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Abstract

Although Deep Neural Networks (DNNs) are incredibly effective in learning complex abstrac-
tions, they are susceptible to unintentionally learning spurious artifacts from the training
data. To ensure model transparency, it is crucial to examine the relationships between
learned representations, as unintended concepts often manifest themselves to be anomalous
to the desired task. In this work, we introduce DORA (Data-agnOstic Representation
Analysis): the first data-agnostic framework for the analysis of the representation space of
DNNs. Our framework employs the proposed Extreme-Activation (EA) distance measure
between representations that utilizes self-explaining capabilities within the network without
accessing any data. We quantitatively validate the metric’s correctness and alignment with
human-defined semantic distances. The coherence between the EA distance and human judg-
ment enables us to identify representations whose underlying concepts would be considered
unnatural by humans by identifying outliers in functional distance. Finally, we demonstrate
the practical usefulness of DORA by analyzing and identifying artifact representations in
popular Computer Vision models.

1 Introduction

The ability of Deep Neural Networks (DNNs) to perform complex tasks and achieve state-of-the-art performance
in various fields can be attributed to the rich and hierarchical representations that they learn Bengio et al.
(2013). Far beyond the handcrafted features that were inductively constructed by humans on learning
machines in classical Machine Learning methods Marr and Nishihara (1978); Jackson; Fogel and Sagi (1989),
Deep Learning approaches exploit the network’s freedom for representation learning, which, however, leads to
a semantic opacity of learned abstractions. The rapid progress in representation learning only exacerbates the
issue of interpretability, as modern DNNs are often trained in a self-supervised manner Jaiswal et al. (2020);
LeCun and Misra (2021) and from a potentially limitless amount of data Brown et al. (2020); Bommasani
et al. (2021), alleviating human control over the training dataset, and resulting in opaque decision-making
strategies.

The increasing popularity of Deep Learning techniques across various fields, coupled with the difficulty
of interpreting the decision-making processes of complex models, has led to the emergence of the field of
Explainable AI (XAI) (e.g. Montavon et al. (2018); Samek et al. (2019); Xu et al. (2019); Gade et al. (2019);
Rudin (2019); Samek et al. (2021)). Research within XAI has revealed that the internal representations that
form the basis of DNNs are susceptible to learning harmful and undesired concepts, such as biases Guidotti
et al. (2018); Jiang and Nachum (2020), Clever Hans (CH) effects Lapuschkin et al. (2019), and backdoors
Anders et al. (2022). The learned artifactual concepts are often unnaturally and semantically distant from
the relevant concepts within the dataset, such as watermarks in the PASCAL 2012 image classification task
Lapuschkin et al. (2019), Chinese logographic watermarks in ImageNet dataset Li et al. (2022), colored
band-aids in skin-cancer detection problem Anders et al. (2022) or tokens in a pneumonia detection problem
Zech et al. (2018).

In order to enhance our understanding of the decision-making processes of complex machines and prevent
biased or harmful decisions, it is critical to provide an explanation of the representations that are learned by
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the model. One approach to gaining insights into a model’s prediction strategies is to analyze the relationships
among its learned representations, which can be quantified using a funtional distance metric. It is important
that this metric aligns with human judgment such that the distance between representations reflects the
concepts that are learned and is coherent with human perception of the distance between such concepts.
This property enables the us to introduce a novel problem of identification of semantically anomalous
representations within the network. By assuming that the functional distance metric between representations
is aligned with human decision-making, we can use the proposed distance measure to perform an outlier
detection analysis in the functional space and identify representations whose concepts are semantically
anomalous to the majority and pontentially undesired for the given task.

In this work, we propose DORA∗ — the first data-agnostic framework allowing an automatic inspection of the
representation space of Deep Neural Networks. DORA leverages the proposed Extreme-Activation method
that exploits the self-explanation capabilities of the networks and estimates distances between representations,
regardless of the availability of the specific data used for training. DORA facilitates the understanding of the
associations between neural representations and the visualization of the representation space via representation
atlases. By assuming that artificial representations, which deviate from the desired decision-making policy,
are semantically distant from the relevant representations learned by the network, DORA allows the detection
of potentially harmful representations that may lead to unintended learning outcomes. Additionally, DORA
can be further used to identify and remove infected data points.

The main contributions of this research are:

• We introduce the Extreme-Activation distance metric for representations in both data-aware and
data-agnostic scenarios.

• We propose the data-agnostic DORA framework for analyzing and visualizing the representation
space of Deep Neural Networks (DNNs).

• We quantitatively assess the alignment of the proposed distance metrics with human judgement
across several semantic baselines and compare them to standard distance measures in controlled
scenarios.

• We quantitatively evaluate the ability of various distance metrics to detect semantically anomalous
representations in controlled scenarios.

• We demonstrate the applicability of DORA on popular Computer Vision models and demonstrate
that in real-world applications, outlier representations may encode undesirable and harmful concepts.

2 Related Work

To address the concerns regarding the black-box nature of complex learning machines Baehrens et al. (2010);
Vidovic et al. (2015); Buhrmester et al. (2019); Samek et al. (2021), the field of Explainable AI (XAI) has
emerged. While some recent research focuses on inducing the self-explaining capabilities through changes in
the architecture and the learning process Gautam et al. (2022a;b); Chen et al. (2018); Gautam et al. (2021),
the majority of XAI methods (typically referred to as post-hoc explanation methods) are decoupled from the
training procedure. A dichotomy of post-hoc explanation methods could be performed based on the notion of
their explanations, i.e., the model behavior can be either explained on a local level, where the decision-making
strategy of a system is explained for one particular input sample, or on a global data set level, where the aim
is to explain the prediction strategy learned by the machine across the data set and investigate the purpose of
its individual components in a universal fashion detached from single data points (similar to feature selection
Guyon and Elisseeff (2003)).

Local explanation methods, often produce attribution maps, interpreting the prediction by attributing
relevance scores to the features of the input signal, highlighting the influential characteristics that affected
the prediction the most. Various methods, such as Layer-wise Relevance Propagation (LRP) Bach et al.

∗PyTorch implementation of the proposed method could be found by the following link: anonimyzed .
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(2015), GradCAM Selvaraju et al. (2019), Occlusion Zeiler and Fergus (2014), MFI Vidovic et al. (2016),
Integrated Gradient Sundararajan et al. (2017), have proven effective in explaining DNNs Tjoa and Guan
(2020) as well as Bayesian Neural Networks Bykov et al. (2021); Brown and Talbert (2022). To further boost
the quality of interpretations, several enhancing techniques were introduced, such as SmoothGrad Smilkov
et al. (2017); Omeiza et al. (2019), NoiseGrad and FusionGrad Bykov et al. (2022). Considerable attention
also has been paid to analyzing and evaluating the quality of local explanation methods (e.g. Samek et al.
(2016); Hedström et al. (2022); Guidotti (2021)). However, while the local explanation paradigm is incredibly
powerful in transferring the understanding of the decision-making strategies for a particular data sample, it
lacks the ability to provide an overall view of the inner processes of representations in a network.

Global explanation methods aim to interpret the general behavior of learning machines by investigating the
role of particular components, such as neurons, channels, or output logits, which we refer to as representations.
Existing methods mainly aim to connect internal representations to human understandable concepts, making
the purpose and semantics of particular network sub-function transparent to humans. So far, there are
already methods, such as Network Dissection Bau et al. (2017; 2018) and Compositional Explanations of
Neurons Mu and Andreas (2020) that aim to label representations with class labels from a given dataset,
based on the intersection between the class relevant information provided by a binary mask information
and the activation map of the respective representation. In contrast, the MILAN method generates a text
description of the representation by searching for a text string that maximizes the mutual information with
the image regions in which the neuron is active Hernandez et al. (2021).

2.1 Activation-Maximisation methods

The family of Activation-Maximization (AM) Erhan et al. (2009) methods is designed for the global explanation
of complex learning machines by identifying the input that maximally activates a particular neuron or layer
in the network to visualize the features that have been learned by the neuron or layer. These signals, which
we will refer to as Activation-Maximization Signals (AMS), could be either natural signals(n-AMS), found in
a data-aware fashion by selecting a “real” example from an existing data corpus Borowski et al. (2020), or
artificial (synthetic AMS or s-AMS), found in a data-agnostic mode by generating a synthetic input through
optimization Erhan et al. (2009); Olah et al. (2017); Szegedy et al. (2013).

In comparison to earlier synthetic AM methods, Feature Visualization (FV) Olah et al. (2017) performs
optimization in the frequency domain by parametrizing the image with frequencies obtained from the Fourier
transformation. This reduces adversarial noise in s-AMS (e.g. Erhan et al. (2009); Szegedy et al. (2013))

— improving the interpretability of the obtained signals. Additionally, the FV method applies multiple
stochastic image transformations, such as jittering, rotating, or scaling, before each optimization step, as well
as frequency penalization, which either explicitly penalizes the variance between neighboring pixels or applies
bilateral filters on the input.

2.2 Spurious correlations

Deep Neural Networks are prone to learn spurious representations — patterns that are correlated with a target
class on the training data but not inherently relevant to the learning problem Izmailov et al. (2022). Reliance
on spurious features prevents the model from generalizing, which subsequently leads to poor performance on
sub-groups of the data where the spurious correlation is absent (cf. Lapuschkin et al. (2016; 2019); Geirhos
et al. (2020)). In Computer Vision, such behavior could be characterized by the reliance of the model on
an image’s background Xiao et al. (2020), object textures Geirhos et al. (2018), or the presence of semantic
artifacts in the training data Wallis and Buvat (2022); Lapuschkin et al. (2019); Geirhos et al. (2020); Anders
et al. (2022). Artifacts can be added to the training data on purpose as Backdoor attacks Gu et al. (2017);
Tran et al. (2018), or emerge “naturally” and might persist unnoticed in the training corpus, resulting in
Clever Hans effects Lapuschkin et al. (2019).

