

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DECALIGN: HIERARCHICAL CROSS-MODAL ALIGNMENT FOR DECOUPLED MULTIMODAL REPRESENTATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal representation learning aims to capture both shared and complementary semantic information across multiple modalities. This intrinsic heterogeneity of diverse modalities presents substantial challenges to achieving effective cross-modal collaboration and integration. To address this, we introduce DecAlign, a novel hierarchical cross-modal alignment framework designed to decouple multimodal representations into modality-unique (heterogeneous) and modality-common (homogeneous) features. Specifically, we mitigate distributional discrepancies for modality-unique features via a novel prototype-guided optimal transport alignment strategy leveraging Gaussian mixture modeling and multi-marginal transport. Concurrently, semantic consistency across modalities is reinforced by aligning latent distribution matching with maximum mean discrepancy regularization. Furthermore, we incorporate a multimodal transformer to enhance high-level semantic feature fusion, further reducing cross-modal inconsistencies. Our extensive experiments across four widely used multimodal benchmarks demonstrate that DecAlign consistently outperforms state-of-the-art methods on five metrics. These results highlight the efficacy of DecAlign in improving cross-modal alignment and semantic consistency while preserving modality-unique features, marking a significant advancement in multimodal representation learning scenarios.

1 INTRODUCTION

Multimodal representation learning seeks to effectively integrate diverse modalities by capturing their shared semantics while retaining modality-unique characteristics. This goal has been pursued across numerous domains, including multimodal sentiment analysis (Lian et al., 2023; Das & Singh, 2023; Wang et al., 2024a), recommendation systems (Liu et al., 2024a; 2022), autonomous driving (Hwang et al., 2024; Xing et al., 2024b; Ma et al., 2025; Xing et al., 2024a), out-of-distribution detection (Dong et al., 2024; Li et al., 2024b), and general visual understanding and reasoning (Xing et al., 2025; Wang et al., 2024b). Despite significant advancements, the intrinsic heterogeneity among modalities—mainly due to divergent data distributions, various representation scales, and semantic granularities—remains a critical barrier that hampers effective cross-modal integration.

Motivation. This challenge is further intensified by the complex entanglement of modality-unique (heterogeneous) patterns and cross-modal common (homogeneous) semantics. Conventional multimodal fusion methods typically simplify the issue by projecting raw multimodal data into unified spaces via straightforward *concatenation* or *linear transformations* (Han et al., 2022; Zhang et al., 2023). However, this indiscriminate fusion often entangles modality-unique features with global shared semantics, leading to semantic interference, wherein detailed unimodal characteristics may disrupt global cross-modal relationships (Liang et al., 2024a; Xu et al., 2023). This phenomenon is particularly evident when dealing with dimensional mismatches, such as high-dimensional, spatially correlated image features paired with low-dimensional, temporally correlated text features (Wei et al., 2025; 2024; Zhu et al., 2024). These dimensional mismatches frequently lead to suboptimal alignment, causing either information redundancy or critical loss during fusion.

Our Approach. To overcome these limitations, we propose **DecAlign**, a hierarchical cross-modal alignment framework for multimodal representation learning. As illustrated in Figure 2, DecAlign

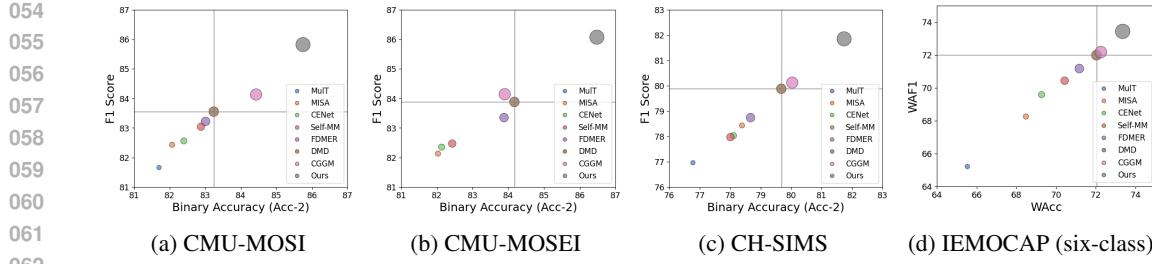


Figure 1: DecAlign achieves superior performance compared to state-of-the-art methods across multiple multimodal benchmarks. The bubble size represents relative model performance, illustrating the trade-off between Acc-2 and Binary F1 Score.

first explicitly decouples heterogeneous and homogeneous features through specialized encoders. Then, leveraging a dual-stream cross-modal alignment mechanism, DecAlign individually handles modality characteristics at different granularities: ① For heterogeneity, we propose **prototype-based optimal transport alignment** (Peyré & Cuturi, 2019) using Gaussian Mixture Modeling (GMM) (Bishop, 2006) and multi-marginal transport plans (Pass, 2015), effectively mitigating distribution discrepancies and constraining modality-unique interference. Additionally, we enhance semantic alignment and robustness through a multimodal transformer, which employs cross-modal attention mechanisms to bridge high-level semantic inconsistencies. ② For homogeneity, DecAlign achieves semantic consistency via **latent distribution matching** with Maximum Mean Discrepancy (MMD) regularization. Finally, we concatenate the aligned modality-unique features with modality-common features, passing them through a learnable projector for downstream tasks. Our key contributions are summarized as follows:

- **Modality Decoupling.** We propose DecAlign, a novel hierarchical cross-modal alignment framework that decouples multimodal features into modality-heterogeneous and modality-homogeneous components, allowing tailored strategies to capture both modality-unique characteristics and shared semantics.
- **Hierarchical Alignment Strategy.** We develop a dual-stream alignment mechanism that combines prototype-guided optimal transport and cross-modal transformers to handle modality heterogeneity, while applying latent space statistical matching to address homogeneity, substantially improving cross-modal semantic integration.
- **Empirical Evaluation.** Extensive experiments on four widely used benchmark datasets demonstrate that DecAlign consistently outperforms 13 state-of-the-art methods, validating its efficacy and generalizability for multimodal representation learning.

2 RELATED WORK (EXTENDED VERSION IN APPENDIX A)

Multimodal Representation Learning. This field integrates heterogeneous modalities into unified representations that capture complementary semantics (Qian et al., 2025; Liang et al., 2024b; Bayoudh, 2024; Wang et al., 2025). Advances include contrastive and masked modeling (Self-MM), and hierarchical graph contrastive learning (HGraph-CL) (Yu et al., 2021; Lin et al., 2022). Yet entanglement of heterogeneity and complementarity hampers leveraging both. To address this, MISA disentangles invariant and unique features, while DMD applies graph knowledge distillation (Hazarika et al., 2020; Li et al., 2023). However, global modeling dominates, often neglecting token-level inconsistencies. Our DecAlign introduces hierarchical alignment, moving from local to global, heterogeneity to homogeneity, for precise and consistent integration.

Cross-Modal Alignment. The core challenge in multimodal learning is structural, distributional, and semantic heterogeneity, which restricts feature synergy (Zhu et al., 2024). Main approaches include: ① Shared Representation. Learning a unified latent space for semantic consistency. CLIP aligns image-text pairs via large-scale contrastive learning (Radford et al., 2021; Gao et al., 2024), while Uni-Code uses disentangling and exponential moving average for stable alignment (Xia et al., 2024). ② Transformer-based Cross-Attention. Cross-attention dynamically captures information across modalities, as in multimodal transformers with disentangled or hierarchical fusion (Tsai et al., 2019; Yang et al., 2022; Hu et al., 2024). ③ Modality Translation. Translation methods build

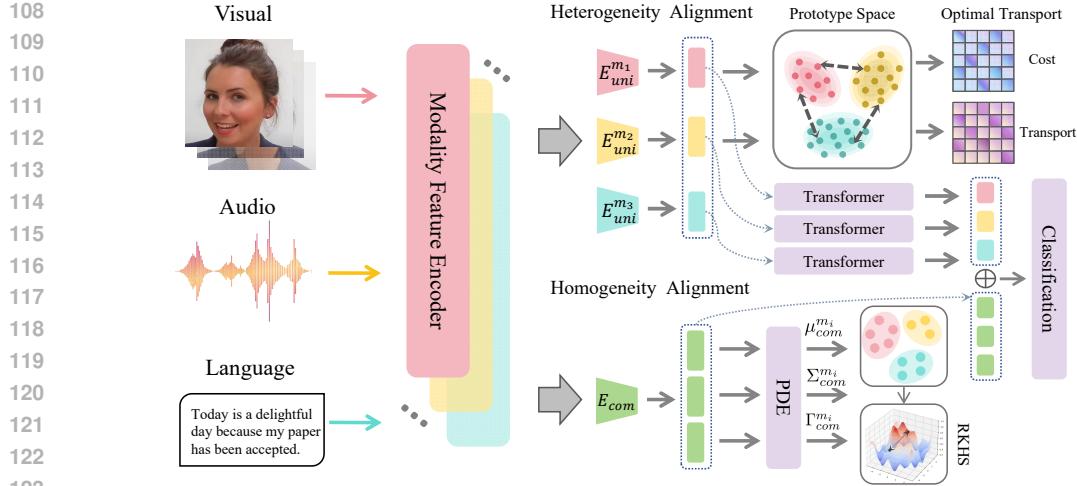


Figure 2: **The framework of our proposed DecAlign approach**, illustrated in a multimodal setting with visual, audio, and language inputs. Modality Feature Encoders first extract unimodal embeddings, which are then decoupled into modality heterogeneous and homogeneous components by modality-unique/common encoders. Heterogeneous features are aligned via optimal transport-based cross-modal prototypes, and homogeneous semantics are aligned through latent space semantics and Maximum Mean Discrepancy-based distribution matching. Heterogeneous features are refined by a multimodal transformer for capturing finer-grained cross-modal interactions, then concatenated with homogeneous features and passed through a fully connected layer for downstream tasks.

mappings through cross-modal generation or reconstruction, explicitly modeling dependencies (Liu et al., 2024b; Zeng et al., 2024; Tian et al., 2022). ④ Knowledge Distillation. Distillation balances inter-modal contributions by transferring knowledge. DMD applies graph distillation for correlation modeling, and UMDF uses unified self-distillation for robust representation learning (Li et al., 2023; 2024a). Compared with methods that risk over-alignment and loss of modality-specific traits, our framework combines representation decoupling with hierarchical alignment to preserve unimodal uniqueness while ensuring semantic consistency.

3 METHOD

Motivation and Overview. The fundamental challenge in multimodal representation learning lies in effectively addressing the inherent conflicts between modality-unique characteristics and cross-modal semantic consistency. Two critical issues emerge: ① **Heterogeneity**: referring to inherent representation focus and distributional discrepancies among modalities that hinder cross-modal semantic alignment, ② **Homogeneity**: emphasizing the necessity of capturing shared semantics across modalities despite their inherent differences. To overcome these limitations, we propose DecAlign, a hierarchical cross-modal alignment framework that explicitly treats modality-unique and modality-common features with specific alignment strategies. As illustrated in Figure 2, DecAlign begins by decoupling multimodal representations into modality-unique (heterogeneous) and modality-common (homogeneous) features (Section 3.1). A hierarchical alignment mechanism is subsequently employed, combining prototype-guided multi-marginal optimal transport and cross-modal transformer for heterogeneous alignment (Section 3.2) and latent space semantic consistency with MMD regularization for homogeneous alignment (Section 3.3), ensuring the semantic consistency of modality-unique information and cross-modal commonality.

