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ABSTRACT

Electroencephalography (EEG) foundation models aim to learn robust and trans-
ferable representations from large-scale EEG datasets, which are essential for en-
abling clinical and cognitive applications, such as rapid neurological screening,
seizure detection, and brain state decoding. Current architectures struggle to com-
bine interpretability and high performance for self-supervised masked modeling
of EEG signals. In medical contexts, interpretability is especially important, be-
cause transparent models foster trust and facilitate clinical adoption. In this work,
we introduce novel, interpretable spatial and temporal filters in the patch embed-
ding module, advancing EEG foundation models and outperforming the previous
state-of-the-art LaBraM architecture. We demonstrate that our approach signifi-
cantly reduces reconstruction loss during self-supervised pre-training, enhancing
the performance of the masked language model (MLM). Our new model outper-
forms the original LaBraM in standard EEG classification benchmarks and offers
unique insights into the second-order dynamical properties and cortical locations
of neuronal sources pivotal for self-supervised masked modeling. These results
position stLaBraM as a compelling foundation model for EEG, advancing both
performance and interpretability in self-supervised neurophysiological represen-
tation learning.

1 INTRODUCTION

Automated analysis of electroencephalography (EEG) data is pivotal for advancing large-scale neu-
roscience and clinical research, with applications from cognitive state decoding and biomarker dis-
covery to neurological screening, seizure detection, and brain–computer interfaces (Abdulkader
et al., 2015; Craik et al., 2019; Yuan et al., 2024). Accessibility of open-source EEG processing
toolkits—such as MNE-Python (Gramfort et al., 2013) for preprocessing and TorchEEG (Zhang
et al., 2024) for deep learning pipelines—has accelerated progress in this domain.

Recent years have witnessed the emergence of EEG foundation models, which employ large-scale,
predominantly self-supervised pre-training to learn generalizable and reusable neural representa-
tions. Prominent examples include BrainWave (Yuan et al., 2024), a transformer-based model utiliz-
ing masked modeling for clinical EEG decoding; CBraMod (Wang et al., 2025), using a criss-cross
architecture to promote cross-dataset invariance; and GREEN (Paillard et al., 2025), which leverages
learnable wavelets and Riemannian geometry for interpretable biomarker identification. While these
approaches have led to notable performance gains, a critical gap remains: most current models do
not adequately provide interpretable representations, which are essential for clinical trust, scientific
understanding, and regulatory acceptance. In addition, there is a growing recognition that model
architectures tailored to the distinctive characteristics of biomedical data can substantially improve
the quality and relevance of learned embeddings. Rather than adopting generic solutions, integrat-
ing domain-specific knowledge—such as neuroanatomical constraints or temporal dynamics—into
model design offers the potential to produce representations that are both more informative and
clinically meaningful.
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A central challenge is the complex spatio-temporal structure of EEG signals and the need to align
model representations with neurophysiological phenomena. Transformer-based architectures and
patch-based masked auto-encoding (He et al., 2021; Chien et al., 2022)—as instantiated by archi-
tectures like LaBraM (Jiang et al., 2024)—have demonstrated strong self-supervised pre-training
performance. However, their patch embedders rarely incorporate explicit neuroscientific priors,
yielding latent features that are difficult to interpret in anatomical or functional terms. This lim-
its their explanatory transparency and their integration into established neuroscience and clinical
workflows (e.g., source localization and neuroscientific hypothesis validation).

According to (Biran & Cotton, 2017) : “Interpretability is the degree to which a human can under-
stand the cause of a decision.” Analysis of the explainable and interpretable EEG foundation model
weights would support the subsequent use of electromagnetic inverse modeling (Spinelli et al., 2000)
to locate neuronal populations whose activity appears pivotal in forming the latent representations.
When working with time-resolved electrophysiological brain imaging modalities such as EEG or
MEG, not only spatial but also dynamical properties of the neuronal sources are of critical inter-
est (Buzsáki, 2006).
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Figure 1: Simplified diagram illustrating linear mapping of neuronal sources to EEG sensors and
fundamentally nonlinear relationships between the activity of brain sources and the behavior.