Recently, XAI methods have demonstrated their potential in revealing the underlying mechanisms of
predictions made by models, particularly in the presence of artifacts such as Clever Hans or Backdoor
artifacts. Spectral Relevance analysis (SpRAy) aims to provide a global explanation of the model by analyzing
local explanations across the dataset and clustering them for manual inspection Lapuschkin et al. (2019).
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While successful in certain cases Schramowski et al. (2020), SpRAy requires a substantial amount of human
supervision and may not detect artifacts that do not exhibit consistent shape and position in the original
images. SpRAY-based Class Artifact Compensation Anders et al. (2022) method significantly reduced the
need for human supervision and demonstrated its capability to effectively suppress the artifactual behavior of
DNNs, significantly reducing a model’s Clever Hans behavior.

2.3 Comparison of representations

The study of representation similarity in DNN architectures is a topic of active research. Numerous methods
for comparing network representations have been applied to different architectures, including Neural Networks
of varying width and depth Nguyen et al. (2020), Bayesian Neural Networks Grinwald et al. (2022), and
Transformer Neural Networks Raghu et al. (2021). Some works Ramsay et al. (1984); Laakso (2000); Kornblith
et al. (2019); Nguyen et al. (2022) argue that the representation similarity should be based on the correlation
of a distance measure applied to layer activations on training data. Other works Raghu et al. (2017); Morcos
et al. (2018) compute similarity values by applying variants of Canonical Correlation Analysis (CCA) Hardoon
et al. (2005); Bießmann et al. (2010) on the activations or by calculating mutual information Li et al. (2015).
However, all of these methods require the presence of training data.

3 Distance metrics between Neural Representations

The compositional structure of modern neural networks allows neurons, the foundational building blocks for
neural processing, to learn complex abstractions. These abstractions, learned without any supervision by
humans, lead to the semantic opaqueness of representations — the purpose of the particular representations in
DNNs remains unknown to humans. To enhance transparency and gain a better understanding of information
processing within a model, studying the interrelationships between neural representations in the model can
yield valuable insights.

In the following, we start with the definition of a neural representation as a sub-function of a given network
that depicts the computation graph, from the input of the model to the output of a specific neuron.

Definition 1 (Neural representation). We define a neural representation f as a real-valued function f : D → R,
mapping from the data domain D to the real numbers R.

The necessity for representations to be univariate is maintained for the sake of simplicity regarding the
explanation. Although neurons in DNNs often produce multidimensional outputs depending on the specific
use cases, multidimensional functions could be regarded as a set of individual representations when analyzing
the representations. Alternatively, multidimensional outputs could be aggregated without losing transparency:
for instance, in the case of convolutional neurons that output activation maps containing the dot product
between filter weights and input data at each location, activation maps could be aggregated for the sake of
simplifying the explanation of the semantic concept underlying the function. The choice depends on the
particular aim and scope of the analysis and does not alter the network itself.

The scalar output of representations often corresponds to the amount of evidence or similarity between certain
concepts present in the input and internally learned abstractions. Various sub-functions within the model
could be considered as neural representations, ranging from the neurons in the initial layers that are often
regarded as elementary edge or color detectors Le and Kayal (2021), to the high-level feature extractors in
the final layers and output classification logits. While these representations are interesting to understand,
throughout this work, we primarily focus on the high-level abstractions that emerge in the latest layers
of networks, such as the feature-extractor layers in well-known computer vision architectures, as they are
frequently employed for transfer learning Zhuang et al. (2020).

In DNNs, neural representations are combined into layers — collections of individual neural representations
that typically share the same computational architecture and learn abstractions of similar complexity. In
the scope of the following work, we mainly focused on the analysis of the relations between representations
within one selected layer from the network.
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Definition 2 (Layer). We define a layer F = {f1, ..., fk} as a set comprising k individual neural representa-
tions.

To examine the relationships between representations, we can start by examining the behavior of functions on
the given dataset. We define a dataset D consisting of N data points, denoted as D = {x1, ..., xN }, which we
refer to as the evaluation dataset to measure the relationship between two neural representations. We assume
that the datapoints x1, ..., xN represent i.i.d samples from the global data distribution D. For the analysis of
the data-aware distance metrics, such as metrics between representations that require the availability of the
data, we assume that the activations of representations are standardized on the evaluation dataset, resulting
in a mean of 0 and a standard deviation of 1. Practically, this means that for each output of the neural
representation, we subtract the mean across the evaluation dataset and divide it by the standard deviation.

For a neural representation fi and an evaluation dataset D, we define an vector of activations ai =
[fi(x1), ..., fi(xN )], and assume that

µi := 1
N

N∑
t=1

fi(xt) = 0, σi :=

√√√√ 1
N

N∑
t=1

(fi(xt) − µi)2 = 1. (1)

Standardizing the vectors in this way can help to mitigate any differences in scale between the vector
components and ensure that each component contributes equally to the distance calculation.

Below, we present three widely recognized metrics that can be utilized to measure the distance between
neural representations. These metrics will later serve as a point of reference for comparing our own developed
metric.

• Minkowski distance:

dM (fi, fj) =
(

N∑
t=1

|fi(xt) − fj(xt)|p
) 1

p

, (2)

where p determines the degree of the norm, which gauges the sensitivity of the metric to differences
between the components of the vectors being compared. In general, larger values of p lead to a
greater emphasis on larger differences between the components of the vectors. Conversely, smaller
values of p reduce the influence of larger differences, leveraging an increased uniform weighting of all
components.

• Pearson distance:

dP (fi, fj) = 1√
2

√
1 − ρp (ai, aj), (3)

where ρp(a, b) is the Pearson correlation coefficient between the vectors a and b.

The Pearson correlation coefficient is a widely used metric for measuring the linear dependence
between two random variables. It is an interpretable measure of similarity, however, it is also sensitive
to outliers, which can significantly affect the calculated distance.

• Spearman distance:

dS (fi, fj) = 1√
2

√
1 − ρs (ai, aj), (4)

where ρs(a, b) is the Spearman rank-correlation coefficient between vectors a and b.

The Spearman correlation is a non-parametric rank-based metric commonly used to measure the
monotonic dependence between two random variables. Its main advantage is that it is robust to
outliers, can handle ties in the data, and is relatively easy to interpret.
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Figure 1: Distribution of activations for the “Siberian husky” representation. The figure presented
shows the standardized activation distribution of the "Siberian Husky" logit from the ResNet18 model
trained on ImageNet. The data was collected across the ImageNet-2012 validation dataset. Additionally, the
plot displays various input images along with their corresponding activations. Analyzing the activation of
representations can provide crucial insights into the behavior of the model. For instance, we observe that
the model achieves extremely high activations when there are multiple dogs in the image, corresponding to
the ‘Dogsled” class. However, we also observe a potential spurious correlation, where the model assigns high
scores to images with a snowy background.

3.1 Data-Aware Extreme-Activation distance

The Minkowski, Pearson, and Spearman distance metrics capture the differences in the general behavior of
the representations. However, often the semantics behind representations are characterized by the signals,
that extremely activate the function, such as Activation-Maximisation signals. These signals correspond to
extreme positive activations and demonstrate the concepts that activate the representations. Although this
type of analysis does not fully encompass the intricate nature of neural representations and only focuses on
the most activating concepts (ignoring those that deactivate the representation), it is effective due to the
widespread use of bounded activation functions, such as ReLU Glorot et al. (2011), where positive activation
values indicate the presence of specific patterns in the signal.

Given the evaluation dataset D and a neural representation fi, we define a collection of natural Activation-
Maximisation signals (n-AMS) as follows:
Definition 3 (n-AMS). Let fi be a neural representation, and D = {x1, ..., xN } ⊂ D be an evaluation
dataset with N datapoints. Assume that the dataset D could be split in n disjoint blocks D =

⋃n
i=1 Dt, Dt ={

xtd+1, ..., x(t+1)d+1
}

, ∀t ∈ {0, ..., n − 1} of length d.

We define a collection of natural Activation-Maximisation signals (n-AMS) as Si =
{

si
1, ..., si

n

}
, where

si
t = arg max

x∈Dt

fi (x) , ∀t ∈ {0, ..., n − 1}. (5)

The collection of n-AMS is determined by two parameters: n, which denotes the number of sampled signals,
and d, referred to as the depth, which represents the size of the subset from which the signal is obtained.
Note that we could examine the highest activation signal of the whole dataset by setting n = 1 and d = N ,
however, interpreting the representation’s semantics by using only one signal might be misleading. Figure
1 illustrates the distribution of activations of the “Siberian husky” logit from the ResNet18 model trained
on ImageNet He et al. (2016) across all the images from the ImageNet-2012 Deng et al. (2009) validation
dataset, where we can observe that the most activating signal corresponds to the “Dogsled” class. In light of
this, we aim to sample several n-AMS from separate data subsets.
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Figure 2: Joint activation and pair-wise RAVs of different ImageNet representations. Through
four scatterplots, we can visualize the joint activations and pairwise RAVs of four neural representations,
“Alaskan malamute”, “Samoyed”, “Tiger cat”, and “Aircraft carrier”, with representation “Siberian husky”,
all taken from the ResNet18 output logit layer. We can observe that the angle between RAVs reflects the
visual similarity between classes, representations were trained to learn: the RAVs of “Siberian husky” and
“Alaskan malamute” are almost collinear due to the high visual similarity between the two dog breeds, while
the RAVs of “Siberian husky” and “Aircraft carrier” are orthogonal, indicating their visual dissimilarity.

The relationship between two neural representations can be assessed by examining how each representation is
activated by the n-AMS values of the other. For this, we first introduce the representation activation vectors
(RAVs).
Definition 4. Let F = {f1, ..., fk} be a layer including k neural representations, and S = {S1, ..., Sk}
be a collection of n n-AMS for each representation in the layer. For ∀a, b ∈ {1, ..., k} we define aa

b =
[fb(sa

1), ..., fb(sa
n)], where sa

t ∈ Sa, ∀t ∈ {1, ..., k} is a vector of activations of neural representation fb computed
across the collection of the n-AMS of representation fa. Additionaly, we introduce µa

b = 1
n

∑n
t=1 fb (sa) as

mean activation of fb given the n-AMS of fa.