3.1 MULTIMODAL FEATURE DECOUPLING

Given a multimodal dataset with M modalities, each modality m provides features with its unique temporal length T_m and feature dimension d_m . Due to this inherent variation across modalities, we apply modality-unique 1D temporal convolution layers that aggregate local temporal patterns and transform all features to the same temporal length T_s and feature dimension d_s . The resulting unimodal features are expressed as: $\tilde{\mathbf{X}}_m \in \mathbb{R}^{T_s \times d_s}$. The primary challenge in multimodal tasks

lies in the inherent heterogeneity across modalities, hindering the integration of homogeneous features. To address this, we decouple the multimodal representations into **modality-common** features, which emphasize semantic consistency across modalities, and **modality-unique** features, capturing modality-unique characteristics with some redundancy. Building upon this, we employ three modality-unique encoders $\mathbf{E}_{\text{uni}}^{(m)}$ and a modality-shared encoder \mathbf{E}_{com} , to extract heterogeneous features as $\mathcal{F}_{\text{uni}}^{(m)} = \mathbf{E}_{\text{uni}}^{(m)}(\tilde{\mathbf{X}}_m)$ and cross-modal homogeneous features as $\mathcal{F}_{\text{com}}^{(m)} = \mathbf{E}_{\text{com}}(\tilde{\mathbf{X}}_m)$.

Considering the inherent heterogeneity and potential redundancy across modalities, we refine the decoupling process by explicitly separating modality-unique and modality-common features. All encoders are designed to produce representations with the same dimensionality to ensure compatibility. Instead of modeling distributions or computing mutual information which can be computationally expensive, we use cosine similarity to quantify their potential overlap. Hence, the loss of decoupling process is formally defined as:

$$\mathcal{L}_{\text{dec}} = \sum_{m=1}^M \frac{\mathcal{F}_{\text{uni}}^{(m)} \cdot (\mathcal{F}_{\text{com}}^{(m)})^T}{\|\mathcal{F}_{\text{uni}}^{(m)}\| \|\mathcal{F}_{\text{com}}^{(m)}\|} \quad (1)$$

3.2 HETEROGENEITY ALIGNMENT

In multimodal tasks, modality-unique features capture distinct characteristics specific to each modality. However, these features often differ significantly in spatial structure, scale, noise level, and density, making direct point-to-point alignment across modalities both unreliable and computationally expensive. Moreover, although these features vary in form, they frequently carry semantically aligned information when referring to the same underlying concept or object category. To effectively bridge modality-unique feature differences while preserving shared semantic structures, we introduce category prototypes as semantic anchors across modalities. These prototypes represent consistent semantic patterns underlying different modality-specific representations and serve as reference points to guide alignment. Building on this, we employ a prototype-guided multi-marginal optimal transport framework to achieve adaptive and fine-grained alignment across heterogeneous feature spaces.

Prototype Generation. To flexibly capture the complex distributions and potential correlations in multimodal data, we employ the Gaussian Mixture Model (GMM), which leverages its soft assignment mechanism and Gaussian distribution assumption to more accurately represent the prototype structures of different modality features. The GMM is fitted using the standard Expectation-Maximization algorithm, which iteratively estimates the mixture coefficients, means, and covariances to maximize the likelihood of the modality-unique features. We first model modality-unique features using GMM, with prototypes represented by the mean and covariance of Gaussian distributions:

$$\mathcal{P}_m = \{(\mu_m^1, \Sigma_m^1), (\mu_m^2, \Sigma_m^2), \dots, (\mu_m^K, \Sigma_m^K)\} \quad (2)$$

where K denotes the number of Gaussian components, which is set equal to the category number in downstream task, and μ_m^k, Σ_m^k represent the mean and covariance of the k -th Gaussian component for modality m , respectively. Then the probability of n -th sample \mathbf{x}_n belonging to the k -th Gaussian component is calculated as:

$$w_m^n(k) = \frac{\pi_k \cdot \mathcal{N}(\mathbf{x}_m^n; \mu_m^k, \Sigma_m^k)}{\sum_{j=1}^K \pi_j \cdot \mathcal{N}(\mathbf{x}_m^n; \mu_m^j, \Sigma_m^j)} \quad (3)$$

π_k is the mixture coefficient of the k -th Gaussian component, and $\mathcal{N}(\mathbf{x}_m^n; \mu_m^k, \Sigma_m^k)$ is the probability density function of the Gaussian distribution:

$$\mathcal{N}(\mathbf{x}_m^n; \mu_m^k, \Sigma_m^k) = \frac{\exp(-\frac{1}{2}(\mathbf{x}_m^n - \mu_m^k)^T \Sigma_m^{k-1} (\mathbf{x}_m^n - \mu_m^k))}{(2\pi)^{d/2} |\Sigma_m^k|^{1/2}} \quad (4)$$

Prototype-guided Optimal Transport. The modality-unique features of different modalities often lie in distinct feature spaces with significant distributional differences, traditional point-to-point alignment methods struggle to capture both global and local relationships. To address this challenge in multimodal scenarios, we introduce a multi-marginal Optimal Transport approach to establish matches between distributions. The cross-modal prototype matching cost matrix is defined as:

$$C(k_1, k_2, \dots, k_M) = \sum_{1 \leq i \leq j \leq M} C_{i,j}(k_i, k_j) \quad (5)$$

216 where $C_{i,j}(k_i, k_j)$ represents the pairwise alignment cost between modalities m_i and m_j ;

$$218 \quad C_{i,j}(k_i, k_j) = \|\mu_i^{k_i} - \mu_j^{k_j}\|^2 + \text{Tr}(\Sigma_i^{k_i} + \Sigma_j^{k_j} - 2(\Sigma_i^{k_i} \Sigma_j^{k_j})^{\frac{1}{2}}) \quad (6)$$

220 The optimization objective for cross-modal prototype alignment aims to minimize the total alignment
221 cost across all modalities while satisfying marginal distribution constraints. The objective function is

$$222 \quad T^* = \arg \min_T \sum_k T(k) \cdot C(k) + \lambda \sum_k T(k) \log T(k), \quad (7)$$

225 where $k \in \{k_1, k_2, \dots, k_M\}$ denotes the set of indices spanning all prototype combinations across the
226 M modalities, $T(k)$ represents the joint transportation matrix, and $C(k)$ is the joint cost matrix. The
227 second term introduces entropy regularization to promote smoother and more robust solutions. The
228 transport plan matrix $T(k)$ is further constrained to ensure consistency across modalities, satisfying
229 the following marginal distribution constraints:

$$230 \quad \sum_{k_j: j \neq i} T(k_1, k_2, \dots, k_M) = \nu_i(k_i), \forall i \in \{1, 2, \dots, M\}, \forall k_i, \quad (8)$$

233 where $\nu_i(j_i)$ represents the marginal distribution of modality m_i over its prototypes. Combining
234 global alignment via Optimal Transport and local alignment through sample-to-prototype calibration,
235 the overall heterogeneity alignment loss is defined as:

$$236 \quad \mathcal{L}_{\text{hete}} = \sum_k T^*(k) \cdot C(k) + \frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K w_i^n(k) \cdot \|\mathcal{F}_i^n - \mu_{j \neq i}^k\|^2. \quad (9)$$

239 The first term, \mathcal{L}_{OT} , aligns the distributions of prototypes across modalities, ensuring global consistency.
240 The second term $\mathcal{L}_{\text{Proto}}$ ensures fine-grained alignment by minimizing the weighted distance
241 between samples x_i^n in source modality i and prototypes in target modality j . By combining \mathcal{L}_{OT}
242 and $\mathcal{L}_{\text{Proto}}$, this heterogeneous alignment loss captures both global and local relationships, providing
243 a robust mechanism for aligning heterogeneous modalities in a unified feature space.

245 3.3 HOMOGENEITY ALIGNMENT

247 While different modalities exhibit unique characteristics in their representations, they also share
248 common elements that convey the same semantic information. To effectively uncover and align these
249 shared features, it is crucial to address the inherent challenges posed by modality-unique variations
250 and residual inconsistencies in their distributions.

251 **Latent Space Semantic Alignment.** To address the global offset and semantic inconsistencies
252 in modality-common features and mitigate information distortion during feature fusion, we model
253 modality feature distributions using Gaussian distributions. By mapping representations into a
254 latent space, we quantify differences in position, shape, and symmetry through mean, covariance,
255 and skewness, where skewness is further incorporated to capture asymmetry in the distribution of
256 modality-common features, enabling the alignment to account for non-Gaussian semantic variations
257 and improve cross-modal consistency. Specifically, for modality-common features, their distributions
258 are approximated as $\mathcal{Z}_{\text{com}}^{m_i} \sim \mathcal{N}(\mu_{\text{com}}^{m_i}, \Sigma_{\text{com}}^{m_i}, \Gamma_{\text{com}}^{m_i})$, where $\mu_{\text{com}}^{m_i}$, $\Sigma_{\text{com}}^{m_i}$ and $\Gamma_{\text{com}}^{m_i}$ represent the
259 mean, covariance and skewness of the common features for modality m_i , respectively. Their detailed
260 formulas are discussed in the Appendix B.6. To ensure semantic consistency across modalities, we
261 define the latent space semantic alignment loss as:

$$262 \quad \mathcal{L}_{\text{sem}} = \frac{1}{M(M-1)} \sum_{1 \leq i < j \leq M} \left(\|\mu_{\text{com}}^{m_i} - \mu_{\text{com}}^{m_j}\|^2 + \|\Sigma_{\text{com}}^{m_i} - \Sigma_{\text{com}}^{m_j}\|_F^2 + \|\Gamma_{\text{com}}^{m_i} - \Gamma_{\text{com}}^{m_j}\|^2 \right). \quad (10)$$

265 **Cross-Modal Distribution Alignment.** To flexibly model the latent distribution space of modality-
266 homogeneous features extracted by the shared encoder without relying on prior knowledge, we use
267 Probabilistic Distribution Encoder (PDE) to encode feature distributions in latent space. PDE outputs
268 are compared across modalities using the Maximum Mean Discrepancy (MMD) metric, which
269 evaluates the distance between distributions by mapping them into a Reproducing Kernel Hilbert
Space (RKHS) and measuring the difference between their mean embeddings. This kernel-based

270 formulation enables non-parametric modeling and captures higher-order statistical properties in a
 271 unified space. The discrepancy of cross-modal distribution is then quantified as:
 272

$$\begin{aligned} 273 \quad \mathcal{L}_{\text{MMD}} &= \frac{2}{M(M-1)} \sum_{1 \leq i < j \leq M} \left[\mathbb{E}_{x, x' \sim \mathcal{Z}_{\text{com}}^{m_i}} [k(x, x')] \right. \\ 274 &\quad \left. + \mathbb{E}_{y, y' \sim \mathcal{Z}_{\text{com}}^{m_j}} [k(y, y')] - 2 \mathbb{E}_{x \sim \mathcal{Z}_{\text{com}}^{m_i}, y \sim \mathcal{Z}_{\text{com}}^{m_j}} [k(x, y)] \right] \\ 275 \end{aligned} \quad (11)$$

276 where $k(\cdot, \cdot)$ is the Gaussian kernel function defined with its kernel bandwidth parameter σ :
 277

$$279 \quad k(x, y) = \exp \left(- \frac{\|x - y\|^2}{2\sigma^2} \right) \quad (12) \\ 280$$

281 By conducting latent space semantic alignment followed by MMD-based distribution correction, we
 282 establish a hierarchical homogeneity alignment mechanism that effectively achieves semantic and
 283 distributional consistency of modality-common features. The overall loss for homogeneity alignment
 284 is $\mathcal{L}_{\text{homo}} = \mathcal{L}_{\text{sem}} + \mathcal{L}_{\text{MMD}}$.
 285

286 3.4 MULTIMODAL FUSION AND PREDICTION

287 Recognizing the unique characteristics of multimodal heterogeneous representations—such as syntac-
 288 tic structures in language, spatial layouts in vision, and temporal patterns in audio—we incorporate
 289 modality-specific transformers (Tsai et al., 2019) to enhance global temporal and contextual model-
 290 ing. While prior alignment places modality-unique features in semantically consistent spaces, these
 291 representations still contain rich intra-modal information that benefits from further refinement. Using
 292 separate transformers per modality does not undermine alignment, as the representation space has
 293 been regularized by alignment losses. Instead, the transformers serve as modality-aware refiners.
 294 Their outputs are concatenated with modality-common features, enabling both shared semantics and
 295 modality-specific cues to jointly inform the final prediction, which is generated by a fully connected
 296 layer. The overall optimization objective of our framework is defined as:
 297