To address these challenges, we propose stLaBraM, an architecture that for the first time endows an
EEG foundation model with explicit, rigorously interpretable factorized spatial and temporal filter
banks. Drawing on classical signal processing and results of the existing literature, e.g. (Petrosyan
et al., 2021), this design enables model branches to correspond to well-defined neural sources—for
example, specific brain regions activated with rhythmic time series. The use of factorized spatial-
temporal filters can be justified by Figure 1. Human behavior is undoubtedly a very complex and
nonlinear function of the activity of neuronal populations, which justifies the use of deep learning
models for EEG decoding. However, the EEG signal is simply a linear mixture of the activity of the
local field electric potentials formed by the activity of neuronal sources (Mosher et al., 2002). Also,
the activity of neuronal sources has characteristic dynamics whose second-order properties can be
reflected using the power spectral density profiles (Pereira et al., 2021).

We evaluate stLaBraM on self-supervised pre-training and challenging downstream classification
benchmarks, demonstrating state-of-the-art performance and interpretability. Our main contribu-
tions are:

• We propose a novel patch embedding architecture which, for the first time in an EEG
foundation model, factorizes learnable spatial (topographic) and temporal (frequency band)
filters—yielding codebooks interpretable in neurophysiological terms and enabling direct
and rigorous mapping to brain sources and oscillatory processes.
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• Model-agnostic improvement: Our interpretable patch embedding design leads to con-
sistent accuracy gains when integrated with different EEG foundation model backbones—
notably LaBraM and CBraMod—across pre-training, fine-tuning, and out-of-distribution
(OOD) clinical evaluation.

• State-of-the-art (SOTA) performance: We consistently outperform previous models, in-
cluding LaBraM and CBraMod, in masked modeling loss as well as balanced accuracy
on TUAB (Obeid & Picone, 2016), ICD-10 (see Appendix A for dataset details), and
event/cognitive datasets.

• We introduce a principled, interpretability pipeline for visualizing spatial and frequency
patterns, permitting domain experts to directly inspect the neural features driving model
predictions. When anatomical information in the form of MRI is available the pivotal
sensor-space spatial patterns can be rigorously mapped to the cortical source-space.

2 BACKGROUND AND PROBLEM STATEMENT

EEG records potential difference on the scalp with a set of M electrodes. At each time instance t
this results in a vector of sensor signals x(t) = [x1(t), . . . , xM (t)]⊤. The data can be modeled as a
linear superposition of gain vectors gi = g(ri) corresponding to the i-th neuronal macro-population
located at ri scaled with time varying coefficients si(t) called source time series and reflecting the
electrical activity of the large conglomerates of spatially segregated neurons. This mixture is con-
taminated with noise vector e(t) that has a complex spatial-temporal correlation structure. Formally
the generative equation can be written as

x(t) =

N∑
i=1

gisi(t) + e(t). (1)

Gain vectors gi can be visualized as sensor-space patterns distributed over scalp and inverse mod-
eling procedures can be used to map them to the cortical source-space determine source locations
ri. the neuronal sources and infer ri. Typically source time series si(t) have distinct and physiolog-
ically meaningful second-order dynamical properties well described by the power spectral density
(PSD) profiles Si(ω). Deep neural networks for EEG typically begin with front-end feature ex-
traction layers that learn spatial and/or temporal filters. When such filters are explicitly factorized
into spatial and temporal parts, their parameters become interpretable under optimal filtering theory
assumptions (Haufe et al., 2014; Petrosyan et al., 2021): spatial weights can be mapped to gain
vectors, and temporal filters relate to the characteristic frequency bands of the neuronal sources.

Therefore, our goal is to endow a foundation model with interpretable initial layers comprising
factorized spatial and temporal filtering operations. The obtained solution will not only be more
trustworthy but will for the first time allow for discovery of the neuronal sources whose activity is
pivotal for deriving the latent representations of EEG segments. When applied to downstream tasks,
the spatial and spectral patterns derived from these filters can be compared between conditions to
allow physiologically meaningful conclusions about differences in two EEG conditions.

3 STLABRAM: INTERPRETABLE PATCH EMBEDDING SOLUTION

LaBraM (Jiang et al., 2024) is a large-scale EEG foundation model leveraging channel patching,
neural tokenization, and transformer pre-training for robust, generalizable representations across
diverse EEG datasets and tasks. It utilizes a neural tokenizer trained on vector-quantized spec-
tral features (amplitude and phase) of EEG channel patches, enabling masked prediction objectives
and efficient self-supervised learning. However, the original patch embedding in LaBraM extracts
temporal features independently for each channel, without explicit spatial mixing or leveraging fre-
quency band information. This limits the model’s neurophysiological interpretability and practical
applicability in clinical or scientific settings.

