
Published in Transactions on Machine Learning Research (12/2025)

AutoAnnotator : A Collaborative Annotation Framework for
Large and Small Language Models

Yao Lu yaolu.zjut@gmail.com
Institute of Cyberspace Security, Zhejiang University of Technology
Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology
Centre for Frontier AI Research, Agency for Science, Technology and Research

Zhaiyuan Ji jizhaiyuan@gmail.com
Institute of Cyberspace Security, Zhejiang University of Technology
Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology

Jiawei Du dujw@a-star.edu.sg
Centre for Frontier AI Research, Agency for Science, Technology and Research
Institute of High Performance Computing, Agency for Science, Technology and Research

Shanqing Yu yushanqing@zjut.edu.cn
Institute of Cyberspace Security, Zhejiang University of Technology
Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology

Qi Xuan xuanqi@zjut.edu.cn
Institute of Cyberspace Security, Zhejiang University of Technology
Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology

Joey Tianyi Zhou joey.tianyi.zhou@gmail.com
Centre for Frontier AI Research, Agency for Science, Technology and Research
Institute of High Performance Computing, Agency for Science, Technology and Research

Reviewed on OpenReview: https: // openreview. net/ forum? id= LauojtjA9F

Abstract

Although the annotation paradigm based on Large Language Models (LLMs) has made sig-
nificant breakthroughs in recent years, its actual deployment still has two core bottlenecks:
first, the cost of calling commercial APIs in large-scale annotation is very expensive; second,
in scenarios that require fine-grained semantic understanding, such as sentiment classifica-
tion and toxicity classification, the annotation accuracy of LLMs is even lower than that
of Small Language Models (SLMs) dedicated to this field. To address these problems, we
propose a new paradigm of multi-model cooperative annotation and design a fully au-
tomatic annotation framework AutoAnnotator based on this. Specifically, AutoAnnotator
consists of two layers. The upper-level meta-controller layer uses the generation and reason-
ing capabilities of LLMs to select SLMs for annotation, automatically generate annotation
code and verify difficult samples; the lower-level task-specialist layer consists of multiple
SLMs that perform annotation through multi-model voting. In addition, we use the difficult
samples obtained by the secondary review of the meta-controller layer as the reinforcement
learning set and fine-tune the SLMs in stages through a continual learning strategy, thereby

1

https://openreview.net/forum?id=LauojtjA9F

Published in Transactions on Machine Learning Research (12/2025)

(a) (b)

Figure 1: (a) Comparison of classification performance between Large Language Models (LLMs) and Small
Language Models (SLMs) on two sentiment classification tasks, proving that SLMs outperform LLMs on
domain-related tasks. (b) Classification performance of LLMs and SLMs on 3 sentiment classification datasets
(MTEB-Sentiment, JPP-Sentiment, LYT-Sentiment) and 3 toxicity classification datasets (KC-Toxicity, JW-
Toxicity, HG-Toxicity), illustrating that SLMs exhibit weaker generalization than LLMs.

improving the generalization of SLMs. Extensive experiments show that AutoAnnotator
outperforms existing open-source/API LLMs in zero-shot, one-shot, CoT, and majority vot-
ing settings. Notably, AutoAnnotator reduces the annotation cost by 74.15% compared to
directly annotating with GPT-3.5-turbo, while still improving the accuracy by 6.21%. The
code is available in https://github.com/Zhaiyuan-Ji/AutoAnnotator.

1 Introduction

High-quality annotated data is key to advancing deep learning (Emam et al., 2021; Rasmussen et al., 2022;
Taori et al., 2023; Ye et al., 2025; Jiang et al., 2025), yet acquiring such data requires specialized domain
expertise and is costly (Denton et al., 2021), especially when manually annotating a large number of samples.
With the rapid development of LLMs (Achiam et al., 2023; Guo et al., 2025; Team et al., 2025), their powerful
semantic understanding (Wu et al., 2023; Yu et al., 2025), contextual reasoning (Sun et al., 2024; Zhou, 2025;
Lan et al., 2025) and generation capabilities (Mo et al., 2024; Zhou et al., 2025) has driven researchers to
develop LLM-based annotation methods (Yadav et al., 2024; Chen et al., 2024; Wu et al., 2024a; Tekumalla
& Banda, 2023; Flamholz et al., 2024; Laskar et al., 2023; Ba et al., 2024) to reduce the cost of manual
annotation.

However, our priori experiments show that this “one-size-fits-all” approach does not work in all areas. In
tasks such as sentiment classification (Brauwers & Frasincar, 2022; Jiang et al., 2011) and toxicity classifica-
tion (Van Aken et al., 2018; He et al., 2024; Li et al., 2024a), LLMs without special training perform much
worse than smaller models that have been specifically fine-tuned (see Figure 1(a)). Besides, the annotation
cost is often prohibitively expensive, especially when scaling to large datasets. For example, annotating
100, 000 short reviews—each averaging 1024 input tokens and 20 output tokens—using GPT-o1 (at $15 per
1M input tokens and $60 per 1M output tokens) will cost roughly $1, 656. In contrast, the annotation cost
of SLMs is almost negligible.

So can we do the opposite: let SLMs (e.g., BERT (Devlin et al., 2019) and Roberta (Liu et al., 2019)) take on
the “main force” of data annotation, and efficiently generate initial annotations with its low annotation cost
and rich domain knowledge; and when SLMs have low confidence or the sample is more difficult, LLMs will

2

https://github.com/Zhaiyuan-Ji/AutoAnnotator

Published in Transactions on Machine Learning Research (12/2025)

Prompt
Label

(c) LLM-Based Annotation (d) Multi-model Collaborative Annotation

Guide
SLMs

Check

Easy Label

Hard Label

Label

(a) Human Annotation (b) SLM-Based Annotation

LabelSLMs

Figure 2: Different data annotation paradigms. (a) represents the traditional manual annotation paradigm.
(b) denotes SLM-based annotation paradigm. (c) is the most popular LLM-based annotation paradigm. (d)
denotes the multi-model collaborative annotation paradigm proposed by us. Our paradigm can not only
improve the annotation accuracy, but also significantly reduce the annotation cost.

provide secondary review, so as to balance cost-effectiveness and annotation quality. The reason for using
LLMs to re-verify difficult examples is that although SLMs outperform LLMs on their familiar domains,
their limited generalization ability is unreliable in the case of diverse real data annotations (see Figure 1(b)).
This multi-model collaborative annotation paradigm can not only reduce overall API overhead, but
also leverage the powerful reasoning capabilities of LLMs to improve the labeling accuracy of key samples.
Table 1 and Figure 2 illustrate the difference between our proposed annotation paradigm and other existing
paradigms.

In this paper, we introduce a self-evolving Automated Data Annotation framework, dubbed as AutoAn-
notator , to improve the existing annotation paradigm. AutoAnnotator coordinates both the generative
generation and reasoning capabilities of LLMs and the fine-grained task determination capabilities of SLMs,
achieving adaptive model selection, automatic code generation, multi-model consensus annotation, and model
iterative evolution. By leveraging the low-cost efficiency of SLMs and selectively invoking LLMs only when
necessary, our framework significantly reduces annotation cost while achieving superior or comparable an-
notation quality. By leveraging the low-cost, domain-specific nature of SLMs and selectively invoking LLMs
only when necessary, AutoAnnotator significantly reduces annotation costs while achieving superior annota-
tion performance.

Table 1: Comparison of efficiency, accuracy and generalization ability of
different annotation paradigms.