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{task}} + \mathcal{L}_{\text{dec}} + \alpha \mathcal{L}_{\text{hete}} + \beta \mathcal{L}_{\text{homo}} \quad (13)$$

298 where $\mathcal{L}_{\text{task}}$ represents the task-specific loss, such as cross-entropy for classification tasks or mean
 299 squared error for regression. α and β are trade-off hyperparameters for the losses of heterogeneous
 300 and homogeneous alignment, with their sensitivity analyzed in Section 4.3.
 301

302 4 EXPERIMENTS

303 **Dataset and Metric Description.** We evaluate DecAlign on four common multimodal datasets:
 304 CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI (Zadeh et al., 2018), CH-SIMS (Yu et al., 2020)
 305 and IEMOCAP (Busso et al., 2008). For CMU-MOSI and CMU-MOSEI, following prior works
 306 (Liang et al., 2021; Li et al., 2023; Zhou et al., 2025), we evaluate performance using binary accuracy
 307 (Acc-2), 7-class accuracy (Acc-7), and Binary F1 Score. Acc-2 reflects whether the a sample is
 308 predicted as negative, while sentiment intensity prediction is further assessed via Mean Absolute Error
 309 (MAE) and Pearson Correlation (Corr) to capture deviation and linearity. For CH-SIMS, we adopt
 310 MAE and F1 Score. IEMOCAP follows (Lian et al., 2023; Fu et al., 2024; Zhang et al., 2024) with
 311 weighted accuracy (WAcc) and weighted average F1 Score (WAF1), accounting for class distribution
 312 imbalance. Detailed dataset and metric descriptions are provided in Appendix B.
 313

314 **Implementation Details.** Consistent with previous studies (Li et al., 2023; Wang et al., 2023), we
 315 use the MMSA-FET Toolkit (Yu et al., 2021) for feature extraction on all datasets except IEMOCAP,
 316 for which we follow the pre-processing procedure described in prior representative work (Lian et al.,
 317 2023). We train DecAlign for 50 epochs using Adam optimizer with a batch size of 32 on an NVIDIA
 318 A6000. Further details regarding hyperparameter settings are provided in Appendix B.3, and feature
 319 extraction is described in Appendix B.4.
 320

321 4.1 COMPARISON ANALYSIS (EXTENDED VERSION IN APPENDIX C)

322 We compare DecAlign with a range of state-of-the-art methods under a unified experimental environ-
 323 ment and consistent dataset splits. These baselines include MFM (Tsai et al., 2018), Mult (Tsai et al.,

Models	CMU-MOSI			CMU-MOSEI			IEMOCAP (six-class)		CH-SIMS	
	MAE (↓)	Acc-2 (↑)	F1 Score (↑)	MAE (↓)	Acc-2 (↑)	F1 Score (↑)	WAcc (↑)	WAF1 (↑)	MAE (↓)	F1 Score (↑)
MFM (Tsai et al., 2018)	0.951	78.18	78.10	0.681	78.93	76.45	63.38	63.41	0.471	75.28
MuLT (Tsai et al., 2019)	0.846	81.70	81.66	0.673	80.85	80.86	65.53	65.21	0.455	76.96
PMR (Fan et al., 2023)	0.895	79.88	79.83	0.645	81.57	81.56	67.04	67.01	0.445	76.55
CubeMLP (Sun et al., 2022)	0.838	81.85	81.74	0.601	81.36	81.75	66.43	66.41	0.459	77.85
MUTA-Net (Tang et al., 2023)	0.767	82.12	82.07	0.617	81.76	82.01	67.44	68.78	0.443	77.21
MISA (Hazarika et al., 2020)	0.788	82.07	82.43	0.594	82.03	82.13	68.48	68.25	0.437	78.43
CENet (Wang et al., 2022)	0.745	82.40	82.56	0.588	82.13	82.35	69.27	69.58	0.454	78.03
Self-MM (Yu et al., 2021)	0.765	82.88	83.04	0.576	82.43	82.47	70.35	70.43	0.432	77.97
FDMER (Yang et al., 2022)	0.760	83.01	83.22	0.571	83.88	83.35	71.33	71.17	0.424	78.74
AOBERT (Kim & Park, 2023)	0.780	83.03	83.02	0.588	83.90	83.64	71.04	70.89	0.430	78.55
DMD (Li et al., 2023)	0.744	<u>83.24</u>	<u>83.55</u>	<u>0.561</u>	<u>84.17</u>	<u>83.88</u>	72.03	71.98	0.421	79.88
ReconBoost (Hua et al., 2024)	0.793	82.59	82.72	0.599	82.98	83.14	71.44	71.58	0.413	<u>80.41</u>
CGGM (Guo et al., 2025)	0.787	82.73	82.89	0.584	83.72	<u>83.94</u>	72.25	72.17	0.417	80.12
DecAlign (Ours)	0.735	85.75	85.82	0.543	86.48	86.07	73.35	73.43	0.403	81.85

Table 1: Performance comparison across four widely used datasets under a unified experimental setting with consistent data splits to ensure a fair evaluation. Symbols \uparrow and \downarrow indicate that higher or lower values are better, respectively. Best results are highlighted in **bold**, and second-best results are underlined. All reported results are averaged over **five** runs on the test set.

2019), PMR (Fan et al., 2023), CubeMLP (Sun et al., 2022), MUTA-Net (Tang et al., 2023), MISA (Hazarika et al., 2020), CENet (Wang et al., 2022), Self-MM (Yu et al., 2021), FDMER (Yang et al., 2022), AOBERT (Kim & Park, 2023), DMD (Li et al., 2023), ReconBoost (Hua et al., 2024), and CGGM (Guo et al., 2025). Table 1, 5, 6, 7, along with Figure 1, present a comprehensive comparison of our DecAlign framework against 13 state-of-the-art methods on four widely used datasets. To account for statistical significance and reduce the influence of randomness, the reported performance of DecAlign is averaged over **five** independent runs. The comparison reveals that DecAlign exhibits a stronger ability to capture subtle variations in continuous target values, as well as a more precise distinction among discrete categories. Its consistent performance across diverse datasets indicates an enhanced capacity for modeling both continuous and categorical patterns within multimodal data, reflecting a more comprehensive understanding of complex cross-modal interactions.

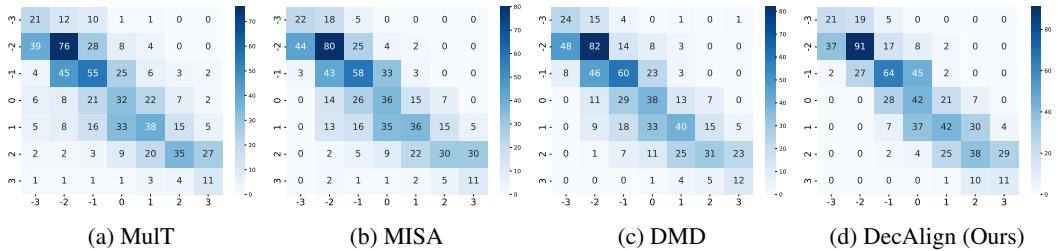


Figure 3: Comparison of predicted versus ground truth category distributions for four representative models on the CMU-MOSI dataset.

Transformer-based methods. Compared to Transformer-based methods such as MuLT (Tsai et al., 2019), Self-MM (Yu et al., 2021), PMR (Fan et al., 2023), and MUTA-Net (Tang et al., 2023), which rely on cross-attention mechanism for global feature fusion, DecAlign overcomes modality-unique interference and local semantic inconsistencies. Transformer-based models assume a shared latent space, often causing dominant modalities to overshadow weaker ones, leading to information loss. In contrast, DecAlign explicitly disentangles modality-heterogeneous and modality-homogeneous features, leveraging prototype-based optimal transport for fine-grained alignment and latent space semantic alignment with MMD regularization for global consistency. This mitigates modality interference, reducing MAE and improving Corr, while enhancing classification performance.

Feature Decoupling-based methods. While multimodal feature decoupling methods such as MISA (Hazarika et al., 2020), FDMER (Yang et al., 2022), and DMD (Li et al., 2023) alleviate modality interference, they primarily focus on global alignment, often overlooking token-level inconsistencies. This limitation hinders fine-grained multimodal integration, particularly in tasks requiring precise semantic fusion. DecAlign overcomes this challenge through a dual-stream hierarchical alignment strategy, integrating prototype-based transport for local alignment with semantic consistency constraints for robust global integration. This enables more expressive multimodal representations, leading to superior performance across both regression and classification metrics.

Confusion Matrix Analysis. To further demonstrate the superiority of our performance and validate the effectiveness of our proposed approach, we analyze the confusion matrix of DecAlign in comparison with representative works in the field of multimodal sentiment analysis, including MuLT

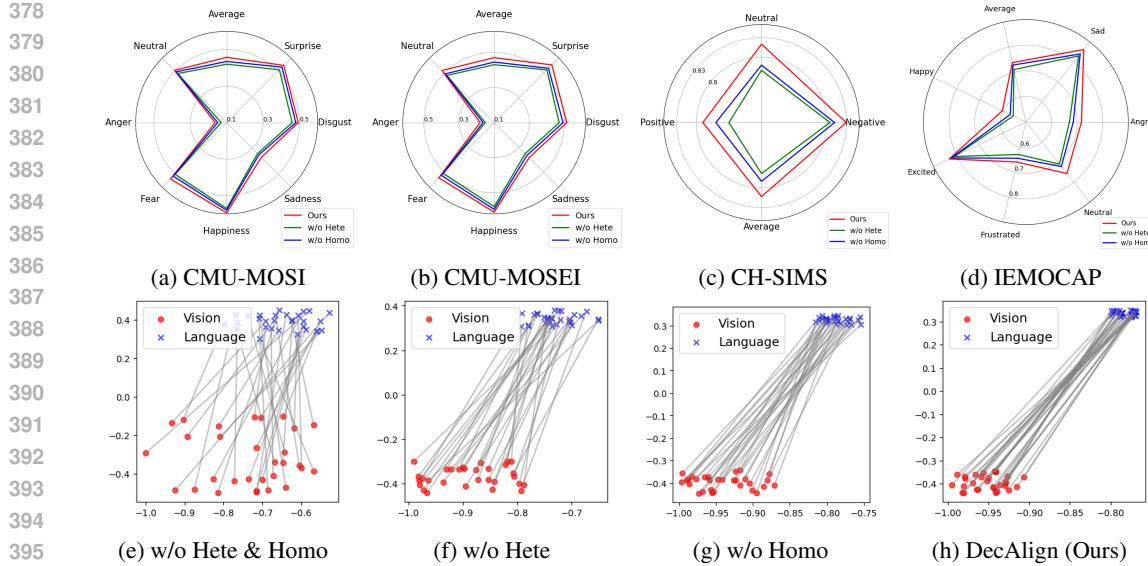


Figure 4: Visualization of Ablation Studies. (a)–(d) illustrate the performance comparison across different emotion categories on four benchmarks, (e)–(h) visualize the modality gap between visual and language modalities on the CMU-MOSEI dataset.

	Key Modules			CMU-MOSI		CMU-MOSEI		Alignment Strategies				CMU-MOSI		CMU-MOSEI	
	MFD	Hete	Homo	MAE	F1	MAE	F1	Proto-OT	CT	Sem	MMD	MAE	F1	MAE	F1
401	✓	✓	✗	0.747	84.46	0.562	84.74	✓	✓	✓	✗	0.741	84.61	0.564	85.26
402	✓	✗	✓	0.754	84.03	0.588	84.37	✓	✓	✗	✓	0.738	84.73	0.553	85.33
403	✓	✗	✗	0.784	81.92	0.632	82.22	✓	✗	✓	✓	0.743	84.36	0.619	85.21
	✗	✗	✗	0.794	81.56	0.624	81.87	✗	✓	✓	✓	0.748	84.17	0.624	85.03

Table 2: Ablation study on key modules (left) and alignment strategies (right) for CMU-MOSI and CMU-MOSEI datasets.

