
Efficient and Accurate KV-cache Management for Long-Sequence LLMs

Yuzhen Mao 1 Qitong Wang 2 Martin Ester 1 Ke Li 1

Abstract
Key-Value (KV) cache plays a pivotal role in
accelerating inference in large language models
(LLMs) by storing intermediate attention outputs,
thereby avoiding redundant computation during
auto-regressive generation. However, the cache’s
memory footprint scales linearly with sequence
length, often resulting in memory bottlenecks
on constrained hardware. While prior work has
explored offloading KV-cache to the CPU and
maintaining a reduced subset on the GPU, these
approaches frequently suffer from imprecise to-
ken prioritization and degraded performance in
long-generation tasks such as multi-turn dialogues
and chain-of-thought reasoning. In this paper,
we propose a novel KV-cache management strat-
egy that integrates semantic token clustering with
PagedAttention, a memory-efficient paging mech-
anism. By clustering semantically related tokens
and organizing them into a hierarchical, dynami-
cally updateable structure, our method improves
cache hit rates and memory bandwidth utilization
during CPU-GPU transfers. Experimental results
show that our approach significantly enhances
inference efficiency while preserving generation
quality, particularly in long-sequence scenarios.
Notably, it achieves higher accuracy even when
operating with only half the memory budget, ef-
fectively addressing key limitations of existing
KV-cache optimization methods.

1. Introduction
Key-Value (KV) cache is a critical component in modern
large language models (LLMs) which stores the interme-
diate attention outputs for each token, allowing the model
to reuse these computations in subsequent forward passes.
This is particularly important for auto-regressive generation

1School of Computing Science, Simon Fraser University,
Canada 2Harvard University, Cambridge, USA. Correspondence
to: Yuzhen Mao <yuzhenm@sfu.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tasks, where tokens are generated one at a time. By caching
these values, the model avoids redundant calculations, dra-
matically reducing the computational cost and time required
for generating long sequences. However, the main chal-
lenge for a KV cache lies in its memory consumption. As
the generated sequence grows longer, the required cache
size increases linearly, potentially leading to out-of-memory
errors on devices with limited RAM.

Recent research (Zhang et al., 2024b; Tang et al., 2024; Xiao
et al., 2023) has revealed that despite the growing size of
the KV cache, a small subset of tokens plays a dispropor-
tionately important role in maintaining generation accuracy.
This insight suggests that we can significantly reduce infer-
ence time by selectively loading only these crucial tokens,
without compromising the quality of the output. Some re-
search (Chen et al., 2024a; Lee et al., 2024; Chen et al.,
2024b) takes this approach further by offloading the KV-
cache to the CPU and dynamically maintaining a subset of
the most significant KV-cache on the GPU. However, many
previous methods do not identify and prioritize these critical
parts of the KV-cache in a precise way so that the hit rate
of the truly important tokens is low. Moreover, in scenar-
ios involving long-generation tasks, such as long-context
summarization, multi-step reasoning, and extended chain-
of-thought (CoT) generation, previous methods experience
significant performance degradation (Li et al., 2024b).

To address these challenges, we propose an innovative
approach, which we call IceCache, that integrates token
clustering with a currently prevalent method – PagedAt-
tention (Kwon et al., 2023) which stores the KV-cache in
non-contiguous paged memory. As illustrated in Figure 1,
by grouping semantically related tokens into pages, our
approach aims to enhance the hit rate when selecting crit-
ical components and increase the transmission bandwidth
during the CPU-GPU offloading for the pages. Addition-
ally, by employing a hierarchical data structure that can
be efficiently updated during the decoding phase, we can
mitigate the performance degradation commonly observed
in long-generation tasks in previous studies. This leads to
more effective use of the KV-cache especially in the long-
generation setting. Particularly, our method aims to optimize
memory usage while preserving the model’s performance
by focusing on the following key aspects:

1

IceCache

1. Token Clustering for Efficient Storage: In the Prefill
stage, instead of storing the KVs sequentially in their origi-
nal order, we first cluster the tokens based on their similarity
in a transformed key-embedding space using a maintainable
tree-structured index, called DCI-tree. Tokens belonging
to the same cluster are then stored together in the same
memory page(s).

2. Query-aware Critical Page Selection: In the Decod-
ing stage, given a specific query, only a subset of pages
for each head are loaded to GPU to perform the attention
computation for each layer and attention head. These pages
are selected based on the presence of critical tokens, which
is decided by an Approximated Nearest Neighbour (ANN)
algorithm called Multi-level DCI (M-DCI).

3. Efficient Pipelining with CPU-GPU overlapping: Ice-
Cache performs M-DCI-based page selection on the CPU
in parallel with GPU operations such as attention computa-
tion and feedforward layer execution. This pipelined design
effectively overlaps computations, significantly hiding the
latency introduced by page selection.

We evaluated IceCache under constrained GPU memory
budgets on the LongBench (Bai et al., 2023) benchmark
using Llama3.1-8B-Instruct. Across diverse tasks, includ-
ing open-domain QA, multi-hop reasoning, academic read-
ing comprehension, and long-context summarization, Ice-
Cache consistently outperformed six state-of-the-art KV-
cache baselines in accuracy while maintaining comparable
low latency. Notably, IceCache sustained near-oracle per-
formance on most tasks using only a small fraction of the
original KV cache size. What’s more, IceCache achieves
higher accuracy even when operating with only half the
memory budget.

