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Abstract

This study introduces a diffusion-based framework for robust and accurate semantic seg-
mentation of lumbar spine MRI scans from patients with low back pain (LBP), regardless
of whether the scans are T1w or T2-weighted. We compared with advanced models for seg-
menting vertebrae, intervertebral discs (IVDs), and spinal canal using the SPIDER dataset.
The results showed that SpineSegDiff achieved state-of-the-art performance, particularly
in the identification of degenerated IVDs. In addition, the uncertainty maps generated
by our model provide valuable insights for clinical review, enhancing the robustness and
reliability of the segmentation results. The potential of diffusion models to enhance the
diagnosis and management of LBP through more precise analysis of pathological spine MRI
is underscored by our findings
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1. Introduction and Diffusion models for Medical Image Segmentation

Low Back Pain (LBP) is a leading cause of global disability (Dionne et al., 2006), expected
to affect 800 million people by 2050 (Ferreira et al., 2023), imposing a significant economic
burden on individuals and society (Kent and Keating, 2005; Marto et al., 2023). Diag-
nosis of LBP is particularly challenging due to the various pathophysiological mechanisms
involved (Fourney et al., 2011), including social, genetic, biophysical and psychological fac-
tors. The multifaceted complexity nature of LBP requires a comprehensive assessment,
where lumbar spine Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool. How-
ever, manual MRI interpretation is time-consuming and subject to inter-rater variability,
potentially compromising diagnostic precision and consistency.

Convolutional neural networks (CNNs), has shown promise in overcoming these chal-
lenges (Maier et al., 2019) and thus enhancing the diagnostic value of lumbar spine MRI for
a more quantitative interpretation (Galbusera et al., 2019). Recent advances include meth-
ods for the automatic location of intervertebral discs (IVD) or vertebrae (Lootus et al., 2014;
Windsor et al., 2020; He et al., 2021; Lessmann et al., 2019) to detect vertebral fractures
(Yeh et al., 2022), to create synthetic lumbar MRI data (Han et al., 2018), and segment

∗ Contributed equally

© 2025 CC-BY 4.0, M. Monzon, T.I. , E. Konukoglu & C.R.J. .

https://orcid.org/0000-0003-3152-0909
https://creativecommons.org/licenses/by/4.0/


Monzon Konukoglu

MRI of the lumbar spine in different anatomical structures (Zhou et al., 2022; Lu et al.,
2018; Li et al., 2021; Mushtaq et al., 2022; Zheng et al., 2022; van der Graaf et al., 2024).

However, automatic spine segmentation is challenging due to the high intraclass similar-
ity between vertebrae (Wang et al., 2022; Sekuboyina et al., 2021) and the large variability
in the morphology of the intervertebral disc at all levels. Additionally, degenerative patholo-
gies such as disc herniation, spinal stenosis, and vertebral fractures can significantly distort
the normal anatomical structure (Pang et al., 2021; van der Graaf et al., 2024).

Such anatomical distortions present significant challenges to conventional segmentation
methodologies and highlight the need for new techniques to effectively handle this variability.
While medical image segmentation is traditionally a pixel-wise classification problem (Yao
et al., 2023), it can be conceptualized as an image generation task, with a generative model
learning the conditional distribution to output the segmentation map. Denoising diffusion
probabilistic models (DDPM) (Ho et al., 2020), traditionally used for image generation,
can be adapted for image segmentation (Wolleb et al., 2021) by a conditional problem
p(x|y), with the mask as a generated sample x conditioned on the input image y. Recently,
diffusion models (Ho et al.) showed promising results in medical image analysis Kazerouni
et al. (2023); Chung et al. (2022) and also in medical image segmentation Liu et al. (2024);
Xing et al. (2023); Wolleb et al. (2021); Kim et al. (2023); Wu et al. (2022) due to their
ability to effectively capture the underlying data distributions (Dhariwal and Nichol) and
handle noise and variability in medical images (Li et al., 2024). The inherent ability of
diffusion models to model complex and noisy data distributions (Li et al., 2024) may prove
advantageous in capturing the variability in signal intensity, anatomy, and pathological
features present in MRI scans of LBP patients.