(Tsai et al., 2019), MISA (Hazarika et al., 2020), and DMD (Li et al., 2023). As shown in Figure 3, DecAlign achieves a more balanced and accurate sentiment classification across different sentiment intensity levels, significantly reducing misidentification errors, particularly in distinguishing subtle sentiment variations.

Compared to other methods, DecAlign exhibits stronger diagonal dominance, reflecting higher sentiment classification accuracy. Notably, in extreme sentiment classes (-3 and +3), where existing models often misclassify samples, DecAlign significantly reduces confusion with adjacent sentiment levels. The higher concentration of correctly predicted samples in moderate sentiment categories (-1, 0, and 1) further demonstrates its ability to capture fine-grained sentiment distinctions, mitigating bias toward neutral or extreme labels. Furthermore, unlike MuLT, MISA, and DMD, which struggle with negative-to-neutral misidentification, DecAlign achieves clearer separation between sentiment classes, ensuring more robust and interpretable predictions. This improvement is particularly evident in -2 and +2 classes, where DecAlign minimizes misidentification into adjacent categories, validating the effectiveness of its hierarchical alignment strategy in capturing both modality-unique nuances and shared semantic patterns.

4.2 ABLATION STUDIES (EXTENDED VERSION IN APPENDIX C.3)

To further evaluate the contributions of individual components in DecAlign, we conduct ablation studies on the MOSI and MOSEI dataset, while results on other benchmarks are given in the Appendix. The first study examines the impact of key model components, while the second focuses on the effectiveness of specific alignment strategies.

Impact of key components. We evaluate the impact of Multimodal Feature Decoupling (MFD), Heterogeneous (Hete), and Homogeneous (Homo) Alignment on model performance using MAE and Binary F1 Score (Table 2). The full model achieves the best results, confirming the significance of hierarchical alignment. Removing Homogeneous Alignment slightly increases MAE and lowers Acc-2, indicating the importance of intra-modal consistency. Eliminating Heterogeneous Alignment

leads to a greater drop, showing that modality-unique interference affects feature integration. The absence of both alignments causes substantial performance degradation, highlighting the need to disentangle modality-homogeneous and modality-heterogeneous features.

Additionally, Figure 4 (a)-(d) visualizes the ablation results across different sentiment categories, illustrating the performance variations when heterogeneous and homogeneous alignment modules are frozen. The degradation across sentiment categories further validates the necessity of a hierarchical alignment strategy to maintain robust performance across diverse emotional expressions. Notably, even when any single alignment module is disabled, the F1 Score remains higher than many state-of-the-art methods, including FDMER, AOBERT, and DMD, demonstrating the effectiveness of our proposed alignment approach from both heterogeneous and homogeneous perspectives. The most severe performance degradation occurs when MFD is removed, demonstrating that preserving modality-unique information before fusion is crucial. This underscores the effectiveness of integrating heterogeneous and homogeneous representations for better sentiment analysis.

Impact of specific alignment strategies. We further evaluate the contribution of Prototype-Based Optimal Transport (Proto-OT), Contrastive Training (CT), Semantic Consistency (Sem), and Maximum Mean Discrepancy (MMD) Regularization to DecAlign’s performance, as shown in Table 2. Removing MMD regularization leads to a slight performance drop, highlighting its role in global latent space alignment and feature coherence. The exclusion of semantic consistency further degrades performance, indicating that enforcing semantic alignment enhances multimodal feature integration. The most substantial drop occurs when contrastive training is removed, showing its critical role in learning discriminative multimodal representations. Similarly, eliminating Proto-OT results in a notable decline in both regression and classification metrics, demonstrating that fine-grained alignment through optimal transport significantly improves multimodal collaborative prediction performance.

Analysis of modality Gap. Figure 4 (e)-(h) presents a case study on vision and language modalities, demonstrating how DecAlign mitigates the modality gap to enhance alignment. Models without heterogeneous or homogeneous alignment exhibit significantly larger gaps, hindering cross-modal fusion. These results further validate the effectiveness of our hierarchical alignment strategy. Extended Analysis will be shown in Appendix C.4.

4.3 PARAMETER SENSITIVITY ANALYSIS

To analyze the impact of hyper-parameters α and β on DecAlign, we conduct an extensive grid search and evaluate the model’s Binary F1 Score across different parameter settings on MOSI and MOSEI datasets. Figure 5 presents a heatmap visualization of the results, where darker shades indicate higher performance. The optimal setting is $\alpha = 0.05, \beta = 0.05$, achieving the highest Performance across both datasets. Larger values cause a sharp performance drop, indicating that excessive alignment constraints hinder effective fusion. Smaller α values with moderate β yield strong performance, highlighting the importance of balancing prototype-based alignment and semantic consistency for optimal multimodal learning.

5 CONCLUSION

We present DecAlign, a hierarchical framework for decoupled multimodal representation learning that separately aligns modality-unique and modality-common features. Through prototype-guided optimal transport and latent semantic alignment, our method captures both global distributions and local semantics across modalities. Experiments on multiple benchmarks validate its effectiveness.

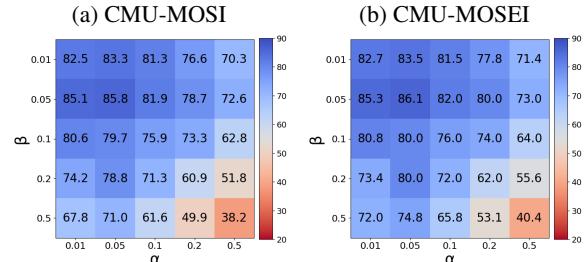


Figure 5: Hyperparameter sensitivity analysis on CMU-MOSI and CMU-MOSEI in terms of Binary F1 Score.

486 ETHICS STATEMENT
487488 This work uses only publicly available benchmark datasets (CMU-MOSI, CMU-MOSEI, CH-SIMS,
489 and IEMOCAP) under their respective licenses. No new human data was collected, and all experiments
490 report only aggregated results without attempting to identify individuals. We caution against
491 potential misuse of multimodal sentiment analysis for surveillance or profiling and release our code
492 solely for research purposes.493
494 REPRODUCIBILITY STATEMENT
495496 We ensure reproducibility of DecAlign through transparent datasets, model configurations, and
497 released code.498 **1 Datasets.** Experiments are conducted on four public benchmarks: CMU-MOSI, CMU-MOSEI,
499 CH-SIMS, and IEMOCAP (six-class). Standard official splits are used for all datasets; statistics and
500 task setups are given in Appendix B.501 **2 Feature Extraction.** For MOSI/MOSEI/CH-SIMS, we employ MMSA-FET (Yu et al.,
502 2021); for IEMOCAP, we follow the pipeline of Lian et al. (2023). Text features come from
503 bert-base-uncased (English) or bert-base-chinese (CH-SIMS); visual and acoustic
504 features are extracted via OpenFace and COVAREP, with details in Appendix B.4.505 **3 Model and Training.** DecAlign employs a unified backbone across datasets, consisting of four
506 Transformer layers and Conv1D kernels of size 5 for language, audio, and visual streams. The
507 DST feature dimensions and attention heads are tuned according to dataset scale (e.g., [32, 8] for
508 MOSI/CH-SIMS, [64, 8] for MOSEI, [48, 4] for IEMOCAP), as summarized in Table 4. Training is
509 conducted for 50 epochs with the Adam optimizer using a batch size of 32, weight decay of 0.005,
510 and scheduler patience of 5 on a single NVIDIA A6000 GPU. Learning rates are dataset-specific:
511 5×10^{-5} for MOSI and CH-SIMS, and 1×10^{-4} for MOSEI and IEMOCAP. Gradient clipping
512 thresholds are set between 0.5 and 0.6 depending on the dataset to stabilize optimization. To ensure
513 faithful reproduction, Appendix B.3 provides a complete list of dataset-specific hyperparameter
514 configurations, including all dropout ratios, optimization schedules, and pretrained backbones.515 **4 Evaluation.** We adopt standard metrics: MAE, Corr, Acc-2/Acc-7, and F1 for MOSI/MOSEI;
516 MAE, Corr, Acc-3, and F1 for CH-SIMS; WAcc and WAF1 for IEMOCAP (Appendix B.5). Results
517 are averaged over five runs with fixed random seeds {1, 2, 3, 4, 5}.518 **5 Ablations and Analysis.** Ablation experiments remove individual modules (MFD, Hete, Homo)
519 or alignment strategies (Proto-OT, CT, Sem, MMD), with results reported in Table 2. Figure 4
520 visualizes modality gaps under ablation settings. These analyses confirm the complementary roles of
521 hierarchical alignment strategies.522 **6 Hyperparameter Settings.** To ensure faithful reproduction, we provide complete dataset-specific
523 hyperparameter configurations in Appendix B.3. These include all dropout ratios across modalities
524 (attention, embedding, residual, ReLU, and output), text-specific dropout, and learning rate schedules.
525 We also detail the DST feature dimensions and number of heads for each dataset, Conv1D kernel sizes
526 for language/audio/visual streams, and the number of Transformer layers. Optimization parameters
527 such as batch size, learning rate, weight decay, gradient clipping thresholds, and scheduler patience are
528 explicitly listed. Finally, we specify the pretrained model backbones used (bert-base-uncased
529 for English datasets and bert-base-chinese for CH-SIMS). By consolidating these hyperpa-
530 rameters in a single appendix table (Table 4), we provide a transparent and comprehensive reference
531 that enables researchers to reproduce our reported results without ambiguity.532 **7 Code Release.** We provide training and evaluation codes, dataset-specific configs, feature ex-
533 traction pipelines, pretrained checkpoints, logs, and visualization scripts. Together with Appen-
534 dices B–C.4, these artifacts enable faithful end-to-end reproduction of all reported results.535
536
537
538
539

540 REFERENCES

541

542 Khaled Bayoudh. A survey of multimodal hybrid deep learning for computer vision: Architectures,
543 applications, trends, and challenges. *Information Fusion*, 105:102217, 2024.

544 Christopher M Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

545

546 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
547 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
548 motion capture database. *Language resources and evaluation*, 42:335–359, 2008.

549

550 Ringki Das and Thoudam Doren Singh. Multimodal sentiment analysis: a survey of methods, trends,
551 and challenges. *ACM Computing Surveys*, 55(13s):1–38, 2023.

552

553 Hao Dong, Yue Zhao, Eleni Chatzi, and Olga Fink. Multiod: Scaling out-of-distribution detection
554 for multiple modalities. *Advances in Neural Information Processing Systems*, 37, 2024.

555

556 Yunfeng Fan, Wenchao Xu, Haozhao Wang, Junxiao Wang, and Song Guo. Pmr: Prototypical modal
557 rebalance for multimodal learning. In *Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition*, pp. 20029–20038, 2023.

558

559 Fangze Fu, Wei Ai, Fan Yang, Yuntao Shou, Tao Meng, and Keqin Li. Sdr-gnn: Spectral domain
560 reconstruction graph neural network for incomplete multimodal learning in conversational emotion
561 recognition. *Knowledge-Based Systems*, pp. 112825, 2024.

562

563 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
564 Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International Journal
of Computer Vision*, 132(2):581–595, 2024.

565

566 Zirun Guo, Tao Jin, Jingyuan Chen, and Zhou Zhao. Classifier-guided gradient modulation for
567 enhanced multimodal learning. *Advances in Neural Information Processing Systems*, 37:133328–
568 133344, 2025.

569

570 Zongbo Han, Fan Yang, Junzhou Huang, Changqing Zhang, and Jianhua Yao. Multimodal dynamics:
571 Dynamical fusion for trustworthy multimodal classification. In *Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition*, pp. 20707–20717, 2022.

572

573 Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. Misa: Modality-invariant and-
574 specific representations for multimodal sentiment analysis. In *Proceedings of the 28th ACM
international conference on multimedia*, pp. 1122–1131, 2020.

575

576 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
577 with disentangled attention. *arXiv preprint arXiv:2006.03654*, 2020.

578

579 Zhangfeng Hu, Wenming Zheng, Yuan Zong, Mengting Wei, Xingxun Jiang, and Mengxin Shi. A
580 novel decoupled prototype completion network for incomplete multimodal emotion recognition.
581 In *2024 IEEE International Conference on Multimedia and Expo (ICME)*, pp. 1–6. IEEE, 2024.