Human SLMs LLMs AutoAnnotator
No manual labeling required ✗ ✓ ✓ ✓

Low annotation cost ✗ ✓ ✗ ✓
High labeling accuracy ✓ ✓ ✗ ✓

Good generalization ✓ ✗ ✓ ✓

The entire AutoAnnotator
framework can be viewed
as a hybrid expert system
and consists of two layers: a
meta-controller layer and a
task-specialist layer. Specif-
ically, the meta-controller
layer, powered by LLMs, is
responsible for selecting ap-
propriate SLMs from Hugging
Face1 based on the given
annotation task and automatically generating the code required for the entire annotation process. Since
SLMs have limited generalization ability on out-of-domain (difficult) samples, and LLMs have stronger
generalization due to pre-training on massive and diverse data, meta-controller will call LLMs to perform a
second review of these difficult samples, thereby significantly improving the generalization performance of
the overall labeling system.

The task-specialist layer comprises the selected SLMs by the meta-controller layer. Specifically, each input
is fed to all SLMs, and the predictions of these SLMs are aggregated through a majority voting consensus
mechanism to generate high-confidence labels. Samples that do not reach the consensus threshold are

1https://huggingface.co

3

https://huggingface.co

Published in Transactions on Machine Learning Research (12/2025)

automatically labeled and returned to the meta-controller layer for secondary verification using the LLM.
Once the hard-sample pool reaches a predefined threshold, these expert-verified examples trigger an iterative
fine-tuning cycle: each SLM is updated on the collected hard samples, and the refined models then rejoin
the consensus pool for subsequent annotation. This continual enhancement loop ensures that the specialists
progressively improve their generalization. Overall, our contributions can be summarized as follows:

• A new paradigm of data annotation. We propose the paradigm of LLMs guidance with SLMs
execution, where LLM uses its powerful generation and reasoning capabilities to build the annotation
environment and review the annotation results, while SLMs apply their domain-specific knowledge
to carry out the actual labeling.

• A fully automatic annotation framework. We introduce a two-layer annotation framework Au-
toAnnotator , which fully automates the annotation model selection, code generation, annotation
verification, and annotation model iterative update process.

• Cost Reduction and Improved Performance. AutoAnnotator outperforms existing opened-
source LLMs (7B–70B) and API models (including Minimax, Deepseek-V3, Deepseek-R1, GPT-
3.5-turbo and GPT-4o), and consistently maintains optimal performance under multiple labeling
strategies such as zero-shot, one-shot, CoT, and majority-vote. Besides, AutoAnnotator reduces
the annotation cost by 74.15% compared to directly annotating with GPT-3.5-turbo, while still
improving the accuracy by 6.21%.

2 Related Work

LLM-Based Data Annotation. Thanks to the remarkable capabilities of LLMs across a wide range of
tasks (Zhao et al., 2025; Lu et al., 2024; Li et al., 2025b;a), recent research has gained increased interest in
using LLMs for data annotation. For instance, Jadhav et al. (2024) utilize both closed-source and open-source
LLMs to annotate a low-resource language Marathi. Chen et al. (2024) utilize LLMs to generate samples that
are consistent with the data distribution of the benchmark dataset for event extraction, thereby alleviating
the challenges of data imbalance and scarcity. Similarly, Li et al. (2024b) use LLMs for high-quality code
retrieval query annotation. Choi et al. (2024) extend cost-effective LLM-based annotation beyond traditional
data annotation tasks to filter out noisy documents from a multi-document summarization dataset. Liu et al.
(2025b) leverage LLMs in combination with historically annotated data and expert-constructed codebooks
to extrapolate and extend longitudinal network datasets into future periods. Besides, some studies use LLMs
to improve the original annotations made by human annotators (Laskar et al., 2023; Flamholz et al., 2024).
Although LLM-based data annotation methods have made significant progress, their application still faces
two major challenges: on the one hand, the high cost of API calls makes it difficult to achieve large-scale
economy; on the other hand, in tasks that require fine-grained semantic understanding (such as sentiment
classification (Brauwers & Frasincar, 2022; Jiang et al., 2011) and toxicity classification (Van Aken et al.,
2018; He et al., 2024; Li et al., 2024a)), the annotation performance of LLMs is often inferior to that of
specially fine-tuned SLMs.

Collaboration between LLMs and SLMs. Collaboration between LLMs and SLMs combines the for-
mer’s generalization and reasoning strengths with the latter’s efficient, domain-specific expertise, yielding
superior performance and cost-efficiency across various tasks, especially on resource-constrained edge devices.
For example, Xu et al. (2023) use predictions from SLMs to improve LLM in-context learning. CoGene-
sis (Zhang et al., 2024) integrates LLMs (hosted on cloud infrastructure) and SLMs (deployed on local
devices) to address privacy concerns logically. CITER (Zheng et al., 2025) adopts a token-level routing
strategy, routing non-critical tokens to the SLM to improve effciency, while routing critical tokens to the
LLM to ensure generation quality. Collab-RAG (Xu et al., 2025) employs an SLM to decompose complex
queries and improves the SLM’s decomposition ability through feedback signals provided by a black-box
LLM. Glocker et al. (2025) use a task-specific LLM as the “brain” to drive multiple field-specialized SLMs
to perform sub-tasks such as routing and task planning. Inspired by existing studies on LLMs and SLMs
collaboration, we innovate the existing LLM-based annotation framework and propose a two-layer automated
annotation system, with LLMs as guidance and SLMs as execution.

4

Published in Transactions on Machine Learning Research (12/2025)

Brain

Model Selection

Iterative RefinementConsensus Annotation
voting

Task-Specialist Layer

Code Generation

Unlabeled Data

loss

Meta-Controller Layer

toxicsentiment

Toxic classification
l Have you ever considered starting a

child abuse ring with your friends?

l I wish you a great day, and may all
your efforts be rewarded with
warmth.

…
Sentiment classification

l Early monday cramming... yay. Only
a few weeks left.

l That sucks to hear. I hate days like
that.

l Cooking microwave pizzas, yummy.
…

Secondary ReviewDeployment

Type

Field

Figure 3: Visualization of the pipeline of AutoAnnotator. AutoAnnotator consists of two layers: a meta-
controller layer and a task-specialist layer. The meta-controller layer, powered by LLMs, is responsible for
selecting appropriate SLMs from Hugging Face, automatically generating the code required for the entire
annotation process and performing secondary review on samples that are difficult for SLMs. The task-
specialist layer comprises the selected SLMs by the meta-controller layer. SLMs use a majority voting
mechanism to annotate samples and periodically use difficult samples from LLMs for secondary review to
continuously update themselves.

Multi-Agent LLM System. To enhance the problem-solving and decision-making capabilities of
LLMs (Zeng et al., 2025a;b), multi-agent LLM systems are introduced (Wu et al., 2024b; Liu et al., 2025a).
For example, Liang et al. (2023) and Du et al. (2023) use multi-agent debate as an effective method to
encourage divergent thinking and improve factuality and reasoning. MetaGPT (Hong et al., 2023) utilizes
multi-agent conversation framework to help automatic software development. Besides, AutoDefense (Zeng
et al., 2024) assigns different roles to LLM agents and employs them to complete the defense task collabo-
ratively. Lou et al. (2025) introduce a dynamic reputation filtering framework to quantify the honesty and
capability of agents, thereby improving agent selection efficiency. Recently, Wang et al. (2024) construct
a layered MoA architecture wherein each layer comprises multiple LLM agents to improve the reasoning
and language generation capabilities. Each agent takes all the outputs from agents in the previous layer as
auxiliary information in generating its response. However, these methods differ fundamentally from ours.
These multi-agent frameworks are homogeneous collaboration (LLM to LLM), while our AutoAnnotator is
a heterogeneous framework that uses a single LLM to coordinate and iteratively improve a set of low-cost
SLMs specifically for data annotation.

3 Method

In this section, we delve into the AutoAnnotator , a hierarchical system that synergizes LLMs with SLMs
for automated data annotation. As illustrated in Figure 3, the system operates through two interdependent
layers: the Meta-Controller Layer and the Task-Specialist Layer. This design complements the pow-
erful generation and reasoning capabilities of the LLMs with the efficient domain expertise of the SLMs, not
only achieving better annotation performance, but also significantly reducing annotation costs.