Figure 1: Illustration of the clustering and query-aware page se-
lection mechanism in IceCache. The diagram depicts how tokens
(represented as dots) are first grouped into clusters based on their
semantic similarity in a transformed key-embedding space. During
the decoding stage, given a query q, the zoomed-in section high-
lights that critical tokens (highlighted in yellow) are grouped in
the same cluster and stored together within the same memory page.
After performing a query-aware critical page selection, IceCache
conducts the approximated attention with the selected KVs and q.

2. IceCache
We propose an innovative approach, named IceCache, that
integrates token clustering with KV-cache storage. Our
method consists of three steps: (1) Indexing; (2) Page Selec-
tion; and (3) Bulk Back-loading. The Indexing step occurs
either during the prompt processing phase—when IceCache
constructs a hierarchical tree structure, referred to as the
DCI-tree, for the prompt key embeddings; or when new
window pages are offloaded to the CPU. In this step, simi-
lar tokens are grouped into units called nodes, rather than
being stored sequentially in virtual memory pages as in
PagedAttention. Here, a node denotes a group of data points
that share the same parent in the tree hierarchy. The next
two steps take place during the token generation (decoding)
phase. In the Page Selection step, IceCache employs a fast
Approximate Nearest Neighbor (ANN) search algorithm,
P-DCI, to independently select the top-k most relevant key
pages for each attention head. Finally, in the Bulk Back-
loading step, the selected pages are efficiently transferred
from the CPU back to the GPU. IceCache overlaps the DCI
search (a CPU-intensive operation) with ongoing GPU com-
putations, thereby minimizing additional latency.

We provide further details on each of these three steps in the
following subsections and illustrate the method in Fig 2.

Figure 2: Illustration of DCI-tree and IceCache: The hierarchical
structure on the left visualizes the result of indexing key embed-
dings, DCI-tree, where each tree node stores metadata for the
tokens such as the key ID and node index. The tables on the right
depict the mapping between nodes in the DCI-tree and the corre-
sponding pages in physical memory. For each selected node, a
mapping table is used to locate the memory region containing the
associated key-value embeddings.

2.1. Indexing: Clustering Key Embeddings into a
Hierarchical Tree

PagedAttention (Kwon et al., 2023) is a memory manage-
ment strategy designed to optimize attention computation in
LLMs by organizing key-value pairs into sequential memory
pages. It stores these key-value pairs based on their origi-
nal token indices, ensuring that tokens appearing consecu-
tively in the input sequence are placed contiguously in mem-
ory. This organization minimizes memory fragmentation,
allowing for more efficient memory access during decoding
and ultimately improving computational throughput. To
inherit the benefits of PagedAttention, several subsequent

2

IceCache

KV-cache optimization techniques, such as Quest (Tang
et al., 2024) and ArkVale (Chen et al., 2024a), have been
developed based on its principles. They focus on estimating
the importance of each page during KV-cache selection to
approximate attention computation more efficiently.

IceCache also organizes key-value embeddings into pages,
but takes a fundamentally different approach during its In-
dexing stage. Instead of relying on the token’s original order,
IceCache constructs a hierarchical tree structure for each at-
tention head, called a DCI-tree, which clusters tokens based
on the semantic similarity of their key embeddings. Each
node in the DCI-tree represents a small group of semanti-
cally related tokens that share a common parent, effectively
forming a localized cluster. From a memory system per-
spective, IceCache maps each of these nodes directly to
a memory page, thereby preserving semantic locality in
storage and enabling efficient access during decoding.

By clustering semantically similar tokens into the same
nodes/pages, IceCache facilitates more targeted and effi-
cient retrieval during decoding. This page structure allows
the model to load cached key-value embeddings at the gran-
ularity of tree nodes, improving reuse and reducing memory
access overhead. As new windows of tokens (e.g., from
a sliding window during long-context processing) are of-
floaded to the CPU, IceCache incrementally inserts each
token into the appropriate node in the DCI-tree based on its
key embedding. If a node exceeds the maximum page size,
new pages are dynamically allocated. This adaptive tree
maintenance ensures that the index remains efficient and
semantically coherent even as the context evolves, making
it particularly effective for long-sequence generation.

2.2. Page Selection: Head-specific ANN Search with
Fine-grained Retrieval

During the decoding phase, given a query, IceCache per-
forms a head-specific page selection to identify the most
relevant key pages for each attention head. Leveraging the
hierarchical DCI-tree built during indexing, we apply a fast
ANN search method mentioned in Section B.3, M-DCI, to
find the top-k pages that are closest to the current query
embedding for each head independently.

This design contrasts sharply with prior methods like Quest
and PQCache (Zhang et al., 2024a), which either retrieve
all pages indiscriminately or use a coarse global selection
strategy shared across heads. In contrast, IceCache’s head-
specific search recognizes that different heads often attend to
different semantic aspects of the input, and thus benefit from
customized retrieval strategies. This per-head granularity
leads to improved attention relevance and model accuracy.

Furthermore, to reduce latency, the M-DCI is executed on
the CPU in parallel with ongoing GPU computations. While

the GPU processes the next tokens in the decoding pipeline,
M-DCI searches for the best-matching pages, which are
then bulk-loaded into GPU memory just-in-time. This over-
lapping of CPU-GPU workloads helps hide the cost of ANN
search and data transfer, contributing to low inference la-
tency even in long-sequence settings. We explain its details
in the following section.