582

583 Cong Hua, Qianqian Xu, Shilong Bao, Zhiyong Yang, and Qingming Huang. Reconboost: Boosting
584 can achieve modality reconciliation. *arXiv preprint arXiv:2405.09321*, 2024.

585

586 Jyh-Jing Hwang, Runsheng Xu, Hubert Lin, Wei-Chih Hung, Jingwei Ji, Kristy Choi, Di Huang, Tong
587 He, Paul Covington, Benjamin Sapp, et al. Emma: End-to-end multimodal model for autonomous
driving. *arXiv preprint arXiv:2410.23262*, 2024.

588

589 Kyeonghun Kim and Sanghyun Park. Aobert: All-modalities-in-one bert for multimodal sentiment
590 analysis. *Information Fusion*, 92:37–45, 2023.

591

592 Mingcheng Li, Dingkang Yang, Yuxuan Lei, Shunli Wang, Shuaibing Wang, Liuzhen Su, Kun
593 Yang, Yuzheng Wang, Mingyang Sun, and Lihua Zhang. A unified self-distillation framework for
multimodal sentiment analysis with uncertain missing modalities. In *Proceedings of the AAAI
Conference on Artificial Intelligence*, volume 38, pp. 10074–10082, 2024a.

594 Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, and Yue Zhao. Dpu: Dynamic
 595 prototype updating for multimodal out-of-distribution detection. *arXiv preprint arXiv:2411.08227*,
 596 2024b.

597 Yong Li, Yuanzhi Wang, and Zhen Cui. Decoupled multimodal distilling for emotion recognition.
 598 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 599 6631–6640, 2023.

600 Zheng Lian, Lan Chen, Licai Sun, Bin Liu, and Jianhua Tao. Gcnet: Graph completion network
 601 for incomplete multimodal learning in conversation. *IEEE Transactions on pattern analysis and*
 602 *machine intelligence*, 45(7):8419–8432, 2023.

603 Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard Chen, Zihao Deng,
 604 Nicholas Allen, Randy Auerbach, Faisal Mahmood, et al. Quantifying & modeling multimodal in-
 605 teractions: An information decomposition framework. *Advances in Neural Information Processing*
 606 *Systems*, 36, 2024a.

607 Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
 608 machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):
 609 1–42, 2024b.

610 Tao Liang, Guosheng Lin, Lei Feng, Yan Zhang, and Fengmao Lv. Attention is not enough: Mitigating
 611 the distribution discrepancy in asynchronous multimodal sequence fusion. In *Proceedings of the*
 612 *IEEE/CVF International Conference on Computer Vision*, pp. 8148–8156, 2021.

613 Zijie Lin, Bin Liang, Yunfei Long, Yixue Dang, Min Yang, Min Zhang, and Ruifeng Xu. Modeling
 614 intra-and inter-modal relations: Hierarchical graph contrastive learning for multimodal sentiment
 615 analysis. In *Proceedings of the 29th International Conference on Computational Linguistics*,
 616 volume 29, pp. 7124–7135. Association for Computational Linguistics, 2022.

617 Fan Liu, Huilin Chen, Zhiyong Cheng, Anan Liu, Liqiang Nie, and Mohan Kankanhalli. Disentangled
 618 multimodal representation learning for recommendation. *IEEE Transactions on Multimedia*, 25:
 619 7149–7159, 2022.

620 Qijiong Liu, Jieming Zhu, Yanting Yang, Quanyu Dai, Zhaocheng Du, Xiao-Ming Wu, Zhou
 621 Zhao, Rui Zhang, and Zhenhua Dong. Multimodal pretraining, adaptation, and generation for
 622 recommendation: A survey. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge*
 623 *Discovery and Data Mining*, pp. 6566–6576, 2024a.

624 Zhizhong Liu, Bin Zhou, Dianhui Chu, Yuhang Sun, and Lingqiang Meng. Modality translation-
 625 based multimodal sentiment analysis under uncertain missing modalities. *Information Fusion*, 101:
 626 101973, 2024b.

627 Yingzi Ma, Yulong Cao, Jiachen Sun, Marco Pavone, and Chaowei Xiao. Dolphins: Multimodal
 628 language model for driving. In *European Conference on Computer Vision*, pp. 403–420. Springer,
 629 2025.

630 Brendan Pass. Multi-marginal optimal transport: theory and applications. *ESAIM: Mathematical*
 631 *Modelling and Numerical Analysis*, 49(6):1771–1790, 2015.

632 Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science.
 633 *Foundations and Trends in Machine Learning*, 11(5-6):355–607, 2019.

634 Chengxuan Qian, Kai Han, Jingchao Wang, Zhenlong Yuan, Rui Qian, Chongwen Lyu, Jun Chen,
 635 and Zhe Liu. Dyncim: Dynamic curriculum for imbalanced multimodal learning. *arXiv preprint*
 636 *arXiv:2503.06456*, 2025.

637 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 638 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 639 models from natural language supervision. In *International conference on machine learning*, pp.
 640 8748–8763. PMLR, 2021.

641 Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
 642 pre-training for speech recognition. *arXiv preprint arXiv:1904.05862*, 2019.

648 Hao Sun, Hongyi Wang, Jiaqing Liu, Yen-Wei Chen, and Lanfen Lin. Cubemlp: An mlp-based model
 649 for multimodal sentiment analysis and depression estimation. In *Proceedings of the 30th ACM*
 650 *international conference on multimedia*, pp. 3722–3729, 2022.

651

652 Zemin Tang, Qi Xiao, Xu Zhou, Yangfan Li, Cen Chen, and Kenli Li. Learning discriminative multi-
 653 relation representations for multimodal sentiment analysis. *Information Sciences*, 641:119125,
 654 2023.

655 Jialin Tian, Kai Wang, Xing Xu, Zuo Cao, Fumin Shen, and Heng Tao Shen. Multimodal disentan-
 656 glement variational autoencoders for zero-shot cross-modal retrieval. In *Proceedings of the 45th*
 657 *International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
 658 960–969, 2022.

659

660 Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Ruslan Salakhutdin-
 661 nov. Learning factorized multimodal representations. *arXiv preprint arXiv:1806.06176*, 2018.

662 Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
 663 Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
 664 In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 665 6558–6569, 2019.

666

667 Di Wang, Shuai Liu, Quan Wang, Yumin Tian, Lihuo He, and Xinbo Gao. Cross-modal enhancement
 668 network for multimodal sentiment analysis. *IEEE Transactions on Multimedia*, 25:4909–4921,
 669 2022.

670 Lan Wang, Junjie Peng, Cangzhi Zheng, Tong Zhao, et al. A cross modal hierarchical fusion
 671 multimodal sentiment analysis method based on multi-task learning. *Information Processing &*
 672 *Management*, 61(3):103675, 2024a.

673

674 Pan Wang, Qiang Zhou, Yawen Wu, Tianlong Chen, and Jingtong Hu. Dlf: Disentangled-language-
 675 focused multimodal sentiment analysis. In *Proceedings of the AAAI Conference on Artificial*
 676 *Intelligence*, volume 39, pp. 21180–21188, 2025.

677

678 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
 679 Tom Goldstein, Parminder Bhatia, Furong Huang, et al. Enhancing visual-language modality
 680 alignment in large vision language models via self-improvement. *arXiv preprint arXiv:2405.15973*,
 681 2024b.

682

683 Yuanzhi Wang, Zhen Cui, and Yong Li. Distribution-consistent modal recovering for incomplete
 684 multimodal learning. In *Proceedings of the IEEE/CVF International Conference on Computer*
 685 *Vision*, pp. 22025–22034, 2023.

686

687 Yake Wei, Di Hu, Henghui Du, and Ji-Rong Wen. On-the-fly modulation for balanced multimodal
 688 learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

689

690 Yake Wei, Siwei Li, Ruoxuan Feng, and Di Hu. Diagnosing and re-learning for balanced multimodal
 691 learning. In *European Conference on Computer Vision*, pp. 71–86. Springer, 2025.

692

693 Yan Xia, Hai Huang, Jieming Zhu, and Zhou Zhao. Achieving cross modal generalization with
 694 multimodal unified representation. *Advances in Neural Information Processing Systems*, 36, 2024.

695

696 Shuo Xing, Hongyuan Hua, Xiangbo Gao, Shenzhe Zhu, Renjie Li, Kexin Tian, Xiaopeng Li, Heng
 697 Huang, Tianbao Yang, Zhangyang Wang, et al. Autotrust: Benchmarking trustworthiness in large
 698 vision language models for autonomous driving. *arXiv preprint arXiv:2412.15206*, 2024a.

699

700 Shuo Xing, Chengyuan Qian, Yuping Wang, Hongyuan Hua, Kexin Tian, Yang Zhou, and Zhengzhong
 701 Tu. Openemma: Open-source multimodal model for end-to-end autonomous driving. *arXiv preprint*
 702 *arXiv:2412.15208*, 2024b.

703

704 Shuo Xing, Yuping Wang, Peiran Li, Ruizheng Bai, Yueqi Wang, Chengxuan Qian, Huaxiu Yao,
 705 and Zhengzhong Tu. Re-align: Aligning vision language models via retrieval-augmented direct
 706 preference optimization. *arXiv preprint arXiv:2502.13146*, 2025.

702 Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey. *IEEE*
 703 *Transactions on Pattern Analysis and Machine Intelligence*, 45(10):12113–12132, 2023.
 704

705 Dingkang Yang, Shuai Huang, Haopeng Kuang, Yangtao Du, and Lihua Zhang. Disentangled
 706 representation learning for multimodal emotion recognition. In *Proceedings of the 30th ACM*
 707 *International Conference on Multimedia*, pp. 1642–1651, 2022.

708 Dingkang Yang, Mingcheng Li, Dongling Xiao, Yang Liu, Kun Yang, Zhaoyu Chen, Yuzheng Wang,
 709 Peng Zhai, Ke Li, and Lihua Zhang. Towards multimodal sentiment analysis debiasing via bias
 710 purification. In *European Conference on Computer Vision*, pp. 464–481. Springer, 2024.

711

712 Wenmeng Yu, Hua Xu, Fanyang Meng, Yilin Zhu, Yixiao Ma, Jiele Wu, Jiyun Zou, and Kaicheng
 713 Yang. Ch-sims: A chinese multimodal sentiment analysis dataset with fine-grained annotation
 714 of modality. In *Proceedings of the 58th Annual Meeting of the Association for Computational*
 715 *Linguistics*, pp. 3718–3727, 2020.

716 Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. Learning modality-specific representations with
 717 self-supervised multi-task learning for multimodal sentiment analysis. In *Proceedings of the AAAI*
 718 *conference on artificial intelligence*, volume 35, pp. 10790–10797, 2021.

719

720 Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Multimodal sentiment intensity
 721 analysis in videos: Facial gestures and verbal messages. *IEEE Intelligent Systems*, 31(6):82–88,
 722 2016.

723

724 AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 725 Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
 726 graph. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics*
 727 (*Volume 1: Long Papers*), pp. 2236–2246, 2018.

728

729 Ying Zeng, Wenjun Yan, Sijie Mai, and Haifeng Hu. Disentanglement translation network for
 730 multimodal sentiment analysis. *Information Fusion*, 102:102031, 2024.

731

732 Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou, and
 733 Xi Peng. Provable dynamic fusion for low-quality multimodal data. In *International conference*
 734 *on machine learning*, pp. 41753–41769. PMLR, 2023.

735

736 Xiaoheng Zhang, Weigang Cui, Bin Hu, and Yang Li. A multi-level alignment and cross-modal unified
 737 semantic graph refinement network for conversational emotion recognition. *IEEE Transactions on*
 738 *Affective Computing*, 15(3):1553–1566, 2024.

739

740 Zengqun Zhao, Qingshan Liu, and Shanmin Wang. Learning deep global multi-scale and local
 741 attention features for facial expression recognition in the wild. *IEEE Transactions on Image*
 742 *Processing*, 30:6544–6556, 2021.

