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Abstract

Although the annotation paradigm based on Large Language Models (LLMs) has made sig-
nificant breakthroughs in recent years, its actual deployment still has two core bottlenecks:
first, the cost of calling commercial APIs in large-scale annotation is very expensive; second,
in scenarios that require fine-grained semantic understanding, such as sentiment classifica-
tion and toxicity classification, the annotation accuracy of LLMs is even lower than that
of Small Language Models (SLMs) dedicated to this field. To address these problems, we
propose a new paradigm of multi-model cooperative annotation and design a fully au-
tomatic annotation framework AutoAnnotator based on this. Specifically, AutoAnnotator
consists of two layers. The upper-level meta-controller layer uses the generation and reason-
ing capabilities of LLMs to select SLMs for annotation, automatically generate annotation
code and verify difficult samples; the lower-level task-specialist layer consists of multiple
SLMs that perform annotation through multi-model voting. In addition, we use the difficult
samples obtained by the secondary review of the meta-controller layer as the reinforcement
learning set and fine-tune the SLMs in stages through a continual learning strategy, thereby
improving the generalization of SLMs. Extensive experiments show that AutoAnnotator
outperforms existing open-source/API LLMs in zero-shot, one-shot, CoT, and majority vot-
ing settings. Notably, AutoAnnotator reduces the annotation cost by 74.15% compared to
directly annotating with GPT-3.5-turbo, while still improving the accuracy by 6.21%.

1 Introduction

High-quality annotated data is key to advancing deep learning (Emam et al.| [2021; Rasmussen et al., [2022;
Taori et al., |2023; [Ye et al., [2025), yet acquiring such data requires specialized domain expertise and is
costly (Denton et al., [2021), especially when manually annotating a large number of samples. With the rapid
development of LLMs (Achiam et al., 2023} |Guo et al., 2025; |Team et al., 2025)), their powerful semantic
understanding (Wu et al., 2023), contextual reasoning (Sun et all 2024) and generation capabilities (Mo
et all [2024) has driven researchers to develop LLM-based annotation methods (Yadav et al., [2024; |Chen
et all 2024} 'Wu et al.l [2024; [Tekumalla & Bandal, [2023} [Flamholz et al., [2024} [Laskar et all, 2023} [Ba et al.|
2024)) to reduce the cost of manual annotation.

However, our priori experiments show that this “one-size-fits-all” approach does not work in all areas. In
tasks such as sentiment classification (Brauwers & Frasincar} [2022; |Jiang et al., |2011)) and toxicity classifica-
tion (Van Aken et al.| 2018; [He et al.l 2024; |Li et al.l 2024al), LLMs without special training perform much
worse than smaller models that have been specifically fine-tuned (see Figure [I[a)). Besides, the annotation
cost is often prohibitively expensive, especially when scaling to large datasets. For example, annotating
100,000 short reviews—each averaging 1024 input tokens and 20 output tokens—using GPT-ol (at $15 per
1M input tokens and $60 per 1M output tokens) will cost roughly $1,656. In contrast, the annotation cost
of SLMs is almost negligible.

So can we do the opposite: let SLMs (e.g., BERT (Devlin et al.,[2019) and Roberta (Liu et al.,[2019)) take on
the “main force” of data annotation, and efficiently generate initial annotations with its low annotation cost
and rich domain knowledge; and when SLMs have low confidence or the sample is more difficult, LLMs will
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Figure 1: (a) Comparison of classification performance between Large Language Models (LLMs) and Small
Language Models (SLMs) on two sentiment classification tasks, proving that SLMs outperform LLMs on
domain-related tasks. (b) Classification performance of LLMs and SLMs on 3 sentiment classification datasets
(MTEB-Sentiment, JPP-Sentiment, LYT-Sentiment) and 3 toxicity classification datasets (KC-Toxicity, JW-
Toxicity, HG-Toxicity), illustrating that SLMs exhibit weaker generalization than LLMs.
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Figure 2: Different data annotation paradigms. (a) represents the traditional manual annotation paradigm.
(b) denotes SLM-based annotation paradigm. (c) is the most popular LLM-based annotation paradigm. (d)
denotes the multi-model collaborative annotation paradigm proposed by us. Our paradigm can not only
improve the annotation accuracy, but also significantly reduce the annotation cost.

provide secondary review, so as to balance cost-effectiveness and annotation quality. The reason for using
LLMs to re-verify difficult examples is that although SLMs outperform LLMs on their familiar domains,
their limited generalization ability is unreliable in the case of diverse real data annotations (see Figure [T{b)).
This multi-model collaborative annotation paradigm can not only reduce overall API overhead, but
also leverage the powerful reasoning capabilities of LLMs to improve the labeling accuracy of key samples.
Table [T] and Figure 2] illustrate the difference between our proposed annotation paradigm and other existing
paradigms.