Motivated by the potential of diffusion models to handle variability in LBP MRI scans,
this study presents the following contributions: (i) explore diffusion models for unified
semantic segmentation of lumbar spine MRI, focusing on their effectiveness with T1 and
T2-weighted scans; (ii) develop a 2D diffusion-based segmentation model for lumbar spine
segmentation to handle of pathological cases; and (iii) the adaptation of pre-segmentation
strategy that combines initial segmentation and diffusion models for efficient segmentation
model training.

2. Methods: Diffusion models for Medical Image Segmentation

This study presents a 2D diffusion-based framework to segment the central slice of lumbar
spine MRI scans, aligned with the clinical evaluation of LBP. It leverages DDPMs, genera-
tive models that reconstruct data by reversing gradual noise addition. The forward process
iteratively, over T timesteps, adds Gaussian noise to mask sample x0, x1, ...,xT :

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ᾱt is an increasing variance scheduler and ϵ ∼ N (0, σ) identically distributed Gaus-
sian noise with standard deviation σ. As time step t increases (T →∞), the mask loses its
distinctive features, approaching an isotropic Gaussian distribution xT .

The reverse diffusion process aims to progressively denoise Gaussian noise xT ∼ N (0, I)
to recover the segmentation mask x0, conditioned on the MRI scan y. By parameterizing
the transition probability pθ(xt−1|xt) as a Gaussian distribution (Sohl-Dickstein et al.), we
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Figure 1: Final segmentation inference via multi-sample step-weighted sum, generating
uncertainty-based heatmaps maps

can train a diffusion model to by minimizing a loss function that compares the estimated
noise ϵθ(xt, t,y) and actual noise ϵ at each timestep t (Öttl et al., 2024):

Lt = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t,y))∥2

]
(2)

There are two primary approaches to diffusion-based segmentation in medical imaging:
an iterative approach that predicts and removes noise ϵt sequentially (Wolleb et al., 2021),
and a direct inference method that generates the final segmentation mask x̂0 from a partially
noised input xt (Wu et al., 2022; Xing et al., 2023). Although the iterative denoising
process is computationally intensive, sampling efficiency can be optimized using the Diffuse
Denoising Implicit Model (DDIM) (Song et al., 2020). DDIM enhances sampling by enabling
generation at set timesteps, substantially reducing iterations and computational resources.

2.1. SpineSegDiff

The SpineSegDiff model presents a novel two-dimensional dual-encoder architecture specif-
ically designed for the semantic segmentation of lumbar spine MRI scans, functioning on
320x320 images without the need for sliding-window inference. The model architecture
(Fig.4) combines a U-shaped backbone with a dedicated image encoder for multiscale feature
extraction. These dual-encoder features enhance the Denoising UNet embedding, enriching
the model’s representation capacity during training (Xing et al., 2023).

The SpineSegDiff directly generates the segmentation mask rather than iteratively de-
noising patterns. To enhance segmentation accuracy, SpineSegDiff uses a composite loss,
integrating MSE denoising for reconstruction, Dice Loss for boundary alignment, and Bi-
nary Cross-Entropy for calibrating probabilities between the predicted mask x̂0 and the
ground truth x. The sampling process leverages the stochastic nature of DDIM, generating
intermediate samples S = 10 and computing the mean probability x̄t in each time step t.
The final prediction x̂f is calculated as a weighted sum of these samples in the last TS = 15
timesteps, with weights exponentially scaled by time:

x̂f =

Ts∑
t=1

e
−α

(
Ts−t
Ts

)
· x̄t where x̄t =

1

S

S∑
s=1

xs

where α = Ts/2 sets the decay rate, assigning more weight to later timestep predictions.
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2.1.1. Uncertainty Based Heatmaps