For any two representations fi, fj ∈ F , we define their pair-wise representation activation vectors (RAVs)
rij , rji as:

rij =
(

µi
i

µi
j

)
, rji =

(
µj

i

µj
j

)
. (6)

In addition, for each neural representation fi ∈ F , we define the corresponding layer-wise RAV as follows:

ri∗ =

µi
1
...

µi
k

 . (7)

The concept behind RAVs is to capture how one representation’s n-AMS are perceived by another. To achieve
this, we gather n n-AMS for each representation within the layer, then use the model to infer them and collect
activations across the representations from the layer and average the embeddings. While pair-wise RAVs
encode information about how two neural representations respond to each other’s stimuli, layer-wise RAVs
utilize all representations in the layer as descriptors. The angle between RAVs can serve as a measure of the
semantic similarity between representations. If two representations encode similar concepts, their n-AMS will
probably be visually similar, resulting in colinear RAVs, since both representations will be activated by each
other’s n-AMS. Conversely, if the representations encode different concepts, their n-AMS will successively
depict different concepts, resulting in the orthogonality of RAVs.

To illustrate the concept of representation activation vectors, we calculated n-AMS for five distinct neural
representations extracted from the output layer of the ImageNet pre-trained ResNet18 model. These
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representations corresponded to the classes “Siberian husky”, “Alaskan malamute”, “Samoyed”, “Tiger cat”,
and “Aircraft carrier”, which were selected manually to demonstrate the decreasing visual similarity between
the classes and the “Siberian husky” class. Using the ImageNet-2012 validation dataset, we computed the
signals with a sample size of n = 100 and a subset size of d = 500. Figure 2 presents a scatter plot of
activation values across all data points and pair-wise RAVs. Our results indicate that the angle between these
vectors increases with the visual dissimilarity between the classes.

In this regard, we propose a novel distance metric between representations, the Extreme-Activation distance,
which assesses the similarity between two neural representations based on the angle between RAVs and is
defined as follows:
Definition 5 (Extreme-Activation distance). Let fi, fj be two neural representations, and rij , rji be their
pair-wise RAVs. We define a pair-wise Extreme-Activation distance as

dp
EAn

(fi, fj) = 1√
2

√
1 − cos (rij , rji), (8)

where cos(A, B) is the cosine of the angle between vectors A, B.

Additionally, given a layer F = {f1, ..., fi, ..., fj , ..., fk} with k neural representations, we define (layer-wise)
the Extreme-Activation distance between fi, fj as

dl
EAn

(fi, fj) = 1√
2

√
1 − cos (ri∗, rj∗). (9)

3.2 Synthetic Extreme-Activation distance

Figure 3: Failing to explain “Star Wars” rep-
resentation with ImageNet n-AMS. Compar-
ison of the s-AMS (left) and n-AMS (right) col-
lected from the ImageNet dataset for unit 744 in
the last convolutional layer of the CLIP ResNet50
model. Due to the inaccessibility of the training
dataset and lack of specific images due to copy-
right restrictions, n-AMS struggle to illustrate the
concept of the “Star Wars” neuron. Illustrated
signals were obtained from OpenAI Microscope.

Although data-aware distance metrics can offer insight
into the relationships between representations, their depen-
dence on the data can be viewed as a limitation. Modern
machine learning models are often trained on closed-source
or very large datasets, making it difficult to obtain the ex-
act dataset the model was trained on. When the evaluation
dataset differs from the training dataset, the correctness
of the computed distances can no longer be guaranteed.
For instance, if the evaluation dataset lacks some concepts
present in the training dataset, distance measures may
be misleading, as illustrated in Figure 3, where analysis
based solely on natural signals leads to erroneous con-
clusions about the learned concept due to the absence
of the true concept in the dataset. Furthermore, in this
case we cannot be certain that distances computed over
the evaluation dataset reflect the general behavior of the
functions learned from the training dataset, rather than
reflecting biases in the evaluation dataset. For example,
even though a relatively high Pearson correlation (0.51)
was reported between the ResNet18 representations of
"tennis ball" and "toy terrier" computed over the ImageNet
validation dataset, it is unclear whether this is a bias in-
troduced in the ImageNet validation dataset or general
behavior of the model (e.g. same correlation could be also
observed in the ImageNet training dataset).

We suggest a data-agnostic approach to address the lim-
itations of data-aware distance measures. This approach
is not reliant on the data and involves using the Extreme-
Activation distance, which is computed based on synthetic Activation-Maximization signals (s-AMS). These
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synthetic signals are generated through an optimization procedure by the model itself and do not require
external generative models or data.
Definition 6 (s-AMS). Let fi be a neural representation. A synthetic Activation-Maximisation signal s̃i is
defined as follows:

s̃i = arg max
s̃

fi(s̃).

Generating s-AMS for a neural representation is a non-convex optimization problem Nguyen et al. (2019)
that typically employs gradient-based methods Erhan et al. (2009); Nguyen et al. (2015); Olah et al. (2017).
Starting from a random noise parametrization of input signals, the gradient-ascend procedure searches for
the optimal set of signal parameters that maximize the activation of a given representation. Early methods
employed standard pixel parametrization Erhan et al. (2009), while modern approaches used Generative
Adversarial Network (GAN) generators Nguyen et al. (2016) or Compositional Pattern Producing Networks
(CPPNs) Mordvintsev et al. (2018); Stanley (2007). In this study, we use the Feature Visualization method
Olah et al. (2017) for s-AMS generation, which parametrizes input signals by frequencies and maps them to
the pixel domain using Inverse Fast Fourier Transformation (IFFT). This method is popular for its simplicity
and independence from external generative models, as well as for its ability to be human-interpretable Olah
et al. (2020); Goh et al. (2021); Cammarata et al. (2020).

The optimization procedure for s-AMS generation has several adjustable hyperparameters, including the
optimization method and transformations applied to signals during the procedure. One critical parameter is
the number of optimization steps (epochs) m, which is analogous to the parameter d for n-AMS generation.

Since different random initializations in the parameter space can lead to the convergence of s-AMS generation
into different local solutions, the resulting s-AMS can vary. This variability is similar to the variability
observed when sampling n-AMS. To address this, we generated n s-AMS signals for each representation fi,
defining S̃i = {s̃i

1, ..., s̃i
n} as a collection of n s-AMS for the given representation.

Definition 7 (Synthetic Extreme-Activation distance). Let fi, fj be two neural representations, and let S̃i, S̃j

be the collections of their respective s-AMS. Similarly to Definition 4, we define µ̃a
b = 1

n

∑n
t=1 fb(s̃a

t ).

We define a pair of synthetic representation activation vectors r̃ij , r̃ji, such that

r̃ij =
(

µ̃i
i

µ̃i
j

)
, r̃ji =

(
µ̃j

i

µ̃j
j

)
. (10)

In addition, for each neural representation fi ∈ F , we define a layer-wise synthetic RAV as:

r̃i∗ =

µ̃i
1
...

µ̃i
k

 . (11)

Furthermore, we define a pair-wise synthetic Extreme-Activation distance as

dp
EAs

(fi, fj) = 1√
2

√
1 − cos (r̃ij , r̃ji), (12)

and layer-wise synthetic Extreme-Activation as

dl
EAs

(fi, fj) = 1√
2

√
1 − cos (r̃i∗, r̃j∗). (13)

To distinguish between Extreme-Activation distances based on n-AMS and s-AMS, we denote them as EAn

and EAs distances, respectively. Notably, EAn distance is computed using standardized activations. However,
due to the data-agnostic nature of the EAs distance, standardization cannot be performed without accessing
the evaluation dataset; hence, we use the raw representation’s activations. Although this could be considered
as a limitation, since the EAs distance is not shift-invariant, we found in our practical experiments that the
angles between synthetic and natural RAVs are typically maintained.
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Figure 4: Similarity and angle preservation between EAn and EAs distance measures. The left
part of the figure shows the RMSE (lower is better) between pair-wise EAn and EAs distances on the output
layer of the ResNet18 network, with a fixed parameter n = 50 for both metrics, while varying parameters d,
corresponding to the subset size in n-AMS sampling, and m, number of epochs for s-AMS generation. On
the right part of the figure, the distributions of pair-wise activations of s-AMS signals are visualized with
different parameters m for two neural representations, namely “Samoyed” and “Siberian husky”, overlayed
with the direction of natural RAVs computed with n = 50 and m = 1000.

EAs conserves the angle between natural RAVs

Although both n-AMS and s-AMS activate specific neural representations maximally, the adversarial nature
of synthetic signals needs to be considered. In our experiments, we observed that while the generated s-AMS
are far from the original natural image domain, the angles between natural and synthetic RAVs are consistent,
providing additional evidence to the utility of the EAs distance metric.

To evaluate the angle conservation quantitatively, we employed a ResNet18 pre-trained on the ImageNet
dataset and computed EAn and EAs distances between the output logit representations, i.e., all 1000 ImageNet
classes. For this experiment, we fixed the number of signals to n = 50 for both distance metrics, while varying
the parameter d for n-AMS generation and the parameter m for s-AMS generation. With F = {f1, . . . , fk}
corresponding to the ResNet18 output layer with k = 1000 neural representations, we measured the root
mean square error between pairwise EAn and EAs distances:

RMSE =

√√√√∑k
i=1
∑k

j=i+1
(
dp

EAn
(fi, fj) − dp

EAs
(fi, fj)

)2

k(k − 1)/2 , (14)

where k(k − 1)/2 corresponds to the number of all unique pairs of two different functions from a set of k
functions.