3.1 Meta-Controller Layer

The Meta-Controller Layer serves as the decision-making unit that orchestrates the entire annotation process.
It mainly implements three core functions: adaptive model selection, automatic code generation and difficult
sample verification. Next, we will introduce these functions in detail.

5

Published in Transactions on Machine Learning Research (12/2025)

Adaptive Model Selection. Assuming there is a dataset D = {x1, x2, . . . , xn} to be annotated, AutoAnno-
tator first needs to determine SLMs for annotation. However, faced with millions of open-source models2 on
platforms such as HuggingFace3, non-professionals often find it difficult to filter out models that are suitable
for the current task from the complex model descriptions. To address this challenge, we built an adaptive
model selection engine using LLMs, eliminating human intervention in model selection. Specifically, given
an annotation task T , we utilize the LLM to give a list of task-related model recommendations and take the
Top-k models for annotation. This process can be formulated as follows:

Mt = Top-k (sim (fLLM (T) , fLLM(d))) , (1)

where d denotes the description of the corresponding model. It is worth noting that when the annotation is
so niche that no pre-trained or fine-tuned SLM is available, in such a "cold start" scenario, a set of labeled
data is needed first. In this case, we can first use LLMs or manually annotate to generate a seed dataset for
training several initial SLMs. Then we replace SLMs recommended by LLM with these self-trained SLMs for
further experiments. We conduct an experiment in Section 4.2 to demonstrate the feasibility of this strategy.

Automatic Code Generation. After obtaining the recommendation list, an intuitive method is to down-
load and deploy these models locally. Then, we can start the data annotation and subsequent processing
steps. However, in this workflow, many processes usually require manual programming, such as SLMs deploy-
ment, data annotation, and SLMs fine-tuning, which makes the entire process labor-intensive. To address
this limitation and maximize automation, we equip the meta-controller layer with an automatic code gen-
eration capability. Given the powerful code generation capabilities of LLMs (Wang & Chen, 2023; Roziere
et al., 2023; Jiang et al., 2024), we directly prompt it to generate all the scripts required for the annotation
pipeline.

Difficult Sample Verification. While SLMs exhibit superior performance on domain-specific annotation
tasks, they often struggle with out-of-domain samples. In other words, SLMs have limited generalization
ability, making them less reliable when performing complex annotation tasks. In contrast, LLMs, especially
those like GPTs and DeepSeek, trained on diverse data, show stronger generalization capabilities (Li et al.,
2025c) and can better handle more complex situations (see Figure 1(a)). To this end, AutoAnnotator
leverages LLMs in the meta-controller layer to perform secondary validation on complex or uncertain samples,
achieving both high accuracy and strong generalization across various data conditions.

3.2 Task-Specialist Layer

The Task-Specialist Layer is responsible for the actual annotation, using a set of lightweight, domain-specific
pre-trained SLMs to efficiently label the data. It consists of two components: the Multi-Model Consensus
Annotation module and the Expert-Guided Iterative Refinement module.

Multi-Model Consensus Annotation. As mentioned earlier, SLMs exhibit poor generalization ability.
To address this, we aggregate predictions from a diverse pool of SLMs and only accept labels on which they
reach high agreement. Formally, let D = {xi}N

i=1 be the unlabeled dataset and M = {m1, m2, · · · , mk} be
the pool of SLMs recommended from the Meta-Controller Layer. For each data sample xi ∈ D, run all k
models in parallel to obtain their annotation results:

Yi =
{

y
(1)
i , y

(2)
i , . . . , y

(k)
i

}
. (2)

The final label ŷi is determined by majority voting of these k models:

ŷi = MajorityVoting (Yi) . (3)

In order to evaluate the degree of consensus among models, the uncertainty metric U is introduced, which
is defined as:

U (xi) = 1−
maxy #

{
y

(j)
i = y

}
k

, (4)

2As of May 12, 2025, there are 1, 685, 478 open source models on HuggingFace.
3https://huggingface.co/

6

Published in Transactions on Machine Learning Research (12/2025)

Table 2: The appropriate Hugging Face models selected by LLMs based on the type of annotation task.
Task Type Model ID Parameters HF Downloads Nick name

Sentiment
cardiffnlp/twitter-roberta-base-sentiment-latest 125M 2.43M SLM1
cardiffnlp/twitter-xlm-roberta-base-sentiment 125M 2.06M SLM2

finiteautomata/bertweet-base-sentiment-analysis 110M 1.06M SLM3

Toxicity
s-nlp/roberta_toxicity_classifier 110M 160K SLM1

JungleLee/bert-toxic-comment-classification 110M 46.3K SLM2
garak-llm/toxic-comment-model 67M 9.67K SLM3

where #
{

y
(j)
i = y

}
represents the number of models that predict y. If U (xi) is greater than the predefined

value ϵ, the sample is considered to have a large disagreement and is automatically stored in the secondary
review pool Dhard:

Route(x) =
{

Direct Labeling U(x) < ϵ

Secondary Review U(x) ≥ ϵ.
(5)

The Task-Specialist Layer dynamically selects between two verification modes (automatic LLM annotation
or manual human annotation) based on user needs and cost-accuracy trade-off analysis.

Expert-Guided Iterative Refinement. To explicitly enhance the generalization of specialist SLMs on
difficult (out-of-domain) samples, we introduce a continual fine-tuning procedure guided by expert labels
(from either LLMs or human annotators). Specifically, once the number of samples in the hard sample pool
Dhard reaches a predefined size β, we pause the consensus annotation and start the continual fine-tuning
cycle. For each SLM mi ∈ M, we fine-tune it on Dhard for up to a budgeted number of epochs, producing
updated specialists m′

i. Taking the model mi as an example, we define the loss function as follows:

L (θ) =
∑

CE(mi(x; θ), y), (x, y) ∈ Dhard (6)

where CE(·) represents the cross-entropy loss. Then gradient descent is used to update the parameters:

θ ← θ − α∇θL (θ) , (7)

where α denotes the learning rate. Subsequently, the refined model m′
i replaces mi for annotation. After

that, we resume annotation on remaining unlabeled data until Dhard exceeds β again, triggering a further
cycle of continuous fine-tuning.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effectiveness of AutoAnnotator, we conduct extensive experiments on
two representative annotation tasks, sentiment classification and toxicity classification, using a total
of six real-world datasets. Specifically, in this study, we select mteb/tweet_sentiment_extraction,
jppgks/twitter-financial-news-sentiment and LYTinn/sentiment-analysis-tweet for the sentiment classifi-
cation task and karthikarunr/Cyberbullying-Toxicity-Tweets, jiaxin-wen/Implicit-Toxicity and heegyu/-
toxic_conversations_balanced for the toxicity classification task. We provide a detailed introduction to
these dataset in the Appendix A. To simplify the description, we use the following aliases for these datasets:
MTEB-Sentiment, JPP-Sentiment, LYT-Sentiment, KC-Toxicity, JW-Toxicity, and HG-Toxicity, respec-
tively.

Models. In AutoAnnotator, all SLMs involved in annotation are automatically selected by the LLM in the
meta-controller layer based on task characteristics. In this paper, we select 3 SLMs for each annotation task
by default. We provide details of the model selected by the LLM in Table 2.

7

Published in Transactions on Machine Learning Research (12/2025)

Table 3: Comparison of the proposed AutoAnnotator with existing methods on different toxicity and sen-
timent annotation tasks. It is worth noting that the SLM1 for sentiment classification and the SLM1 for
toxicity classification are not the same model. The specific models of each model are shown in Table 2.