Diffusion models offer a key advantage through their probabilistic nature, enabling un-
certainty estimation in predictions (Wolleb et al., 2021). This study introduces a novel
approach for visualizing uncertainty in models that directly infer segmentation masks x̂0.
These uncertainty-based heatmaps might be useful for clinical assessment of LBP,as they
highlight regions where the model’s predictions may be less reliable in identifying degener-
ated spinal structures. We generate uncertainty-based heatmaps, by computing entropy ĥt

is the entropy at the time step t during the DDIM sampling:

ĥt = −p̄t · log (p̄t) where p̄t =
ex̄t∑K

c=1 e
x̄t,c

(3)

and pt represents the softmax probability map for at each diffusion timestep t. The
final uncertainty uncertainty-based heatmap,is then computed as the maximum of each
time-entropy heatmap for each spinal structure:

Ĥ = max
t∈Ts

(ĥt) (4)

2.1.2. Pre-segmentation training with nnUnet

SpineSegDiff training is significantly accelerated through the implementation of a pre-
segmentation strategy (Guo et al., 2022). Unlike traditional original pre-segmentation
approach where the diffusion models learn to denoise patterns, our nnUnetSpineSegDiff
directly estimates the final segmentation mask x0. The complete system, nnUnetSpine-
SegDiff, is composed of nnU-Net followed by a SpineSegDiff architecture (see Appendix
Figure 5). The workflow consists of two main stages: The initial segmentation x̂pre is pre-
dicted with the pre-trained baseline nnU-net model (Isensee et al., 2020) and SpineSegDiff
takes this partially noised pre-segmentation as input and learns to recover the original seg-
mentation mask (x0)through a shortened diffusion process. This pre-segmentation strategy
significantly reduces the number of diffusion steps needed, as SpineSegDiff only needs to
refine an already reasonable segmentation rather than starting from random noise.

3. Experimental Results

3.1. Dataset and Implementation Details

The analysis used sagittal MRI of the lumbar spine from multicenter a cohort of 218 patients
(63% female) from SPIDER (van der Graaf et al., 2024) data set (Appendix A.1). Scans
were then realigned to the RAS+ coordinate system for consistent orientation. MRI volumes
were normalized to intensity (98th percentile, scaled to 255), followed by resampling at 1 mm
resolution and resizing to 320×320 pixels. Ground truth labels for semantic segmentation
were created by combining vertebrae annotations (starting from L5) and onehot encoded
into three structures: spinal canal (SC), vertebral bodies (VB), and IVD.

The models were trained on a high-performance cluster using RTX 4090 GPUs for 2D
and v100 GPUs for 3D models. The models were implemented with Pytorch and MONAI
(Jorge Cardoso et al., 2022) frameworks. The 2D models were trained and evaluated only
on the central slice of the data, whereas the 3D models were trained and evaluated on the
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entire volume. The optimal epochs for diffusion models was determined by the segmentation
precision (Bertels et al., 2019) in the first-fold validation set, where 2500 epochs were used for
SpineSegDiff training. The diffusion models training time steps were set to T = 1000 with a
linear variance noise schedule from β1 = 10−4 to 0.02 The rest of training hyperparameters
for all the compared modes are summarized in Appendix A.1.

3.2. Evaluating Diffusion Models for MRI Contrast-Independent Segmentation

Table 1: Quantitative comparison of segmentation performance for spinal structures across
T1-weighted (T1w), T2-weighted (T2w), and combined T1w + T2w modalities.

