
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

OneChart: Purify the Chart Structural Extraction via
One Auxiliary Token

Anonymous Authors

ABSTRACT
Chart parsing poses a significant challenge due to the diversity
of styles, values, texts, and so forth. Even advanced large vision-
language models (LVLMs) with billions of parameters struggle
to handle such tasks satisfactorily. To address this, we propose
OneChart: a reliable agent specifically devised for the structural ex-
traction of chart information. Similar to popular LVLMs, OneChart
incorporates an autoregressive main body. Uniquely, to enhance the
reliability of the numerical parts of the output, we introduce an aux-
iliary token placed at the beginning of the total tokens along with
an additional decoder. The numerically optimized (auxiliary) token
allows subsequent tokens for chart parsing to capture enhanced
numerical features through causal attention. Furthermore, with
the aid of the auxiliary token, we have devised a self-evaluation
mechanism that enables the model to gauge the reliability of its
chart parsing results by providing confidence scores for the gener-
ated content. Compared to current state-of-the-art (SOTA) chart
parsing models, e.g., DePlot, ChartVLM, ChartAst, OneChart signifi-
cantly outperforms in Average Precision (AP) for chart structural
extraction across multiple public benchmarks, despite enjoying
only 0.2 billion parameters. Moreover, as a chart parsing agent, it
also brings 10%+ accuracy gains for the popular LVLM (LLaVA-1.6)
in the downstream ChartQA benchmark.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural lan-
guage generation.

KEYWORDS
Chart structural extraction, Vision-language model, Multi-modal
large language models

1 INTRODUCTION
Charts and plots, as key visual language, permeate every aspect
of education and work. They help people easily and accurately
understand, compare, and analyze data. Beyond just titles, axes,
and legends, charts are made up of points, lines, angles, colors,
and shapes. These detailed visual elements greatly increase the
complexity of automatically parsing charts, making it a challenging
yet essential area of research in computer vision [1, 2].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Schematic diagram comparing our method with
other methods. <Chart> is the auxiliary special token. The
numbers highlighted in red and green represent incorrect
and correct predictions, respectively.

Previous methods [3–6] rely on traditional techniques like detec-
tion [7] and Optical Character Recognition (OCR) to transform im-
ages into tables, then fine-tuned specialized TableQA models [8, 9]
for inference. It is reasonable that comprehensive and accurate per-
ception can effectively assist in information extraction and down-
stream reasoning tasks. In recent years, with the evolution of vision-
language models (VLMs) [10–18], end-to-end chart understanding
models such as MatChart [19], ChartAst [20], and ChartVLM [21]
started to surface. These models meld vision encoders and autore-
gressive decoders, aiming for pre-training on image-to-table tasks
and fine-tuning for Question and Answer (QA) applications. De-
spite their advances, accoring to our experiments in Section 4.3,
these models with billions of parameters still face limitations in ex-
tracting structured information and processing various chart styles,
especially in the scenario of parsing charts lacking numerical an-
notations.

We think the performance issue seen in the above VLMs is pri-
marily due to two factors. Firstly, the vision encoder may exhibit
the issue of “CLIP bias”. Most of the models mentioned employ a
CLIP-based [22] ViT as the vision encoder. However, since CLIP-
ViT is primarily trained on short, global descriptions of natural
image-caption pairs, using it as a vision encoder may lead to the
omission of crucial local details necessary for chart parsing. This
discrepancy could result in a gap between CLIP-ViT’s functionality
and tasks that require dense perception (such as chart parsing).
Additionally, the training mainly conducted with English captions
also affects the effectiveness of the CLIP-ViT in encoding charts
embedded in other languages. Secondly, the use of cross-entropy
loss in autoregressive decoders presents limitations in accurately
capturing or predicting numerical values. For instance, the cross-
entropy losses for the numbers "7008" and "70.8" shown in Figure 1
can be deceptively similar. This proximity in loss values compli-
cates the model’s convergence process and reduces its accuracy in
capturing numerical values in charts. Moreover, there are limited

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

diversified public benchmarks in chart parsing filed. ChartQA [3]
and PlotQA [4] primarily consist of bar and line charts from online
platforms, with very few pie charts included. Similarly, datasets
like SimChart9K [23] and ChartX [21], created using Matplotlib,
show limited stylistic variety. The lack of diverse benchmarks for
chart analysis hinders the development of related research areas.

To tackle these challenges, we introduce a chart converter named
OneChart in this work. It captures essential components like chart
titles, sources, and aligned numerical data and maps them to a
Python-dict format, which can effectively facilitate downstream
chart reasoning tasks. To overcome the “CLIP bias” mentioned
above and enhance the model’s ability to compress chart informa-
tion, we train a specialized chart encoder from scratch using a large
amount of synthetic chart data in both English and Chinese. In par-
allel, to elevate the model’s capability to interpret numerical values
in charts and increase the reliability of its numerical output, an
additional auxiliary token is introduced. We also develop a decoder
specifically for this token and optimize it using a customized L1
loss. Moreover, we present a large-scale chart-to-dict benchmark
named ChartY, which comprises approximately 6K charts. These
charts span a broad spectrum of topics and types and include con-
tent in both English and Chinese languages. In sum, our primary
contributions are as follows:

• Introduction of OneChart: We propose OneChart, a state-
of-the-art chart-to-dict model that uses an auxiliary token
to guide the model towards more accurate numerical value
parsing. This model serves as a foundational framework for
other researchers to further develop and enhance.

