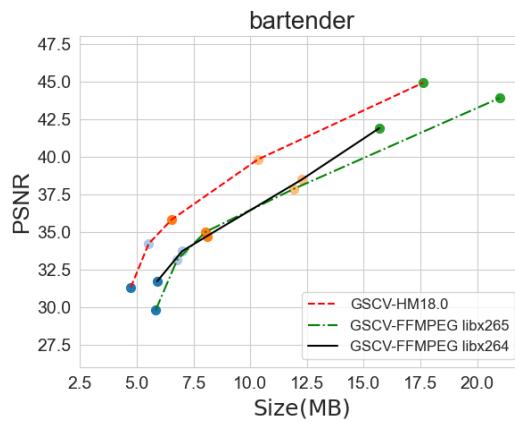


Figure 22: RD curves of using FFMPEG codecs

We see that: 1) the performance of FFMPEG libx265 and libx264 is close. Considering that the same phenomenon also occurs in HM18.0 and VTM23.11, in conjunction with our residual analysis in Section A.13, we think the main reason is that the characteristics of PLAS image are different from natural images, resulting in some advanced compression modules being ineffective for PLAS image compression. 2) HM18.0 reports obviously better performance than FFMPEG libx265, while they both follow the same HEVC (H.265) standard: HM serves as the official reference model for algorithm verification, while libx265 is an optimized engineering realization designed for practical and efficient video compression. This inspires us to give the following conclusion: although some compression modules are improved from AVC to VVC, not all the improvements are useful for PLAS images. There are two analyses corresponding to these results:

- First, the mode of intra prediction increases from 9 (AVC), 35 (HEVC), to 69 (VVC). However, considering the PLAS image does not have semantic texture due to the pixel-level permutation, the increase of intra prediction mode might not improve the compression ratio significantly.
- FFMPEG libx265 uses early skip/ termination for coding unit (CU) partition. Considering PLAS is a progressive method that generates local smoothness images, and the smoothness range and degree are not even for the whole PLAS maps, trying more CU partitions would help the codecs choose the best RD cost, which might be the main reason that libx265 reports obviously worse performance than HM18.0.

Although FFMPEG codecs report inferior performance to HM/VTM, they demonstrate obviously higher coding and decoding speed, as shown in Table 5. We see that 1) video-based codecs report faster decoding speed than point cloud based codecs; 2) with the same codec type as libx265, the proposed GSCV reports faster encoding and decoding speed than GSCodec Studio, indicating the advantage of the proposed PLAS image generation method, as well as the framework of the whole pipeline. Therefore, for low delay use cases, we suggest using FFMPEG codecs on the GSCV framework.

Codec	GSCV-HM18.0		GSCV-VM23.11		GSCV-libx265		GSCV-libx264		GSCodec Studio		GPCC v1	
Rate Point	enc	dec	enc	dec	enc	dec	enc	dec	enc	dec	enc	dec
5	1183.5	3.9	11288.9	4.2	4.6	1.2	0.8	0.6	8.9	1.4	304.1	86.0
4	1012.5	2.9	11234.2	3.3	4.1	0.9	0.7	0.6	8.5	1.4	298.0	88.4
3	540.3	2.1	6385.6	2.3	2.8	0.7	0.6	0.5	7.3	1.3	291.7	86.7
2	353.4	1.6	3482.8	1.7	2.3	0.6	0.5	0.5	6.4	1.3	291.9	86.0
1	301.5	1.3	2391.8	1.2	1.9	0.5	0.5	0.5	5.2	1.1	293.2	85.4

Table 5: Encoding and decoding time of different codecs on one GoP (8 frames)

A.17 COMPARISON WITH A-3DGS BASED METHOD

Different from the I-3DGS track, the A-3DGS track uses the multiview images as input and generates compact 3D GS data via long-time optimization on GPUs. Generally, A-3DGS presents a higher compression ratio than I-3DGS due to the end-to-end training with RD loss. In this section, we compare two I-3DGS methods, i.e., GSCV-HEVC and GSCodec Studio, with four A-3DGS methods: HAC (Chen et al., 2024a) and CompGS (Liu et al., 2024) for the all-intra method, and 4DGS (Wu et al., 2024) and 4DGC (Hu et al., 2025) for the inter-based method. For a fair comparison, we use the multiview images as ground truth to test the quality score of GSCV-HEVC and GSCodec Studio, the results are shown in Fig. 23.