Model Modality Spinal Canal Vertebrae IVD mDICE
SpineSegDiff T1w + T2w 0.92 ± 0.04 0.92 ± 0.02 0.90 ± 0.05 0.913
SpineSegDiff w/o AE T1w + T2w 0.92 ± 0.04 0.91 ± 0.03 0.89 ± 0.05 0.909
Diff-UNet 2D T1w + T2w 0.92 ± 0.05 0.91 ± 0.03 0.89 ± 0.05 0.906
IISDM T1w + T2w 0.90 ± 0.03 0.92 ± 0.05 0.89 ± 0.04 0.903
nnU-Net T1w + T2w 0.91 ± 0.03 0.92 ± 0.03 0.84 ± 0.05 0.890
SpineSegDiff T1w 0.93 ± 0.04 0.91 ± 0.03 0.89 ± 0.05 0.908
SpineSegDiff w/o AE T1w 0.92 ± 0.03 0.90 ± 0.04 0.88 ± 0.06 0.905
Diff-UNet 2D T1w 0.9 ± 0.02 0.92 ± 0.02 0.89 ± 0.04 0.908
IISDM T1w 0.87 ± 0.10 0.91 ± 0.04 0.89 ± 0.05 0.890
nnU-Net T1w 0.91 ± 0.02 0.91 ± 0.03 0.84 ± 0.06 0.887
SpineSegDiff T2w 0.93 ± 0.04 0.92 ± 0.04 0.90 ± 0.04 0.917
SpineSegDiff w/o AE T2w 0.92 ± 0.04 0.92 ± 0.03 0.90 ± 0.05 0.913
Diff-UNet 2D T2w 0.92 ± 0.02 0.93 ± 0.02 0.89 ± 0.03 0.917
IISDM T2w 0.86 ± 0.12 0.91 ± 0.04 0.89 ± 0.05 0.887
nnU-Net T2w 0.91 ± 0.03 0.92 ± 0.03 0.85 ± 0.06 0.893

The performance of the model was evaluated using the Dice score with 5-fold cross-
validation. The cross-validation split ensured that scans from the same patients were con-
sistently assigned to the same split. 18 series oblique MRI scans were excluded from the
evaluation set but retained for training.Diffusion models’ capability to segment both T1-
and T2-weighted MRI scans without contrast-specific training was evaluated. The models
were trained on individual T1w and T2w contrasts, as well as a combined dataset (T1w +
T2w). For baseline comparison, we trained nnU-Net (Isensee et al., 2020), which also served
as our pre-segmentation model, to assess its performance on multi-contrast segmentation
without specific optimization.

The results are summarized in Table 1 indicated that diffusion models slightly improved
upon with nnU-Net in both individual and combined datasets, achieve state-of-the-art re-
sults, particularly in the segmentation of IVDs. The experiment was expanded to 3D lumbar
spine segmentation to evaluate if 3D diffusion models can match nnU-Net in 3D contexts
(Appendix Tab.5).
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Figure 2: The visual comparisons on segmentation results on the central slice produced the
evaluated baseline and diffusion models the three anatomical structures: spinal
canal (blue), vertebrae (green), and intervertebral discs (red), along with the un-
certainty maps for SpineSegDiff, where regions of higher uncertainty are denoted
by darker red hues.
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Figure 3: Statistical analysis of segmentation performance in the presence of specific spinal
pathologies in each each subplot, including Modic changes, spondylolisthesis, disc
herniation, disc narrowing, disc bulging, and disc degeneration. Significant dif-
ferences (p < 0.005) identified via T-tests with Benjamini-Hochberg correction

3.2.1. Statistical Evaluation of Performance on Pathologies

We analyzed how different pathologies affect the segmentation performance of the Spine-
SegDiff model, trained using T1w+T2w data across spine structures. Pathologies such
as modic changes (bone marrow alterations), disc herniation (displacement of IVD mate-
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rial) and spondylolisthesis (forward displacement of a vertebra), disc narrowing, and overall
disc degeneration evaluated through the Pfirrman grading, which are prevalent in lumbar
spine conditions, were considered due to their potential impact on model performance. The
pathology distribution of the study cohort is detailed in the Appendix A.1.

Figure 3 illustrates the statistical analysis, showing Dice scores between patients with
and without these conditions box plots and t-test results that highlight the relationship
between these pathologies and model performance. To address the issue of multiple com-
parisons, we applied the Benjamini-Hochberg p-values correction to control the false dis-
covery rate at α = 0.05. The figure indicates that pathologies like spondylolisthesis and
disc narrowing significantly impact segmentation. Upper endplate changes affected IVD
segmentation (p = 0.0310), while lower endplate changes impacted both IVD (p = 0.0120)
and SC (p = 0.0337). Spondylolisthesis had widespread effects on SC (p = 0.0048), VB
(p = 0.0039), and IVD (p < 0.0001) segmentation scores. Disc herniation only significantly
affected SC segmentation (p = 0.0263), and disc degeneration significantly affected IVD
segmentation (p = 0.0003).