743

744 Ying Zhou, Xuefeng Liang, Han Chen, Yin Zhao, Xin Chen, and Lida Yu. Triple disentangled
 745 representation learning for multimodal affective analysis. *Information Fusion*, 114:102663, 2025.

746

747 Tinghui Zhu, Qin Liu, Fei Wang, Zhengzhong Tu, and Muhan Chen. Unraveling cross-modality
 748 knowledge conflicts in large vision-language models. *arXiv preprint arXiv:2410.03659*, 2024.

749

750

751

752

753

754

755

756 APPENDIX
757

758 In this appendix, we present additional related work, dataset descriptions, hyperparameter settings,
759 experimental setup, comprehensive evaluation results, and extended experimental analyses. The
760 detailed contents are organized as follows:
761

762	A Related Works	15
763	A.1 Multimodal Representation Learning	15
764	A.2 Cross-Modal Alignment	15
765	B Datasets	16
766	B.1 Motivation for Dataset Selection	16
767	B.2 Detailed Dataset Description	16
768	B.3 Hyper-parameter Settings	17
769	B.4 Feature Extraction	17
770	B.5 Evaluation Metric for IEMOCAP	18
771	B.6 Statistical Estimation of Modality-Common Features	18
772	C Additional Experimental Analysis	18
773	C.1 Extended Analysis for CMU-MOSI and CMU-MOSEI	18
774	C.2 Extended Analysis for CH-SIMS	19
775	C.3 Extended Analysis for Ablation Studies	20
776	C.4 Extended Analysis for Modality Gap	23

785 **A RELATED WORKS**
786787 **A.1 MULTIMODAL REPRESENTATION LEARNING**
788

789 Multimodal representation learning aims to integrate heterogeneous data from diverse modalities
790 into a cohesive framework that captures complementary semantic information (Qian et al., 2025;
791 Liang et al., 2024b; Bayoudh, 2024; Wang et al., 2025). Recent methods have achieved signifi-
792 cantly performance improvements by leveraging representation-based and cross-modal interaction
793 approaches. Specifically, Self-MM (Yu et al., 2021) applies self-supervised contrastive learning and
794 masked modeling to enhance the mutual information across modalities, HGraph-CL (Lin et al., 2022)
795 introduces hierarchical graph contrastive learning to model intricate interactions across modalities.
796 However, the heterogeneity and complementary information inherent in multimodal representations
797 are intrinsically entangled, making it challenging to fully harness their complementary strengths
798 while preserving their unique characteristics. Inspired by this insight, MISA (Hazarika et al., 2020)
799 separates multimodal representations into modality-invariant and modality-unique features with
800 contrastive and reconstruction losses, DMD (Li et al., 2023) further introduces graph cross-modal
801 knowledge distillation to explicitly model the correlations across modalities. However, existing
802 methods are often constrained to modeling modalities from a global perspective, overlooking the
803 token-level local semantic inconsistencies that arise in cross-modal interactions. Our proposed
804 DecAlign enables fine-grained multimodal representation learning through hierarchical alignment,
805 progressing from local to global and heterogeneity to homogeneity, ensuring precise cross-modal
806 integration and semantic consistency.

807 **A.2 CROSS-MODAL ALIGNMENT**
808

809 The core challenge in multimodal tasks lies in the inherent heterogeneity across modalities (Zhu
et al., 2024), characterized by structural, distributional, and semantic disparities, which restricts the

810 effective synergy of multimodal homogeneous features. To address this, existing solutions can be
 811 broadly categorized as follows: ① Shared Representation, which aims to learn a unified latent space
 812 for cross-modal semantic consistency. For example, CLIP-based methods (Radford et al., 2021;
 813 Gao et al., 2024) use contrastive learning to align image-text pairs in a shared embedding space,
 814 while Uni-Code (Xia et al., 2024) employs cross-modal information disentangling and exponential
 815 moving average to align semantically equivalent information in a shared latent space. ② Transformer-
 816 based methods that apply cross-attention to dynamically capture key information in cross-modal
 817 interactions (Tsai et al., 2019; Yang et al., 2022; Hu et al., 2024). ③ Modality Translation, which
 818 establishes mappings between modalities through cross-modal generation or reconstruction (Liu
 819 et al., 2024b; Zeng et al., 2024; Tian et al., 2022). ④ Cross-Modal Knowledge Distillation, which
 820 addresses inter-modal contribution imbalances and explores cross-modal correlations. For example,
 821 DMD (Li et al., 2023) employs graph distillation for dynamic knowledge transfer, and UMDF (Li
 822 et al., 2024a) uses unified self-distillation to learn robust representations from consistent multimodal
 823 distributions. Unlike methods that overemphasize homogeneous information, we tackle the issue
 824 of over-alignment diminishing modality-unique characteristics through representation decoupling
 825 and a hierarchical alignment mechanism, ensuring cross-modal semantic consistency while retaining
 826 unimodal characteristics.

B DATASETS

B.1 MOTIVATION FOR DATASET SELECTION

832 To comprehensively evaluate DecAlign’s effectiveness in multimodal sentiment analysis, we select
 833 four widely used benchmarking datasets. CMU-MOSI and CMU-MOSEI are well-established
 834 English multimodal sentiment datasets, enabling a direct and fair comparison with prior approaches.
 835 CH-SIMS extends our evaluation to a Chinese dataset, ensuring cross-linguistic generalization.
 836 Additionally, IEMOCAP (six-class) is included to assess the model’s performance in fine-grained
 837 emotion classification. By conducting experiments across datasets with different languages, sentiment
 838 labels, and scales, we provide a thorough assessment of DecAlign’s robustness and applicability.

Dataset	# Train	# Test	# Category	Modality		
				Audio	Visual	Text
CMU-MOSEI	16327	4659	2 & 7	✓	✓	✓
CMU-MOSI	1284	686	2 & 7	✓	✓	✓
CH-SIMS	1368	457	3	✓	✓	✓
IEMOCAP	5810	1623	6	✓	✓	✓

846 Table 3: Statistical information on four chosen datasets.

B.2 DETAILED DATASET DESCRIPTION

851 **CMU-MOSI** consists of 2,199 monologue movie review clips, each annotated with a sentiment score
 852 ranging from -3 (highly negative) to +3 (highly positive). It contains word-aligned multimodal signals,
 853 including textual, visual, and acoustic features. CMU-MOSI is commonly used for both sentiment
 854 classification and regression tasks, making it a crucial benchmark for evaluating multimodal models.

855 **CMU-MOSEI** extends CMU-MOSI by providing a significantly larger dataset with 22,856 opinion-
 856 based clips covering diverse topics, speakers, and recording conditions. Similar to CMU-MOSI, it
 857 includes multimodal data aligned at the word level and sentiment scores in the range of -3 to +3.
 858 Due to its large-scale and diverse nature, CMU-MOSEI is used to assess model generalization across
 859 various domains.

860 **CH-SIMS** consists of 38,280 Chinese utterances designed for multimodal sentiment analysis in
 861 Mandarin. Each sample includes textual, visual, and acoustic information, with sentiment labels
 862 ranging from -1 (negative) to +1 (positive). CH-SIMS enables research in cross-lingual sentiment
 863 analysis and serves as an important benchmark for multimodal sentiment models in Chinese contexts.

IEMOCAP (six-class). The IEMOCAP dataset comprises 10,039 dynamic utterances annotated with six emotion categories: angry, happy, sad, neutral, excited, and frustrated. Each sample contains textual, visual, and acoustic modalities. Due to its imbalanced class distribution, weighted accuracy (WAcc) and weighted average F1 score (WAF1) are commonly adopted to ensure fair performance evaluation in emotion recognition tasks.

B.3 HYPER-PARAMETER SETTINGS

Table 4 summarizes the dataset-specific hyperparameter configurations used in DECALIGN. We observe that while most parameters are kept consistent across datasets, several key components are tuned to accommodate dataset characteristics. For example, the dropout rates applied to different modalities (audio, visual, and text) vary slightly: MOSI and CH-SIMS adopt relatively higher dropout for text and output layers (0.4–0.6), reflecting their smaller dataset sizes and the need for stronger regularization, whereas MOSEI and IEMOCAP use more moderate dropout values (0.2) to balance regularization and information retention.

In terms of feature representation, the DST feature dimension and attention heads are adjusted according to dataset scale: MOSEI employs the largest dimension setting ([64, 8]), while IEMOCAP uses a smaller but deeper configuration ([48, 4]). Other architectural choices, such as Conv1D kernel size, transformer depth (4 layers), and batch size (32), remain uniform across all datasets to ensure comparability.

For optimization, the learning rate is tuned between 5×10^{-5} (MOSI and CH-SIMS) and 1×10^{-4} (MOSEI and IEMOCAP), with weight decay fixed at 0.005 and gradient clipping set between 0.5 and 0.6. The scheduler patience is consistently set to 5 across datasets. Regarding pretrained models, English datasets (MOSI, MOSEI, IEMOCAP) utilize bert-base-uncased, while the Chinese dataset CH-SIMS employs bert-base-chinese.

Table 4: Dataset-specific Hyperparameter Settings for DecAlign

Hyperparameter	MOSI	MOSEI	IEMOCAP	CH-SIMS
Attention Dropout (Audio)	0.3	0.2	0.2	0.3
Attention Dropout (Visual)	0.1	0.2	0.2	0.1
Attention Dropout (Text)	0.4	0.2	0.2	0.4
ReLU Dropout	0.1	0.2	0.2	0.1
Embedding Dropout	0.3	0.2	0.2	0.3
Residual Dropout	0.1	0.2	0.2	0.1
Output Dropout	0.6	0.2	0.2	0.6
Text Dropout	0.5	0.2	0.2	0.5
DST Feature Dim / Heads	[32, 8]	[64, 8]	[48, 4]	[32, 8]
Conv1D Kernel Size (L/A/V)	5 / 5 / 5	5 / 5 / 5	5 / 5 / 5	5 / 5 / 5
Transformer Levels (nlevels)	4	4	4	4
Batch Size	32	32	32	32
Learning Rate	5e-5	1e-4	1e-4	5e-5
Weight Decay	0.005	0.005	0.005	0.005
Gradient Clipping	0.5	0.6	0.6	0.5
Scheduler Patience	5	5	5	5
Pretrained Model	bert-base-uncased	bert-base-uncased	bert-base-uncased	bert-base-chinese

B.4 FEATURE EXTRACTION

For IEMOCAP dataset, in line with previous studies (Lian et al., 2023; Fu et al., 2024), we apply pre-trained DeBERTa (He et al., 2020) to encode word sequences into 1024-dimensional texture embeddings for each utterance, while MA-Net (Zhao et al., 2021) and wav2vec (Schneider et al., 2019) are used to extract visual and acoustic features, respectively.

For CMU-MOSI, CMU-MOSEI, and CH-SIMS dataset, our multimodal feature extraction process is consistent with previous studies (Li et al., 2023; Wang et al., 2023) by applying MMSA-FET Toolkit (Yu et al., 2020; 2021) to extract features.

- **Text Modality:** For English datasets, we utilize the BERT-base-uncased model to extract 768-dimensional hidden states. For CH-SIMS, we apply a BERT-based-Chinese model. These pretrained language models capture rich contextual semantics, improving sentiment representation.

918 • **Visual Modality:** We extract facial action features using the OpenFace toolkit’s Facet module,
 919 obtaining a 35-dimensional visual feature vector. These features capture facial expressions and
 920 microexpressions, which are essential for sentiment recognition.
 921 • **Acoustic Modality:** We employ COVAREP to extract a 74-dimensional acoustic feature vector.
 922 These features include pitch, energy, and spectral properties, which are crucial for identifying
 923 speech-related emotional cues.
 924

925 **B.5 EVALUATION METRIC FOR IEMOCAP**
 926

927 To evaluate our proposed method on the IEMOCAP dataset, we adopt the following evaluation
 928 metrics. Denote C_0 as the number of emotion classes in the dataset, and Γ_j as the number of samples
 929 in class $j \in [1, C_0]$. Let Acc_j and $F1_j$ represent the classification accuracy and the F1 score of class
 930 j , respectively.