2.3. Efficient Pipelining with Bulk Back-loading

In this section, we present how to optimize the IceCache
workflow to bulk back-load the selected pages using two
CPU and GPU backload buffers. In addition, we carefully
design an efficient pipeline of DCI querying, page back-
loading, and next-token decoding. By overlapping DCI
query with back-loading and decoding, IceCache effectively
hides the query latency and achieves fully efficient decoding.

We illustrate our bulk back-loading workflow in Figure
4. After identifying the most relevant pages (indicated by
color), we filter out those already resident in GPU memory
from previous token generations. The remaining pages are
then aggregated into a pre-allocated CPU-memory buffer,
enabling a single high-throughput PCIe transfer into a pre-
allocated GPU-memory buffer. Once the pages arrive in
GPU memory, we scatter them directly into their corre-
sponding entries in the KV-Cache table.

Figure 5(b) illustrates the IceCache pipelining (other minor
stages are omitted for simplicity). Based on observations
that the hidden states of consecutive LLM layers are highly
similar (Liu et al., 2024; Li et al., 2024a), we decouple DCI
querying from page back-loading and next-token decoding
by speculatively querying the DCI indexes using the previ-
ous layer’s hidden states. Specifically, while back-loading
pages and decoding tokens for layer i, we simultaneously
issue a DCI query over layer i’s hidden states to identify the
critical pages for layer i+1. This overlapping fully hides the
query latency in IceCache.

3. Experiments
3.1. Settings

We apply our method to Llama3.1-8B, one of the most
popular open-source LLMs employing group-query at-
tention (GQA) (Ainslie et al., 2023). We first evalu-
ate the recall in retrieving important tokens, followed
by performance testing on six benchmarks from Long-
Bench (Bai et al., 2023). For baseline comparisons, we se-
lect state-of-the-art KV cache optimization methods, includ-
ing StreamingLLM (Xiao et al., 2023), H2O (Zhang et al.,
2024b), ArkVale (Chen et al., 2024a), SnapKV (Li et al.,
2024a), Quest (Tang et al., 2024), SparQ (Ribar et al., 2023),
RocketKV (Behnam et al., 2025) and PQCache (Zhang et al.,
2024a) as baselines. As prior research indicates, the initial

3

IceCache

layers of the model exhibit relatively low sparsity. There-
fore, neither IceCache nor baseline methods are applied to
the first two layers of the models. For IceCache, we report
results for two variants: (1) IceCache: without prefetching;
(2) IceCache (P): with prefetching. Specifically, at layer
n, the query from this layer prefetches the DCI database of
layer n+ 1, and utilizes the search results from layer n− 1
for attention computation. In this setting, attention compu-
tations can proceed without waiting for query completion,
thus hiding the latency.

3.2. Estimation Accuracy

We start by evaluating the accuracy of the token clustering
and important-pages selection outlined in Section 2.2. Using
data from LongBench(Bai et al., 2023), we collect both
the actual token rankings and the estimated rankings based
on the tokens DCI returns. Recall accuracy is defined for
varying values of k as the proportion of overlap between
the DCI-selected top-k token set (DCIk) and the true top-k
token set (Truek): Recall = |DCIk ∩ Truek|/|Truek|.

Figure 3 presents the recall accuracy of the approximate
top-k results over 10 decoding iterations, across different
k values (k = {1, 3, 5}) for three different layers (8, 18,
28). As shown in the figure, IceCache ensures at least 90%
accuracy for top-1 recall and consistently achieves over 80%
accuracy for other k values.

Figure 3: Recall accuracy (the proportion of tokens predicted to be
among the top-k that indeed belong to the top-k) of k = {1, 3, 5}
over 10 decoding iterations for layers 8, 18, 28.

3.3. LongBench Performance

In this experiment, all methods are evaluated under a con-
strained memory budget of 256 or 128 tokens, except for
Full-KV, which serves as the upper-bound baseline with
unrestricted memory. We assess performance across six
tasks from the LongBench benchmark suite. These tasks
collectively assess various aspects of long-context under-
standing, including question-and-answering, summarization,
and information retrieval.

Table 1 presents results on Llama3.1-8B-Instruct. From
the table, IceCache maintains its superiority in the low-
memory setting, offering performance nearly indistinguish-
able from the Full-KV baseline. In the GovReport task,
IceCache reaches 34.6 and 33.4 (with and without prefetch-
ing, respectively), outperforming all other memory-efficient
baselines, including RocketKV (26.7) and PQCache (27.2).
These results underscore IceCache’s ability to recall and
utilize essential long-range context, which is crucial for
summarization-heavy tasks. Furthermore, IceCache (P)
achieves the best or second-best results in Passage Retrieval,
TriviaQA, NarrativeQA, indicating that the prefetching ap-
proximation delivers reliable performance across both open-
domain QA and structured summarization benchmarks.

We also evaluate the performance of IceCache using an even
smaller memory budget of 128 tokens, pushing the limits of
efficient decoding. We observe that while reducing the mem-
ory budget from 256 to 128 slightly impacts performance,
IceCache remains highly competitive and often outperforms
existing baselines that use twice the budget. Specifically,
IceCache with a budget of 128 achieves performance very
close to the 256-budget version across multiple tasks. In
some cases, such as gov-report and qasper, it even achieves
the best or second-best results. These results highlight the
effectiveness of IceCache ’s token clustering and page selec-
tion strategy, enabling substantial memory savings without
sacrificing accuracy.