3.3. Pre-segmentation Time Diffusion Steps

To evaluate the effectiveness of the pre-segmentation strategy, we conducted an ablation
study to determine the optimal number of timesteps t that balance computational effi-
ciency and segmentation accuracy. Various time-step configurations were tested, and the
results were compared to a baseline model using 1000 steps starting from the noised pre-
segmentation, summarized in Table 2. The ablation study revealed that the preconditioning
strategy significantly reduced the number of time steps needed while maintaining the 2D
segmentation performance.

Table 2: Evaluation of the diffusion timesteps (T ) on pre-segmentation, with T = 0 repre-
senting the baseline non-diffusion segmentation approach.

T = 0 T = 30 T = 100 T = 300 T = 500 T = 1000
SC 0.91 ± 0.03 0.92 ± 0.05 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.07
VB 0.92 ± 0.03 0.92 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.04 0.91 ± 0.03
IVD 0.84 ± 0.05 0.89 ± 0.05 0.89 ± 0.06 0.89 ± 0.05 0.89 ± 0.06 0.89 ± 0.05

4. Discussion

Our findings demonstrate the potential of diffusion models, particularly SpineSegDiff, for
accurate and efficient segmentation of the lumbar spine in MRI scans. The strong perfor-
mance of these models, comparable to or even superior to the state-of-the-art nnU-Net,
highlights their ability to capture the complex anatomical structures and variability present
in patients with low back pain. The improved segmentation of IVD is particularly note-
worthy, as disc degeneration is a common cause of low back pain and accurate delineation
of these structures is crucial for diagnosis and treatment planning. Despite the similar nu-
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merical performance of nnUNet 3D models, in many clinical settings, only 2D MRI scans
of the lumbar spine may be available.

Furthermore, a key advantage of SpineSegDiff is its ability to generate uncertainty maps
through stochastic sampling. The uncertainty maps generated by the diffusion models
through stochastic sampling provide valuable insights for clinical review and quality as-
surance. Figure 2 shows SpineSegDiff segmentation errors in low-confidence areas. These
uncertainty maps help clinicians identify regions needing closer examination, minimizing the
risk of missing subtle abnormalities and improving lumbar spine MRI diagnostics. The sta-
tistical analysis reveals that certain degenerative pathologies, particularly spondylolisthesis
and disc narrowing, can substantially reduce the accuracy of SpineSegDiff. Spondylolis-
thesis and disc narrowing exhibit the highest t-statistics and the lowest p-values, which
underscores their profound impact on segmentation accuracy relative to other pathological
conditions. The presence of these conditions correlates with substantially lower Dice scores.

By leveraging the initial segmentation produced by nnUNet, the study of diffusion time
steps (T ) needed (Table 2) reveals the effectiveness of the pre-segmentation strategy in
maintaining high accuracy while significantly reducing computational requirements, making
SpineSegDiff a more practical and efficient solution for lumbar spine segmentation tasks by
requiring fewer diffusion steps to achieve accurate segmentation.

Nonetheless, it is important to acknowledge the limitations of our study and the chal-
lenges that remain for clinical translation. Despite the multicenter nature of the dataset,
with varied sequences and acquisition parameters, further validation is necessary on larger
and more diverse populations to establish the generalizability of the models. Additionally,
the computational requirements of diffusion models, even with the pre-segmentation strat-
egy, may still pose barriers to widespread adoption, particularly in resource-limited settings.
Future work should focus on further optimizing the models for efficiency and integration
into clinical workflows.

5. Conclusion

We present diffusion-based models for segmenting lumbar spine MRI scans from patients
with LBP. Diffusion models area able to achieve state-of-the-art performance, especially
in identifying degenerated IVD. Uncertainty-based heatmaps offer valuable insights into
the segmentation process, thereby improving the reliability of segmentation results and
potentially facilitating informed decision-making. Through the implementation of a pre-
segmentation strategy, SpineSegDiff maintains high accuracy while reducing the number of
diffusion time steps, addressing computational limitations.