Figure 4 illustrates the similarity between the computed EAn and EAs distances between the representations
of the 1000 ImageNet classes. In the left part of the figure, which shows RMSE between the two distance
measures for different parameters, we observe that for each parameter m for EAs distance, the lowest error
is achieved with an EAn distance with high values of d. This indicates that the EAs distance captures the
angle between RAVs corresponding to the top activating images. Additionally, we observed that increasing
the parameter m is beneficial to lowering the RMSE between natural and synthetic measures. Furthermore,
the right part of the figure shows the direction of natural RAVs and activations of s-AMS for “Samoyed” and
“Siberian husky” representations from ResNet18. From this figure, we can observe that the angle between
natural RAVs and synthetic RAVs is conserved.

10
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4 DORA: Data-agnOstic Representation Analysis

In the following, we introduce the DORA (Data-agnostic Representation Analysis) framework for analyzing
representation spaces of DNNs. The proposed DORA analysis utilizes the data-independent Extreme-
Activation (EA) distance measure to investigate the relationships between neural representations, providing
insights into the model decision-making processes. Here we outline several potential applications.

4.1 Investigating Neural Associations

The functional distance metric can be utilized to investigate various learned associations in neural representa-
tions. As the training data inherently contains various correlations, the models learn such correlations, which
affects their behavior and decision-making strategies. While some associations may be harmless and based on
the visual similarity of the concepts (e.g., the similarity between dog breeds, such as “Alaskan malamute”
and “Siberian husky”), others might be damaging to the model’s generalizability or introduce potential biases
(e.g., the connection between immigration and Latin America neurons or terrorism and Middle East neurons
reported in the CLIP model Goh et al. (2021)). Analyzing the functional distance between representations,
particularly employing the EAs distance, can help to discover such associations. For instance, in ResNet18,
we found that the “Fountain” and “Fireboat” logit representations have a small functional distance, possibly
due to the shared concept of the water jet. Moreover, we found a low functional distance between “Steam
Locomotive” and “volcano,” which might be due to the shared concept of smoke clouds. Examining such
associations can aid in auditing the model and uncovering previously unknown spurious correlations, thus
increasing the transparency of the models.

4.2 Visualizing representation space with Representation Atlases

Figure 5: Representation Atlas of ResNet18
Output Layer. Illustration of a UMAP visual-
ization of the layer-wise Euclidean distances (EAs)
between the output logit representations from a
ResNet18 model trained on ImageNet. Each point
in the visualization represents an individual neu-
ral class representation, colored by the respective
WordNet hypernym.

Inspired by Carter et al. (2019), the visual examination
of the functional diversity within one layer can be done
by employing the dimensionality reduction method on a
given distance matrix between representations. Such vi-
sualization, referred to as the representation atlas, allows
researchers to visually examine the topological landscape
of learned representations and identify clusters of semanti-
cally similar representations. In the scope of this paper, we
employed the widely used UMAP dimensionality reduction
algorithm McInnes et al. (2018), which has established
itself in recent years as an effective method for visualiz-
ing relationships between data points. Figure 5 depicts
the representation atlas of the output logit layers of the
ResNet18 model trained on ImageNet. Each point in the
figure corresponds to an individual neural representation
among the 1000 representations in the output layer. The
color of each point reflects the WordNet hypernym, a high-
level synset, that corresponds to the learned concept of
the particular representation. The UMAP visualization,
based on the computed EAs distances, reveals the clusters
of semantically similar representations that are preserved,
which can be observed in Figure 5.

In comparison with other dimensionality reduction meth-
ods, such as t-SNe Van der Maaten and Hinton (2008)
and PCA Jolliffe and Cadima (2016), UMAP is scalable,
exhibits a faster computation time McInnes et al. (2018); Trozzi et al. (2021); Becht et al. (2019); Wu et al.
(2019), and has fewer parameters to tune compared to other dimensionality reduction methods. Qualitatively,
compared to the other methods, UMAP was reported to improve visualizations and accurately represent the
data structure on the projected components Trozzi et al. (2021); Becht et al. (2019); Wu et al. (2019).
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4.3 Identifying outlier representations

Although Deep Neural Networks have demonstrated high effectiveness in various applications, they are
prone to learning unintended artifacts and spurious correlations from the data, resulting in unnatural and
semantically different features from the concepts within the dataset. This undesirable behavior persists
throughout the model, making internal representations susceptible to learning malicious concepts. Analysis
of the functional EAs distance between representations within a specific layer of the network can reveal a
set of functions that deviate from the majority of functions within the layer. Due to the high degree of
alignment of functional distance and human judgment, we might expect that such outlier representations
in the functional space encode semantically anomalous concepts. While some outlier representations could
learn unique, natural concepts relevant to the task, in our practical experiments, we observed that such
representations often encode undesired concepts, constituting the shortcut learning or Clever Hans behavior.

5 Evaluation

One of the key considerations to address when comparing various distance metrics between neural representa-
tions is their consistency with human perception. If the underlying concepts of the representations differ
semantically from a human perspective, we would expect from our functional distance measure to reflect
this difference. To quantitatively assess the alignment of various distance metrics, we compare the computed
distances generated by these metrics with human-defined distance metrics between concepts in scenarios
where the latter are available.

Therefore, we employed two widely used computer vision datasets, ILSVRC2012 Deng et al. (2009) and
CIFAR-100 Krizhevsky (2009). For each of these datasets, human-defined semantic distances were obtained
by mapping the classification labels to entities in the WordNet taxonomy database Miller (1995), a lexical
database that organizes English words into a taxonomy of synonym sets, or synsets. In this taxonomy, each
synset represents a group of words that are synonyms or have the same meaning. WordNet organizes these
synsets into a hierarchy, with more specific concepts being nested under more general ones. For the ImageNet
dataset, class labels were mapped automatically due to the cross-connection with WordNet synsets, while for
CIFAR-100 labels were matched manually.

Given the WordNet taxonomy in a form of an undirected graph G = (V, E) with root r ∈ V , the baseline
semantic distances between entities from the WordNet database were computed using the following three
distance measures:

• Shortest-Path distance
Given two vertices ci, cj ∈ V the distance between vertices is determined by the length of the shortest
path that connects the two entities in the taxonomy.

dSP (ci, cj) = l(ci, cj),

where l(ci, cj) is the function, corresponding to the minimal number of edges that need to be traversed
to get from ci to cj .

• Leacock-Chodorow distance Leacock and Chodorow (1998)
Given two vertices ci, cj ∈ V the distance between vertices is determined by a logarithm of the
shortest-path distance with additional scaling by the taxonomy depth:

dLC(ci, cj) = log l(ci, cj) + 1
2T

− log 1
2T

,

where T = maxc∈V l(r, c) is the taxonomy depth.

• Wu-Palmer distance Wu and Palmer (1994)
Given two vertices ci, cj ∈ V the Wu-Palmer distance is defined as:

dSP (ci, cj) = 1 − 2 l(r, lcs(ci, cj))
l(r, ci) + l(r, cj) ,
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where lcs(ci, cj) is the Least Common Subsumer Pedersen et al. (2004) of two concepts ci and cj .

Furthermore, we have utilized the textual labels from both ImageNet and CIFAR100 datasets and calculated
the Word2Vec Mikolov et al. (2013) similarity between class labels as an extra semantic benchmark to evaluate
the alignment.

• Word2Vec distance
Given textual labels ti, tj of two concepts ci, cj , we define Word2Vec distance as

dW 2V = 1√
2

√
1 − cosW 2V (ti, tj),

where cosW 2V (A, B) is the cosine of the angle between Word2Vec embeddings of the words A, B.

Figure 6: Visualization of Semantic Baselines and EAs Distances for ImageNet Classes: From
left to right: the EAs distance metric computed for the output logits of the ImageNet pre-trained ResNet18
model, Shortest-Path, Leacock-Chodorow, Wu-Palmer distances from WordNet taxonomy, and Word2Vec
distance.

Figure 6 illustrates baseline distances between ImageNet classes, alongside the distance matrix computed
using our proposed EAs metric for the ResNet18 output logits. To evaluate the alignment between the
proposed distance metric and a human-defined baseline, we employed the Mantel Test Mantel (1967), which is
often employed in ecology and evolutionary biology to measure the correlation between two distance matrices.
The test calculates the correlation coefficient ρ, which indicates the strength of the relationship between the
two matrices, and the p-value of the test, which describes the statistical significance of the correlation.

It is essential to note that while we evaluate the alignment based on human-defined semantic benchmarks,
optimizing such metrics should not be the ultimate objective when proposing new distance metrics between
representations. This is because DNNs can naturally employ different decision-making strategies than humans,
and these differences may not always be attributed to spurious correlations. For instance, taxonomy-based
approaches might be sub-optimal compared with attributing freedom to the models to train for the desired
tasks Binder et al. (2012). Conversely, in Computer Vision, network representations are expected to be
aligned to some extent due to the correlations between visual and semantic similarity of classes Brust and
Denzler (2019); Deselaers and Ferrari (2011).

5.1 Hyperparameter selection

Incorporating distance metrics for representations frequently relies on a set of hyperparameters. This section
examines the selection of parameters in terms of their ability to attain optimal alignment with the semantic
baselines. In our experiments, we employed a pre-trained ResNet18 model on ImageNet, and the ImageNet-
2012 validation set with 50,000 images across 1,000 classes for computing the data-aware distances, including
Minkowski, Pearson, Spearman, and EAn distances. To ensure consistency, we standardized the activations
of the representations by centering them around zero and scaling their standard deviation to 1 for each of the
1,000 neural representations across the dataset, as previously described.
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Figure 8: Impact of parameter selection in EAn distance on alignment with semantic baselines.
To assess alignment with four semantic baselines, we calculated data-aware EA distance on the output logits
of the ResNet18 network while varying the parameters n and d for both pair-wise and layer-wise options.
The average Mantel correlation statistic across four semantic baselines is reported at each cell.