In this paper, we introduce a self-evolving Automated Data Annotation framework, dubbed as AutoAn-
notator, to improve the existing annotation paradigm. AutoAnnotator coordinates both the generative
generation and reasoning capabilities of LLMs and the fine-grained task determination capabilities of SLMs,
achieving adaptive model selection, automatic code generation, multi-model consensus annotation, and model
iterative evolution. By leveraging the low-cost efficiency of SLMs and selectively invoking LLMs only when
necessary, our framework significantly reduces annotation cost while achieving superior or comparable an-
notation quality. By leveraging the low-cost, domain-specific nature of SLMs and selectively invoking LLMs
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Table 1: Comparison of efficiency, accuracy and generalization ability of different annotation paradigms.

Human SLMs LLMs AutoAnnotator

No manual labeling required
Low annotation cost
High labeling accuracy
Good generalization

NN X X%
I NN
AR IR TSN
AN NN

only when necessary, AutoAnnotator significantly reduces annotation costs while achieving superior annota-
tion performance.

The entire AutoAnnotator framework can be viewed as a hybrid expert system and consists of two layers: a
meta-controller layer and a task-specialist layer. Specifically, the meta-controller layer, powered by LLMs,
is responsible for selecting appropriate SLMs from Hugging FaceE| based on the given annotation task and
automatically generating the code required for the entire annotation process. Since SLMs have limited
generalization ability on out-of-domain (difficult) samples, and LLMs have stronger generalization due to
pre-training on massive and diverse data, meta-controller will call LLMs to perform a second review of
these difficult samples, thereby significantly improving the generalization performance of the overall labeling
system.

The task-specialist layer comprises the selected SLMs by the meta-controller layer. Specifically, each input
is fed to all SLMs, and the predictions of these SLMs are aggregated through a majority voting consensus
mechanism to generate high-confidence labels. Samples that do not reach the consensus threshold are
automatically labeled and returned to the meta-controller layer for secondary verification using the LLM.
Once the hard-sample pool reaches a predefined threshold, these expert-verified examples trigger an iterative
fine-tuning cycle: each SLM is updated on the collected hard samples, and the refined models then rejoin
the consensus pool for subsequent annotation. This continual enhancement loop ensures that the specialists
progressively improve their generalization. Overall, our contributions can be summarized as follows:

e A new paradigm of data annotation. We propose the paradigm of LLMs guidance with SLMs
execution, where LLM uses its powerful generation and reasoning capabilities to build the annotation
environment and review the annotation results, while SLMs apply their domain-specific knowledge
to carry out the actual labeling.

o A fully automatic annotation framework. We introduce a two-layer annotation framework Awu-
toAnnotator, which fully automates the annotation model selection, code generation, annotation
verification, and annotation model iterative update process.

e Cost Reduction and Improved Performance. AutoAnnotator outperforms existing opened-
source LLMs (7B-70B) and API models (including Minimax, Deepseek-V3, Deepseek-R1, GPT-
3.5-turbo and GPT-40), and consistently maintains optimal performance under multiple labeling
strategies such as zero-shot, one-shot, CoT, and majority-vote. Besides, AutoAnnotator reduces
the annotation cost by 74.15% compared to directly annotating with GPT-3.5-turbo, while still
improving the accuracy by 6.21%.

2 Related Work

LLM-Based Data Annotation. Thanks to the remarkable capabilities of LLMs across a wide range of
tasks, recent research has gained increased interest in using LLMs for data annotation. For instance, |[Jadhav
et al.| (2024) utilize both closed-source and open-source LLMs to annotate a low-resource language Marathi.
Chen et al|(2024) utilize LLMs to generate samples that are consistent with the data distribution of the
benchmark dataset for event extraction, thereby alleviating the challenges of data imbalance and scarcity.

Thttps://huggingface.co
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Figure 3: Visualization of the pipeline of AutoAnnotator. AutoAnnotator consists of two layers: a meta-
controller layer and a task-specialist layer. The meta-controller layer, powered by LLMs, is responsible for
selecting appropriate SLMs from Hugging Face, automatically generating the code required for the entire
annotation process and performing secondary review on samples that are difficult for SLMs. The task-
specialist layer comprises the selected SLMs by the meta-controller layer. SLMs use a majority voting
mechanism to annotate samples and periodically use difficult samples from LLMs for secondary review to
continuously update themselves.