To fully realize the potential of SpineSegDiff, future research should focus on two key ar-
eas. First, efforts should be made to further optimize the model’s computational efficiency,
making it suitable for clinical implementation. Second, the model should be validated on
larger and more diverse datasets to ensure its generalizability between different patient
populations and imaging protocols. The present study demonstrates substantial potential;
however, it is acknowledged that the training of diffusion models requires significant com-
putational resources. However, the superior ability to quantify uncertainties intrinsic to
diffusion models offers a promising approach for the detection of degenerative changes in
IVD among patients suffering from LBP related pathologies.
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Appendix A. Dataset and Implementation Details

A.1. Degenerative Pathologies

This work uses publicly available SPIDER dataset (van der Graaf et al., 2024) for training
and evaluation which includes T1w and T2-weighted MRI scans of the lumbar spine from
218 subjects with low back pain. The data includes T1- and T2-weighted images with spa-
tial resolutions from 3.3 x 0.33 x 0.33 mm to 4.8 x 0.90 x 0.90 mm. For the 3D analysis,
scans were resampled to a uniform spatial resolution of 1mm and resized to 64x320x320 vox-
els. The dataset comprises a multicenter collection of sagittal lumbar MRI obtained from
four different hospitals in the Netherlands, with pathological conditions such as spondy-
lolisthesis, disc herniation, and modic changes. In our study, the incidence of present spinal
degenerative pathologies was determined if they manifested at any vertebral level and is
summarized in the following table.

Table 3: Overview of degenerative pathology’s presence in the SPIDER dataset
Pathology Patients (%)

Spondylolisthesis 42 (19.27%)
Disc Herniation 72 (33.03%)
Modic Changes 149 (68.34%)
Endplate Changes 177 (81.19%)
Disc Narrowing 193 (88.53%)
Disc Bulging 200 (91.74%)

A.2. SpineSegDiff Training

++ + +

UNet image feature encoder
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Figure 4: SpineSegDiff architecture overview: the 2D MRI scan (y) is concatenated with the par-
tially noised mask to generate the segmentation image xT . The architecture is composed
by a multi-scale image encoder, nsisting of multiple convolutional layers with features
[64, 64, 128, 256, 512, 64] with LeakyReLU activations, and a UNet-based model for de-
noising at each diffusion timestep.
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The SpineSegDiff model is trained using a composite loss function that combines Mean
Squared Error (MSE), Dice Loss, and Binary Cross-Entropy (BCE) Loss. The total loss is
formulated as: Ltotal = LMSE +LDice +LBCE where each terms are can be decomposed as

LMSE = 1
N

∑N
i=1(x̂i−xi)2, LDice = 1− 2|X̂∩X|

|X̂|+|X|
, LBCE = − 1

N

∑N
i=1[xi log(x̂i)+(1−xi) log(1−

x̂i)]. This loss optimizes the model for pixel accuracy (MSE), segmentation quality (Dice),
and probabilistic output (BCE). The training hyperparameters are summarized in the table
below:

Table 4: Training hyperparameters for SpineSegDiff
Parameter T1w, T2w, T1w+T2w
Image Size 320x320
Epochs 2500
Batch 4
Optimizer AdamW
Learning Rate 0.0001
Training Loss MSE + Dice + Cross Entropy

A.3. SpinSegDiff with Presegmentation

The pre-segmentation strategy (Guo et al., 2022) is adapted to augment the efficiency and
precision of the diffusion model’s sampling process by furnishing an initial segmentation that
directs subsequent refinement stages. An initial segmentation x̂pre is produced utilizing a
pre-trained baseline model. This initial segmentation acts as a prior for the diffusion model,
thereby diminishing the number of diffusion steps necessary to attain accurate segmentation.
The diffusion segmentation is trained using SpineSegDiff. x̂pre undergoes partial noising via
a cosine noise scheduler, which introduces noise at a more gradual rate compared to a linear
scheduler, thus preserving a greater extent of image features.