Table 1: LongBench evaluation for Llama3.1-8B-Instruct. Ice-
Cache shows strong performance even under half of the memory
budget (128). We bold the best score and underline the second-best
score for each task.

Budget Method gov-report narrativeqa qasper hotpotqa triviaqa pass-ret.

N/A Full-KV 35.2 30.2 45.5 55.5 91.7 99.5
256 Exact-TopK 34.8 30.7 44.7 55.0 92.2 99.5

256 SnapKV N/A 0.0 0.0 47.5 75.0 99.0
256 Quest 9.8 3.0 22.4 14.9 17.3 7.5
256 SparQ 13.7 5.0 38.0 19.7 32.1 28.8
256 RocketKV 26.7 30.3 43.5 54.9 91.0 99.5
256 PQCache 27.2 28.7 43.3 55.2 91.1 99.0
256 ArkVale 22.2 23.9 9.0 14.4 90.0 91.1

256 IceCache 34.6 30.6 44.7 55.2 92.0 100.0
256 IceCache (P) 33.4 30.4 44.5 54.5 91.7 99.6
128 IceCache 33.5 30.0 44.7 55.0 91.3 100.0
128 IceCache (P) 32.3 29.3 43.5 54.1 90.8 99.5

4. Conclusion
This paper introduces a novel hierarchical database, the
DCI-tree, enabling lightweight updates and dynamic token
management for efficient KV-cache handling. We further
propose IceCache, an end-to-end page-based KV-cache man-
ager with efficient GPU-CPU offloading and recall. Exten-
sive experiments across diverse long-context tasks demon-
strate IceCache’s efficacy. It achieves state-of-the-art per-
formance by significantly reducing decoding memory usage
and improving time per output token under constrained KV-
cache budgets (128 tokens), with negligible accuracy loss.

4

IceCache

References
Ainslie, J., Lee-Thorp, J., De Jong, M., Zemlyanskiy, Y.,

Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Behnam, P., Fu, Y., Zhao, R., Tsai, P.-A., Yu, Z., and Tu-
manov, A. Rocketkv: Accelerating long-context llm
inference via two-stage kv cache compression. arXiv
preprint arXiv:2502.14051, 2025.

Chen, R., Wang, Z., Cao, B., Wu, T., Zheng, S., Li, X.,
Wei, X., Yan, S., Li, M., and Liang, Y. Arkvale: Efficient
generative llm inference with recallable key-value evic-
tion. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a.

Chen, Z., Sadhukhan, R., Ye, Z., Zhou, Y., Zhang, J., Nolte,
N., Tian, Y., Douze, M., Bottou, L., Jia, Z., et al. Mag-
icpig: Lsh sampling for efficient llm generation. arXiv
preprint arXiv:2410.16179, 2024b.

Gupta, A., Dar, G., Goodman, S., Ciprut, D., and Berant, J.
Memory-efficient transformers via top-k attention. arXiv
preprint arXiv:2106.06899, 2021.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155–172, 2024.

Li, K. and Malik, J. Fast k-nearest neighbour search via
prioritized dci. In International conference on machine
learning, pp. 2081–2090. PMLR, 2017.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024a.

Li, Y., Jiang, H., Wu, Q., Luo, X., Ahn, S., Zhang, C., Abdi,
A. H., Li, D., Gao, J., Yang, Y., et al. Scbench: A kv
cache-centric analysis of long-context methods. arXiv
preprint arXiv:2412.10319, 2024b.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z., Kyril-
lidis, A., and Shrivastava, A. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv cache
compression at test time. Advances in Neural Information
Processing Systems, 36, 2024.

Mao, Y., Ester, M., and Li, K. Iceformer: Accelerated infer-
ence with long-sequence transformers on CPUs. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Mohtashami, A. and Jaggi, M. Landmark attention:
Random-access infinite context length for transformers.
arXiv preprint arXiv:2305.16300, 2023.

Nikita, K., Lukasz, K., Anselm, L., et al. Reformer: The
efficient transformer. In Proceedings of International
Conference on Learning Representations (ICLR), 2020.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient llm inference. arXiv preprint arXiv:2312.04985,
2023.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: Query-aware sparsity for efficient long-context
llm inference. arXiv preprint arXiv:2406.10774, 2024.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Xiao, G., Tang, J., Zuo, J., Guo, J., Yang, S., Tang, H.,
Fu, Y., and Han, S. Duoattention: Efficient long-context
llm inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819, 2024.

Zhang, H., Ji, X., Chen, Y., Fu, F., Miao, X., Nie, X., Chen,
W., and Cui, B. Pqcache: Product quantization-based
kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820, 2024a.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024b.

5

IceCache

……

…

Copy to CPU memory buffer

Bulk backload
Copy to GPU cache blocks

CPU backload buffer GPU backload buffer

DCI-tree of KV-head 𝑖 KV-Cache Table

… …

Figure 4: IceCache groups and backloads the selected pages to
maximize the PCIe throughput.