Similarly, [Li et al.| (2024b) use LLMs for high-quality code retrieval query annotation. |Choi et al.| (2024])
extend cost-effective LLM-based annotation beyond traditional data annotation tasks to filter out noisy
documents from a multi-document summarization dataset. |Liu et al|(2025) leverage LLMs in combination
with historically annotated data and expert-constructed codebooks to extrapolate and extend longitudinal
network datasets into future periods. Besides, some studies use LLMs to improve the original annotations
made by human annotators (Laskar et al.. [2023; |[Flamholz et al. 2024]). Although LLM-based data annotation
methods have made significant progress, their application still faces two major challenges: on the one hand,
the high cost of APT calls makes it difficult to achieve large-scale economy; on the other hand, in tasks that
require fine-grained semantic understanding (such as sentiment classification (Brauwers & Frasincar, 2022;
Jiang et al 2011) and toxicity classification (Van Aken et al., [2018; [He et al., [2024; [Li et al., [2024a))), the
annotation performance of LLMs is often inferior to that of specially fine-tuned SLMs.

Collaboration between LLMs and SLMs. Collaboration between LLMs and SLMs combines the for-
mer’s generalization and reasoning strengths with the latter’s efficient, domain-specific expertise, yielding
superior performance and cost-efficiency across various tasks, especially on resource-constrained edge devices.
For example, Xu et al.| (2023) use predictions from SLMs to improve LLM in-context learning. CoGene-
sis (Zhang et al. 2024) integrates LLMs (hosted on cloud infrastructure) and SLMs (deployed on local
devices) to address privacy concerns logically. CITER (Zheng et al. [2025) adopts a token-level routing
strategy, routing non-critical tokens to the SLM to improve effciency, while routing critical tokens to the
LLM to ensure generation quality. Collab-RAG (Xu et al., |2025) employs an SLM to decompose complex
queries and improves the SLM’s decomposition ability through feedback signals provided by a black-box
LLM. |Glocker et al.| (2025) use a task-specific LLM as the “brain” to drive multiple field-specialized SLMs
to perform sub-tasks such as routing and task planning. Inspired by existing studies on LLMs and SLMs
collaboration, we innovate the existing LLM-based annotation framework and propose a two-layer automated
annotation system, with LLMs as guidance and SLMs as execution.

3 Method

In this section, we delve into the AutoAnnotator, a hierarchical system that synergizes LLMs with SLMs
for automated data annotation. As illustrated in Figure|3] the system operates through two interdependent
layers: the Meta-Controller Layer and the Task-Specialist Layer. This design complements the pow-
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erful generation and reasoning capabilities of the LLMs with the efficient domain expertise of the SLMs, not
only achieving better annotation performance, but also significantly reducing annotation costs.

3.1 Meta-Controller Layer

The Meta-Controller Layer serves as the decision-making unit that orchestrates the entire annotation process.
It mainly implements three core functions: adaptive model selection, automatic code generation and difficult
sample verification. Next, we will introduce these functions in detail.

Adaptive Model Selection. Assuming there is a dataset D = {x1,22,...,2,} to be annotated, AutoAn-
notator first needs to determine SLMs for annotation. However, faced with millions of open-source modeld?]
on platforms such as HuggingFaceEL non-professionals often find it difficult to filter out models that are
suitable for the current task from the complex model descriptions. To address this challenge, we built an
adaptive model selection engine using LLMs, eliminating human intervention in model selection. Specifically,
given an annotation task 7T, we utilize the LLM to give a list of task-related model recommendations by
querying about 1.69M HuggingFace models, and take the Top-k models for annotation. This process can be
formulated as follows:

M, = Top-k (sim (from (1), fuim(d))), (1)
where d denotes the description of the corresponding model.

Automatic Code Generation. After obtaining the recommendation list, an intuitive method is to down-
load and deploy these models locally. Then, we can start the data annotation and subsequent processing
steps. However, in this workflow, many processes usually require manual programming, such as SLMs deploy-
ment, data annotation, and SLMs fine-tuning, which makes the entire process labor-intensive. To address
this limitation and maximize automation, we equip the meta-controller layer with an automatic code gen-
eration capability. Given the powerful code generation capabilities of LLMs (Wang & Chen, 2023; Roziere
et al., |2023; [Jiang et al. |2024)), we directly prompt it to generate all the scripts required for the annotation
pipeline.

Difficult Sample Verification. While SLMs exhibit superior performance on domain-specific annotation
tasks, they often struggle with out-of-domain samples. In other words, SLMs have limited generalization
ability, making them less reliable when performing complex annotation tasks. In contrast, LLMs, especially
those like GPTs and DeepSeek, trained on diverse data, show stronger generalization capabilities (Li et al.,
2025) and can better handle more complex situations (see Figure (a)). To this end, AutoAnnotator lever-
ages LLMs in the meta-controller layer to perform secondary validation on complex or uncertain samples,
achieving both high accuracy and strong generalization across various data conditions.