• Creation of the ChartY benchmark: We standardize the
tasks involved in chart-to-dict and introduce a new, compre-
hensive benchmark ChartY. This benchmark spans a wide
array of topics, chart types, and languages, offering a robust
platform for future research and evaluation.

• Numerous experiments and analyses: Experiments re-
veal that OneChart achieves SOTA performance in structural
extraction. It shows a 19.1% to 29.4% improvement compared
to suboptimal methods particularly in charts lacking numer-
ical annotations. Additionally, the integration with popular
VLMs enhances accuracy by 32.6% with LLaVA1.5 [11] and
11.2% with LLaVA1.6 [24] on the ChartQA benchmark.

2 RELATEDWORK
2.1 Chart Structural Extraction
Chart structural extraction aims to extract the main textual and
visual elements (such as title, axis names, legends, values, etc.) from
chart images through certain methods or models, and organize
them in an appropriate way. In the early stage, some non-end-
to-end methods used keypoint/region detection or segmentation
methods, combined with OCR and other methods for information
extraction [3, 4, 6, 25–27]. While these methods have advanced the
extraction and analysis of chart structures, their implementation
is complex and heavily reliant on the generalization capabilities
of traditional techniques. These methods are commonly used for
specific types of tables and have lower generalization performance
for real-world charts. Currently, several studies [19, 20, 23, 28–
30] tend to use the vision-language models (VLMs) to extract the

information contained in visual charts end-to-end and store it in a
table format. This approach effectively translates visual data into
linguistic formats. Beyond just transforming chart data into tables,
ChartVLM [21] also decouples the task of parsing chart titles.

2.2 Chart Reasoning
Chart reasoning aims to provide relevant descriptions, summaries,
QA, or comparative analysis of visual charts. At present, researches
are mainly divided into two-stage and end-to-end methods, which
treat chart reasoning as a downstream task after extracting key
information from charts. PlotQA [4] and ChartQA [3] extract the
key information and send it to TableQA models [8, 9, 31] for rea-
soning and answering. StructChart [23] and DePlot [28] utilize
the inference ability of pre-trained large language model [32, 33]
with a small number of shots, and use the output as the prompt for
reasoning. End-to-end approaches like ChartAssistant [20], ChartL-
lama [30], and ChartVLM [21] start by aligning visual charts with
their textual information through pre-training from charts to tables.
They then fine-tune various tasks including information extraction,
open question answering, and summarization, enabling simulta-
neous implementation of information extraction and downstream
tasks. Clearly, whether using end-to-end or two-stage methods, the
structural extraction of information from charts remains fundamen-
tal.

2.3 Multimodal Chart Benchmarks
At present, there is not a lot of open source benchmarking work.
ChartQA [3] and PlotQA [4] are mainly suitable for tasks such
as chart-to-table and QA summary. Chart-to-Text [34] is mainly
suitable for chart-to-table and summary tasks, but the truth qual-
ity of the table is poor. The current benchmark works such as
StructChart [23], MMC [35], and ChartVLM [21] cover more tasks,
such as code redrawing, analysis, and type judgment. These works
have to some extent promoted the development of chart parsing
work. However, the data used to evaluate multimodal large-scale
models for charts is still relatively limited in terms of style, type,
and language diversity.

3 METHOD
In this section, we outline the methodology behind OneChart, struc-
tured into five key areas: Data Engine, Architecture, The Auxiliary
Token, Training Process, and Inference. Each part plays a critical
role, from providing training data and defining structural design
to detailing our approach, optimization strategies, and inference
results.

3.1 Data Engine
Chart data generation. Except for chart data from online plat-
forms, such as ChartQA, most chart data is generated using tools
such as Matplotlib and Pyecharts. Consequently, we utilize both
tools to generate chart images. The charts generated by Matplotlib
all contain four fields: “title”, “x_axis”, “y_axis” and “chart body”.
Due to the limited functionality of Matplotlib and Pyecharts, we
specifically introduce the “chart source” to better fit the real-world
chart data style. In addition to taking general rendering methods,

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Process of our data generation. We randomly generate multi-topic source data in both Chinese and English using
GPT-3.5 or random corpora. Subsequently, we employ two rendering tools, Matplotlib and Pyecharts, to produce chart of
various styles and types.

we add an additional two-stage rendering method, which first cre-
ates the main part except for the title and source, and then adds the
title and source to the chart stochastically through graphic stitch-
ing. To enhance the visual diversity of charts, we employ randomly
generated 16-bit color codes to alter the colors of both text and
graphics, beyond the commonly used color schemes. We also offer
hundreds of distinct text fonts. Additionally, we introduce consider-
able variability in the size, direction, and quantity of visual elements.
For the generation of pre-training data, the content of the charts
is produced randomly. Specifically, for textual information such as
title and source, we utilize the Natural Language Processing (NLP)
corpus [36], extracting entries randomly by setting predetermined
lengths. The numerical content is generated under controlled distri-
bution to ensure variability. In total, the process yields about 10M
chart images alongside their corresponding truth labels. Figure 2
shows the process of our data generation.

Data details. The data we generate predominantly fall into two
principal categories: barline and pie charts. (1) Barline Charts:
These are categorized into five distinct types: Single Column Chart,
Multi Column Chart, Single Line Chart, Multi Line Chart, and
Combo Chart (Mixed Chart). Each type is evenly split between
visualizations that feature numerical labels and those that do not.
Currently, our Barline charts can accommodate up to three legends.
(2) Pie Charts: In this category, Labeled Pie Charts and Pie Charts
with Legends are distributed in equal proportions. Furthermore,
in the process of generating content with logical and practical
significance using GPT-3.5, we employ varied prompts to facilitate
the creation of thematically diverse data across several domains,
such as finance, education, technology, among others.