+ ||

nnUNet

nnUnet pretraining

SpineSegDi�

Image
Encoder

Di�usion shorter training

Figure 5: (a) Training pipeline with pre-segmentation where nnU-Net generates initial mask
xpre from MRI input y, followed by partial noising to obtain xT for diffusion
training.
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A.4. Spinsegdiff Sampling and Uncertainty Maps

The computation of uncertainty maps in SpineSegDiff involves several key steps. Initially,
S segmentation masks are generated by repeatedly sampling the diffusion model over the
latest TS timesteps. The detailed pseudo-algorithm is listed:

Algorithm 1: Uncertainty-based Heatmaps

Input: MRI y, Batch N , Number of Samples S
Output: Final prediction x̂f

#Extract embeddings from the input MRI
et ← image encoder(y)
#Generate S number of samples using DDIM sampling
for i← 1 to S do
S.append(DDIM sample(model, (1, N, Px, Py)),y, et)

end
x̂f ← zeros((1, N, Px, Py))
for t← 0 to Ts do

x̄t ← 0
for i← 1 to S do

x̄t ← x̄t + S[i][t]
end
x̄t ← x̄t/S
# Compute the entropy for each timestep

ĥt ← compute entropy(x̄t)
# Compute timestep scaling weight
wt ← exp(−α(Ts − t)/Ts)
for i← 1 to S do

# Final prediction as the weighted sum
x̂f ← x̂f + wt · x̄t

end

end
return x̂f

Appendix B. Extended Results

B.1. Impact of Spinal Pathologies on Segmentation Performance: Statistical
Analysis

We further detail the analysis of the impact of Spinal Pathologies segmentation performance
of the the baseline comparison model of the diffusion models compared to the nnU-Net base-
line. The plots presented in this appendix show Dice scores for different spinal structures,
such as the spinal canal (SC), vertebral bodies (VB), and intervertebral discs (IVD), in var-
ious pathological conditions. Each plot compares the segmentation performance between
patients with and without specific pathologies. The t-test statistics and p-values provided
in the plots indicate the statistical significance of the differences observed. The p-values
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Figure 6: Dice scores boxplot for IISDM (left) and nnUnet (right)

Modic changes, disc narrowing, and spondylolisthesis exhibit substantial influences on
segmentation performance, particularly for intervertebral discs (IVDs) and the spinal canal,
as evidenced by high t-statistics and low p-values.

B.2. Results of 3D Segmentation

Table 5: A quantitative analysis of Dice scores for 3D spinal volume segmentation of spinal
structures (including the spinal canal, vertebrae, and intervertebral disks) using
nnU-Net3D and Diff-UNet models across T1-weighted (T1w), T2-weighted (T2w),
and combined T1w + T2w imaging modalities.

Model Dim Modality Spinal Canal Vertebrae IVD mDICE

nnU-Net 3D T1w 0.92 ± 0.09 0.93 ± 0.02 0.84 ± 0.04 0.897
nnU-Net 3D T2w 0.93 ± 0.03 0.93 ± 0.02 0.89 ± 0.04 0.917
nnU-Net 3D T1w + T2w 0.93 ± 0.02 0.93 ± 0.02 0.89 ± 0.04 0.917

Diff-UNet 3D T1w 0.92 ± 0.04 0.93 ± 0.04 0.91 ± 0.03 0.920
Diff-UNet 3D T2w 0.92 ± 0.02 0.93 ± 0.02 0.90 ± 0.03 0.917
Diff-UNet 3D T1w + T2w 0.92 ± 0.02 0.93 ± 0.02 0.89 ± 0.04 0.913

We present a comprehensive analysis of the segmentation performance on full-sized 3D
spine volumes. The training was conducted using complete 3D MRI datasets, allowing
for a detailed evaluation of model capabilities in capturing complex anatomical structures.
The results, as summarized in Table 5, highlight the segmentation accuracy across different
spinal components, including the spinal canal, vertebrae, and intervertebral discs (IVD).
settings.