931 Weighted average accuracy (WAcc) is a weighted mean accuracy over different emotion classes, with
 932 weights proportional to the number of utterances in a particular emotion class. It is defined as:
 933

$$934 \quad 935 \quad 936 \quad WAA = \frac{\sum_{j=1}^{C_0} \Gamma_j \cdot Acc_j}{\sum_{j=1}^{C_0} \Gamma_j} \quad (14)$$

937 Similarly, weighted average F1 Score (WAF1) is a weighted mean F1 score over different emotion
 938 categories, using weights proportional to the number of utterances in each emotion class:
 939

$$940 \quad 941 \quad 942 \quad WAF1 = \frac{\sum_{j=1}^{C_0} \Gamma_j \cdot F1_j}{\sum_{j=1}^{C_0} \Gamma_j} \quad (15)$$

944 The IEMOCAP dataset consists of discrete emotion categories. To ensure a fair comparison with
 945 existing methods, we evaluate emotion recognition performance using both weighted average accuracy
 946 (WAcc) and weighted average F1-score (WAF1).
 947

948 **B.6 STATISTICAL ESTIMATION OF MODALITY-COMMON FEATURES**
 949

950 **Mean:** $\mu_{com}^{(m)} = \frac{1}{N} \sum_{n=1}^N \mathbf{f}_n^{(m)}$

952 **Covariance:** $\Sigma_{com}^{(m)} = \frac{1}{N} \sum_{n=1}^N (\mathbf{f}_n^{(m)} - \mu_{com}^{(m)}) (\mathbf{f}_n^{(m)} - \mu_{com}^{(m)})^\top$

954 **Skewness:** $\Gamma_{com}^{(m)} = \frac{1}{N} \sum_{n=1}^N \left(\frac{\mathbf{f}_n^{(m)} - \mu_{com}^{(m)}}{\sqrt{\text{diag}(\Sigma_{com}^{(m)})} + \epsilon} \right)^3$

956 **C ADDITIONAL EXPERIMENTAL ANALYSIS**

959 **C.1 EXTENDED ANALYSIS FOR CMU-MOSI AND CMU-MOSEI**

961 Tables 5 and 6 present the extended comparison results on the CMU-MOSI and CMU-MOSEI
 962 datasets. Several insightful trends can be observed.

963 **Early Fusion and Transformer-based Methods.** Early multimodal fusion approaches such as
 964 MFM (Tsai et al., 2018) and MuLT (Tsai et al., 2019) achieve competitive baseline results, demon-
 965 strating the effectiveness of early cross-modal attention mechanisms. However, these models exhibit
 966 limitations in capturing fine-grained interactions, particularly when modality-specific features in-
 967 terfere with global semantics. For example, MuLT improves over MFM by explicitly modeling
 968 directional cross-attention, yet still suffers from modality imbalance and over-reliance on dominant
 969 modalities.

970 **Feature Decoupling and Disentanglement.** Subsequent models such as MISA (Hazarika et al.,
 971 2020), CENet (Wang et al., 2022), and Self-MM (Yu et al., 2021) introduce feature disentanglement or
 972 modality-invariant modeling to alleviate semantic interference. By separating modality-common and

972 modality-specific features, these approaches achieve steady gains in both correlation and classification
 973 metrics. For instance, Self-MM attains a relatively high Corr (0.764) and F1 score (83.04) on MOSI,
 974 while FDMER (Yang et al., 2022) further enhances disentangled representation learning through
 975 factorized modeling, pushing the F1 score to 83.22.

976 **Pre-trained Models and Advanced Alignment.** Recent advances such as AOBERT (Kim & Park,
 977 2023), DMD (Li et al., 2023), and CGGM (Guo et al., 2025) leverage pre-trained language models
 978 and sophisticated alignment strategies. AOBERT benefits from the representational power of BERT
 979 for textual features, while CGGM integrates classifier-guided generative modeling to better capture
 980 distributional patterns. DMD, in particular, achieves strong results across both regression and
 981 classification tasks, with MOSI (MAE = 0.744, Acc-2 = 83.24, F1 = 83.55) and MOSEI (MAE =
 982 0.561, Acc-2 = 84.17, F1 = 83.88), showing the advantage of graph-based knowledge distillation for
 983 balancing modality-specific and modality-shared information.

984 **Our DecAlign.** Most importantly, our proposed DecAlign consistently outperforms all baselines by a
 985 notable margin. On MOSI, DecAlign achieves the lowest MAE (0.735), the highest Corr (0.811),
 986 and significant improvements in both Acc-2 (85.75) and Acc-7 (45.07), as well as F1 score (85.82).
 987 Similarly, on MOSEI, DecAlign sets new benchmarks with MAE = 0.543, Corr = 0.768, Acc-2 =
 988 86.48, Acc-7 = 55.02, and F1 = 86.07. These improvements of around 2–3 points in Acc-2 and F1
 989 score compared to the strongest baselines (e.g., DMD and CGGM) highlight three key strengths: ①
 990 the ability of prototype-guided optimal transport to capture fine-grained heterogeneous interactions,
 991 ② the effectiveness of hierarchical alignment in balancing modality-common and modality-unique
 992 representations, and ③ improved robustness against modality imbalance, enabling DecAlign to model
 993 subtle multimodal signals more faithfully.

Models	MAE (↓)	Corr (↑)	Acc-2 (↑)	Acc-7 (↑)	F1 Score (↑)
MFM (Tsai et al., 2018)	0.951	0.662	78.18	36.21	78.10
MuLT (Tsai et al., 2019)	0.846	0.725	81.70	40.05	81.66
PMR (Fan et al., 2023)	0.895	0.689	79.88	40.60	79.83
CubeMLP (Sun et al., 2022)	0.838	0.695	81.85	41.03	81.74
MUTA-Net (Tang et al., 2023)	0.767	0.736	82.12	40.88	82.07
MISA (Hazarika et al., 2020)	0.788	0.744	82.07	41.27	82.43
CENet (Wang et al., 2022)	0.745	0.749	82.40	41.32	82.56
Self-MM (Yu et al., 2021)	0.765	0.764	82.88	42.03	83.04
FDMER (Yang et al., 2022)	0.760	0.777	83.01	42.88	83.22
AOBERT (Kim & Park, 2023)	0.780	0.773	83.03	43.21	83.02
DMD (Li et al., 2023)	<u>0.744</u>	0.788	<u>83.24</u>	<u>43.88</u>	<u>83.55</u>
ReconBoost (Hua et al., 2024)	0.793	0.769	82.59	42.70	82.72
CGGM (Guo et al., 2025)	0.787	<u>0.792</u>	82.73	43.47	82.89
DecAlign (Ours)	0.735	0.811	85.75	45.07	85.82

1008 Table 5: Performance Comparison on CMU-MOSI dataset. ↑ and ↓ indicate that higher or lower value
 1009 is better. Best results are highlighted in **bold**, and suboptimal results are underlined. All reported
 1010 results are averaged over **five** runs on the test set.

1012 C.2 EXTENDED ANALYSIS FOR CH-SIMS

1015 Table 7 reports the results on the CH-SIMS dataset (Yu et al., 2020), which is particularly challenging
 1016 due to its Chinese language modality and the greater diversity of sentiment expressions. Several key
 1017 observations can be made.

1018 **Early Fusion and Transformer-based Models.** Traditional fusion models such as MFM (Tsai
 1019 et al., 2018) and MuLT (Tsai et al., 2019) provide reasonable baselines, showing that cross-attention
 1020 mechanisms are effective in modeling interactions across modalities. However, their performance
 1021 is limited by over-reliance on direct fusion, which often struggles to capture the nuanced sentiment
 1022 variations inherent in Chinese multimodal data.

1023 **Disentanglement and Modality-specific Modeling.** Models such as MISA (Hazarika et al., 2020),
 1024 CENet (Wang et al., 2022), and FDMER (Yang et al., 2022) achieve steady improvements by explicitly
 1025 modeling modality-invariant and modality-specific features. This disentanglement reduces semantic
 1026 interference and enables more precise sentiment prediction. For example, FDMER demonstrates

Models	MAE (↓)	Corr (↑)	Acc-2 (↑)	Acc-7 (↑)	F1 Score (↑)
MFM (Tsai et al., 2018)	0.681	0.555	78.93	45.93	76.45
MuLT (Tsai et al., 2019)	0.673	0.677	80.85	48.37	80.86
PMR (Fan et al., 2023)	0.645	0.689	81.57	48.88	81.56
CubeMLP (Sun et al., 2022)	0.601	0.701	81.36	49.07	81.75
MUTA-Net (Tang et al., 2023)	0.617	0.717	81.76	49.88	82.01
MISA (Hazarika et al., 2020)	0.594	0.724	82.03	51.43	82.13
CENet (Wang et al., 2022)	0.588	0.738	82.13	52.31	82.35
Self-MM (Yu et al., 2021)	0.576	0.732	82.43	52.68	82.47
FDMER (Yang et al., 2022)	0.571	0.743	83.88	53.21	83.35
AOBERT (Kim & Park, 2023)	0.588	0.738	83.90	52.47	83.14
DMD (Li et al., 2023)	<u>0.561</u>	0.758	<u>84.17</u>	<u>54.18</u>	83.88
ReconBoost (Hua et al., 2024)	0.599	0.733	82.98	52.68	83.14
CGGM (Guo et al., 2025)	0.584	<u>0.760</u>	83.72	52.88	<u>83.94</u>
DecAlign (Ours)	0.543	0.768	86.48	55.02	86.07

Table 6: Performance Comparison on CMU-MOSEI dataset. ↑ and ↓ indicate that higher or lower value is better. Best results are highlighted in **bold**, and suboptimal results are underlined. All reported results are averaged over **five** runs on the test set.

robust performance with reduced MAE and improved F1, confirming the benefits of factorized disentanglement for sentiment modeling.

Advanced Alignment and Classifier-guided Fusion. Recent methods such as DMD (Li et al., 2023), MCIS (Zhou et al., 2025), and CGGM (Guo et al., 2025) deliver stronger baselines by leveraging more sophisticated alignment strategies. DMD and MCIS achieve MAE around 0.421–0.429 with F1 scores close to 80, showing balanced regression and classification performance. Notably, CGGM achieves the best results among existing baselines (MAE = 0.417, F1 = 80.12, Acc-3 = 80.17, Corr = 0.638), highlighting the effectiveness of classifier-guided generative modeling in capturing sentiment-related cues in Chinese multimodal contexts.

Our DecAlign. Despite these advances, DecAlign consistently achieves superior performance across all metrics, with MAE = 0.403, F1 = 81.85, Acc-3 = 88.24, and Corr = 0.657. These gains are substantial: in particular, the +8 point improvement in Acc-3 compared to the strongest baseline (CGGM) underscores DecAlign’s ability to achieve fine-grained categorical sentiment classification. The consistent reduction in MAE and higher correlation also indicate that DecAlign better captures continuous sentiment intensity.

Key Insights. The results validate three important properties of DecAlign: **1** *Cross-lingual robustness*: by successfully handling Chinese sentiment data, DecAlign demonstrates strong generalization beyond English benchmarks. **2** *Hierarchical alignment effectiveness*: prototype-guided optimal transport and latent semantic consistency work synergistically to reduce modality interference and enhance categorical prediction. **3** *Balanced regression and classification*: DecAlign achieves state-of-the-art results in both continuous and discrete tasks, reflecting its ability to model both sentiment strength and polarity.

C.3 EXTENDED ANALYSIS FOR ABLATION STUDIES

We provide an in-depth analysis of the ablation results in Table 2 and the visualizations in Figure 4. We examine both the impact of *key components*—Multimodal Feature Decoupling (MFD), Heterogeneity Alignment (Hete), and Homogeneity Alignment (Homo)—and the contribution of *specific strategies* within the alignment modules, namely Prototype-guided Optimal Transport (Proto-OT), Contrastive Training (CT), Semantic Consistency (Sem), and Maximum Mean Discrepancy regularization (MMD).