3.2 Architecture
OneChart is an end-to-end chart information extraction tool based
popular VLM architecture, as shown in Figure 3. Regarding the
selection of VLMs, we choose for the recently released Vary-tiny
model [15], which consists of a vision encoder from SAM-base and
a tiny auto-regressive OPT-125M [37] decoder, linked by a linear
layer to synchronize their channel dimensions.

For the chart image input, we simply resize the image to a fixed
resolution 1024×1024 without any extra data augmentation. The
model learn to extract Python-dict information with respect to the

input image using causal masked language modeling, which can be
written as:

L𝑡𝑒𝑥𝑡 (𝜃,𝑤) = −𝐸 (𝑤,𝑣)∼𝐷 log 𝑃𝜃 (𝑤𝑚 | 𝑤<𝑚, 𝑣) (1)

where 𝑤 denotes the target text sequence, 𝑣 denotes the vision
features from the vision backbone,𝑚 denotes the current index of
the output target token and 𝐷 denotes the dataset.

3.3 The Auxiliary Token
To enhance the reliability of number values in outputs and mitigate
the risk of significant errors, we introduce a special token denoted
as "<Chart>" by prefixing its output. This special token will trigger
an extra chart’s numerical values prediction. As shown in Figure 3,
the corresponding hidden state embedding 𝑡 ∈ R768 of auxiliary
token "<Chart>" is fed into a auxiliary decoder F comprised of 3
layer MLPs and 2 ReLU activation function. The auxiliary output
denoted as F (𝑡), where F (𝑡) ∈ R256 represents the normalized
numerical values prediction within a chart. To supervise the numer-
ical output, we incorporate the L1 loss for the number loss L𝑛𝑢𝑚

during training:

L𝑛𝑢𝑚 (𝜃,𝑢) = 𝐸 (𝑢,𝑡)∼𝐷 |F (𝑡) − 𝑢 |𝑚𝑎𝑠𝑘𝑒𝑑 , (2)

where 𝑢 represents the min-max normalized ground truth values
within a chart image. Each vector of ground truth values is extended
to a fixed length of 256 elements through padding with “nan” values
to facilitate parallelized training across batches. In the loss function
L𝑛𝑢𝑚 , 𝑚𝑎𝑠𝑘𝑒𝑑 is the non-padded (non-nan) elements, ensuring
that the padding does not influence the loss computation.

Since OPT-125M in OneChart is a transformer-based model in-
corporating causal attention, it can attend to the hidden state of the
first <Chart> entries when processing the text output in the form
of a Python-dict. The auxiliary decoder is an optional component
rather than a primary tool during inference. This design maintains
the model’s versatility and ease of use, akin to the traditional vision-
language model (VLM). Additionally, the auxiliary number decoder
can participate in the computation of confidence scores to help
filter its predictions, thereby enhancing the output’s reliability. A
detailed exploration of this process is presented in Section 3.5.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Overall pipeline of OneChart model. Compared with popular VLMs, we introduce an additional auxiliary token
<Chart> at the start of the token sequence, alongside an extra decoder, to enhance the reliability of the numerical outputs.

3.4 Training Process
Along all the training stage, we use the template of Vicuna v1 [38] to
construct ground truth in a conversation format as "USER:
[image] Covert the key information of the chart
to a Python-dict. ASSITANT: <Chart> [texts output]
</s>". We add the "", "<Chart>" and "" as special
tokens of the text tokenizer of OPT-125M and we find that it can
adapt very well to the Vicuna template. [image] represents the
vision feature that occupies 256 tokens and [texts output] is the
Python-dict format text of the chart.

Stage1: Pretraining.During this stage, we perform pre-training
using 10 million synthetic chart data, including Chinese and English
languages. The chart of 5 million is generated by matplotlib, and the
other 5 million is generated by pyecharts. The data source of chart
is randomly generated in this stage. The model is trained with a
batch size of 16 and a learning rate of 1e-4 for 3 epochs. During this
stage, the entire vision encoder with language model are trained.
The training loss is formulated as:

L𝑠𝑡𝑎𝑔𝑒1 = L𝑡𝑒𝑥𝑡 (3)

where L𝑡𝑒𝑥𝑡 is cross entropy loss. The Stage1 training uses 32 A100
(80G) GPUs for around 12 hours.

Stage2: Warmup auxiliary number decoder. In the second
stage, we use about 2.7 millions SFT data as shown in Table 1
to warmup auxiliary number decoder. In this stage, we frozen the
vision encoder and only train language model and auxiliary decoder.

The training loss is defined as:

L𝑠𝑡𝑎𝑔𝑒2 = L𝑡𝑒𝑥𝑡 + L𝑛𝑢𝑚 (4)

In Stage2, we use batch size of 16 and a learning rate of 5e-5 for 1
epoch, this training uses 16 A100(80G) GPUs for around 3 hours.

Stage3: Supervised Fine-tuning (SFT). In this stage, we fine-
tuning total model parameters utilizing above SFT data. The training
loss L𝑠𝑡𝑎𝑔𝑒3 is same as L𝑠𝑡𝑎𝑔𝑒2. We use batch size of 16 and a
learning rate of 5e-5 for 1 epoch, this training uses 24 A100(80G)
GPUs for around 4 hours. Subsequently, we employed this fine-
tuned model to evaluate its performance across all benchmarks in
Section 4, recording the scores achieved.