Sentiment Classification Toxicity Classification
Model MTEB-Sentiment JPP-Sentiment LYT-Sentiment Avg # LLM Calls KC-Toxicity JW-Toxicity HG-Toxicity Avg # LLM Calls

SLMs Only
SLM1 70.43% 70.31% 75.54% 72.09% 0 66.88% 40.56% 84.06% 63.83% 0
SLM2 69.55% 59.76% 72.52% 67.28% 0 59.27% 44.07% 80.87% 61.40% 0
SLM3 70.17% 69.22% 78.83% 72.74% 0 68.13% 39.30% 67.07% 58.17% 0

Open-source LLMs, Zero-shot
Mistral-7B-V0.2 35.91% 23.24% 28.37% 29.17% 38396 68.43% 56.32% 55.14% 59.96% 48475

Baichuan2-7B-Base 38.66% 24.96% 30.38% 31.33% 38396 20.99% 61.22% 67.68% 49.96% 48475
Qwen2.5-7B-Instruct 65.62% 74.62% 67.66% 69.30% 38396 63.92% 76.25% 77.20% 72.46% 48475
Llama3.1-8B-Instruct 51.90% 57.37% 53.15% 54.14% 38396 72.08% 63.14% 60.03% 65.08% 48475

Llama2-13B 48.85% 38.90% 51.02% 46.26% 38396 55.29% 75.71% 67.08% 66.03% 48475
QwQ-32B 54.28% 69.01% 53.72% 59.00% 38396 70.81% 77.87% 72.61% 73.76% 48475

Llama3-70B 46.82% 39.87% 44.33% 43.67% 38396 49.62% 70.60% 69.56% 63.26% 48475
Open-source LLMs, One-shot

Mistral-7B-V0.2 45.24% 40.58% 44.57% 43.46% 38396 78.73% 69.86% 55.70% 68.10% 48475
Baichuan2-7B-Base 40.30% 66.46% 33.37% 46.71% 38396 77.60% 87.40% 58.88% 74.63% 48475

Qwen2.5-7B-Instruct 67.03% 73.62% 65.32% 68.66% 38396 58.13% 79.18% 71.06% 69.46% 48475
Llama3.1-8B-Instruct 59.30% 63.36% 58.37% 60.34% 38396 58.65% 73.83% 64.25% 65.58% 48475

Llama2-13B 58.50% 68.17% 63.04% 63.24% 38396 66.98% 88.79% 74.11% 76.63% 48475
QwQ-32B 55.59% 68.47% 37.16% 53.74% 38396 62.50% 87.80% 76.19% 75.50% 48475

Llama3-70B 49.58% 58.08% 50.93% 52.86% 38396 65.05% 71.02% 64.58% 66.88% 48475
Open-source LLMs, CoT

Mistral-7B-V0.2 40.46% 23.91% 34.20% 32.86% 38396 49.74% 74.90% 69.29% 64.64% 48475
Baichuan2-7B-Base 36.53% 23.74% 29.49% 29.92% 38396 47.55% 80.47% 66.70% 64.91% 48475

Qwen2.5-7B-Instruct 55.44% 68.72% 63.52% 62.56% 38396 60.27% 68.12% 76.19% 68.19% 48475
Llama3.1-8B-Instruct 51.74% 58.17% 53.75% 54.55% 38396 47.93% 62.54% 64.56% 58.34% 48475

Llama2-13B 51.24% 36.22% 45.93% 44.46% 38396 57.74% 71.31% 69.99% 66.35% 48475
QwQ-32B 50.15% 68.43% 55.20% 57.93% 38396 67.79% 80.53% 75.68% 74.67% 48475

Llama3-70B 46.81% 42.71% 46.94% 45.49% 38396 50.61% 69.66% 71.07% 63.78% 48475
API Models

Deepseek-V3 64.82% 76.38% 69.68% 70.29% 38396 62.74% 81.30% 79.27% 74.44% 48475
Deepseek-R1 66.57% 74.25% 67.90% 69.57% 38396 75.31% 74.26% 77.10% 75.56% 48475

Minimax-abab6.5s-chat 67.37% 77.22% 68.58% 71.06% 38396 72.37% 68.18% 76.14% 72.23% 48475
GPT-3.5-turbo 65.14% 72.91% 69.26% 69.10% 38396 61.20% 74.63% 78.21% 71.35% 48475

LLMs, Majority Vote
7 Open-source LLMs Voting (zero-shot) 54.69% 55.86% 57.65% 56.07% 268772 65.20% 76.63% 77.09% 72.97% 339325
7 Open-source LLMs Voting (one-shot) 63.20% 71.23% 59.58% 64.67% 268772 69.72% 86.73% 72.99% 76.48% 339325

4 API Models Voting 67.78% 77.85% 70.80% 72.14% 153584 72.07% 72.09% 79.47% 74.54% 193900
AutoAnnotator(Ours)

AutoAnnotator+Minimax 67.78% 81.20% 74.80% 74.59% 10643 73.73% 73.75% 83.55% 77.01% 18210
AutoAnnotator+Deepseek-V3 66.77% 77.96% 73.61% 72.78% 10537 61.29% 85.29% 83.25% 76.61% 17886

AutoAnnotator+GPT-3.5-turbo 67.89% 78.56% 72.90% 73.12% 10065 67.69% 82.02% 82.97% 77.56% 18942
AutoAnnotator+Human 78.33% 82.83% 84.13% 81.76% 8 83.50% 89.66% 91.78% 88.31% 8

Implementation Details. By default, we use 3 (k = 3) SLMs for each annotation task. Once the hard-
sample pool Dhard reaches a predefined threshold β = 2, 000, we will pause to fine-tune all 3 specialists on
Dhard, ensuring they can continually learn new things throughout the annotation process.

We provide detailed ablation experiments in Section 4.3. As for fine-tuning the SLMs, we set the initial
learning rate, weight decay and epoch to 2e− 5, 0.01 and 3, respectively. All experiments are conducted on
2 NVIDIA A100.

Methods for Comparison. To evaluate the effectiveness of AutoAnnotator, we compare it with three
types of baselines: (1) SLMs selected by the LLM in the meta-controller layer (2) Open-source LLMs, range
from Mistral-7B, Baichuan2-7B (Yang et al., 2023), Qwen2.5-7B-Instruct (Yang et al., 2024a), Llama3.1-8B-
Instruct (Grattafiori et al., 2024), Llama2-13B (Touvron et al., 2023), QwQ-32B and Llama3-70B (Grattafiori
et al., 2024). (3) API models, such as MiniMax, DeepSeek V3 (Liu et al., 2024), DeepSeek R1 (Guo et al.,
2025) and GPT-3.5-Turbo. We provide all prompts used by baselines and AutoAnnotator in Table B and
Table A.

4.2 Main Experiment Results

Comparison with SLMs. As shown in Table 3, under the “SLMs Only” setting, the strongest SLM
achieves 72.74% average accuracy on sentiment tasks and 63.83% on toxicity. By integrating these SLMs
into our AutoAnnotator framework, we boost sentiment accuracy to 74.59% (+1.85%) and toxicity to 77.56%
(+13.73%). These experimental results demonstrate that AutoAnnotator can significantly improve the per-
formance of SLMs on sentiment classification and toxicity classification annotation tasks.

8

Published in Transactions on Machine Learning Research (12/2025)

[Sentiment Classification] Warren Buffett Just Became More Heavily Invested In Rat Poison Cryptocurrency.

[Toxicity Classification] Just keep your head up...you kick so much ass...

Non-toxic Non-toxic Non-toxic AutoAnnotator Toxic

Negative Negative Negative AutoAnnotator Neutral

Figure 4: Visualization of representative samples correctly annotated by AutoAnnotator but misclassified by
APIs.

Table 4: Comparison of the proposed AutoAnnota-
tor with API models in few-shot mode.