3.2 Task-Specialist Layer

The Task-Specialist Layer is responsible for the actual annotation, using a set of lightweight, domain-specific
pre-trained SLMs to efficiently label the data. It consists of two components: the Multi-Model Consensus
Annotation module and the Expert-Guided Iterative Refinement module.

Multi-Model Consensus Annotation. As mentioned earlier, SLMs exhibit poor generalization ability.
To address this, we aggregate predictions from a diverse pool of SLMs and only accept labels on which they
reach high agreement. Formally, let D = {z;}}¥; be the unlabeled dataset and M = {my, ma,--- ,my} be
the pool of SLMs recommended from the Meta-Controller Layer. For each data sample x; € D, run all k
models in parallel to obtain their annotation results:

Vi = {yﬁl),y§z),---7y§k)}- (2)

The final label g; is determined by majority voting of these & models:

§; = Majority Voting ();) . (3)

2As of May 12, 2025, there are 1,685,478 open source models on HuggingFace.
Shttps://huggingface.co/
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Table 2: The appropriate Hugging Face models selected by LLMs based on the type of annotation task.

Task Type | Model ID | Parameters | HF Downloads | Nick name
cardiffnlp/twitter-roberta-base-sentiment-latest 125M 2.43M SLM1
Sentiment cardiffnlp/twitter-xlm-roberta-base-sentiment 125M 2.06M SLM2
finiteautomata/bertweet-base-sentiment-analysis 110M 1.06M SLM3
s-nlp/roberta__ toxicity_ classifier 110M 160K SLM1
Toxicity JungleLee/bert-toxic-comment-classification 110M 46.3K SLM2
garak-1lm /toxic-comment-model 67M 9.67K SLM3

In order to evaluate the degree of consensus among models, the uncertainty metric U is introduced, which
is defined as: '
max, # {ng) = y}

; , 4)

Z/{(Z‘i)=1—

where # {yfj ) = y} represents the number of models that predict y. If U (x;) is greater than the predefined
value €, the sample is considered to have a large disagreement and is automatically stored in the secondary

review pool Dparq:
Direct Labeling U(z) <€
Secondary Review U(z) > e.

Route(x) = { (5)
The Task-Specialist Layer dynamically selects between two verification modes (automatic LLM annotation
or manual human annotation) based on user needs and cost-accuracy trade-off analysis.

Expert-Guided Iterative Refinement. To explicitly enhance the generalization of specialist SLMs on
difficult (out-of-domain) samples, we introduce a continual fine-tuning procedure guided by expert labels
(from either LLMs or human annotators). Specifically, once the number of samples in the hard sample pool
Dhara reaches a predefined size 3, we pause the consensus annotation and start the continual fine-tuning
cycle. For each SLM m; € M, we fine-tune it on Dy,,q for up to a budgeted number of epochs, producing
updated specialists m}. Taking the model m; as an example, we define the loss function as follows:

L (9> = Z CE(ml(xv 9)7 y)7 (J}, y) € Dhard (6)
where CE(+) represents the cross-entropy loss. Then gradient descent is used to update the parameters:
0 60— aVyL(h), (7)

where « denotes the learning rate. Subsequently, the refined model m/ replaces m; for annotation. After
that, we resume annotation on remaining unlabeled data until Dy,.q exceeds S again, triggering a further
cycle of continuous fine-tuning.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effectiveness of AutoAnnotator, we conduct extensive experiments on
two representative annotation tasks, sentiment classification and toxicity classification, using a total
of six real-world datasets. Specifically, in this study, we select mteb/tweet_sentiment_ extraction,
jppgks/twitter-financial-news-sentiment and LYTinn/sentiment-analysis-tweet for the sentiment classifi-
cation task and karthikarunr/Cyberbullying-Toxicity-Tweets, jiaxin-wen/Implicit-Toxicity and heegyu/-
toxic_ conversations_balanced for the toxicity classification task. We provide a detailed introduction to
these dataset in the Appendix[A] To simplify the description, we use the following aliases for these datasets:
MTEB-Sentiment, JPP-Sentiment, LYT-Sentiment, KC-Toxicity, JW-Toxicity, and HG-Toxicity, respec-
tively.
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Models. In AutoAnnotator, all SLMs involved in annotation are automatically selected by the LLM in the
meta-controller layer based on task characteristics. In this paper, we select 3 SLMs for each annotation task
by default. We provide details of the model selected by the LLM in Table

Implementation Details. By default, we use 3 (k = 3) SLMs for each annotation task. Once the hard-
sample pool Dy,.q reaches a predefined threshold 8 = 2,000, we will pause to fine-tune all 3 specialists on
Dhard, ensuring they can continually learn new things throughout the annotation process.