3.5 Inference
During inference, the provided chart image is first resized to 1024
× 1024 pixels, with the pixel values scaled to the range of 0 to
1. Subsequently, through a vision encoder, a vision embedding
𝑣 ∈ R256×768 is integrated into the text embedding of the Vicuna
v1 conversation template, as described in Section 3.4. The text in
Python-dict format is then serialized for output. The appearance of
the "</s>" special token signifies the end of the output, which we
refer to as the raw output. The performance of this raw output is
presented in the SE benchmark in Table 2 and the OCR benchmark
in Table 2.

Moreover, and critically, we introduce an option to incorporate
the output from the auxiliary number decoder to assess the relia-
bility of the raw output. As illustrated in Figure 4, the raw predict
can be easily parsed into a dictionary in python by json.loads()

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Overview of fine-tuning data sources and samples
in English (En.) and Chinese (Zh.) Some charts come from
real-world online platforms (Real.) and others are rendered
by Python. ChartQA: images from the ChartQA training set,
PlotQA: images from the PlotQA training set.

Lang. Data Source Render Samples

En.

ChartQA. Real. – 17.8 K
PlotQA. Real. matplotlib 157 K

pye-barline. GPT3.5 pyecharts 640 K
pye-pie GPT3.5 pyecharts 184 K
reversal. GPT3.5 pyecharts 50 K

mat-barline. GPT3.5 matplotlib 640 K
mat-pie GPT3.5 matplotlib 184 K

Zh. pye-barline. GPT3.5 pyecharts 640 K
pye-pie GPT3.5 pyecharts 184 K

Total 2.7 M

function. Following this, the numbers are extracted from the dictio-
nary in sequence and subjected to min-max normalization, denoted
as 𝑢𝑟 . Simultaneously, the auxiliary decoder generates a numerical
prediction, 𝑢𝑐 . The self-consistency distance S between these two
types of predictions is calculated as follows:

S =
1
𝑁

𝑁∑︁
𝑖=1

|𝑢𝑟 𝑖 − 𝑢𝑐𝑖 | (5)

where 𝑁 represents the number of numeric values contained within
the “value” field of the raw output. The range of S is between
[0, 1]. The smaller the value, the closer the self-consistency distance,
which can also be explained as the model being more confident in
its own output accuracy. Additionally, by setting a threshold, we
can quantify the “quality” of the output results, guiding users to
selectively trust the outputs.

4 EXPERIMENTS
4.1 Evaluation Metrics
Model should extract the key elements of chart in the defined
Python-dict structure. Predicted dictionary should at least include
these elements: “title”, “source”, “x_axis”, “y_axis”, and “value”. We
comprehensively evaluate the model’s output from two aspects:
textual OCR accuracy and structural extraction precision. We also
report the accuracy in the popular QA benchmark.

Textual OCR. For the chart’s textual elements such as “title”,
“source”, “x_axis”, “y_axis” in dictionary, we employ an accuracy
evaluation based on normalized edit distance [39, 40], which al-
lows us to measure the closeness of the model-generated text to
the ground truth with precision. In order to unify the evaluation
indicators as larger is better, we report the value of 1 minus the nor-
malized editing distance as the OCR accuracy, denoted as Reverse
Edit distance (RE).

Structural Extraction. For the “values” field, which is itself
also a Python-dict, represents the entity name and numerical data
presented in the chart. To evaluate the accuracy of this crucial

Figure 4: Inference pipeline. OneChart directly outputs raw
results in text and has an optional self-consistency distance
to determine the reliability of the raw predicts.

component, we concatenate the key and item pairs into tuples and
assess them using the mean Average Precision (AP) from the SCRM
(Structuring Chart-oriented Representation Metric) [23]. According
to the definition of SCRM, three different levels of tolerance (𝑡𝑜𝑙 :=
{𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑙𝑖𝑔ℎ𝑡, ℎ𝑖𝑔ℎ}) are set for fine-grained evaluation of SE task:

𝑠𝑡𝑟𝑖𝑐𝑡 :=
{
𝐽𝑡ℎ𝑟 |𝑡𝑜𝑙 = 0 ∧ 𝑒𝑡ℎ𝑟 |𝑡𝑜𝑙 = 0

}
,

𝑠𝑙𝑖𝑔ℎ𝑡 :=
{
𝐽𝑡ℎ𝑟 |𝑡𝑜𝑙 = 2 ∧ 𝑒𝑡ℎ𝑟 |𝑡𝑜𝑙 = 0.05

}
,

ℎ𝑖𝑔ℎ :=
{
𝐽𝑡ℎ𝑟 |𝑡𝑜𝑙 = 5 ∧ 𝑒𝑡ℎ𝑟 |𝑡𝑜𝑙 = 0.1

}
,

(6)

where 𝐽𝑡ℎ𝑟 |𝑡𝑜𝑙 indicates the edit distance threshold between pre-
diction and GT string, 𝑒𝑡ℎ𝑟 |𝑡𝑜𝑙 refers to the relative error threshold
between prediction numeric value and GT value.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Average precision (AP) is evaluated using SCRM for the Structural Extraction (SE) task, and Title, Source, Y_axis OCR
are evaluated using Reverse Edit distance (RE). ChartVLM refers to ChartVLM-Base-7.3B. AP represents AP@strict, AP
represents AP@slight, and AP represents AP@high. The best result is shown in Bold, and the second-best result is underlined.
The results of OneChart are highlighted in light blue .