Notably, the Diff-UNet model demonstrates superior performance in segmenting IVDs,
achieving the highest mean Dice score (mDICE) of 0.920 in the T1-weighted modality.
These findings underscore the potential of 3D models to enhance segmentation precision,
particularly in the context of detailed volumetric analysis.
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Appendix C. Baseline Comparison Experiments Details

C.1. nnUnet Baseline

The nnU-Net model (Isensee et al., 2020) is trained using a highly automated and adaptable
framework designed for semantic segmentation tasks which informs the configuration of
multiple U-Net architectures tailored to the dataset’s specific characteristics. The model
training involves a multi-step process that includes preprocessing, model configuration,
training. nnU-Net employs a five-fold cross-validation strategy to ensure robust performance
evaluation. The training utilizes various configurations, such as 2D, 3D full resolution, to
optimize segmentation performance across different data modalities. The hyperparameters
that were used in the training are summarzed in the following tables:

Table 6: Training Hyperparameters for nnUnet 2D and 3D
Parameter T1w T2w T1w+T2w T1w T2w T1w+T2w

Patch Size 256x64 256x64 256x64 56x 224x192 56x224x192 56x224x192
Epochs 250 250 250 250 250 250
Batch 197 197 197 2 2 2
Optimizer SGD SGD SGD SGD SGD SGD
Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01
Training Loss Dice Dice Dice Dice Dice Dice

nnUnet 2D nnUnet 3D

C.2. Implicit Image Segmentation Diffusion Model (IISMD)

IISMD (Wolleb et al., 2021) follows DDPM training, adding Gaussian noise ϵt ∼ N (0, I)
to the segmentation mask x0 at each timestep t ∈ {1, . . . , T} using a linear noise scheduler
{αt ∈ (0, 1)}Tt=1. For denoising, U-Net architecture fθ estimates noise ϵt = fθ(xt,y, t)
at each timestep, concatenated with MRI images y, used to guide the generation of the
segmentation mask. The parameters θ are optimized by minimizing the Mean Squared
Error (MSE) loss between the estimated noise ϵ̂t and the true noise ϵt.

In the inference or sampling process, the model takes random noise concatenated with
the MRI input image (xy) and iteratively denoises the segmentation mask by estimating the
noise ϵ̂t at each timestep. During the sampling procedure, uncertainty maps are synthesized
by exploiting the inherent stochasticity present in DDPMs. Through iterative application of
IISMD, multiple segmentation masks are produced for a given input image. The uncertainty
map is derived by assessing the pixel-wise variance of the masks.

Table 7: Training Hyperparameters for IISDM
Hyperparameter T1w, T2w, T1w+T2w
Image Size 320x320
Epochs 2600
Batch 10
Optimizer AdamW
Learning Rate 0.0001
Training Loss MSE
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C.3. DiffUnet

DiffUnet (Xing et al., 2023) is a diffusion-based volumetric segmentation framework for
medical volumetric segmentation that directly infers the segmentation mask x̂0 from a par-
tially noised input xt. The architecture includes an additional encoder to extract features
from MRI scans, which enhances the model during training. The training uses a composite
loss function that combines cross-entropy, Dice, and MSE losses to penalize segmentation
errors. During the inference phase, Diff-UNet employs the DDIM (Song et al., 2020) sam-
pling algorithm, which accelerates the process while maintaining a balance between speed
and accuracy. To further improve robustness, Diff-UNet performs step-uncertainty-based
fusion during sampling ui = −p̄i log(p̄i), applied to the step-wise predictions to compile the
final fused result mask x̂.

Due to the computational load of the diffusion models, the volumetric segmentation
for DiffU-Net was performed patch-wise with input size 32× 120× 120 and sliding window
inference with 0.5 overlap. The training hyperparameters are summarized in: the next table

Table 8: Hyperparameters for DiffU-Net
T1w T2w T1w+T2w

Patch Size 32x128x128 32x128x128 32x128x128
Epochs 1350 1400 700
Batch 4 4 4
Optimizer AdamW AdamW AdamW
Learning Rate 0.0001 0.0001 0.0001
Training Loss MSE + Dice + CE MSE + Dice + CE MSE + Dice + CE
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