We provide detailed ablation experiments in Section As for fine-tuning the SLMs, we set the initial
learning rate, weight decay and epoch to 2e — 5, 0.01 and 3, respectively. All experiments are conducted on
2 NVIDIA A100.

Methods for Comparison. To evaluate the effectiveness of AutoAnnotator, we compare it with three
types of baselines: (1) SLMs selected by the LLM in the meta-controller layer (2) Open-source LLMs, range
from Mistral-7B, Baichuan2-7B (Yang et al., [2023), Qwen2.5-7B-Instruct (Yang et al., [2024), Llama3.1-8B-
Instruct (Grattafiori et al.,2024), Llama2-13B (Touvron et al., [2023]), QwQ-32B and Llama3-70B (Grattafiori
et al., [2024). (3) API models, such as MiniMax, DeepSeek V3 (Liu et al., |2024]), DeepSeek R1 (Guo et al.,
2025) and GPT-3.5-Turbo. We provide all prompts used by baselines and AutoAnnotator in Table |B| and
Table [Al

4.2 Main Experiment Results

Comparison with SLMs. As shown in Table [3] under the “SLMs Only” setting, the strongest SLM
achieves 72.74% average accuracy on sentiment tasks and 63.83% on toxicity. By integrating these SLMs
into our AutoAnnotator framework, we boost sentiment accuracy to 74.59% (+1.85%) and toxicity to 77.56%
(+13.73%). These experimental results demonstrate that AutoAnnotator can significantly improve the per-
formance of SLMs on sentiment classification and toxicity classification annotation tasks.

[Sentiment Classification] Warren Buffett Just Became More Heavily Invested In Rat Poison Cryptocurrency.

@ Negative & Negative -f]ﬂﬂﬂ Negative AutoAnnotator Neutral
X X X v

[Toxicity Classification] Just keep your head up...you kick so much ass...

@ Non-toxic & Non-toxic J]ﬂpﬂ Non-toxic AutoAnnotator Toxic
X X X v

Figure 4: Visualization of representative samples correctly annotated by AutoAnnotator but misclassified by
APIs.

Comparison with Open-sourced LLMs. To benchmark AutoAnnotator against open-source LLMs, we
evaluate the latter in three widely used annotation settings, zero-shot, one-shot, and chain-of-thought (Wei
et al., [2022) (CoT) prompting, on both sentiment and toxicity classification tasks. As for the one-shot
setting, each model is given a single in-context example before annotation. As for the CoT setting, we add
a CoT prompt “Let’s think step by step like an operations research expert.” behind the zero-shot prompt.
Among these settings, we find that one-shot prompting consistently outperforms zero-shot, as the single
in-context example helps the model calibrate its label distributions and reduces misunderstanding of the
task. By contrast, chain-of-thought prompting hints only marginally improve annotation accuracy, which we
believe is because the generated step-by-step reasoning shifts the model’s focus away from the classification
task. Overall, AutoAnnotator consistently outperforms zero-shot, one-shot, and chain-of-thought prompting
strategies, demonstrating its superior annotation accuracy and validating the effectiveness of our multi-model
collaborative paradigm.

Comparison with API Models. We further benchmark against API models, including Minimax,
Deepseek-V3, Deepseek-R1 and GPT-3.5-turbo. We report our main results in Table The strongest
Minimax achieves 71.06% average accuracy on sentiment tasks, while Deepseek-V3 leads toxicity at 74.44%.
By integrating these API models into AutoAnnotator, we boost sentiment accuracy to 74.59% (+3.53%) and
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Table 3: Comparison of the proposed AutoAnnotator with existing methods on different toxicity and sen-
timent annotation tasks. It is worth noting that the SLM1 for sentiment classification and the SLM1 for
toxicity classification are not the same model. The specific models of each model are shown in Table [2]