Settings Acc
GPT-3.5-turbo (zero-shot) 72.91%
GPT-3.5-turbo (three-shot) 73.62%
GPT-3.5-turbo (five-shot) 73.70%
AutoAnnotator+Minimax 81.20%

AutoAnnotator+Deepseek-V3 77.96%
AutoAnnotator+GPT-3.5-turbo 78.56%

AutoAnnotator+Human 82.83%

Table 5: Comparison of the proposed AutoAnnota-
tor with MoA.

Method Acc
MoA 72.18%

AutoAnnotator+Minimax 81.20%
AutoAnnotator+Deepseek-V3 77.96%

AutoAnnotator+GPT-3.5-turbo 78.56%
AutoAnnotator+Human 82.83%

Comparison with Open-sourced LLMs. To benchmark AutoAnnotator against open-source LLMs, we
evaluate the latter in three widely used annotation settings, zero-shot, one-shot, and chain-of-thought (Wei
et al., 2022) (CoT) prompting, on both sentiment and toxicity classification tasks. As for the one-shot
setting, each model is given a single in-context example before annotation. As for the CoT setting, we add
a CoT prompt “Let’s think step by step like an operations research expert.” behind the zero-shot prompt.
Among these settings, we find that one-shot prompting consistently outperforms zero-shot, as the single
in-context example helps the model calibrate its label distributions and reduces misunderstanding of the
task. By contrast, chain-of-thought prompting hints only marginally improve annotation accuracy, which we
believe is because the generated step-by-step reasoning shifts the model’s focus away from the classification
task. Overall, AutoAnnotator consistently outperforms zero-shot, one-shot, and chain-of-thought prompting
strategies, demonstrating its superior annotation accuracy and validating the effectiveness of our multi-model
collaborative paradigm.

Comparison with API Models. We further benchmark against API models, including Minimax,
Deepseek-V3, Deepseek-R1 and GPT-3.5-turbo. We report our main results in Table 3. The strongest
Minimax achieves 71.06% average accuracy on sentiment tasks, while Deepseek-V3 leads toxicity at 74.44%.
By integrating these API models into AutoAnnotator, we boost sentiment accuracy to 74.59% (+3.53%) and
toxicity to 76.61% (+2.17%). Similarly, when GPT-3.5-turbo is used alone, the sentiment accuracy reaches
69.10% and the toxicity accuracy reaches 71.35%; when integrated into AutoAnnotator, the sentiment accu-
racy rises to 73.12% (+4.02%) and the toxicity accuracy rises to 77.56% (+6.21%). Besides, compared with
direct LLM annotation, AutoAnnotator significantly reduces the number of LLM calls (60%+ for sentiment
tasks and 70%+ for toxicity tasks). It is worth noting that AutoAnnotator not only outperforms existing
API models in terms of performance, but also far exceeds them in terms of annotation cost and efficiency
(see below). We provide some samples that AutoAnnotator can annotate correctly, but API models anno-
tate incorrectly in Figure 4. In addition, we compare AutoAnnotator with API models of few-shot settings.
Specifically, we use GPT-3.5-turbo to test the performance of zero-shot, three-shot, and five-shot settings
on the JPP-Sentiment dataset. The results are shown in Table 4. As expected, increasing the sample size
in prompts from zero to five does indeed improve the accuracy of GPT-3.5-turbo from 72.91% to 73.70%.
However, while the five-shot baseline (73.70%) is more competitive, our AutoAnnotator still significantly
outperforms this stronger baseline, which further demonstratees the effectiveness of our method. Further-

9

Published in Transactions on Machine Learning Research (12/2025)

more, using a five-shot setting significantly increases API call costs. This contradicts AutoAnnotator ’s core
objective of reducing costs.

Comparison with LLM Majority-Vote. We additionally evaluate majority voting across multiple LLMs.
As shown in Table 3, AutoAnnotator+Minimax needs only 10, 643 API calls to achieve 74.59% sentiment
accuracy, outperforming both open-source and API-voting baselines while reducing LLM calls by over 93%.
Regardless of whether we ensemble multiple open-source or API LLMs—even with zero-shot or one-shot
voting—AutoAnnotator consistently outperforms all voting schemes while using far fewer LLM calls.

Comparison with Mixture-of-Agents (Wang et al., 2024). In this subsection, we compare AutoAn-
notator with Mixture-of-Agent (MoA). MoA involves collaboration between multiple powerful LLMs, rather
than dedicated SLMs, to solve complex tasks through multiple iterations. In contrast, AutoAnnotator facil-
itates collaboration between two different types of models: powerful LLMs and dedicated SLMs. To verify
the effectiveness of our proposed method, we conduct experiments on JPP-Sentiment dataset and compare
it with MoA. As shown in Table 5, MoA achieves an accuracy of 72.18%, which is far lower than our method.
The reason for MoA’s poor performance lies in the fact that it is composed of multiple LLMs. Figure 1(a)
clearly shows that on fine-grained semantic understanding tasks such as sentiment classification, the accuracy
of general-purpose LLMs (such as Llama3-70B, QwQ-32B, etc.) is significantly lower than that of specially
fine-tuned SLMs (such as RoBERTa, BERTweet). Therefore, the MoA framework essentially integrates
multiple models that perform poorly on this specific task. While integration can bring some performance
improvement, it does not outperform our method.

Table 6: Comparison of the proposed AutoAnnotator with state-of-
the-art baselines on math tasks.

Model Acc on MathQA Acc on AQUA-RAT
Mathstral-7B-v0.1 39.60% 36.83%

Qwen2.5-Math-7B-Instruct 80.29% 79.87%
DeepSeek-math-7b-Instruct 66.43% 65.33%

Self-Consistency (GPT-3.5-turbo) 65.00% 64.20%
DynaThink+Self-Consistency (GPT-3.5-turbo) 68.00% 61.50%

AutoAnnotator 85.00% 83.39%

Extend AutoAnnotator to
more tasks. To verify the ver-
satility of AutoAnnotator beyond
sentiment and toxicity classifi-
cation, we conduct additional
experiments in the more chal-
lenging domain of mathematical
reasoning. Specifically, we select
two widely used benchmarks,
MathQA (Amini et al., 2019) and
AQUA-RAT (Ling et al., 2017), for
the annotation task. Following the setup of our framework, we use three publicly available mathematical
models as SLMs for the task-specialist layer: Mathstral-7B-v0.14, Qwen2.5-Math-7B-Instruct (Yang et al.,
2024b), and DeepSeek-math-7b-Instruct5. We compare the performance of AutoAnnotator with two strong
baselines: (1) the performance of each specialist SLM individually, and (2) the advanced GPT-3.5-turbo
plus advanced inference strategies, including self-consistency and DynaThink + self-consistency. As shown
in Table 6, AutoAnnotator achieves the highest accuracy on both datasets, scoring 85.00% on MathQA and
83.39% on AQUA-RAT. This performance significantly surpasses the strongest single SLM and far exceeds
the results achieved using only LLM. These experimental results further demonstrate that the proposed
method is a general approach that can improve annotation quality even in complex domains.

Table 7: Performance comparison of AutoAnnotator with and
without pre-trained SLMs.