Method Size Metric ChartQA
-SE

PlotQA
-SE

ChartX-SE ChartY-en ChartY-zh

bar barnum line linenum pie barline pie barline pie

Numerical Values Marked Partial No No Yes No Yes Yes Partial Partial Partial Partial

Structural Extraction

DePlot
[28] 1.3B

AP 61.41 3.11 2.20 33.70 16.00 22.30 0.00 13.16 0.05 3.33 0.00
AP 70.89 16.49 21.70 41.30 51.20 52.90 0.00 23.78 0.88 6.28 0.00
AP 72.88 26.50 42.10 48.70 60.10 61.20 0.00 32.88 2.29 16.14 0.02

ChartVLM
[21] 7.3B

AP 71.84 3.81 10.60 20.40 26.30 29.10 40.70 15.71 6.88 3.80 0.00
AP 81.35 46.83 17.70 27.50 42.90 45.00 41.50 29.49 7.91 5.75 0.34
AP 84.20 54.00 21.20 33.00 51.90 54.80 43.20 38.48 11.04 15.88 7.74

ChartAst
[20] 13B

AP 39.67 5.18 7.80 22.10 8.20 11.50 44.30 5.27 8.98 0.07 0.00
AP 67.91 48.67 21.70 33.80 40.10 35.20 53.00 13.84 11.28 0.27 0.08
AP 73.27 56.08 38.40 44.60 48.00 41.70 63.70 16.23 15.00 0.41 2.28

Ours 0.2B
AP 72.02 34.56 29.70 37.22 49.30 43.18 63.33 68.43 74.95 83.19 63.80
AP 82.91 84.18 39.45 42.50 59.79 56.55 67.33 83.13 79.07 92.49 74.96
AP 85.94 86.10 47.92 48.14 65.25 61.19 76.10 86.76 84.32 94.65 83.82

Title OCR
ChartVLM 7.3B Title-RE 79.26 99.49 97.70 97.82 96.94 97.03 95.62 97.87 99.07 14.44 24.07
Ours 0.2B Title-RE 97.80 99.94 96.68 96.74 96.54 95.70 93.24 99.45 98.66 98.97 99.96

Other Textual OCR

Ours 0.2B Source-RE – – – – – – – 72.50 72.88 99.21 99.91
Y_axis-RE – – – – – – – 90.31 – 98.31 –

QA. With OneChart’s support, we evaluate some LLM and VLMs
on chart-related QA tasks like ChartQA[3]. In this downstream
task, we use their vanilla metrics for a fair comparison with other
methods.

4.2 Benchmark for Structural Extraction
Traditional QA benchmarks, such as ChartQA and PlotQA, often
limit their scope to querying small, isolated segments of information
from charts, such as individual values, which may not effectively
gauge a model’s ability to extract and understand the full spectrum
of data presented in a chart. In contrast, we aim to establish a
benchmark centered around the Structural Extraction (SE) task,
which directly assesses the model’s accuracy in converting chart
images into structured Python-dict representations.

Our benchmark including several parts, which are meticulously
composed of images from the following sources, each contributing
uniquely to the breadth of the dataset:

• ChartQA-SE and PlotQA-SE: The images for these compo-
nents are derived from the test sets of ChartQA and PlotQA,
respectively. Both datasets originate from real-world on-
line platforms, encompassing a wide range of topics such
as economy, finance, society, politics, and industry. Most
images in ChartQA have specific numerical annotations on
them. PlotQA features charts rendered by software based

on real-world data, including horizontal bar plots, vertical
bar plots, line plots, and scatter plots. There are no specific
numerical annotations on the images. This part of the bench-
mark aims to assess the model’s effectiveness in recognizing
and extracting information from charts that mirror real-life
complexities.

• ChartX-SE: This benchmark is derived from the ChartX test
set and includes bar, line, and pie charts rendered using Mat-
plotlib. Some charts contain numerical annotations (“bar-
num”, “linenum” and “pie”), while others do not (“bar” and
“line”). The selection of ChartX-SE is instrumental in evalu-
ating the model’s ability to process and understand conven-
tional chart formats that are prevalent in academic settings.

• ChartY-en and ChartY-zh: Recognizing the diversity limi-
tation in existing datasets, we have augmented benchmark
with additional pyecharts rendered images, including both
English and Chinese languages. Only some images contain
numerical annotations. ChartY-en and ChartY-zh are crucial
for evaluating the model’s adaptability and robustness across
different languages, rendering technologies and aesthetics.

By redefining the ground truth formats in Python-dict and incor-
porating a wider variety of chart images, our benchmark aims to
provide a more comprehensive and rigorous evaluation of models’
capabilities in extracting structured information.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Comparison of raw and purified prediction AP scores across datasets for Structural Extraction (SE) task. Utilizing a
self-consistency distance threshold of 0.1.