Sentiment Classification Toxicity Classification
Model MTEB-Sentiment ~ JPP-Sentiment LY T-Sentiment Avg # LLM Calls KC-Toxicity JW-Toxicity HG-Toxicity Avg # LLM Calls
SLMs Only
SLM1 70.43% 70.31% 75.54% 72.09% 0 66.88% 40.56% 84.06% 63.83% 0
SLM2 69.55% 59.76% 72.52% 67.28% 0 59.27% 44.07% 80.87% 61.40% 0
SLM3 70.17% 69.22% 78.83% 72.74% 0 68.13% 39.30% 67.07% 58.17% 0
Open-source LLMs, Zero-shot
Mistral-7B-V0.2 35.91% 23.24% 28.37% 29.17% 38396 68.43% 56.32% 55.14% 59.96% 48475
Baichuan2-7B-Base 38.66% 24.96% 30.38% 31.33% 38396 20.99% 61.22% 67.68% 49.96% 48475
Qwen2.5-7B-Instruct 65.62% 74.62% 67.66% 69.30% 38396 63.92% 76.25% 77.20% 72.46% 48475
Llama3.1-8B-Instruct 51.90% 57.37% 53.15% 54.14% 38396 72.08% 63.14% 60.03% 65.08% 48475
Llama2-13B 48.85% 38.90% 51.02% 46.26% 38396 55.29% 75.71% 67.08% 66.03% 48475
QwQ-32B 54.28% 69.01% 53.72% 59.00% 38396 70.81% 7.87% 72.61% 73.76% 48475
Llama3-70B 46.82% 39.87% 44.33% 43.67% 38396 49.62% 70.60% 69.56% 63.26% 48475
Open-source LLMs, One-shot
Mistral-7B-V0.2 45.24% 40.58% 44.57% 43.46% 38396 78.73% 69.86% 55.70% 68.10% 48475
Baichuan2-7B-Base 40.30% 66.46% 33.37% 46.71% 38396 77.60% 87.40% 58.88% 74.63% 48475
Qwen2.5-7B-Instruct 67.03% 73.62% 65.32% 68.66% 38396 58.13% 79.18% 71.06% 69.46% 48475
Llama3.1-8B-Instruct 59.30% 63.36% 58.37% 60.34% 38396 58.65% 73.83% 64.25% 65.58% 48475
Llama2-13B 58.50% 68.17% 63.04% 63.24% 38396 66.98% 88.79% 74.11% 76.63% 48475
QwQ-32B 55.59% 68.47% 37.16% 53.74% 38396 62.50% 87.80% 76.19% 75.50% 48475
Llama3-70B 49.58% 58.08% 50.93% 52.86% 38396 65.05% 71.02% 64.58% 66.88% 48475
Open-source LLMs, CoT
Mistral-7B-V0.2 40.46% 23.91% 34.20% 32.86% 38396 49.74% 74.90% 69.29% 64.64% 48475
Baichuan2-7B-Base 36.53% 23.74% 29.49% 29.92% 38396 47.55% 80.47% 66.70% 64.91% 48475
Qwen2.5-7B-Instruct 55.44% 68.72% 63.52% 62.56% 38396 60.27% 68.12% 76.19% 68.19% 48475
Llama3.1-8B-Instruct 51.74% 58.17% 53.75% 54.55% 38396 47.93% 62.54% 64.56% 58.34% 48475
Llama2-13B 51.24% 36.22% 45.93% 44.46% 38396 57.74% 71.31% 69.99% 66.35% 48475
QwQ-32B 50.15% 68.43% 55.20% 57.93% 38396 67.79% 80.53% 75.68% 74.67% 48475
Llama3-70B 46.81% 42.711% 46.94% 45.49% 38396 50.61% 69.66% 71.07% 63.78% 48475
APT Models
Deepseek-V3 64.82% 76.38% 69.68% 70.29% 38396 62.74% 81.30% 79.27% 74.44% 48475
Deepseek-R1 66.57% 74.25% 67.90% 69.57% 38396 75.31% 74.26% 77.10% 75.56% 48475
Minimax-abab6.5s-chat 67.37% 77.22% 68.58% 71.06% 38396 72.37% 68.18% 76.14% 72.23% 48475
GPT-3.5-turbo 65.14% 72.91% 69.26% 69.10% 38396 61.20% 74.63% 78.21% 71.35% 48475
LLMs, Majority Vote
7 Open-source LLMs Voting (zero-shot) 54.69% 55.86% 57.65% 56.07% 268772 65.20% 76.63% 77.09% 72.97%
7 Open-source LLMs Voting (one-shot) 63.20% 71.23% 59.58% 64.67% 268772 69.72% 86.73% 72.99% 76.48%
4 API Models Voting 67.78% 77.85% 70.80% 72.14% 153584 72.07% 72.09% 79.47% 74.54%
AutoAnnotator (Ours)
AutoAnnotator+Minimax 67.78% 81.20% 74.80% 74.59% 10643 73.73% 73.75% 83.55% 77.01% 18210
AutoAnnotator+Deepseek-V3 66.77% 77.96% 73.61% 72.78% 10537 61.29% 85.29% 83.25% 76.61% 17886
AutoAnnotator+GPT-3.5-turbo 67.89% 78.56% 72.90% 73.12% 10065 67.69% 82.02% 82.97% 77.56% 18942
AutoAnnotator+Human 78.33% 82.83% 84.13% 81.76% 8 83.50% 89.66% 91.78% 88.31% 8

Table 4: Comparison of annotation cost and efficiency between API models and AutoAnnotator.