Decode, 퐿�BL,
퐿�

Query, 퐿� Query, 퐿�+1 Decode, 퐿�+1BL,
퐿�+1

Decode, 퐿�

BL,
퐿�

Query, 퐿�+1 Query, 퐿�+2

BL,
퐿�+1

Decode, 퐿�+1GPU

PCIe

CPU

(a) Serial workflow.

(b) IceCache pipeline with speculative DCI query.

Figure 5: IceCache pipelines and hides the DCI query completely.

A. Related work
Lots of recent methods have aimed to enhance the efficiency of attention mechanisms in large language models, especially
for handling long-context inputs. H2O (Zhang et al., 2024b) only keeps a subset of tokens selected by the attention scores
to save the memory for KV-cache. StreamingLLM (Xiao et al., 2023) utilizes the initial tokens which they called sink
tokens and the most recent tokens to accelerate the attention computation. Methods such as SparQ (Ribar et al., 2023)
applies approximate attention by only selecting important indices across the head dimension. Similarly, RocketKV (Behnam
et al., 2025) integrates structured caching with selective token retention. DuoAttention (Xiao et al., 2024) reduces memory
overhead by splitting attention computations into local and global phases. SnapKV (Li et al., 2024a) uses the last portion of
the prompt to select the important key embeddings for the following decoding. PQCache (Zhang et al., 2024a) employs
product quantization to manage KV-cache and approximate the attention computation.

PagedAttention (Kwon et al., 2023) is an innovative memory management technique designed to optimize the KV-cache
of LLMs. It addresses the challenges by introducing a paging mechanism similar to virtual memory systems in operating
systems. This approach divides the KV cache into fixed-size pages, allowing for more efficient memory allocation and
management. By doing so, PagedAttention enables better utilization of GPU memory, reducing fragmentation and allowing
for longer context windows without sacrificing performance.

Quest (Tang et al., 2024) and ArkVale (Chen et al., 2024a) are two query-aware criticality estimation algorithms built on the
PagedAttention. They effectively identify critical KV-cache tokens and perform self-attention selectively on the chosen
tokens. For each page, Quest and ArkVale calculate an upper bound using the feature values of the Key vector for each
page’s criticality estimation. Given all criticality scores of the pages, Top-K pages are chosen to perform approximate
self-attention, where K is a preset constant (e.g. 128, 256). Additionally, ArkVale integrates the GPU-CPU offloading into
the system to further save GPU memory. However, the main issue with both Quest and ArkVale is that they make all tokens
in the query head attend to the same key/value blocks activated by sparse attention, which is too coarse-grained, as the
information each token needs to attend to can vary significantly. Instead, IceCache allows each query head to attend to
different key/value blocks, which makes the attention-approximation more accurate.

B. Background
B.1. Attention Mechanism

Mathematically, the attention operation takes three matrices as input, K ∈ Rm×d,Q ∈ Rn×d,V ∈ Rm×d′
, which denote

keys, queries and values respectively. Optionally, it may also take in a mask as input, S ∈ Rn×m, whose entries are either 0
or 1. The ith rows of K, Q and V, denoted as ki, qi and vi, represent the ith key, query, value and output respectively. The
entry of S in the ith row and jth column, denoted as si,j , represents whether the ith query is allowed to attend to the jth key
— if it is 1, it would be allowed; if it is 0, it would not be. A common masking scheme is the causal mask, where si,j is 1 if
i ≥ j and 0 otherwise. Keys and queries have the same dimension d, and each key is associated with a value, and so the
number of keys and values is the same and denoted as m. The attention operation computes the attention weight matrix

6

IceCache

A ∈ Rn×m. Its entry in the ith row and jth column, denoted as ai,j , is computed with the following formula:

ai,j = (si,j exp

(
q⊤
i kj√
d

)
)/

m∑
j′=1

si,j′ exp

(
q⊤
i kj′√
d

)
(1)

The attention matrix A is typically sparse (Nikita et al., 2020; Gupta et al., 2021), i.e., in each row of A, only a few attention
weights have significant (large) values, while the majority of the remaining values are close to zero. Suppose we can
somehow identify the k unmasked keys that receive the highest attention weights for each query qi without computing
the attention weights for all keys. Then, the original attention matrix A can be approximated by only computing the inner
product for the identified keys, which can save significant amount of time and computational resource.

B.2. Generative Inference of LLM

The generative inference process of LLMs primarily comprises two key stages: the prefill (or prompt) stage and the decoding
(or generation) stage.

In the prefill stage, the model takes an input prompt sequence of length sin and processes it through all layers of the LLM.
During this process, the keys and values for each token in the sequence are computed and stored as part of the KV cache.
The decoding stage begins once the prompt has been processed. Here, the model generates output tokens one step at a time,
using and updating the KV cache iteratively. For each decoding step, the current token’s computation depends on the stored
keys and values from previous tokens, allowing the model to maintain context over the sequence. The KV cache thus plays a
crucial role in enabling efficient autoregressive generation by reducing redundant computations and maintaining information
about past tokens.