Minkowski distance

To investigate how different values of the parameter p affect the coherence to semantic baselines, we varied
the parameter and evaluated the alignment with four semantic baselines for each case. Figure 7 shows the
effect of parameter selection on the Mantel test statistic. We observed that the optimal average value of
the statistic across the four baselines was achieved for p = 2. However, for future experiments, we selected
the second-best parameter choice with p = 1 due to the natural connection between Euclidean distance and
Pearson distance. We also observed that higher values of p generally result in lower alignment, possibly due
to sensitivity to the large amplitudes of individual data points.

EAn distance

Figure 7: Impact of Parameter Selection in
Minkowski Distance on Alignment with Se-
mantic Baselines. To assess the alignment with
respect to the four semantic baselines, we calculated
the Minkowski distance on the output logits of the
ResNet18 network while varying the parameter p. The
Mantel correlation statistic was reported for each se-
mantic baseline at each parameter value.

Data-Aware Extreme Activation distance is influ-
enced by two key parameters: n, which denotes the
number of n-AMS signals gathered, and d, which rep-
resents the size of the subset collected from each sig-
nal. To investigate the impact of parameter selection,
we varied these parameters for both pair-wise and
layer-wise modes. Figure 8 shows the average Mantel
correlation statistic across four semantic baselines
for each hyperparameter choice. Our observations
reveal that, in general, increasing the number of col-
lected n-AMS, irrespective of the parameter d, has
a positive impact on the alignment. However, the
optimal depth d is achieved when n-AMS are taken
from subsets of d = 50 datapoints.

EAs distance

In the data-agnostic version of the Extreme-
Activation distance, the choice of hyperparameters
depends on the s-AMS generation method used. In
our study, we employed the Feature Visualisation
method to generate s-AMS, and we identified two
critical hyperparameters: n, which is the number of
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generated s-AMS per representation, and m, which is the number of optimization epochs per signal. Figure 9
depicts the impact of the EAs distance measure’s hyperparameter selection on semantic baseline alignment.
We observed that while increasing the number of generated s-AMS generally has a positive effect, this effect is
negligible compared to the positive impact of increasing the number of optimization epochs per representation.
This is likely due to the generation algorithms’ convergence to better local optima, resulting in improved
visual preciseness of the images, as shown on the right side in Figure 9.

Figure 9: Impact of the parameter selection in EAs distance on alignment with semantic baselines.
To evaluate the alignment between the EAs distance and four semantic baselines, we computed the data-
agnostic EA distance using the ResNet18 network’s output logits while varying the hyperparameters n and m
for both pair-wise and layer-wise options. For each cell, we reported the average Mantel correlation statistic
across the four semantic baselines. The effect of the hyperparameter m, which corresponds to the number of
optimization steps taken for s-AMS generation, on two neural representations from the ResNet18 output logit
layer is shown on the right.

5.2 Evaluating the alignment with human judgment

In this experiment, we quantitatively assess the alignment of the discussed distance metrics with the human-
defined distance measures across different datasets and architectures. To this end, we employed eight different
architectures for two datasets, ImageNet and CIFAR100. For ImageNet, we employed ResNet18 He et al.
(2016), AlexNet Krizhevsky et al. (2017), ViT Dosovitskiy et al. (2020), BEiT Bao et al. (2021), Inception V3
Szegedy et al. (2016), DenseNet 161 Huang et al. (2017), MobileNet V2 Sandler et al. (2018), ShuffleNet V2
Ma et al. (2018), while for CIFAR-100, we used ResNet 18, ResNet 9, MobileNet V2, ShuffleNet V1, and
V2, as well as NASNet Qin and Wang (2019), SqueeeNet Iandola et al. (2016) and VGG 11 Simonyan and
Zisserman (2014).

We computed functional distances with optimal hyperparameters found in Section 5.1, including Minkowski
p = 1, Pearson, Spearman, EAn with n = 50, d = 200, and EAs with n = 3, m = 500, on the output logit
layer for each model. We then compared each distance matrix with four semantic baselines: Shortest-Path,
Leacock-Chodorow, Wu-Palmer distances from WordNet taxonomy, and Word2Vec distance. This comparison
yielded four Mantel test statistics per distance metric. The results of the evaluation are presented in Table
1 for ImageNet-trained models and in Table 2 for CIFAR100 models, where we averaged the four Mantel
correlation test statistics for each model and distance metric. Our analysis indicates that the layer-wise EAn

metric’s distance is generally more favorable due to its stronger linear relationship with all four baseline
metrics. Furthermore, we observed that the data-agnostic EAs metric is on par with data-aware metrics in
terms of coherence with the semantic baselines.

5.3 Evaluating Anomaly-Identification capabilities

Alignment of the distance metrics between neural representations and the human judgment of the distance
between concepts opens an interesting possible application — based on the functional distance, we can
identify representations, that are semantically anomalous to the majority of learned representations. While
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Table 1: Alignment of Distance Metrics in ImageNet Trained Models: Each cell represents the
average Mantel test statistic across four semantic baselines: Shortest-Path, Leacock-Chodorow, Wu-Palmer
distances, and Word2Vec distance. All results demonstrate statistical significance with p < 0.001.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ResNet18 0.49 0.50 0.48 0.49 0.55 0.38 0.47

BeIT 0.32 0.36 0.29 0.44 0.50 0.39 0.47
MobilenetV2 0.46 0.46 0.45 0.47 0.52 0.40 0.50
DenseNet161 0.46 0.47 0.44 0.49 0.54 0.32 0.39
ShuffleNetV2 0.21 0.21 0.19 0.29 0.30 0.19 0.16
InceptionV3 0.31 0.34 0.32 0.38 0.49 0.22 0.27

AlexNet 0.52 0.53 0.52 0.52 0.55 0.42 0.45
ViT 0.53 0.54 0.52 0.54 0.58 0.48 0.53

Mean 0.41 0.43 0.40 0.45 0.50 0.35 0.40

Table 2: Alignment of Distance Metrics in CIFAR100 Trained Models: Each cell represents the
average Mantel test statistic across four semantic baselines: Shortest-Path, Leacock-Chodorow, Wu-Palmer
distances, and Word2Vec distance. All results demonstrate statistical significance with p < 0.001.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ResNet9 0.32 0.37 0.33 0.41 0.52 0.27 0.30

ShuffleNetV2 0.49 0.52 0.49 0.53 0.59 0.43 0.47
MobileNetV2 0.50 0.51 0.49 0.52 0.59 0.40 0.44

ResNet18 0.43 0.47 0.45 0.48 0.57 0.30 0.37
ShuffleNet 0.48 0.51 0.49 0.52 0.58 0.42 0.46

VGG11 0.30 0.31 0.31 0.36 0.43 0.23 0.23
NasNet 0.48 0.51 0.48 0.52 0.59 0.36 0.41

SqueezeNet 0.50 0.52 0.51 0.53 0.59 0.45 0.51
Mean 0.44 0.46 0.44 0.48 0.56 0.36 0.40
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these representations may simply learn unique individual concepts, we demonstrate in further experiments
that in real-life scenarios they might correspond to the undesired concepts from spurious correlations in the
training data that diverge from the typical (intended) decision-making strategy.

To assess the usefulness of the alignment between distance metrics and human-defined semantic baseline,
we conducted the experiment, where we measured the ability of the distance metrics to detect semantically
anomalous representations. For this purpose, we conducted a toy experiment by training a ResNet18 He et al.
(2016) network on a combination of two conceptually different datasets. The combined dataset comprised the
Tiny Imagenet Le and Yang (2015), containing 200 ImageNet classes, and the MNIST handwritten-numbers
dataset Deng (2012), containing 10 handwritten numbers, resulting in a total of 210 classes. MNIST images
were upsampled to the size of 3 × 64 × 64 pixels to match the size of images in Tiny ImageNet. After
training on the combined dataset in the image classification task, we computed functional distances between
the output logits and evaluated the ability of different Outlier Detection methods to detect MNIST logit,
given the computed distance matrices only. For this, we utilized five different Outlier Detection methods: the
Angle-based Outlier Detector (ABOD) Kriegel et al. (2008), Feature Bagging (FB) Lazarevic and Kumar
(2005), Isolation Forest (IF) Liu et al. (2008), Local Outlier Factor (LOF) Breunig et al. (2000) and One-class
SVM (OCSVM) Schölkopf et al. (2001). The performance of the Outlier Detection (OD) methods was
evaluated using the AUC ROC metric for the classification between Tiny ImageNet representations, and
the ones from MNIST classes. To ensure stability in light of the stochastic nature of some outlier detection
methods, the results of the outlier detection were repeated 100 times with different random states.

Figure 10: Anomaly-Detection Evaluation Experiment Visualized. From left to right, pair-wise n-AMS
EA distance table between the output logits of the network trained on the combined dataset, the s-AMS EA
distance table, s-AMS for Tiny ImageNet logits, and s-AMS for MNIST logits. MNIST representations are
highlighted on both distance matrices in the bottom right corner, revealing a block structure in both distance
metrics that suggests a high degree of functional differences between Tiny ImageNet representations and
semantically distinct MNIST representations. On the left, we can visually observe differences between the
s-AMS of Tiny ImageNet and MNIST representations.

We utilized the same hyperparameter configuration for distance computation as described in Section 5.2.
The effectiveness of EA distances, both natural and synthetic, in distinguishing between representations
of Tiny ImageNet and MNIST is demonstrated in Figure 10, as evidenced by the block structure of the
distance matrices. This behavior can be attributed to the visual dissimilarities between the classes, where
Tiny ImageNet classes exhibit natural and diverse features that are typical for natural images, while MNIST
images consist of white digits on a black background. In the case of synthetic EA distance, the ability to
detect MNIST representations is based on the visual differences in the s-AMS, which are depicted in the
right-hand portion of Figure 10. The s-AMS-based EA distance measure depends on the network’s ability to
perceive self-generated s-AMS, and we can observe distinct dissimilarities between the patterns of s-AMS for
Tiny ImageNet classes, which contain high-level natural concepts, and the more data-specific patterns for
MNIST classes, which illustrate the network’s perception of white-on-black handwritten digits and letters.