A. Key components: MFD, Hete, Homo.

1 *Decoupling is a prerequisite, alignment is the catalyst.* When only MFD is retained (i.e., both Hete and Homo are removed), the model degrades substantially (MOSI: MAE 0.784, F1 81.92; MOSEI: MAE 0.632, F1 82.22). This indicates that decoupling alone, while preventing raw feature

1080	Models	MAE (↓)	F1 Score (↑)	Acc-3 (↑)	Corr (↑)
1081	MFM (Tsai et al., 2018)	0.471	75.28	75.32	0.516
1082	MulT (Tsai et al., 2019)	0.455	76.96	77.02	0.544
1083	PMR (Fan et al., 2023)	0.445	76.55	76.63	0.523
1084	CubeMLP (Sun et al., 2022)	0.459	77.85	77.94	0.562
1085	MUTA-Net (Tang et al., 2023)	0.443	77.21	77.44	0.573
1086	MISA (Hazarika et al., 2020)	0.437	78.43	78.56	0.581
1087	CENet (Wang et al., 2022)	0.454	78.03	78.15	0.589
1088	Self-MM (Yu et al., 2021)	0.432	77.97	78.03	0.593
1089	FDMER (Yang et al., 2022)	0.424	78.74	78.82	0.599
1090	AOBERT (Kim & Park, 2023)	0.430	78.55	78.65	0.578
1091	DMD (Li et al., 2023)	0.421	79.88	78.98	0.612
1092	MCIS (Yang et al., 2024)	0.429	79.58	79.64	0.629
1093	CGGM (Guo et al., 2025)	0.417	80.12	80.17	0.638
1094	DecAlign (Ours)	0.403	81.85	88.24	0.657
1095					

1096
1097 Table 7: Performance comparison on the CH-SIMS dataset. ↑ indicates that higher values are better.
1098 Best results are highlighted in **bold**, and runner-up results are underlined.

1100
1101 entanglement, cannot suppress modality-unique interference nor enforce cross-modal semantic
1102 coherence. Enabling both alignments in the full model reduces error and boosts classification notably
1103 (MOSI: MAE **0.735**, F1 **85.82**; MOSEI: MAE **0.543**, F1 **86.07**), yielding absolute gains over
1104 the MFD-only setting of Δ MAE=0.049/0.089 and Δ F1=3.90/3.85 on MOSI/MOSEI, respectively.
1105 This establishes that *decoupling prepares the space, while alignment shapes it*.

1106 **2** *Heterogeneity alignment drives regression error down; homogeneity alignment stabilizes classification.* With **Hete**-only (no Homo), the model achieves lower MAE and higher F1 than Homo-only:
1107 MOSI (MAE 0.747, F1 84.46) vs Homo-only (MAE 0.754, F1 84.03); MOSEI (MAE 0.562, F1
1108 84.74) vs Homo-only (MAE 0.588, F1 84.37). This shows that addressing *distributional mismatch*
1109 via Hete (Proto-OT + transformer refinement) has a more direct impact on minimizing continuous
1110 error (MAE), while Homo alignment (Sem + MMD) contributes more to *global semantic smoothing*
1111 and *decision stability*. In short, Hete is the primary lever for regression fidelity; Homo ensures
1112 calibrated and consistent boundaries.

1113 **3** *Hierarchical complementarity is essential, especially for subtle sentiments.* Figure 4(a)–(d) re-
1114 veals that removing either Hete or Homo produces uneven drops across categories, with pronounced
1115 degradation at $\{-1, 0, +1\}$ sentiment levels. This pattern suggests that the two alignments address com-
1116 plementary failure modes: Hete mitigates local structure mismatches (reducing noisy shifts around
1117 decision margins), while Homo enforces global semantic agreement (preventing over-fragmented
1118 boundaries). Their combination recovers both *fine-grained discrimination* and *global robustness*.

1119 **4** *From modality gap to semantic co-location.* The t-SNE visualizations in Figure 4(e)–(h) corroborate
1120 the above: without alignment, paired language–vision features are distant with erratic pairwise
1121 directions; with Homo-only, clusters get closer but remain fragmented; with Hete-only, pairwise
1122 distances shrink further but residual anisotropy persists. Only the full model yields *tight, co-located*
1123 clusters, reflecting both local and global alignment. This explains the joint improvements in MAE
1124 and F1.

1126 B. Strategy-level analysis: Proto-OT, CT, Sem, MMD.

1127 **1** *Prototype-guided Optimal Transport (Proto-OT) is the backbone for error reduction.* Removing
1128 Proto-OT leads to marked MAE increases (MOSI: 0.748; MOSEI: 0.624 vs full 0.735/0.543), and
1129 consistent F1 drops (MOSI: 84.17, MOSEI: 85.03). This shows that *distribution-aware, prototype-
1130 level alignment* is indispensable for resolving cross-modal heterogeneity, especially in regression
1131 where small misalignments accumulate into larger intensity errors.

1132 **2** *Contrastive Training (CT) is crucial for discriminability and margin preservation.* Without CT,
1133 inter-class separation weakens (MOSI F1: 84.36; MOSEI F1: 85.21), and MAE also deteriorates

(MOSI: 0.743, MOSEI: 0.619). CT establishes *class-aware* anchors in the aligned space, preventing representation collapse and ensuring sharper decision boundaries—an effect that directly benefits Acc/F1 while indirectly stabilizing MAE by discouraging ambiguous embeddings near thresholds.

❸ *Semantic Consistency (Sem) aligns moments beyond the mean—vital for stable fusion.* Replacing Sem with only MMD (i.e., removing the explicit latent-moment matching) yields broader, more variable clusters and a noticeable performance drop (MOSI F1 84.73 vs full 85.82; MOSEI F1 85.33 vs full 86.07). Sem’s explicit constraints on mean, covariance, and higher-order structure improve *global shape agreement* across modalities, thereby regularizing fusion and mitigating systematic biases.

❹ *MMD supplies non-parametric distributional regularization that smooths the latent geometry.* Omitting MMD also harms performance (MOSI: MAE 0.741, F1 84.61; MOSEI: MAE 0.564, F1 85.26). While its marginal effect may appear smaller than Proto-OT or CT, MMD complements Sem by *non-parametrically* matching distributions in RKHS, capturing high-order statistics and preventing overfitting to specific batch-level alignments.

❺ *Orthogonal roles, additive gains.* Comparing the four single-removal cases with the full model (MOSI: 0.735/85.82; MOSEI: 0.543/86.07), removing Proto-OT or CT most strongly hurts MAE and F1 (structure and margin), whereas removing Sem or MMD still impairs performance (global coherence and smoothness) but less severely. This ordering suggests that *structural alignment (Proto-OT)* and *discriminative supervision (CT)* form the core, while *semantic moment matching (Sem)* and *non-parametric regularization (MMD)* supply the necessary global consistency to fully realize the gains.

C. Cross-metric and cross-dataset insights.

❻ *MAE vs F1: different facets of the same alignment.* Hete (via Proto-OT) predominantly reduces MAE, reflecting improved geometric co-registration of modality-unique structures; Homo (Sem+MMD) mainly consolidates F1 by smoothing the cross-modal manifold and calibrating decision surfaces. Their synergy explains the concurrent improvements in both regression and classification.

❼ *Dataset scale and heterogeneity matter.* On the larger and more diverse MOSEI, removing CT or Proto-OT incurs greater MAE penalties (+0.076/+0.081) than on MOSI (+0.008/+0.013), indicating that *class-aware structure* and *prototype-level transport* are especially critical when the data distribution is broader and more multimodal.

❽ *Category sensitivity and boundary sharpening.* Figure 4(a)–(d) shows that neutral and near-neutral bins suffer most when either alignment is removed. This suggests that hierarchical alignment is particularly effective at *sharpening ambiguous boundaries*, where cross-modal cues are subtle and easily swamped by dominant modality noise.

❾ *From local structure to global semantics.* The combined evidence from Table 2 and Figure 4 indicates a two-stage mechanism: Hete reduces local structural discrepancies (prototype geometry, density mismatch), while Homo imposes global semantic consistency (moment alignment, RKHS discrepancy). The full model closes the *local-to-global* loop, yielding robust improvements across all metrics.

D. Takeaways for designing multimodal aligners.

❻ *Always decouple before you align.* MFD isolates modality-unique and -common factors, ensuring that subsequent alignment targets the right subspaces instead of wrestling with entangled representations.

❼ *Prioritize structure-aware alignment.* Prototype-level transport should be a first-class component: it is consistently the strongest driver of MAE reduction and a key stabilizer of downstream classification.

❽ *Do not trade off discriminability for alignment.* Contrastive supervision is necessary to maintain class margins during alignment; it prevents over-alignment that collapses inter-class structure.

❾ *Match distributions twice: parametrically and non-parametrically.* Moment-based Sem and kernel-based MMD play distinct roles and are most effective in tandem, aligning both *shape* and *support* of latent distributions.

1188 Overall, the ablation evidence supports DecAlign’s hierarchical design: structural alignment of
 1189 heterogeneous factors (Proto-OT + transformer refinement) combined with semantic and distributional
 1190 alignment of homogeneous factors (Sem + MMD) is *jointly necessary* to achieve the consistent,
 1191 cross-metric improvements observed across benchmarks.
 1192

1193 C.4 EXTENDED ANALYSIS FOR MODALITY GAP

1194
 1195 Figure 4 (e)–(h) visualizes the modality gap between language and vision features under different
 1196 ablation settings. Each subplot presents paired features from the two modalities after projection into
 1197 a 2D space using t-SNE, where lines connect corresponding language–vision pairs of the same input
 1198 instance. Several key insights can be drawn.

1199 **Lack of Alignment.** In subfigure (e), where both heterogeneity and homogeneity alignment modules
 1200 are removed, the projected features from language and vision are widely separated with irregular
 1201 pairwise connections. The high dispersion and inconsistent alignment directions indicate a severe
 1202 modality gap, driven by the absence of constraints on either modality-unique discrepancies or cross-
 1203 modal commonality. This validates that simple multimodal feature projection is insufficient for
 1204 achieving semantic consistency.

1205 **Effect of Homogeneity-only Alignment.** Subfigure (f), which removes the heterogeneity alignment
 1206 but preserves homogeneity alignment, shows partial improvements: paired features are closer, and
 1207 cluster overlap increases. However, disjoint sub-clusters remain visible, suggesting that enforcing
 1208 semantic consistency via latent distribution matching reduces global misalignment but fails to resolve
 1209 modality-specific variations. This highlights that semantic alignment alone cannot fully mitigate
 1210 distributional heterogeneity.

1211 **Effect of Heterogeneity-only Alignment.** In subfigure (g), where homogeneity alignment is removed
 1212 but heterogeneity alignment is retained, the features are more concentrated and inter-modal distances
 1213 shrink further. Prototype-guided optimal transport effectively aligns modality-unique structures by
 1214 reducing distributional mismatch. Nevertheless, residual vertical dispersion across clusters reveals
 1215 that without semantic alignment, global consistency is not guaranteed, leaving subtle but systematic
 1216 modality biases uncorrected.

1217 **Full DecAlign with Hierarchical Alignment.** Finally, subfigure (h) illustrates the full DecAlign
 1218 framework with both alignment strategies enabled. Here, paired features are tightly clustered and
 1219 nearly co-located, with minimal alignment distances and consistent cluster structures across modalities.
 1220 This demonstrates the complementary effects of heterogeneity and homogeneity alignment: the
 1221 former resolves modality-specific discrepancies at the distributional level, while the latter enforces
 1222 semantic consistency in the latent space. Their combination closes the modality gap both locally and
 1223 globally, leading to highly consistent cross-modal representations.

1224 **Key Insights.** These visual analyses validate that *hierarchical alignment is crucial for robust*
 1225 *multimodal integration*. Removing either module leads to partial but incomplete alignment, while
 1226 the joint application of both substantially minimizes the modality gap. This explains why DecAlign
 1227 achieves significant gains across benchmarks: it harmonizes modality-unique and modality-common
 1228 representations simultaneously, ensuring that cross-modal signals are both semantically consistent
 1229 and structurally coherent.

1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241