Model Scene Acc

GPT-3.5-turbo
Downloaded from huggingface 78.56%
Trained using self-labeled data 78.29%

Scenarios where no pre-trained
SLM exists. In this paper, we assume
that LLMs can download pre-trained
SLMs from Hugging Faces. However, for
some niche tasks, these high-quality, ex-
isting SLMs may not exist. To address
the feasibility of this "cold start", we de-
sign the following experiments to sim-
ulate this scenario. We use the JPP-
Sentiment dataset as an example to compare two cases. In this cold start scenario, we first manually label
2000 samples from the JPP-Sentiment dataset to form a small seed dataset. Next, we use this seed dataset

4https://huggingface.co/mistralai/Mathstral-7B-v0.1
5https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct

10

Published in Transactions on Machine Learning Research (12/2025)

Table 8: Comparison of annotation cost and efficiency between API models and AutoAnnotator.
Model Token (Input+Output) GPU Memory Time Cost Time Reduction Cost Cost Reduction

Deepseek-V3 88023 - 71.19 minutes - 0.027202 $ -
AutoAnnotator+Deepseek-V3 25629 4458 MB 26.06 minutes 63.40% 0.008085 $ 70.28%

Deepseek-R1 356532 - 212.93 minutes - 0.650334 $ -
AutoAnnotator+Deepseek-R1 109666 4458 MB 39.40 minutes 81.50% 0.211581 $ 67.47%

Minimax 91724 - 93.70 minutes - 0.012723 $ -
AutoAnnotator+Minimax 19357 4458 MB 30.67 minutes 67.27% 0.003112 $ 75.54%

GPT-3.5-turbo 88514 - 34.17 minutes - 0.048423 $ -
AutoAnnotator+GPT-3.5-turbo 22235 4458 MB 17.75 minutes 48.05% 0.012519 $ 74.15%

GPT-4 88027 - 30.56 minutes - 2.751180 $ -
AutoAnnotator+GPT-4 23843 4458 MB 18.34 minutes 40.00% 0.754470 $ 72.58%

GPT-4o 87915 - 23.20 minutes - 0.246540 $ -
AutoAnnotator+GPT-4o 22087 4458 MB 15.21 minutes 34.44% 0.064300 $ 73.92%

Table 9: Detailed comparison of the time cost of annotation and fine-tuning with SLMs and the time cost
of annotation with LLMs.

SLMs LLMs
Model Labeling Finetuning Total Model Labeling

cardiffnlp/twitter-roberta-base-sentiment-latest 0.32 minutes 0.54 minutes 0.86 minutes Deepseek-V3 71.19 minutes
cardiffnlp/twitter-xlm-roberta-base-sentiment 0.38 minutes 0.66 minutes 1.04 minutes Deepseek-R1 212.93 minutes

finiteautomata/bertweet-base-sentiment-analysis 0.30 minutes 0.58 minutes 0.88 minutes Minimax-abab6.5s-chat 93.70 minutes
s-nlp/roberta_toxicity_classifier 0.29 minutes 0.56 minutes 0.85 minutes GPT-3.5-turbo 34.17 minutes

JungleLee/bert-toxic-comment-classification 0.29 minutes 0.52 minutes 0.81 minutes GPT-4o 23.20 minutes
garak-llm/toxic-comment-model 0.23 minutes 0.35 minutes 0.58 minutes GPT-4 30.56 minutes

to fine-tune 3 SLMs and treat them as experts in the task-specialist layer. Finally, we utilize GPT-3.5-turbo
as the meta-controller to run the complete AutoAnnotator process. As shown in Table 7, the cold start
strategy achieves similar annotation accuracy to the original strategy, further demonstrating the feasibility
and robustness of AutoAnnotator, even for niche tasks without pre-trained SLMs.

The efficiency and cost of AutoAnnotator. To evaluate the annotation cost and efficiency of API
models and AutoAnnotator, we conduct a quantitative analysis from three dimensions: computing resource
consumption (the number of tokens and GPU memory usage), annotation time cost, and economic cost. All
experiments are performed on NVIDIA A100 GPUs, and the annotation task scale is uniformly set to 1000
samples. As for our AutoAnnotator, we set the β = 200. We conduct experiments on Deepseek-V3, Deepseek-
R1, Minimax, GPT-3.5-turbo, GPT-4 and GPT-4o, respectively. As shown in Table 8, AutoAnnotator
reduces the annotation time by 34.44% (GPT-4o) to 81.50% (Deepseek-R1), with an average reduction of
55.85%. Besides, the annotation cost is reduced by 75.54% (Minimax) at the highest and 67.47% (Deepseek-
R1) at the lowest, with an average saving of 72.32%. In Table 8, we provide the annotation time cost for
the whole pipeline of AutoAnnotator. Herein, we further provide the annotation time cost for SLMs as
well as their fine-tuning cost. For a fair comparison, we annotate and fine-tune on the same 1000 difficult
samples. As shown in Table 9, compared to LLMs, SLMs require significantly less time for annotation and
fine-tuning, typically under 1 minute in total per model. In contrast, LLM-based annotation is substantially
more time-consuming, with labeling times ranging from 23 to over 200 minutes depending on the model.
This highlights the practical advantage of using SLMs for efficient labeling and fine-tuning in real-world
scenarios. In general, AutoAnnotator has achieved a significant improvement in annotation efficiency and a
significant reduction in annotation costs while maintaining annotation quality through the LLMs and SLMs
collaborative annotation paradigm.

4.3 Ablation Study

The number of SLMs used in the task-specialist layer. To explore the impact of the number of SLMs
on the annotation performance, we perform ablations on the JPP-Sentiment dataset using GPT-3.5-turbo
as the meta-controller LLM. We vary the number of SLMs k participating in the multi-model consensus
annotation from 2 to 5 and report the final annotation accuracy in Table 10. We find that the annotation

11

Published in Transactions on Machine Learning Research (12/2025)

Table 10: The impact of the number of SLMs
used for annotation on the annotation perfor-
mance.

k 2 3 4 5
Acc 73.32% 78.56% 76.26% 76.26%

Table 11: The impact of the number of hard samples used
for continuous fine-tuning at each stage on the final perfor-
mance.

β 500 1000 2000 3000
Acc 76.17% 73.91% 78.56% 73.12%

performance is best when k = 3. We believe that the reason for the decline in annotation performance when
k is greater than 3 is that when there are too many SLMs, the performance differences between them will
cause the poorly performing SLMs to affect the voting results, ultimately affecting the annotation effect.
Nevertheless, AutoAnnotator is flexible enough that it can still operate if the meta-controller layer finds only
one or two relevant SLMs after searching. Therefore, considering the computational cost and annotation
accuracy, we use k = 3 as the default in this paper.

The number of samples in the hard sample pool Dhard. To explore the impact of the number of hard
samples used for continuous fine-tuning at each stage on the annotation performance, we perform ablations
on the JPP-Sentiment dataset using GPT-3.5-turbo. We set the sample size β to {500, 1000, 2000, 3000}.
As shown in Table 11, we find that the annotation performance peaks at β = 2000, therefore, we adopt
β = 2000 as the default hard-sample batch size in this paper.

Table 12: The annotation accuracy between SLMs and LLMs on the hard
sample pool.

Number of Difficult Samples Model Acc

2881

cardiffnlp/twitter-roberta-base-sentiment-latest 58.83%
cardiffnlp/twitter-xlm-roberta-base-sentiment 42.97%

finiteautomata/bertweet-base-sentiment-analysis 57.20%
GPT-3.5-turbo 65.29%

2836

cardiffnlp/twitter-roberta-base-sentiment-latest 58.39%
cardiffnlp/twitter-xlm-roberta-base-sentiment 42.77%

finiteautomata/bertweet-base-sentiment-analysis 56.52%
Minimax-abab6.5s-chat 68.48%

3148

cardiffnlp/twitter-roberta-base-sentiment-latest 61.75%
cardiffnlp/twitter-xlm-roberta-base-sentiment 47.11%

finiteautomata/bertweet-base-sentiment-analysis 61.50%
Deepseek-V3 69.85%

The annotation accuracy
between SLMs and LLMs
on the hard sample pool.
To verify that LLMs in-
deed improve annotation qual-
ity, we report the accuracy
on JPP-Sentiment dataset of
SLMs and LLMs for samples
in the hard sample pool, us-
ing gold labels for evaluation.
As shown in Table 12, LLMs
consistently outperform SLMs
on difficult samples, achiev-
ing notably higher annotation
accuracy. This also explains
why our framework can pro-
vide high-quality responses for
continual training without human intervention.