ChartQA-SE PlotQA-SE ChartX-SE ChartY-en ChartY-zh

Raw Purified Raw Purified Raw Purified Raw Purified Raw Purified

Image Samples 1509 1174 33657 23723 2360 1429 4000 3026 1991 1662

AP@strict 72.02 81.97 (+9.95) 34.56 36.58 (+2.02) 44.55 53.32 (+8.77) 70.06 78.51 (+8.45) 76.14 83.56 (+7.42)
AP@slight 82.91 92.46 (+9.55) 84.18 88.81 (+4.63) 53.12 61.94 (+8.82) 82.12 89.00 (+6.88) 85.64 91.79 (+6.15)
AP@high 85.94 94.86 (+8.92) 86.10 90.72 (+4.62) 59.72 68.64 (+8.92) 86.15 92.19 (+6.04) 89.37 94.73 (+5.36)

Table 4: Ablation of auxiliary token’s position. ChartQA-
SE and PlotQA-SE scores are reported. AP , AP and AP
represent AP@strict, AP@slight, and AP@high, respectively.

Front Behind AP AP AP

ChartQA-SE
– – 70.95 82.25 85.06
✓ 72.02 82.91 85.94

✓ 68.63 80.11 83.60

PlotQA-SE
– – 30.50 79.65 81.78
✓ 34.56 84.18 86.10

✓ 26.59 75.12 77.68

4.3 Comparison with State-of-the-Arts
As indicated in Table 2, our model, OneChart, consistently achieve
excellent AP for SE tasks across multiple chart sources and types,
while having the smallest size (0.2B). Specifically, for datasets like
ChartQA-SE and the “barnum”, “linenum” and “pie” in ChartX-SE,
which have numerical values directly marked on chart images, with
the data-driven enhancement for chart vision, OneChart show-
cases pleasing performance. When it comes to parsing chart images
without clear numerical markers, where the model needs to derive
values by aligning with the coordinate axes (as primarily seen in
PlotQA-SE and the “bar” and “line” in ChartX-SE), OneChart per-
forms AP@strict above the suboptimal methods by 19.1% to 29.38%.
It is worth noting that this improvement significantly surpasses the
model’s performance in tasks involving charts without numerical
markers. This showcases OneChart’s excellent perceptual align-
ment ability and the precise ability to derive numbers, bolstered
by the use of an auxiliary token. Moreover, in both ChartY-en and
ChartY-zh, OneChart’s performance far exceeds other models, indi-
cating robustness across different styles and languages.

In the textual OCR task, OneChart achieves an average OCR
score exceeding 90 across all datasets, indicating its capability to
deliver clear chart meanings, which provides a solid foundation for
downstream QA tasks.

4.4 Ablation Studies
We initially conduct two ablation studies on the proposed auxiliary
token. The specific experimental results are shown in Table 3 and
Table 4.

The presence or absence of the auxiliary token and the impact
of its placement on model performance are recorded in Table 4. It

Table 5: Ablation of training strategies. ChartQA-SE scores
are reported.

Stage2 Stage3 AP@strict AP@slight AP@high

✓ 68.93 79.64 82.66
✓ 68.42 80.21 83.52

✓ ✓ 72.02 82.91 85.94

can be seen from it that the placement at the beginning of the se-
quence is beneficial, yielding higher AP scores across all evaluation
tolerances. This can be attributed to the model’s ability to leverage
causal attention mechanisms to immediately attend to the initial
embeddings, directly influencing the text output which dictates
the prediction results. Conversely, when the token is placed at the
end, the text output cannot effectively utilize these embeddings
due to the causal attention’s unidirectional nature. Moreover, the
presence of a number loss at the end might introduce noise, further
impeding the textual learning process. Therefore, we believe that
the introduction of the auxiliary token effectively improves the
performance of the model, provided that it is placed in a reasonable
position.

In addition to enhancing the model’s parsing ability for chart
images, as discussed in Section 3.5, the introduction of the auxiliary
token and the design of the corresponding decoder also enable the
model to perform the reliability check on its own output. To demon-
strate the effectiveness of our designed reliability check method
during the inference process, we filter model’s original outputs by
setting a self-consistency distance threshold of 𝛿 = 0.1 (as detailed
in Section 3.5) to obtain purified outputs, and calculate their AP
scores alongside original outputs. The results are displayed in Ta-
ble 3. The “Raw” and “Purified” categories represent the original and
filtered outputs, respectively. Notably, after removing “unreliable”
results identified through reliability checks, the purified outputs in
the ChartQA-SE benchmark show an impressive 9.95% increase in
AP@strict compared to the original results. In the other four bench-
marks, the purified results show an increase in AP@strict ranging
from 2.02% to 8.77%. This highlights that the introduced auxiliary
token endows our model with the inherent ability to effectively
evaluate its output accuracy, which is quite remarkable.

Our model undergoes a three-stage training process. In Stage2,
training is confined to the languagemodel and the auxiliary decoder,
while in Stage3, the entire model undergoes training. We conduct
a thorough analysis of various training methodologies, with the

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Fully-supervised and Zero/One-shot results on
ChartQA benchmark. Fig. represents with or without chart
figure input. mPLUG. represents mPLUG-DocOwl model.

Method Fig. ChartQA

aug. human avg.