The results of the described experiment are presented in Table 3, which indicate that, in general, all distance
metrics are capable of detecting MNIST representations. However, the EA distance metrics are more effective
in detecting semantically different representations, where the pairwise EA metric is the most effective.
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Table 3: Detection Performance of Distance Metrics for Semantically Different Representations.
The table displays the average AUC ROC binary classification accuracy of the Outlier Detection methods
across 100 re-trials, in the task of detecting MNIST representations among the combined Tiny ImageNet and
MNIST representations, specifically in the output layer of the trained network.

Minkowski Pearson Spearman EAn EAs

p = 1 p-w l-w p-w l-w
ABOD 0.56 0.63 0.58 0.91 1.00 0.82 0.71

FB 0.97 0.99 0.81 1.00 1.00 0.89 0.87
IF 0.83 0.87 0.64 0.94 0.70 0.76 0.61

LOF 0.65 0.53 0.55 0.67 0.96 1.00 0.87
OCSVM 1.00 1.00 0.95 1.00 0.67 1.00 0.72

Mean 0.80 0.80 0.71 0.90 0.87 0.89 0.76

6 Experiments: Finding outlier representations

As previously demonstrated, the DORA framework facilitates the visualization of a topological map of
representations in a designated layer and is able to identify outlier representations. In this section, we aim
to investigate the latent representations of widely-used computer vision architectures and demonstrate that
the outlier representations found by DORA in real-life scenarios may align with undesirable Clever-Hans
concepts and deviate from the intended decision-making approach.

6.1 ImageNet pre-trained networks

Pre-trained networks on ImageNet have become an essential component in the field of Computer Vision.
Their capability to recognize a diverse set of objects and scenes makes them particularly useful as a starting
point for a wide range of computer vision tasks. They are frequently utilized for fine-tuning to specific tasks
or as a feature extractor, where the images are encoded by the networks for further computations Zhuang
et al. (2020); Weiss et al. (2016).

In the following we explore the feature extractor representations of three widely-used pre-trained models:
ResNet18 He et al. (2016), MobileNetV2 Sandler et al. (2018), and DenseNet121 Huang et al. (2017). Using
LOF outlier detection, we found latent layers with representations that appear to be watermark detectors, e.g.,
detecting Chinese and Latin text patterns. As ImageNet does not have a specific category for watermarks, these
representations could be seen as Clever-Hans artifacts and deviate from desired decision-making Lapuschkin
et al. (2019); Anders et al. (2022). To verify these representations can detect watermarks, we created two
binary classification datasets, for Chinese and Latin watermarks, containing normal images and identical
images, with inserted random watermarks, evaluating the sensitivity of individual representations using the
AUC ROC classification measure. To ensure the detection of characters and not specific words/phrases (unlike
CLIP models Goh et al. (2021)), the probing datasets were generated with random characters (for more
details we refer to the Appendix). Our results show that not only the reported outliers but also neighboring
representations in EA distance are affected by artifactual behavior. Lastly, we find that this behavior persists
during transfer learning, posing a risk for safety-critical fields like medicine.

ImageNet ResNet18

We applied DORA to analyze the Average Pooling layer, which consists of the last 512 high-level representations
of the “feature extractor” that are commonly used without further modification during transfer learning.
Following the DORA approach, we calculated EA layer-wise distance with n = 5 s-AMS per each representation
and with m = 500, based on our findings in the section 5.1. After calculating the EA distances, we used
the LOF method with a contamination parameter p = 0.01 (corresponding to the top 1% of representations)
and the number of neighbors was set to 20 (the default value used in the sklearn package Pedregosa et al.
(2011)).
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Figure 11: Cluster of Clever-Hans representations in the ResNet18 feature extractor. From left to
right: representation atlas of the ResNet 18 average pooling layer with the highlighted cluster of Clever-Hans
representations (left), s-AMS of the representations in the cluster (middle), and AUC ROC sensitivity scores
for the detection of images with Chinese watermarks in the binary classification problem(right), where colored
curves correspond to the behavior of representations in the cluster and gray curves for other representations.
From the s-AMS of neuron 154, we can observe symbolic patterns resembling Chinese logograms learned by
the neuron as well as by its closest neighbor neurons. We can observe that the outlier neuron 154 exhibits
the highest AUC value (green curve), followed by its nearest neighbors.

DORA identified five outlier representations, namely neurons 7, 99, 154, 160, 162, and 393. The outlier neuron
154, displayed a specific, recognizable pattern in s-AMS that could be perceived as the presence of Chinese
logograms. By probing the network on a binary classification problem between images watermarked with
Chinese logograms vs normal images, Neuron 154 showed a strong detection rate (AUC ROC of 0.94) towards
the class with watermarked images, providing significant evidence that this representation is susceptible to
the Clever-Hans effect. Further analysis of neighboring representations in EA distance showed that they also
exhibit similar behavior. The results of the analysis of the ResNet 18 average pooling layer are shown in
Figure 11, illustrating the cluster of Clever-Hans representations found, along with their s-AMS and AUC
ROC performance on the binary classification problem. Additional information on the dataset generation
and the identified outlier representations can be found in the appendix. Furthermore, the high sensitivity of
these representations in terms of their ability to detect artifacts in the data suggests a possible application
for using such representations to identify artifacts in training data. Note that in general, the presence of such
artifacts could indeed pose serious risks and may lead to a degradation in classifier performance (see Anders
et al. (2022)).

In the further investigation of the model, we inferenced s-AMS signals of representations in the reported
CH-cluster and obtained their predictions by the model. Among the selected signals, the model predominantly
predicted an affiliation of these signals with the classes “carton”, “swab”, “apron”, “monitor” and “broom”,
which is in line with the reported spurious correlation of the “carton” class and Chinese watermarks Li et al.
(2022). Upon computing the corresponding s-AMS signals for these logits, we were able to confirm their
association with CH-behaviour, as they displayed clear, visible logographic patterns, specific to Chinese
character detectors, in their corresponding s-AMS. Corresponding signals and additional information could
be found in Appendix.

ImageNet MobileNetV2

We used DORA with the same parameters as in the previous experiment (n = 5 s-AMS per each representation
and m = 500 epochs for s-AMS generation) to analyze the “features” layer of MobileNetV2 network Sandler
et al. (2018), which consists of 1280 channels with 7 × 7 activation maps. The analysis was performed on
channels by averaging the resulting activation maps of neurons. We calculated the EA distances between
representations and applied the LOF method with a contamination parameter of 0.01 which yielded 13 outlier
representations. Upon visual inspection of the s-AMS of these representations, we observed distinct patterns
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Figure 12: Cluster of Clever-Hans representations in the MobileNet V2 feature extractor. The
left figure illustrates the outlier representations as identified by the LOF OD method, overlaid on the DORA
representation atlas. The middle figure displays the sensitivity of the neural representations to Chinese
watermarks, where the highly-sensitive cluster of neurons can be clearly observed in the bottom-right part of
the atlas, including 3 reported outlier representations. The right graph illustrates the s-AMS of several of
the reported outlier neurons, which exhibit a distinctive logographic pattern typical of Chinese character
detectors.

specific to Chinese character detectors in neurons 397, 484, 806, and 1131. Figure 12 illustrates the s-AMS of
these neurons, as well as the sensitivity of neurons in the Chinese-character detection task. We can observe
that the neighbors of these neurons (397, 484, 806, 1131) are sensitive to CH artifacts and form a distinctive
cluster visible in the representation atlas.

ImageNet DenseNet 121

Figure 13: DenseNet121 — Latin text detector. Applying DORA to the last layer of the feature
extractor of DenseNet121 yields, among others, Neuron 427 as an outlier, which corresponds to the upper left
of the 4 feature visualizations. From neuron 427 as well as from its three closest neighbors (shown left), we
can observe semantic concepts resembling Latin text characters. The AUC values were computed using the
average channel activations on the Latin probing dataset. As shown, the AUCs are high for the representation
outliers found by DORA, compared to most of the other representations, which indicates that they indeed
learned to detect Latin text patterns.

We conducted a similar analysis on the last layer of the feature extractor of the ImageNet pre-trained
DenseNet121 model, which consists of 1024 channel representations with 7 × 7 activation maps. We calculated
n = 5 s-AMS per representation with m = 150 optimization steps for quicker experimentation. The LOF
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outlier detection method with a contamination parameter of p = 0.01 identified 10 outlier representations.
One of these, neuron 768, was found to be a Chinese character detector (more information can be found in
the Appendix). By increasing the contamination parameter to p = 0.035 (corresponding to the top 3.5% or
35 representations), we also identified neuron 427, which is susceptible to the detection of Latin text and
watermarks. Figure 13 illustrates the representation atlas, highlighting representation 427 along with several
neighboring representations, namely neurons 733, 507, and 463, which also exhibit a high detection rate for
unintended concepts.

Clever Hans representations survive transfer learning

Figure 14: Persistent Latin text detector.
Neuron 427 in the DenseNet121 network learns
to detect Latin text during pre-training and does
not unlearn this behavior after fine-tuning on
the CheXpert dataset, as shown by the ROC de-
tection curves. The AUC values of the neuron
activations on images corrupted with Latin wa-
termarks are high after pre-training and persist
after fine-tuning.

Given the widespread use of pre-trained models in safety-
critical areas, it is essential that the artifacts embodied in a
pre-trained model are made ineffective or unlearned during
the transfer learning task (see also Anders et al. (2022)).
To this end, we examined the effect of fine-tuning the pre-
trained DenseNet121 model on the CheXpert challenge
Irvin et al. (2019), which benchmarks classifiers on a multi-
label chest radiograph dataset. Despite the modification of
all model parameters during fine-tuning, neurons 427 and
768, which were Latin and Chinese characters detectors
in the pre-trained model, retained their original semantic
information and remained outliers after applying DORA.
We studied neuron 427’s ability to detect Latin text and
found that it had an AUC value of 0.84 in the pre-trained
model and 0.81 in the fine-tuned model, as shown in
Figure 14. Similar behavior was observed with neuron
768, indicating that the Clever-Hans effect persisted after
fine-tuning.