B.3. Multi-level DCI

Prioritized Dynamic Continuous Indexing (P-DCI) (Li & Malik, 2017) is an exact, randomized algorithm designed to
perform efficient k-nearest neighbour (k-NN) searches in high-dimensional spaces. Unlike traditional methods that rely on
space partitioning, P-DCI avoids this by constructing multiple indices, each imposing an ordering of all data points based on
their projections onto random vectors. During querying, P-DCI maintains a priority queue to process points in an order that
is likely to find nearer neighbours sooner. It computes a dynamic lower bound on the distance to the nearest neighbour,
allowing early termination of the search when the bound exceeds the distance to the current best candidates. This approach
significantly reduces the number of distance evaluations and memory usage compared to methods like Locality-Sensitive
Hashing (LSH).

Multi-level Dynamic Continuous Indexing (M-DCI) (Mao et al., 2024) extends P-DCI by introducing a hierarchical
structure to further enhance search efficiency. The index is organized into multiple levels, where each level contains a subset
of data points. Points are randomly promoted to higher levels, forming a pyramid-like structure. Each point at a lower level
is assigned a parent in the next higher level, typically the nearest neighbour among the promoted points. This creates "cells"
or clusters of points sharing the same parent. When querying, the algorithm starts at the top level, using P-DCI to find the
k-closest points to the query. It then recursively searches within the cells associated with these points at the next lower level,
continuing this process down the hierarchy. This multi-level approach allows M-DCI to focus computational resources on
the most promising regions of the index, effectively narrowing down the search space and improving query times, especially
in indexes with high intrinsic dimensionality.

C. Pseudocode for IceCache
We separate all tokens into three groups: sink tokens, which are the tokens at the very beginning of the input sequence;
window tokens, which are the most recent tokens; and all the remaining tokens in between. The pages that store sink tokens
are referred to as sink pages, and those that store window tokens are referred to as window pages. We always keep all the
sink and window pages in GPU.

We provide the pseudocode below for IceCache. It operates in two main phases: (1) Prefill Phase: During the initial
processing of prompt tokens, IceCache allocates paged KV memory per layer and performs self-attention computations.
From the third layer onward, it copies KV embeddings to CPU and builds a dynamic index – DCI-tree. This tree enables
efficient future lookup of important tokens based on query embeddings. (2) Decode Phase: During autoregressive decoding,

7

IceCache

each new token’s query embedding is used to retrieve the most relevant KV pages via DCI-based query. Selected pages
are back-loaded to GPU on demand, while unimportant pages are offloaded to CPU storage. When a new window page is
offloaded, the DCI-tree is incrementally updated to store tokens in this page. The detailed steps are outlined in Algorithm 1.
We will explain the mechanisms behind indexing and page selection in the following sections.

Algorithm 1 IceCache

1: Input: Sequence of tokens x1:I , Transformer with L layers, Page size s
2: Phase 1: Prefill
3: for ℓ = 0 to L− 1 do
4: Allocate pages and arrange KVs to the pages for layer ℓ
5: if ℓ ≥ 2 then
6: Copy KVs of tokens between sink tokens and window tokens from GPU to CPU (denoted as Sk and Sv)
7: end if
8: Compute the output from the current self-attention layer ℓ
9: if ℓ ≥ 2 then

10: Tl ← DCI-INDEXING(Sk, Sv)
11: end if
12: end for
13: Phase 2: Decode (repeated over time steps i > I)
14: while receive new token xi with qi as its query embedding do
15: for ℓ = 0 to L− 1 do
16: if Number of tokens in the last page ≥ s− 1 then
17: Offload the oldest window page pw from GPU to CPU
18: Set Flag to True
19: end if
20: Append KVs of xi to the end of the newest window page
21: if ℓ ≥ 2 then
22: Sl ← PAGE-SELECT(qi, Tl, k)
23: Recall selected pages Sl from CPU to GPU
24: end if
25: Compute the output from the current self-attention layer ℓ
26: if ℓ ≥ 2 and Flag is True then
27: Insert the offloaded pw to Tl

28: end if
29: end for
30: end while

D. Method Details
D.1. Indexing

For each attention head, given a set of pre-computed key embeddings, IceCache first indexes them using a hierarchical tree
structure which is obtained by a novel approach called Multi-level DCI (M-DCI). It works by constructing a dynamic index
called DCI-tree and applies Prioritized DCI (P-DCI) (Li & Malik, 2017) to each level of the tree recursively (more details
are in Section B.3). The data points processed in M-DCI are transformed key embeddings and query embeddings using the
following transformation formulas, which we denote as TK : Rd → Rd+1 and TQ : Rd → Rd+1:

TK(kj) =
[
kj/c

√
1− ∥kj∥22/c2

]⊤
(2)

TQ(qi) =
[
qi/∥qi∥2 0

]⊤
(3)

where c ≥ maxj′ ∥kj′∥2 is at least the maximum norm across all keys. We use the Euclidean distance as the distance
function.

At the very beginning of the indexing, all data points are initially placed at the bottom level of the DCI-tree. Subsequently,

8

IceCache

some points are randomly selected to be promoted to the next higher level based on a promotion ratio r < 1. The ratio r is
predefined during DCI-tree initialization and remains fixed throughout the process. After the indexing, we can get the total
number of levels in the DCI-tree, denoted as L. The details are presented in Algorithm 2.

Specifically, let nℓ denote the number of data points at level ℓ, with level indices starting from the top (i.e., the highest level
is ℓ = 0). Ideally, the number of points satisfies the recurrence relation nℓ = r · nℓ+1. In other words, the distribution over
level indices follows a geometric distribution. The probability that a point is assigned to the highest level (ℓ = 0) is rL−1,
while the probability of being assigned to level ℓ (for 1 ≤ ℓ ≤ L− 1) is rL−1−ℓ − rL−ℓ.