Voting using only SLMs. To verify that the performance gains of AutoAnnotator do not come solely
from simple SLM ensembles, we introduced a “SLMs Voting” baseline. Specifically, we use the same 3
SLMs, employ a simple majority voting mechanism for data labeling on the JPP-Sentiment dataset, and
do not include secondary review by LLMs or expert-guided iterative optimization. As shown in Table 13,
SLMs voting even performs worse than the best single SLM. This shows that simple integrated voting can
be polluted by poor-performing SLMs (such as SLM2), leading to a decline in overall performance. In
comparison, AutoAnnotator achieves better results, demonstrating the importance of secondary review and
expert-guided iterative optimization.

How to select SLMs. In this paper, we use an LLM as the meta-controller to adaptively select SLMs. Here,
we conduct additional experiments using existing model selection methods. Specifically, we choose a classic
and effective model selection algorithm, LogME (You et al., 2021), and use it for model recommendation
on the JPP-Sentiment dataset. Since LogME requires some models to be given in advance, we select 10
models for sentiment classification from Huggingface, including the three SLMs used in our paper. We run
the LogME algorithm to evaluate and recommend the three best SLMs from a pool of 10 models. Then,
we replaced the models recommended by LLM with the SLMs recommended by LogME for data labeling.

12

Published in Transactions on Machine Learning Research (12/2025)

Table 13: Comparison of the proposed AutoAnnotator with
SLMs Voting.

Method Acc Method Acc
SLM1 70.31% AutoAnnotator+Minimax 81.20%
SLM2 59.76% AutoAnnotator+Deepseek-V3 77.96%
SLM3 69.22% AutoAnnotator+GPT-3.5-turbo 78.56%

SLMs Voting 67.76% AutoAnnotator+Human 82.83%

Table 14: Ablation experiments on
different SLM selection methods.

Method Acc
Recommended by LogME 74.57%
Recommended by LLM 78.56%

As shown in Table 14, compared to SLMs recommended by LogME (74.57%), SLMs recommended by LLM
achieves a higher annotation accuracy (78.56%) under the AutoAnnotator framework. This demonstrates
that LLM’s powerful reasoning and generalization capabilities enable it to form a more comprehensive and
profound understanding of annotation tasks, thus surpassing traditional, single-metric-based strategies in
model selection.

5 Conclusion

In this paper, we propose a new paradigm for multi-model collaborative annotation and designs a fully
automatic annotation framework AutoAnnotator based on it. Specifically, AutoAnnotator consists of a
meta-controller layer and a task-specialist layer. Specifically, the meta-controller layer is responsible for
recommending appropriate annotation SLMs, generating the code required for annotation, and rechecking
difficult samples that cannot be determined by SLMs. while the task-specialist layer is responsible for the
actual annotation. To enhance the generalization of the SLMs, we use the difficult samples obtained from
the second verification of the LLM as a reinforcement learning set, and periodically send it to the SLMs
for continuous fine-tuning. Extensive experiments demonstrate the effectiveness of AutoAnnotator on six
datasets.

Limitations

While promising, there are still some drawbacks of AutoAnnotator. The model selection, code generation,
and difficult sample review of the entire framework are all driven by LLMs. Therefore, the performance of
AutoAnnotator depends to a certain extent on the quality of LLMs.

Acknowledgments

This work was partially supported by the Key R&D Program of Zhejiang under Grant 2022C01018 and
2024C01025, by the National Key R&D Program under Grant 2025YFA1510900 and 2025YFA1510902, by
the National Natural Science Foundation of China under Grant U21B2001, 62301492 and 61973273, by the
Baima Lake Laboratory Joint Fund of Zhejiang Provincial Natural Science Foundation of China under Grant
LBMHZ25F020002 and by Key Technology Research and Development Program Project of Hangzhou under
Grant 2024SZD1A23 and 2025SZD1A41.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms. arXiv
preprint arXiv:1905.13319, 2019.

Yang Ba, Michelle V Mancenido, and Rong Pan. Fill in the gaps: Model calibration and generalization with
synthetic data. arXiv preprint arXiv:2410.10864, 2024.

13

Published in Transactions on Machine Learning Research (12/2025)

Gianni Brauwers and Flavius Frasincar. A survey on aspect-based sentiment classification. ACM Computing
Surveys, 55(4):1–37, 2022.

Ruirui Chen, Chengwei Qin, Weifeng Jiang, and Dongkyu Choi. Is a large language model a good annotator
for event extraction? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
17772–17780, 2024.

Juhwan Choi, Jungmin Yun, Kyohoon Jin, and YoungBin Kim. Multi-news+: Cost-efficient dataset cleansing
via llm-based data annotation. arXiv preprint arXiv:2404.09682, 2024.

Remi Denton, Mark Díaz, Ian Kivlichan, Vinodkumar Prabhakaran, and Rachel Rosen. Whose ground
truth? accounting for individual and collective identities underlying dataset annotation. arXiv preprint
arXiv:2112.04554, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: human language technologies, volume 1 (long and
short papers), pp. 4171–4186, 2019.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality
and reasoning in language models through multiagent debate. In Forty-first International Conference on
Machine Learning, 2023.

Zeyad Emam, Andrew Kondrich, Sasha Harrison, Felix Lau, Yushi Wang, Aerin Kim, and Elliot Branson.
On the state of data in computer vision: Human annotations remain indispensable for developing deep
learning models. arXiv preprint arXiv:2108.00114, 2021.

Zachary N Flamholz, Steven J Biller, and Libusha Kelly. Large language models improve annotation of
prokaryotic viral proteins. Nature Microbiology, 9(2):537–549, 2024.

Marc Glocker, Peter Hönig, Matthias Hirschmanner, and Markus Vincze. Llm-empowered embodied agent
for memory-augmented task planning in household robotics. arXiv preprint arXiv:2504.21716, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Xinlei He, Savvas Zannettou, Yun Shen, and Yang Zhang. You only prompt once: On the capabilities of
prompt learning on large language models to tackle toxic content. In 2024 IEEE Symposium on Security
and Privacy (SP), pp. 770–787. IEEE, 2024.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a multi-agent collaborative
framework. In The Twelfth International Conference on Learning Representations, 2023.

Suramya Jadhav, Abhay Shanbhag, Amogh Thakurdesai, Ridhima Sinare, and Raviraj Joshi. On limitations
of llm as annotator for low resource languages. arXiv preprint arXiv:2411.17637, 2024.

Feng Jiang, Zongfei Zhang, and Xin Xu. Cmfdnet: Cross-mamba and feature discovery network for polyp
segmentation. In International Conference on Neural Information Processing, pp. 17–30. Springer, 2025.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models
for code generation. arXiv preprint arXiv:2406.00515, 2024.

14

Published in Transactions on Machine Learning Research (12/2025)

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and Tiejun Zhao. Target-dependent twitter sentiment classifi-
cation. In Proceedings of the 49th annual meeting of the association for computational linguistics: human
language technologies, pp. 151–160, 2011.

Guangchen Lan, Huseyin A Inan, Sahar Abdelnabi, Janardhan Kulkarni, Lukas Wutschitz, Reza Shokri,
Christopher G Brinton, and Robert Sim. Contextual integrity in LLMs via reasoning and reinforcement
learning. In The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS),
2025.

Md Tahmid Rahman Laskar, Mizanur Rahman, Israt Jahan, Enamul Hoque, and Jimmy Huang. Can large
language models fix data annotation errors? an empirical study using debatepedia for query-focused
text summarization. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
10245–10255, 2023.