6.2 CLIP ResNet50

Figure 15: Representation atlas of CLIP ResNet50 “layer 4”. Representation atlas for CLIP ResNet50
“layer 4”, where several clusters of representations are highlighted. Activation-Maximisation signals associated
with the Explicit/Pornographic representations were omitted due to the presence of explicit concepts in the
signals.

CLIP (Contrastive Language-Image Pre-training) models predict relationships between text and images,
trained using contrastive learning objective Dai and Lin (2017); Hjelm et al. (2018) on large datasets and

21



Under review as submission to TMLR

fine-tuned on tasks such as image classification Agarwal et al. (2021) or text-to-image synthesis, where CLIP
models also often serve as text encoders (e.g. Stable Diffusion Rombach et al. (2022)).

Figure 16: AMS for reported out-
lier representation. LOF identified
neuron 1865 as the strongest outlier.
Analysis of s-AMS and ImageNet n-
AMS indicate that it primarily detects
white images/backgrounds, which is
atypical compared to other high-level
representations in the same layer.

In this experiment, we explore the representation space of the CLIP
ResNet50 model Radford et al. (2021) focusing on the last layer of
its image feature extractor (“layer 4”). The training dataset was
not publicly disclosed, but it is reported to be much larger than
standard computer vision datasets like ImageNet, resulting in greater
variability of concepts compared to ImageNet networks. We used
DORA on 2048 channel representations from "layer 4", generating
n = 3 signals per representation with m = 512 and using similar
settings as (Goh et al., 2021).

Analysis of the outlier representations with contamination parameter
p = 0.0025 yielded 6 outlier neurons, namely 631, 658, 838, 1666,
1865, and 1896. Representation 1865 – neuron with the highest
outlier score – was found to detect the unusual concept of white
images/background, as shown by synthetic and natural (collected
from OpenAI Microscope) AMS in the Figure 16. However, the other
outlier representations could not be concluded to be undesirable as
they seemed to detect rare but natural concepts. Further details
and analysis of the other outlier representations can be found in the
Appendix.

After computing the representation atlas for “layer 4”, we manually
investigated several distinctive clusters. Figure 15 illustrates the

representation atlas alongside several reported clusters of semantically similar representations. With our
analysis, we found a cluster of Explicit/Pornographic representations. Furthermore, we were able to confirm
the presence of geographical neurons, as reported in (Goh et al., 2021) and we noted that representations
from neighboring geographical regions, such as India, China, Korea, and Japan, were located close to one
another. Additional information and more detailed visualizations can be found in the Appendix.

Figure 17: Multimodality of the rep-
resentations in the CLIP model. The
figure illustrates the joint distribution of
activations across two representations from
the CLIP ResNet50 model. The n-AMS
from ImageNet are reported for both rep-
resentations. As can be seen, the semantic
multimodality of the representations mani-
fests itself in the multimodal distribution of
the n-AMS activations.

During our analysis of the “layer 4” representations in the
CLIP model, we confirmed the semantic multimodality of these
representations Goh et al. (2021). This behavior is character-
ized by a multimodal distribution of AMS, whether natural or
synthetic and demonstrates the representations’ ability to be
activated by visually and semantically distinct concepts. An
example from Goh et al. (2021) illustrates this by noting that
the CLIP network activates the "pizza" concept when presented
with either a visual image of a pizza or the written word “pizza”
within an image. Such multimodality leads to high variance
in both natural and synthetic RAVs, as depicted in Figure 17
through pairwise n-AMS for two CLIP model representations,
highlighting the multimodal distribution of activations across
these signals.

7 Discussion and Conclusion

Learned representations in Deep Neural Networks embody the
task-relevant (see Braun et al. (2008); Montavon et al. (2011))
essence of the training data. Since it is not uncommon for
datasets to contain artifacts, spurious correlations, or biases,
it is more than ever essential to inspect these models using
explainable artificial intelligence (XAI) methods to avoid unde-
sirable or even harmful behavior. So far, this has mostly been
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done by applying local XAI methods, which require access to the data to explain the prediction of the
model at hand. While such methods are powerful in discovering local decision-making strategies given the
data-sample, they are limited with respect to uncovering global strategies, that complex models employ. Up
until our work, to the best of our knowledge, no method existed to identify representations that have learned
unintended or malicious concepts.

In our work, we introduced a novel problem of identifying semantically anomalous representations within
a network using a functional distance metric that is aligned with human perception. We developed the
DORA framework, which is straightforward and does not depend on the dataset, enabling the examination
of any trained neural network without the need for access to the training data. This framework utilizes
the self-explanatory nature of Computer Vision networks to estimate distances within the network. Our
results demonstrated that semantically anomalous representations often encode undesirable concepts, such as
watermarks in the context of the ImageNet classification problem. Such representations could be used to
analyze the dataset and identify data points that contain unwanted artifacts. This analysis of representations
is crucial because we also observed that artifactual representations persist even after fine-tuning, highlighting
potential risks for safety-critical applications due to the widespread use of transfer learning.

Although we have demonstrated the broad applicability of DORA, there exist several limitations that require
attention.

• Systematic artifactual behavior
The proposed approach assumes that undesired behavior in representations is not systematic. Conse-
quently, DORA may not be able to identify infected representations if such behavior is widespread
across a large number of representations, as it would no longer be considered anomalous.

• Semantic multimodality of representations
Another limitation pertains to the potential semantic multimodality of representations Goh et al.
(2021), which DORA aims to mitigate by calculating multiple s-AMS per representation. However,
this approach may not unveil all the concepts a representation can capture. Although this behavior
was observed only in the CLIP experiment for ImageNet- and CIFAR-100-trained networks, semantic
unimodality is generally observed, and additional research is necessary to address this issue.

• Interpretation of outlier representations
Although the EA distance metric can be computed without access to training data, using only s-AMS
for interpreting the concept behind an outlier representation may be insufficient for understanding
why it was identified as an outlier. Therefore, additional analysis that may require data, such as
visualizing n-AMS, is necessary.

In summary, we showed the functionality and usefulness of the DORA framework for explaining the repre-
sentation spaces of Computer Vision models. Such an approach could be used for exploring associations
between representations, visualization of the representation space using representation atlases, and finding
artifactual aspects in representation space. We demonstrated that the introduced Extreme-Activation distance
is aligned with human judgment and is an interpretable metric for measuring the relationships between neural
representations. In future work, we will apply the proposed solution broadly in the sciences, medicine, and
other technical domains, such as NLP, where discovering artifacts and biases in the representations is of great
value.
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A Appendix

A.1 Evaluation

In the evaluation, two datasets were used: ILSVRC2012 (ImageNet 2012) Deng et al. (2009) and CIFAR-100
Krizhevsky (2009). For ImageNet, we employed eight different pre-trained models: ResNet18 He et al. (2016),
AlexNet Krizhevsky et al. (2017), Inception V3 Szegedy et al. (2016), DenseNet 161 Huang et al. (2017),
MobileNet V2 Sandler et al. (2018), ShuffleNet V2 Ma et al. (2018), obtained from the torchvision-models
package Marcel and Rodriguez (2010), as well as ViT Dosovitskiy et al. (2020) and BEiT Krizhevsky et al.
(2017), obtained from the pytorch-vision-models library Wightman (2019). For the CIFAR-100 dataset,
we trained seven networks: ResNet 18, MobileNet V2, ShuffleNet V1, and V2, NASNet Qin and Wang (2019),
SqueeeNet Iandola et al. (2016), and VGG 11 Simonyan and Zisserman (2014), using the Pytorch-cifar100
GitHub repository git (2020), while the ResNet9 network was trained using a publicly available Kaggle
notebook Wang (2021).

The semantic baseline distances between concepts for both datasets were obtained using the NLTK package
Bird et al. (2009). There is a cross-connection between class labels and WordNet entities for ILSVRC2012,
as the classes are inherently connected with WordNet synsets. For CIFAR-100, we manually connected the
labels to synsets by matching class label names with WordNet synset names. For 98 classes, WordNet synsets
were found. For the remaining two classes, “aquarium fish” and “maple tree”, WordNet synsets for “fish” and
“maple” were used, respectively, due to the absence of a direct name match.

A.2 Experiments

A.2.1 Probing dataset

Figure 18: Illustration of the Probing Dataset. The figure depicts images from the probing dataset utilized
to evaluate the representation’s capacity to distinguish between watermarked (CH) and non-watermarked
(normal) images. The watermarked class images are identical to the normal class images, except for the
addition of a random test string at a random location on the image.

To assess the ability of the identified representations to detect undesirable concepts, we created two probing
datasets for the binary classification of Chinese and Latin text detection. We modified one class of images
by adding specific watermarks while leaving the other class unchanged. We used a baseline dataset of 998
ImageNet images † to create 2 probing datasets (Chinese and Latin) by inserting random textual watermarks,
as shown in Figure 18. For the Chinese-characters detection problem, the watermarks were generated by

†Images were obtained from https://github.com/EliSchwartz/imagenet-sample-images, with the exception of two images
(of the class "carton" and "terrapin") that already exhibit watermarks.

31

https://github.com/EliSchwartz/imagenet-sample-images


Under review as submission to TMLR

randomly selecting 7 out of the 20 most commonly used Chinese characters Da (2004), and a similar process
was followed using the English alphabet for the Latin text detection problem. The font size for all watermarks
has been set to 30, while the image dimensions remain standard at 224 × 224 pixels. AUC ROC was used as
the performance metric to evaluate the representations’ ability to differentiate between watermarked and
normal classes. The true labels provided by the two datasets were used, where class 1 represents images with
a watermark and class 0 represents images without. We computed the scalar activations for all images from
both classes for a specific neural representation and then calculated the AUC ROC classification score based
on the differences in activations using the binary labels. A score of 1 indicates a perfect classifier, consistently
ranking watermarked images higher than normal ones, while a score of 0.5 indicates a random classifier.