After level assignment, each data point at level ℓ is linked to a parent at level ℓ− 1, defined as the closest point in terms of
key embedding distance. This parent assignment is formulated as a 1-nearest neighbor search and is efficiently solved using
M-DCI.

In the decoding stage, when a new token is generated, its key embedding is inserted into the appropriate position in the
DCI-tree. A level ℓ is first assigned to the new key according to the same random promotion process. Then, its parent at level
ℓ− 1 is determined, and the key is added to the physical memory page corresponding to the node into which it is inserted.

Algorithm 2 DCI-INDEXING

1: Input: A list Sk of n keys k1, . . . ,kn ∈ Rd, A list Sv of n values v1, . . . ,vn ∈ Rd′

2: {l1, . . . , ln} ← assign target levels to keys in Sk

3: Initialize T with empty root node
4: for i = 1 to n do
5: {pi} ← QUERY(ki, T, li, 1)
6: Insert ki into T with parent pi
7: end for
8: Return: T

D.2. Page Selection

As aforementioned, IceCache aims to accelerate self-attention by loading only a limited number of pages into GPU memory
for computation. Therefore, the objective of page selection is to maximize the recall (or hit rate) of significant keys for
a given query. By clustering semantically similar tokens into the same nodes/pages, IceCache enables more targeted and
efficient retrieval during decoding. In contrast, methods like Quest (Tang et al., 2024), Arkvale (Chen et al., 2024a), or
PQCache (Zhang et al., 2024a) construct pages based on the original token order, which often causes tokens relevant to a
given query to be scattered across multiple pages. Retrieving them requires loading entire pages filled with many irrelevant
tokens, resulting in unnecessary memory overhead. IceCache mitigates this inefficiency by grouping similar tokens, so
relevant tokens tend to be concentrated within fewer pages. As a result, the hit rate of significant keys during decoding
increases. The detailed procedure is shown in Algorithms 3 and 4.

Specifically, when computing the attention matrix, given a query vector qi, we follow the query process described in
Section B.3 to identify the top-k keys that are most likely to yield the highest dot-product values with qi. Once these top-k
keys are identified, we load only the pages that contain them. Suppose p pages are loaded, and each page contains d entries,
since not all the pages are fully filled, the number of loaded keys N is bounded as: N ≤ pd.

The approximate attention scores between the query q and these N selected keys are then computed using Equation 1. The
masks si,j are set to 1 for the selected keys and 0 for all others.

Note that, IceCache constructs a separate DCI-tree for each attention head, allowing it to retrieve different sets of significant
pages per head. This head-specific, fine-grained selection mechanism distinguishes IceCache from baselines such as Quest
and ArkVale, which retrieve the same set of pages for all heads, potentially limiting their retrieval accuracy.

E. Experiment Setup
Our experimental platform comprises an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an NVIDIA A100 40GB PCIe
GPU. The software stack includes CUDA version 12.1, PyTorch version 2.5.1, and HuggingFace Transformers version
4.47.1. We implement IceCache on top of HuggingFace Transformers, utilizing FlashInfer for the attention kernel operation.

9

IceCache

Algorithm 3 PAGE-SELECT

1: Input: Query vector qi ∈ Rd, DCI-tree T , Number of critical keys k
2: Initialize Sl ← ∅
3: Sk ← QUERY(qi, T,−1, k)
4: Sl ← FIND-PAGE-INDEX(Sk)
5: Return: Sl

Algorithm 4 QUERY

1: Input: Query vector qi ∈ Rd, DCI-tree T , Target level l, Number of critical keys k
2: if l = −1 then
3: l← T.num_level
4: Set Flag← True
5: else
6: Set Flag← False
7: end if
8: Initialize S ← ∅
9: Create priority queue P with capacity k

10: for i = 1 to l do
11: S′ ← ∅
12: if i = 1 then
13: S ← {root node}
14: end if
15: for each s ∈ S do
16: S′′ ← Prioritized-DCI-Query(qi, s, k)
17: S′ ← S′ ∪ S′′

18: end for
19: if Flag or i = l then
20: for each s ∈ S′ do
21: Add-to-Priority-Queue(P, s)
22: end for
23: end if
24: S ← S′

25: end for
26: Return: k nodes in P that have the keys with maximum inner-product with qi

The six tasks that we pick from LongBench are: NarrativeQA (answering questions based on narrative stories or scripts),
Qasper (extracting answers from NLP research papers), HotpotQA (multi-hop reasoning across documents), GovReport
(Generate long, high-quality summaries of government reports), TriviaQA (answering open-domain factual questions), and
Passage Retrieval (locating relevant information from long documents). Among them, GovReport stands out as the most
difficult task due to its requirement to generate comprehensive summaries from lengthy documents. As a long-generation
task, GovReport poses a unique challenge in the KV-cache optimization setting because it requires sustained access to a
wide range of contextual information across thousands of tokens, making eviction and recall strategies far more critical
compared to short answer- or retrieval-based tasks.

We set the number of sink tokens to 32 and the number of window tokens to 32 for IceCache in all the experiments.