Model Token (Input+Output) GPU Memory Time Cost Time Reduction Cost Cost Reduction
Deepseek-V3 88023 - 71.19 minutes - 0.027202 $ -
AutoAnnotator+Deepseek-V3 25629 4458 MB 26.06 minutes 63.40% 0.008085 $ 70.28%
Deepseek-R1 356532 - 212.93 minutes - 0.650334 $ -
AutoAnnotator+Deepseek-R1 109666 4458 MB 39.40 minutes 81.50% 0.211581 $ 67.47%
Minimax 91724 - 93.70 minutes - 0.012723 $§ -
AutoAnnotator+Minimax 19357 4458 MB 30.67 minutes 67.27% 0.003112 $§ 75.54%
GPT-3.5-turbo 88514 - 34.17 minutes - 0.048423 $ -
AutoAnnotator+GPT-3.5-turbo 22235 4458 MB 17.75 minutes 48.05% 0.012519 $ 74.15%
GPT-4 88027 - 30.56 minutes - 2.751180 $ -
AutoAnnotator+GPT-4 23843 4458 MB 18.34 minutes 40.00% 0.754470 $ 72.58%
GPT-40 87915 - 23.20 minutes - 0.246540 $ -
AutoAnnotator+GPT-40 22087 4458 MB 15.21 minutes 34.44% 0.064300 $ 73.92%

toxicity to 76.61% (+2.17%). Similarly, when GPT-3.5-turbo is used alone, the sentiment accuracy reaches
69.10% and the toxicity accuracy reaches 71.35%; when integrated into AutoAnnotator, the sentiment accu-
racy rises to 73.12% (44.02%) and the toxicity accuracy rises to 77.56% (+6.21%). Besides, compared with
direct LLM annotation, AutoAnnotator significantly reduces the number of LLM calls (60%+ for sentiment
tasks and 70%+ for toxicity tasks). It is worth noting that AutoAnnotator not only outperforms existing
API models in terms of performance, but also far exceeds them in terms of annotation cost and efficiency
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(see below). We provide some samples that AutoAnnotator can annotate correctly, but API models annotate
incorrectly in Figure [

Comparison with LLM Majority-Vote. We additionally evaluate majority voting across multiple LLMs.
As shown in Table [3] AutoAnnotator+Minimax needs only 10,643 API calls to achieve 74.59% sentiment
accuracy, outperforming both open-source and API-voting baselines while reducing LLM calls by over 93%.
Regardless of whether we ensemble multiple open-source or API LLMs—even with zero-shot or one-shot
voting—AutoAnnotator consistently outperforms all voting schemes while using far fewer LLM calls.

The efficiency and cost of AutoAnnotator. To evaluate the annotation cost and efficiency of API
models and AutoAnnotator, we conduct a quantitative analysis from three dimensions: computing resource
consumption (the number of tokens and GPU memory usage), annotation time cost, and economic cost. All
experiments are performed on NVIDIA A100 GPUs, and the annotation task scale is uniformly set to 1000
samples. As for our AutoAnnotator, we set the S = 200. We conduct experiments on Deepseek-V3, Deepseek-
R1, Minimax, GPT-3.5-turbo, GPT-4 and GPT-4o, respectively. As shown in Table ] AutoAnnotator
reduces the annotation time by 34.44% (GPT-40) to 81.50% (Deepseek-R1), with an average reduction of
55.85%. Besides, the annotation cost is reduced by 75.54% (Minimax) at the highest and 67.47% (Deepseek-
R1) at the lowest, with an average saving of 72.32%. In Table 4] we provide the annotation time cost for
the whole pipeline of AutoAnnotator. Herein, we further provide the annotation time cost for SLMs as
well as their fine-tuning cost. For a fair comparison, we annotate and fine-tune on the same 1000 difficult
samples. As shown in Table 5] compared to LLMs, SLMs require significantly less time for annotation and
fine-tuning, typically under 1 minute in total per model. In contrast, LLM-based annotation is substantially
more time-consuming, with labeling times ranging from 23 to over 200 minutes depending on the model.
This highlights the practical advantage of using SLMs for efficient labeling and fine-tuning in real-world
scenarios. In general, AutoAnnotator has achieved a significant improvement in annotation efficiency and a
significant reduction in annotation costs while maintaining annotation quality through the LLMs and SLMs
collaborative annotation paradigm.

Table 5: Detailed comparison of the time cost of annotation and fine-tuning with SLMs and the time cost
of annotation with LLMs.