Lingyao Li, Lizhou Fan, Shubham Atreja, and Libby Hemphill. “hot” chatgpt: The promise of chatgpt in
detecting and discriminating hateful, offensive, and toxic comments on social media. ACM Transactions
on the Web, 18(2):1–36, 2024a.

Rui Li, Qi Liu, Liyang He, Zheng Zhang, Hao Zhang, Shengyu Ye, Junyu Lu, and Zhenya Huang. Optimizing
code retrieval: High-quality and scalable dataset annotation through large language models. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 2053–2065, 2024b.

Wei Li, Bing Hu, Rui Shao, Leyang Shen, and Liqiang Nie. Lion-fs: Fast & slow video-language thinker as
online video assistant. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
3240–3251, 2025a.

Wei Li, Renshan Zhang, Rui Shao, Jie He, and Liqiang Nie. Cogvla: Cognition-aligned vision-language-action
model via instruction-driven routing & sparsification. arXiv preprint arXiv:2508.21046, 2025b.

Yunzhe Li, Junting Wang, Hari Sundaram, and Zhining Liu. A zero-shot generalization framework for
llm-driven cross-domain sequential recommendation. arXiv preprint arXiv:2501.19232, 2025c.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent debate. arXiv
preprint arXiv:2305.19118, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146, 2017.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Mingchao Liu, Yu Sun, Ruixiao Sun, Xin Dong, Xiang Shen, and Hongyu Xiong. Agentps: Agentic process
supervision for content moderation with multimodal llms, 2025a. URL https://arxiv.org/abs/2412.
15251.

Xiao Liu, Zirui Wu, Jiayi Li, Zhicheng Shao, Xun Pang, and Yansong Feng. Automated annotation of evolving
corpora for augmenting longitudinal network data: A framework integrating large language models and
expert knowledge. arXiv preprint arXiv:2503.01672, 2025b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Yuwei Lou, Hao Hu, Shaocong Ma, Zongfei Zhang, Liang Wang, Jidong Ge, and Xianping Tao. Drf:
Llm-agent dynamic reputation filtering framework. In International Conference on Neural Information
Processing, pp. 127–141. Springer, 2025.

Yao Lu, Hao Cheng, Yujie Fang, Zeyu Wang, Jiaheng Wei, Dongwei Xu, Qi Xuan, Xiaoniu Yang, and Zhaowei
Zhu. Reassessing layer pruning in llms: New insights and methods. arXiv preprint arXiv:2411.15558, 2024.

15

https://arxiv.org/abs/2412.15251
https://arxiv.org/abs/2412.15251

Published in Transactions on Machine Learning Research (12/2025)

Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. Large language model (llm) ai text generation
detection based on transformer deep learning algorithm. arXiv preprint arXiv:2405.06652, 2024.

Christoffer Bøgelund Rasmussen, Kristian Kirk, and Thomas B Moeslund. The challenge of data annotation
in deep learning—a case study on whole plant corn silage. Sensors, 22(4):1596, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan. Determlr:
Augmenting llm-based logical reasoning from indeterminacy to determinacy. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9828–9862,
2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599, 2025.

Ramya Tekumalla and Juan M Banda. Leveraging large language models and weak supervision for social
media data annotation: an evaluation using covid-19 self-reported vaccination tweets. In International
Conference on Human-Computer Interaction, pp. 356–366. Springer, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Betty Van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. Challenges for toxic comment classification:
An in-depth error analysis. arXiv preprint arXiv:1809.07572, 2018.

Jianxun Wang and Yixiang Chen. A review on code generation with llms: Application and evaluation. In
2023 IEEE International Conference on Medical Artificial Intelligence (MedAI), pp. 284–289. IEEE, 2023.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances large
language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Jianfei Wu, Xubin Wang, and Weijia Jia. Enhancing text annotation through rationale-driven collaborative
few-shot prompting. arXiv preprint arXiv:2409.09615, 2024a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversa-
tions. In First Conference on Language Modeling, 2024b.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal llm.
arXiv preprint arXiv:2309.05519, 2023.

Canwen Xu, Yichong Xu, Shuohang Wang, Yang Liu, Chenguang Zhu, and Julian McAuley. Small models
are valuable plug-ins for large language models. arXiv preprint arXiv:2305.08848, 2023.

Ran Xu, Wenqi Shi, Yuchen Zhuang, Yue Yu, Joyce C Ho, Haoyu Wang, and Carl Yang. Collab-rag:
Boosting retrieval-augmented generation for complex question answering via white-box and black-box llm
collaboration. arXiv preprint arXiv:2504.04915, 2025.

16

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Published in Transactions on Machine Learning Research (12/2025)

Sachin Yadav, Tejaswi Choppa, and Dominik Schlechtweg. Towards automating text annotation: A case
study on semantic proximity annotation using gpt-4. arXiv preprint arXiv:2407.04130, 2024.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian
Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint arXiv:2309.10305,
2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang Ren, and
Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024b.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained
models for transfer learning. In International Conference on Machine Learning, pp. 12133–12143. PMLR,
2021.

JiangYong Yu, Sifan Zhou, Dawei Yang, Shuoyu Li, Shuo Wang, Xing Hu, Chen Xu, Zukang Xu, Changyong
Shu, and Zhihang Yuan. Mquant: Unleashing the inference potential of multimodal large language models
via static quantization. In Proceedings of the 33rd ACM International Conference on Multimedia, pp.
1783–1792, 2025.

Yifan Zeng, Yiran Wu, Xiao Zhang, Huazheng Wang, and Qingyun Wu. Autodefense: Multi-agent llm
defense against jailbreak attacks. arXiv preprint arXiv:2403.04783, 2024.

Yiming Zeng, Jinghan Cao, Zexin Li, Wanhao Yu, Zhankai Ye, Dawei Xiang, Ting Hua, Xin Liu, Shangqian
Gao, and Tingting Yu. Hyperedit: Unlocking instruction-based text editing in llms via hypernetworks.
arXiv preprint arXiv:2512.12544, 2025a.

Yiming Zeng, Wanhao Yu, Zexin Li, Tao Ren, Yu Ma, Jinghan Cao, Xiyan Chen, and Tingting Yu. Bridging
the editing gap in llms: Fineedit for precise and targeted text modifications. arXiv e-prints, pp. arXiv–
2502, 2025b.

Kaiyan Zhang, Jianyu Wang, Ermo Hua, Biqing Qi, Ning Ding, and Bowen Zhou. Cogenesis: A frame-
work collaborating large and small language models for secure context-aware instruction following. arXiv
preprint arXiv:2403.03129, 2024.

Weitao Zhao, Zati Hakim Azizul, Chaw Seng Woo, Weijie Kuang, and Yafeng Li. Potential-driven multi-
learning particle swarm optimisation. Swarm and Evolutionary Computation, 96:101993, 2025.

Wenhao Zheng, Yixiao Chen, Weitong Zhang, Souvik Kundu, Yun Li, Zhengzhong Liu, Eric P Xing, Hongyi
Wang, and Huaxiu Yao. Citer: Collaborative inference for efficient large language model decoding with
token-level routing. arXiv preprint arXiv:2502.01976, 2025.

Sifan Zhou, Shuo Wang, Zhihang Yuan, Mingjia Shi, Yuzhang Shang, and Dawei Yang. GSQ-tuning: Group-
shared exponents integer in fully quantized training for LLMs on-device fine-tuning. In Findings of the
Association for Computational Linguistics: ACL 2025, pp. 22971–22988, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-256-5.

Zhiyin Zhou. Beyond chat: a framework for llms as human-centered support systems. arXiv preprint
arXiv:2511.03729, 2025.

17

	Introduction
	Related Work
	Method
	Meta-Controller Layer
	Task-Specialist Layer

	Experiments
	Experimental Settings
	Main Experiment Results
	Ablation Study

	Conclusion
	Dataset Description
	Prompts
	Codes Generated by LLMs