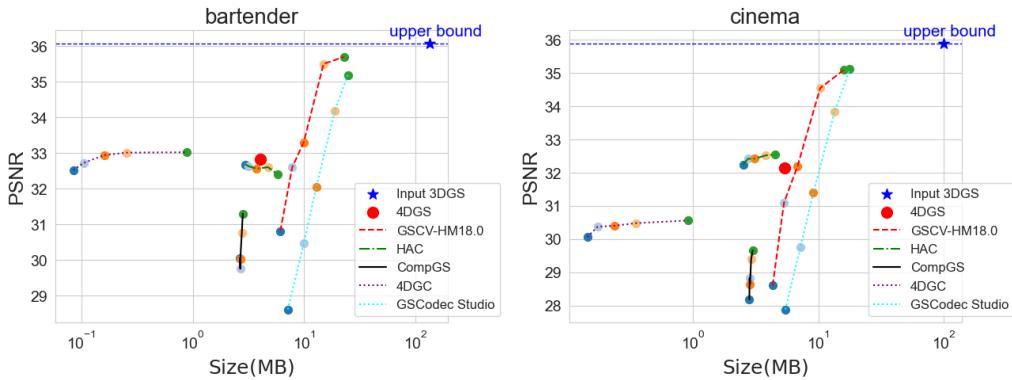


Figure 23: RD curves of A-3DGS methods.

We see that 4DGC reports the best compression ratio, followed by HAC, CompGS, 4DGS, and two I-3DGS methods. However, we find A-3DGS methods have two weaknesses based on the RD curve: 1) regarding the quality of the input 3D GS samples as an upper bound, A-3DGS methods generally demonstrate lower quality and smaller bitrate range; 2) some A-3DGS methods fails to consistently produce a monotonic curve in which the quality increases with the bitrate, due to each rate point needs to be trained from scratch and the optimization process involves a certain degree of randomness.

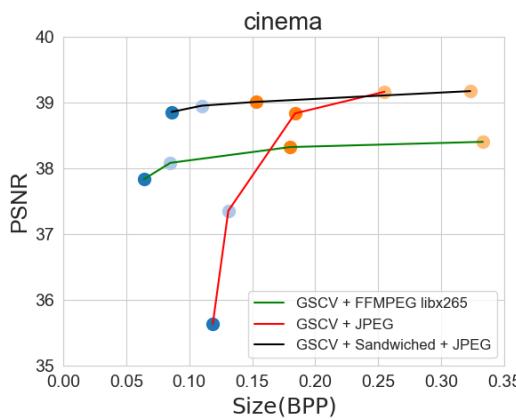
A.18 INFLUENCE OF USING SANDWICHED NETWORK

Considering the characteristics of PLAS images are obviously different from natural images, which can limit the performance of canonical video codecs, we try a “Sandwich network” to improve the video codec efficiency (Guleryuz et al., 2024). Specifically, the Sandwich network consists of three parts: the preprocessing network (PreN), the JPEG proxy, and the postprocessing network (PostN). An end-to-end training is conducted based on an established dataset. The RD loss is used to train the PreN and PostN, in which the bitrate is approximated by the JPEG proxy. The trained PreN can convert the target image into a bottleneck image whose data distribution is more friendly for canonical image/video codecs. The practical compression and decompression are performed on the bottleneck image, and the PostN can recover the bottleneck image into the original version.

Three prevalent datasets, i.e., Mip-NeRF360 (Barron et al., 2022), deep blending (Hedman et al., 2018), and tanks&temples (Knapitsch et al., 2017) were applied to generate 3D GS samples and corresponding PLAS images, and build the training dataset. Considering that PLAS images for

1242 different components exhibit different characteristics, and each type of GS attributes needs a separate
 1243 Sandwich network, in this part, we only used color DC PLAS images as a representation. For PreN
 1244 and PostN, we used a lightweight UNet consisting of a 4-block encoder and a 5-block decoder.
 1245 Each encoder block contains two 3×3 Conv-ReLU layers followed by simple pixel-subsampling
 1246 that halves the spatial resolution, with increasing channel sizes ($32 \rightarrow 64 \rightarrow 128 \rightarrow 256$). The decoder
 1247 mirrors the encoder structure, using two 3×3 Conv-ReLU layers per block, bilinear upsampling by
 1248 a factor of two, and skip-connections that concatenate encoder features at matching scales. The
 1249 decoder uses filter sizes $512 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 32$. A final 3×3 convolution layer projects the result
 1250 to the desired number of output channels.
 1251