Fu
lly

-s
up

er
vi
se
d LLaVA1.5 [11] ✓ 13.4 21.6 17.5

LLaVA1.6 [24] ✓ 66.1 46.0 56.0
Pix2Struct [41] ✓ 81.6 30.5 56.0
mPLUG. [42] ✓ - - 57.4
Vary-toy [15] ✓ 84.8 33.4 59.1
QwenVL [43] ✓ 83.6 41.6 62.6
Matcha [19] ✓ 90.2 38.2 64.2

Ze
ro
/O

ne
-s
ho

t

DePlot+GPT3.5 [28] ✗ 37.3 36.5 36.9
Ours+GPT3.5 ✗ 73.0 42.0 57.5
Ours+LLaVA1.5 ✗ 63.4

(+50)
24.4
(+2.8)

43.9
(+26.4)

Ours+LLaVA1.5 ✓ 69.4
(+56)

30.9
(+9.3)

50.1
(+32.6)

Ours+LLaVA1.6 ✓ 85.3
(+19.2)

49.1
(+3.1)

67.2
(+11.2)

outcomes detailed in Table 5. For fair comparison, when the model
is only trained on Stage2 or Stage3, the model is trained on 2 epochs.
When the model is trained on Stage2 and Stage3, train one epoch
on each stage. We observe that training auxiliary decoder solely
on the Stage2 or Stage3 is inadequate. Optimal results are achieved
by initially warming up the auxiliary decoder, followed by a fine-
tuning of the entire model for 1 epoch.

4.5 QA Performance
In order to further analyze and demonstrate the effectiveness of
the proposed OneChart, it is combined with large language models
(LLMs) and vision-language models (VLMs), and compared with
existing methods on downstream tasks.

Table 6 provides an overview of the comparative analysis of
QA task accuracy on the ChartQA dataset. A prominent aspect of
our approach is the use of one shot methods to enable GPT-3.5,
which lacks visual functionality, to answer chart related questions.
Compared with the results obtained from CSV generated using GPT-
3.5 and DePlot, our model exhibits significantly better performance
(36.9%→57.5%).

In addition, the QA capability of VLMs with inherent visual un-
derstanding, such as LLaVA [11], has been enhanced solely through
zero shot using the dictionary we have analyzed. When these VLMs
are equipped with both Chart images and our structured parsing
dict, their overall QA has improved (17.5%→50.1% for LLaVA1.5,
56.0%→67.2% for LLaVA1.6). The results highlight the versatility
and effectiveness of our method in promoting more accurate chart
understanding and information retrieval between different artificial
intelligence systems.

5 CONCLUSION
In this study, we introduce OneChart, an innovative framework
designed to revolutionize the process of interpreting and extracting
information from charts and plots. By leveraging an end-to-end
autoregressive method, this approach transforms chart images into
Python-dict formatted text, enhancing both efficiency and accuracy.
OneChart is reinforced by the introduction of a auxiliary special
token and the integration of a custom L1 loss alongside the language
cross-entropy loss. This methodology not onlyminimizes ambiguity
in language supervision and improves the accuracy of structural
extraction, but also introduces a reliable scoring system to purify
the output during inference.

Additionally, by establishing the ChartY benchmark, we pro-
vide a comprehensive evaluation tool for chart comprehension,
addressing the inadequacies of existing QA-type benchmarks. Over-
all, OneChart represents a substantial advancement in the field,
demonstrating an average 20% improvement in information extrac-
tion from a variety of chart types, while maintaining minimal model
size. Additionally, the positive outcomes of this study highlight the
importance of specialized loss functions in model training for spe-
cific tasks. In the future, we will focus on expanding OneChart’s
capabilities to include more diverse and complex chart types and
exploring its application in real-world scenarios.

REFERENCES
[1] Prerna Mishra and Urmila Shrawankar. Human vs. machine eye for chart in-

terpretation. In 2022 IEEE Region 10 Symposium (TENSYMP), pages 1–6. IEEE,
2022.

[2] Ali Mazraeh Farahani, PeymanAdibi, Alireza Darvishy, Mohammad Saeed Ehsani,
and Hans-Peter Hutter. Automatic chart understanding: a review. IEEE Access,
2023.

[3] Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque.
Chartqa: A benchmark for question answering about charts with visual and
logical reasoning. arXiv preprint arXiv:2203.10244, 2022.

[4] Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. Plotqa:
Reasoning over scientific plots. In 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1516–1525, 2020.

[5] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park, Dongyoon Han,
Sangdoo Yun, Seong Joon Oh, and Hwalsuk Lee. What is wrong with scene text
recognition model comparisons? dataset and model analysis. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4715–4723, 2019.

[6] Junyu Luo, Zekun Li, JinpengWang, and Chin-Yew Lin. Chartocr: Data extraction
from charts images via a deep hybrid framework. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages 1917–1925, 2021.

[7] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In
Proceedings of the European conference on computer vision (ECCV), pages 734–750,
2018.

[8] Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui
Zhang, Wojciech Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang, et al.
Fetaqa: Free-form table question answering. Transactions of the Association for
Computational Linguistics, 10:35–49, 2022.

[9] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. Tapas: Weakly supervised table parsing via pre-
training. arXiv preprint arXiv:2004.02349, 2020.

[10] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning, 2023.

[11] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines
with visual instruction tuning. arXiv preprint arXiv:2310.03744, 2023.

[12] Ao Zhang, Wei Ji, and Tat-Seng Chua. Next-chat: An lmm for chat, detection
and segmentation, 2023.

[13] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, andMohamed Elhoseiny. Minigpt-
4: Enhancing vision-language understanding with advanced large language mod-
els. arXiv preprint arXiv:2304.10592, 2023.

[14] Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao, Zheng Ge, Jinrong Yang,
Jianjian Sun, Chunrui Han, and Xiangyu Zhang. Vary: Scaling up the vision
vocabulary for large vision-language models. arXiv preprint arXiv:2312.06109,
2023.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[15] Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao, Zheng Ge, En Yu, Jianjian
Sun, Chunrui Han, and Xiangyu Zhang. Small language model meets with
reinforced vision vocabulary. arXiv preprint arXiv:2401.12503, 2024.