F. LongBench Results for LongChat-7B-v1.5
We also apply IceCache to LongChat-7B-v1.5, which is one of the most popular long-context LLMs. As shown in Table 2,
IceCache consistently achieves top-tier performance on all tasks under the 256-token budget. Because PQCache does not
support multi-head attention, it is not applicable. Notably, the two variants of IceCache achieve the top-2 scores across all
six tasks, outperforming all baseline methods and even approaching the performance of the Full-KV oracle. In particular,

10

IceCache

on the challenging GovReport task – known for its long-range generation demands – IceCache obtains a score of 29.8
and 29.8, significantly ahead of ArkVale (19.4) and RocketKV (24.6), nearly matching the Full-KV baseline (30.8). This
result highlights IceCache’s strength in preserving critical long-range information under tight memory budgets in the
long-generation setting.

Table 2: LongBench evaluation for LongChat-7B-v1.5

Budget Method gov-report narrativeqa qasper hotpotqa triviaqa pass-ret.

N/A Full-KV 30.8 20.8 29.4 33.0 84.0 30.5
256 Exact-TopK 30.6 19.6 30.2 33.7 83.5 29.5

256 SnapKV N/A 15.8 20.2 29.9 83.0 28.5
256 Quest 2.9 1.7 13.8 8.3 14.7 1.1
256 SparQ 10.4 2.5 27.3 12.9 25.4 2.5
256 RocketKV 24.6 18.8 28.6 31.0 82.5 13.5
256 PQCache / / / / / /
256 ArkVale 19.4 17.0 22.5 28.4 82.7 8.0

256 IceCache 29.8 20.4 29.5 34.6 84.7 28.5
256 IceCache (P) 29.9 18.9 29.9 33.5 84.4 27.4

G. Passkey Retrieval Accuracy
We also evaluate IceCache’s effectiveness in handling long-range dependencies using the passkey retrieval task (Mohtashami
& Jaggi, 2023). Following (Chen et al., 2024a), we use LongChat-7B-v1.5 as the base LLM and consider three context
lengths: 10k, 20k, and 30k. For each length, 20 test cases are generated with passkeys inserted at various positions from 0%
to 95% of the total context length in increments of 5%. In this section, we compare IceCache against StreamingLLM (Xiao
et al., 2023), H2O (Zhang et al., 2024b), and ArkVale (Chen et al., 2024a). The results are summarized in Table 3.

Both H2O and StreamingLLM permanently evict tokens from the cache, risking the loss of passkey-relevant information.
This leads to accuracies below 15%, which degrade further with increased context length or tighter cache budgets. In
contrast, IceCache and ArkVale dynamically assess the importance of evicted pages and recall crucial ones on demand,
consistently maintaining over 90% accuracy across all settings. Notably, IceCache’s token-clustering and more precise recall
mechanism allow both of its variants to achieve the same or better accuracies than ArkVale’s across budget sizes and context
lengths. Hence IceCache achieves a more Pareto optimal memory-accuracy trade-off.

Table 3: Accuracy of passkey retrieval tasks for LongChat-7B-v1.5

Context Length 10k 20k 30k

Cache Budget 128 256 512 1024 128 256 512 1024 128 256 512 1024

StreamingLLM 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
H2O 0% 5% 5% 5% 0% 0% 0% 5% 0% 0% 5% 5%
ArkVale 100% 100% 100% 95% 100% 100% 95% 100% 90% 100% 100% 95%

IceCache 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
IceCache (P) 100% 100% 100% 100% 100% 100% 100% 100% 95% 100% 100% 100%

H. Decoding Latency Analysis
Time Per Output Token (TPOT) measures the decoding time per token during inference. As shown in Figure 6(a), we
evaluate TPOT across a range of sequence lengths (16k–32k) under a unified hardware setting, with GPU caches capable
of storing the keys and values for 256 tokens. Among all baselines, SPARQ exhibits the highest latency, with TPOT
increasing linearly with sequence length due to its reliance on sequential query computation and communication making it
unsuitable for real-time applications. H2O fails to complete the inference at all sequence lengths tested due to out-of-memory
(OOM) issues. Other methods, including SnapKV, PyramidKV, PQCache, ArkVale and IceCache, show moderate latency
improvements via system-level optimizations, maintaining acceptable latency even at extremely long sequence lengths.
All these methods are faster than the human reading speed (indicated around 0.18s TPOT in the figure). Considering the

11

IceCache

substantial accuracy advantage of IceCache compared to all other baselines, as previously demonstrated, we conclude that
IceCache delivers superior accuracy without compromising inference speed.

Figure 6(b) presents a detailed breakdown of TPOT latency for IceCache at a sequence length of 20k, with a total latency of
0.12 s. In this figure, “Offloading”, “Query”, and “Decoding” represent the overhead from GPU-CPU offloading of key-value
embeddings, DCI-query operations, and the overall LLM decoding process, respectively. The dominant contributor to
latency is the DCI-query module (0.11s), while the original bottleneck – decoding (0.09s) – is now fully overlapped and
effectively hidden behind the query process. GPU–CPU offloading and other miscellaneous operations contribute minimally,
at only 0.02s and 0.01s, respectively.

(a) Time per output token. (b) Latency breakdown.

Figure 6: The latency (TPOT) and its breakdown for IceCache (with prefetching) and the comparison methods. IceCache consistently
delivers superior decoding efficiency without compromising generation quality.

12