1252 For testing, we use “cinema” as a representation; besides color DC, we keep other attributes lossless.
 1253 Considering that the Sandwich network using JPEG proxy to train the PreN and PostN, we adopt
 1254 JPEG (Wallace, 1991) as the codec in the proposed GSCV to better reflect the effectiveness of the
 1255 Sandwich network. The RD curves obtained were given in Fig. 24. We observed that: 1) the use
 1256 of FFmpeg libx265 reports better performance than JPEG in the low bitrate region, while JPEG is
 1257 superior in the high bitrate range; 2) using the Sandwich network followed by the JPEG offers the
 1258 best performance for the whole bitrate range, indicating the effectiveness of the Sandwich network.
 Future work is to design Sandwich networks for different GS attributes.
 1259



1273 Figure 24: RD curves of using the Sandwich network.
 1274

1276 A.19 RESULTS ON MORE SEQUENCES

1277 In this section, we construct two additional GS sequences for testing our method. Specifically, we
 1278 use “dance_dunhuang_pair” (dance) from PKU-DyMVHumans (Zheng et al., 2024) and “basketball”
 1279 from AVS-VRU (AVS, 2024), as shown in Fig. 25.
 1280

1292 Figure 25: Snapshot of “dance” and “basketball”
 1293

1294 These two sequences only provide multiview videos; therefore, we use the first 8 frames from the
 1295 video to generate colmap file, as well as 3D GS samples. We follow the instructions of the MPEG
 document (Jeong et al., 2025) to merge the per-frame sparse point clouds into a unified one, followed

1296 by a uniform downsampling as the input for 3D GS generation. Then, we train a canonical 3D GS
 1297 model with ground truth images from all viewpoints and time points. Finally, for each time point, we
 1298 use the canonical 3D GS model as input to perform attribute fine-tuning with ground truth images.
 1299

1300 We test the proposed GSCV-HEVC, GSCodec Studio, and GPCC v1 on the generated ten sequences,
 1301 the RD curve are shown in Fig. 26. We see that the proposed GSCV demonstrates obvious better
 1302 performance than GSCodec Studio and GPCC v1, which reveals the superiority of the Inter-PLAS,
 1303 as well as the compression pipeline.

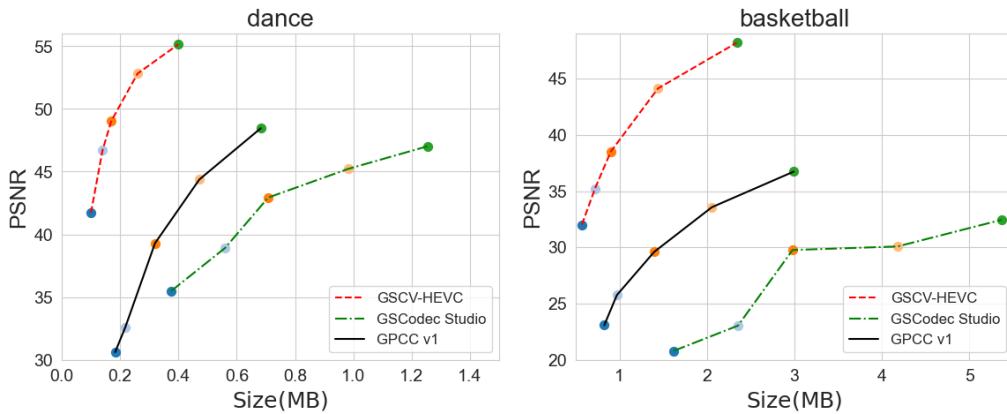


Figure 26: RD curves on “dance” and “basketball”.

A.20 SAMPLE VISUALIZATION

We give the ground truth, rates 5, 3, and 1 of three MPEG tracked GS sequences in Figs. 27 to 29.

Figure 27: Snapshot of MPEG “bartender”.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

(a) Ground Truth

(b) R5, 13.9 MB, 40.4 PSNR

(c) R3, 5.5 MB, 31.2 PSNR

(d) R1, 3.9 MB, 25.7 PSNR

Figure 28: Snapshot of MPEG ‘breakfast’.

1372
1373
1374
1375
1376
1377
1378
1379

(a) Ground Truth

(b) R5, 11.9 MB, 41.3 PSNR

(c) R3, 4.3 MB, 33.3 PSNR

(d) R1, 2.8 MB, 26.6 PSNR

Figure 29: Snapshot of MPEG ‘cinema’.

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403