[16] Liang Zhao, En Yu, Zheng Ge, Jinrong Yang, Haoran Wei, Hongyu Zhou, Jian-
jian Sun, Yuang Peng, Runpei Dong, Chunrui Han, et al. Chatspot: Bootstrap-
ping multimodal llms via precise referring instruction tuning. arXiv preprint
arXiv:2307.09474, 2023.

[17] Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang,
Liang Zhao, Jianjian Sun, Hongyu Zhou, HaoranWei, et al. Dreamllm: Synergistic
multimodal comprehension and creation. arXiv preprint arXiv:2309.11499, 2023.

[18] En Yu, Liang Zhao, YanaWei, Jinrong Yang, DongmingWu, Lingyu Kong, Haoran
Wei, Tiancai Wang, Zheng Ge, Xiangyu Zhang, et al. Merlin: Empowering
multimodal llms with foresight minds. arXiv preprint arXiv:2312.00589, 2023.

[19] Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Man-
dar Joshi, Yasemin Altun, Nigel Collier, and Julian Martin Eisenschlos. Matcha:
Enhancing visual language pretraining with math reasoning and chart derender-
ing. arXiv preprint arXiv:2212.09662, 2022.

[20] Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao,
and Ping Luo. Chartassisstant: A universal chart multimodal language model
via chart-to-table pre-training and multitask instruction tuning. arXiv preprint
arXiv:2401.02384, 2024.

[21] Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou,
Zijun Chen, Min Dou, Botian Shi, Junchi Yan, and Yu Qiao. Chartx & chartvlm:
A versatile benchmark and foundation model for complicated chart reasoning,
2024.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR, 2021.

[23] Renqiu Xia, Bo Zhang, Haoyang Peng, Ning Liao, Peng Ye, Botian Shi, Junchi
Yan, and Yu Qiao. Structchart: Perception, structuring, reasoning for visual chart
understanding. arXiv preprint arXiv:2309.11268, 2023.

[24] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and
Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January
2024.

[25] Xiaoyi Liu, Diego Klabjan, and Patrick NBless. Data extraction from charts via
single deep neural network. arXiv preprint arXiv:1906.11906, 2019.

[26] Chinmayee Rane, Seshasayee Mahadevan Subramanya, Devi Sandeep Endluri,
Jian Wu, and C Lee Giles. Chartreader: Automatic parsing of bar-plots. In 2021
IEEE 22nd International Conference on Information Reuse and Integration for Data
Science (IRI), pages 318–325. IEEE, 2021.

[27] Mubashara Akhtar, Oana Cocarascu, and Elena Simperl. Reading and reasoning
over chart images for evidence-based automated fact-checking. arXiv preprint
arXiv:2301.11843, 2023.

[28] Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene,
Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, and Yasemin
Altun. Deplot: One-shot visual language reasoning by plot-to-table translation. In
Findings of the 61st AnnualMeeting of the Association for Computational Linguistics,
2023.

[29] Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty.
Unichart: A universal vision-language pretrained model for chart comprehension
and reasoning. arXiv preprint arXiv:2305.14761, 2023.

[30] Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu,
and Hanwang Zhang. Chartllama: A multimodal llm for chart understanding
and generation. arXiv preprint arXiv:2311.16483, 2023.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020.

[32] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

[33] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling
instruction-finetuned language models. arXiv preprint arXiv:2210.11416, 2022.

[34] Jason Obeid and Enamul Hoque. Chart-to-text: Generating natural language
descriptions for charts by adapting the transformer model. arXiv preprint
arXiv:2010.09142, 2020.

[35] Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo
Cho, Yaser Yacoob, and Dong Yu. Mmc: Advancing multimodal chart under-
standing with large-scale instruction tuning. arXiv preprint arXiv:2311.10774,
2023.

[36] Liang Xu. Nlpcc2019: Large-scale chinese datasets for nlp. http://github.com/
brightmart/nlp_chinese_corpus.

[37] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open
pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[38] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%*
chatgpt quality. https://lmsys.org/blog/2023-03-30-vicuna/, 2023.

[39] Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat:
Neural optical understanding for academic documents. arXiv preprint
arXiv:2308.13418, 2023.

[40] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet
Union, 1966.

[41] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Mar-
tin Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. Pix2struct: Screenshot parsing as pretraining for visual language un-
derstanding. In International Conference on Machine Learning, pages 18893–18912.
PMLR, 2023.

[42] Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Yuhao Dan, Chenlin
Zhao, Guohai Xu, Chenliang Li, Junfeng Tian, et al. mplug-docowl: Modularized
multimodal large language model for document understanding. arXiv preprint
arXiv:2307.02499, 2023.

[43] Jinze Bai, Shuai Bai, Shusheng Yang, ShijieWang, Sinan Tan, PengWang, Junyang
Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language
model with versatile abilities. arXiv preprint arXiv:2308.12966, 2023.

http://github.com/brightmart/nlp_chinese_corpus
http://github.com/brightmart/nlp_chinese_corpus
https://lmsys.org/blog/2023-03-30-vicuna/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Chart Structural Extraction
	2.2 Chart Reasoning
	2.3 Multimodal Chart Benchmarks

	3 Method
	3.1 Data Engine
	3.2 Architecture
	3.3 The Auxiliary Token
	3.4 Training Process
	3.5 Inference

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Benchmark for Structural Extraction
	4.3 Comparison with State-of-the-Arts
	4.4 Ablation Studies
	4.5 QA Performance

	5 Conclusion
	References