SLMs | LLMs
Model Labeling Finetuning Total ‘ Model Labeling

cardiffnlp/twitter-roberta-base-sentiment-latest ~ 0.32 minutes  0.54 minutes 0.86 minutes Deepseek-V3 71.19 minutes
cardiffnlp/twitter-xlm-roberta-base-sentiment ~ 0.38 minutes 0.66 minutes 1.04 minutes Deepseek-R1 212.93 minutes
finiteautomata/bertweet-base-sentiment-analysis ~ 0.30 minutes 0.58 minutes 0.88 minutes | Minimax-abab6.5s-chat ~ 93.70 minutes
s-nlp/roberta_ toxicity _classifier 0.29 minutes  0.56 minutes 0.85 minutes GPT-3.5-turbo 34.17 minutes
JungleLee/bert-toxic-comment-classification 0.29 minutes  0.52 minutes 0.81 minutes GPT-4o 23.20 minutes
garak-1lm/toxic-comment-model 0.23 minutes  0.35 minutes 0.58 minutes GPT-4 30.56 minutes

Table 6: The impact of the number of SLMs Table 7: The impact of the number of hard samples used
used for annotation on the annotation perfor- for continuous fine-tuning at each stage on the final perfor-

mance. mance,
k 2 3 4 5 B 500 1000 2000 3000
Acc 73.32% 78.56% 76.26% 76.26% Acc 76.17% T73.91% 78.56% 73.12%

4.3 Ablation Study

The number of SLMs used in the task-specialist layer. To explore the impact of the number of SLMs
on the annotation performance, we perform ablations on the JPP-Sentiment dataset using GPT-3.5-turbo
as the meta-controller LLM. We vary the number of SLMs k participating in the multi-model consensus
annotation from 2 to 5 and report the final annotation accuracy in Table [f] We find that the annotation
performance is best when k = 3. Therefore, considering the computational cost and annotation accuracy,
we use k = 3 as the default in this paper.
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The annotation accuracy between SLMs and LLMs on the hard sample pool. To verify that
LLMs indeed improve annotation quality, we report the accuracy on JPP-Sentiment dataset of SLMs and
LLMs for samples in the hard sample pool, using gold labels for evaluation. As shown in Table [§] LLMs
consistently outperform SLMs on difficult samples, achieving notably higher annotation accuracy.

The number of samples in the hard sample pool Dyparq. To explore the impact of the number of hard
samples used for continuous fine-tuning at each stage on the annotation performance, we perform ablations
on the JPP-Sentiment dataset using GPT-3.5-turbo. We set the sample size § to {500, 1000, 2000, 3000}. As
shown in Table[7] we find that the annotation performance peaks at 3 = 2000, therefore, we adopt 3 = 2000
as the default hard-sample batch size in this paper.

Table 8: The annotation accuracy between SLMs and LLMs on the hard sample pool.
Number of Difficult Samples Model Acc

cardiffnlp/twitter-roberta-base-sentiment-latest ~ 58.83%
cardiffnlp/twitter-xlm-roberta-base-sentiment 42.97%

2881 finiteautomata/bertweet-base-sentiment-analysis ~ 57.20%
GPT-3.5-turbo 65.29%

cardiffnlp/twitter-roberta-base-sentiment-latest ~ 58.39%
cardiffnlp/twitter-xlm-roberta-base-sentiment 42.77%

2836 finiteautomata/bertweet-base-sentiment-analysis ~ 56.52%
Minimax-abab6.5s-chat 68.48%

cardiffnlp/twitter-roberta-base-sentiment-latest ~ 61.75%
cardiffnlp/twitter-xlm-roberta-base-sentiment ~ 47.11%

3148 finiteautomata/bertweet-base-sentiment-analysis  61.50%
Deepseek-V3 69.85%

5 Conclusion

In this paper, we propose a new paradigm for multi-model collaborative annotation and designs a fully
automatic annotation framework AutoAnnotator based on it. Specifically, AutoAnnotator consists of a
meta-controller layer and a task-specialist layer. Specifically, the meta-controller layer is responsible for
recommending appropriate annotation SLMs, generating the code required for annotation, and rechecking
difficult samples that cannot be determined by SLMs. while the task-specialist layer is responsible for the
actual annotation. To enhance the generalization of the SLMs, we use the difficult samples obtained from
the second verification of the LLM as a reinforcement learning set, and periodically send it to the SLMs
for continuous fine-tuning. Extensive experiments demonstrate the effectiveness of AutoAnnotator on six
datasets.

Limitations

While promising, there are still some drawbacks of AutoAnnotator. The model selection, code generation,
and difficult sample review of the entire framework are all driven by LLMs. Therefore, the performance of
AutoAnnotator depends to a certain extent on the quality of LLMs.
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