A.2.2 ImageNet ResNet18

In the following, we provide additional details on the ResNet18 He et al. (2016) experiment, discussed in
the main paper. The model was downloaded from the Torchvision library Marcel and Rodriguez (2010) and
s-AMS were generated with parameters n = 5 and m = 500 using the DORA package.

Figure 19 illustrates the cluster of reported representations in the average pooling layer of the model,
specifically neurons 154, 129, 347, 489, 81, 439, and 282, along with the sensitivity of other neurons to
Chinese watermarks. It can be seen that representations close to the reported cluster also exhibit sensitivity
towards malicious concepts. For additional context, Figure 23 shows the natural Activation-Maximisation
signals (n-AMS) for the reported representations, obtained using 1 million subsamples of the ImageNet 2012
train dataset. The presence of Chinese watermarks in the n-AMS further supports our hypothesis of the
Clever-Hans nature of these representations.

To examine which output class logits may be compromised by CH behavior, we used the s-AMS of the
reported neurons to obtain class predictions on these signals. Figure 25 shows several s-AMS for the reported
representations along with the network’s predictions for the corresponding data points. We observed that
certain classes, such as “carton” (478), “apron” (411), “swab, swob, mop” (840), “monitor” (664), and “broom”
(462) were frequently predicted with high scores. When we computed the s-AMS for selected output logits,
we found similar Chinese patterns, similar to those observed in the reported neurons of the average pooling
layer (see Figure 25). These results suggest that such artifacts learned by the network pose a potential threat
to applications due to the network’s tendency to classify images with added watermarks as belonging to one
of these classes.

A.2.3 DenseNet 121

The DORA framework was employed to investigate the pre-trained DenseNet121 on the ImageNet dataset
Huang et al. (2017). Specifically, attention was focused on the last layer of the feature extractor, which
comprised 1024 channel representations. The study primarily examined two outliers detected by DORA:
neuron 768 and neuron 427, along with some of their nearest neighbors in the EA distance. Following an
analysis of the s-AMS for both neurons, specific symbolic patterns were observed, which were characteristic
of character detectors. Neuron 768 was identified as a Chinese-character detector, while neuron 427 was
identified as a Latin text detector. Figure 13 in the main paper and Figure 21 depict these neurons, along
with their closest neighbors in EA distance, which exhibited similar properties. The hypothesis was further
supported by visualizing the n-AMS across the ImageNet dataset, as demonstrated in Figure 22.

As mentioned in Section 4.4.2, we find that the outliers found by DORA are maintained during fine-tuning
on another dataset, e.g. the CheXpert challenge. The CheXpert challenge benchmarks various deep learning
models on the task of classifying multilabel chest radiographs and additionally provides human experts, e.g.
radiologists, with performance metrics for comparison. The data set itself consists of 224,316 training, 200
validation, and 500 test data points. The current best approach in terms of AUC-ROC score uses an ensemble
of five DenseNet121’s Huang et al. (2017) that were pre-trained on the ImageNet dataset and fine-tuned
by optimizing a special surrogate loss for the AUC-ROC score Yuan et al. (2021). The training code can
be found in this public repository https://github.com/Optimization-AI/LibAUC/. We choose to finetune
one DenseNet121 using this approach on a downsampled version of the CheXpert data with a resolution of
256x256x3. The converged model yields an AUC-ROC score of 87.93% on the validation dataset. Having
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Figure 19: Detailed illustration of the cluster of malicious representations found. All of the figures
illustrate the representation atlas of the average pooling layer of ResNet18, calculated using the DORA
distance metric. From left to right: illustration of the reported Chinese detector cluster, the sensitivity
of different representations for detecting Chinese watermarks, and a set of reported outliers among the
representations using the LOF method. From the middle figure, it can be observed that the cluster of reported
representations exhibits high sensitivity towards the artifactual concept of the desired task, and the closer
the representations are to the cluster in the representation atlas, the more they are able to detect malicious
concepts in the data.

Figure 20: Survived Chinese-characters detector. Neuron 768 learns to detect Chinese logographic
symbols during pre-training (top left) and does not unlearn this behavior during fine-tuning on the CheXpert
dataset (top right). The AUC values of the neurons’ activation on images corrupted with Chinese watermarks
are still high after pre-training.
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Figure 21: DenseNet121 — Chinese-characters detector. Applying DORA to the last layer of the
feature extractor of DenseNet121 yields, among others, Neuron 768, which corresponds to the upper left of
the 6 feature visualizations. From Neuron 768 as well as from its five closest neighbors (shown left), we can
observe semantic concepts resembling Chinese logograms. The AUC values were computed using the channel
activations on a data set that was corrupted with watermarks written in Chinese. As shown, the AUCs are
high for the representation outliers found by DORA, compared to most of the other representations, which
indicates that they indeed learned to detect Chinese logograms.

(a) Neuron 768 (b) Neuron 427

Figure 22: n-AMS for different DenseNet121 neurons. Illustration of the 15 n-AMS signals for the
Chinse watermark detector (neuron 768) and the Latin text detector(neuron 427) in the “features” layer of
DenseNet121.

the finetuned DenseNet121 and the outlier neuron 768 at hand we show the Feature Visualizations and
the AUC-ROC curves for both the pre-trained and fine-tuned channel on an ImageNet subset with both
uncorrupted and corrupted images with Chinese watermarks in Figure 20.

A.2.4 CLIP ResNet 50

The s-AMS for the CLIP ResNet 50 was computed using the same parameters as Goh et al. (2021) with
the Lucent library. The number of optimization steps m was set to 512. The analysis was conducted
on representations (channels) from the “layer 4” layer of the model. (Details on the s-AMS generation
parameters can be found at https://github.com/openai/CLIP-featurevis and Lucent library at https:
//github.com/greentfrapp/lucent)

Star Wars representation
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Table 4: Clusters of CLIP “layer4” representations. This table presents several interesting clusters
and the indexes of the corresponding representations that were examined through manual inspection of the
natural and synthetic AMS.

Cluster Representations

Explicit/Pornographic 95, 255, 996, 1502, 2011
Money/Finance 785, 1376, 1731

Reptiles 230, 250, 417, 521, 652, 654, 694, 1008, 1234, 1301, 1340,
1364, 1445, 1598

Fish/Aquarium 1193, 1384

Asia-geographic 13,165, 235, 536, 780, 931, 1037, 1261, 1247,1423,
1669,1761,1874, 1898

Figure 3 shows the limitations of the n-AMS approach when the data corpus for analysis differs from the
training dataset. Figure 26 further illustrates n-AMS collected from ImageNet and Yahoo Creative Commons
Thomee et al. (2016) datasets via OpenAI Microscope. Text Feature Visualization Goh et al. (2021) supports
our hypothesis that the model is a detector of Star Wars-related concepts.

Outlier representations

Analysis of the representations space of the CIP model yielded a number of potential candidates to be
considered outlier representations, namely neurons 631, 658, 838, 1666, 1865, and 1896. In Figure 27 we
illustrate 3 s-AMS signals, alongside n-AMS images, collected from the ImageNet dataset per each reported
representation, collected using OpenAI Microscope. While it is hard to explain the anomalous nature of
neurons 631, 658, 838, 1666, and 1896, we can clearly observe how different the concept of neuron 1865 is.

Clsuters of representations

We manually examined several distinctive classes of representations in "layer 4" of the CLIP model after
computing the representation atlas for the channel representations. Table 4 summarizes the results of our
analysis and shows interesting clusters found along with the associated neurons. Figure 28 shows synthetic
and natural AMS, providing evidence for the assignment of neurons to their respective clusters.

A.3 Experimental setup

All described experiments, if not stated otherwise, were performed on the Google Colab Pro Bisong and
Bisong (2019) environment with the GPU accelerator.
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(a) Neuron 154 (b) Neuron 347

(c) Neuron 129 (d) Neuron 489

(e) Neuron 81 (f) Neuron 282

Figure 23: n-AMS for different ResNet18 neurons, reported in the cluster of malicious represen-
tations. The figure shows the 15 n-AMS signals for various neurons in the "avgpool" layer of the ResNet18
network, which were identified as being in the cluster of malicious representations. The signals were calculated
using a subset of 1 million images from the ImageNet 2012 training dataset. It can be observed that among
the top natural activation maximization signals, there are images of Chinese watermarks, supporting the
hypothesis that these neurons have learned undesirable concepts.
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Figure 24: s-AMS and model predictions for reported neurons in ResNet18. Figure illustrates the
s-AMS signals for four different reported neurons in the average pooling layer of ImageNet-trained ResNet18,
along with the model’s predictions for the top three classes with their respective softmax scores.
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Figure 25: s-AMS for several ResNet18 logits. Figure shows s-AMS for the output logit representations
of ResNet18. Similar to the reported neurons from the average pooling layer, the logits display logographic
patterns, logographic patterns specific to Chinese character detectors, suggesting that these classes may be
particularly affected by CH behavior.
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Figure 26: CLIP ResNet Neuron 744. The figure shows s-AMS and n-AMS for neuron 744 in the “layer
4” layer of the model, computed for 2 different data corpora. The observed signals and explanations from
Text Feature Visualization confirm that the neuron can detect Star Wars-related concepts. Results obtained
from OpenAI Microscope.
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Figure 27: s-AMS and n-AMS for reported outlier neurons. Figure illustrates s-AMS and n-AMS
for the reported outlier neurons in the “layer 4” layer of the CLIP ResNet 50 model, collected from OpenAI
Microscope.
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Figure 28: s-AMS and n-AMS for the neurons in the reported clusters. Figure shows s-AMS
and n-AMS for representations assigned to different reported clusters. s-AMS were generated, while n-
AMS (Activation-Maximization images from ImageNet dataset) were collected via OpenAI Microscope.
Representations of explicit/pornographic content were excluded due to the presence of obscene images.
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