To address these challenges, we design the patch embedding module to integrate:

1. Spatial unmixing and Virtual Channels: In the first stage, we combine the original EEG
channels into virtual channels using the learnable weights. In other words the k-th virtual
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Figure 2: The proposed stLaBraM architecture incorporates parameterized spatial–temporal filtering
modules within the patch embedder, supporting interpretability and robust representation learning.

channel is a linear combination of sensor signals with the learned weights. Formally, to
derive the k-th virtual channel, k = 1, . . . ,K = 16 the virtual channel signal yk(t) at time
t is computed as:

yk(t) =

C∑
i=1

wki xi(t),

where xi(t) is the signal from the i-th electrode at time t (i = 1, . . . , C, with C = 16),
and wki are the learnable spatial filter weights. This enables the network to focus on the
activity of specific neural populations.

2. Frequency-Specific Temporal Filtering: After spatial filtering, we obtain K virtual chan-
nels, each represented as a time series yk(t) for k = 1, . . . ,K. For each virtual channel,
we apply a bank of K one-dimensional temporal convolutional filters {h1, h2, . . . , hK},
where each hk is initialized as a finite impulse response (FIR) filter of size L targeting the
specific EEG frequency band (e.g., delta, theta, alpha, etc.). This operation can be formally
written as:

rk(t) = yk(t) ∗ hk(t) =

L−1∑
τ=0

hk(τ) yk(t− τ),

where ∗ denotes convolution, hk(τ) is the impulse response of the k-th temporal filter of
length L, and rk(t) is the temporally filtered output for virtual channel k.

Stacking these outputs yields a set of K band-filtered time series each corresponding to a specific
neural population identified during the learning process.

During training, both the spatial filter weights wk and temporal filter coefficients hk(t) are adap-
tively optimized to extract features relevant for pre-training or downstream tasks. By initializing
temporal filters to cover physiologically meaningful frequency bands and jointly training all pa-
rameters end-to-end, the patch embedding module learns interpretable spatial and spectral patterns.
These space-frequency filtered signals are then further processed by temporal convolutions and non-
linearities to generate representations for masked modeling and classification.

Interpretable spatial and frequency domain patterns visualization. To support neuroscientific
interpretation, we propose a visualization pipeline (Haufe et al., 2014) extended in this work to
the simultaneously-trained spatial-temporal filtering case for analyzing the learned spatial wi and
temporal filters hi(t) (see Fig. 2). By leveraging the second-order spatial-temporal statistics of
the data, we recover the generative topographies gi and source power spectral density profiles (see
Eq. 1).

The spatial and the temporal filters during training attempt to both tune to the target population and
untune from the interfering signals. It is important to realize that these processes are taking places
concurrently and therefore if the spatial filter has learned to ignore specific interfering signal, the
temporal filter will not attempt to untune from it, and vice versa. Therefore, when computing spatial
patterns one needs to take into account the data filtered in the specific frequency band and when
calculating frequency domain pattern the appropriately spatially filtered and not the raw data need
to be used.

Therefore, the spatial patterns gi , i = 1, . . . , N corresponding to the spatial filters w can be recov-
ered as:
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gi = σ−2
si Rx∗hi

wi ∝ Rx∗hi
wi, where Rx∗hi

= E[(x(t). ∗ hi(t))(x(t). ∗ hi(t))
⊤]. (2)

In the above in order to compute topographies gi of sources that help most in the pretraining or a
downstream task we are using the data filtered with the corresponding temporal filter hi(t). Thus,
each pair (gi,wi) represents a generative topography and the corresponding spatial filter. While gi

reflects the generative structure in equation (1), wi optimizes signal-to-noise extraction for decoding.

Similarly the power spectral density (PSD) profiles of sources can be found as

Si(ω) = PSD(w⊤
i x(t))|FFT (hi(t))|.

4 DATASETS AND TRAINING PROTOCOLS

Pre-training Dataset. We constructed the pre-training set from the TUH EEG Corpus (Obeid &
Picone, 2016), comprising over 3,600 hours of clinical EEG. To ensure uniformity and quality, all
recordings were mapped to a standardized montage of 16 clinically relevant channels (FP1, FP2,
F3, F4, F7, F8, C3, C4, P3, P4, O1, O2, T3, FZ, CZ, PZ); files missing any channel were excluded.
Segments under 5 minutes were removed, and the first and last 60 seconds of every recording were
discarded to minimize boundary effects. Signals were bandpass and notch filtered, downsampled
to 200 Hz, and divided into 16-second non-overlapping windows. Artifactual epochs with extreme
amplitudes were discarded.

Downstream Evaluation (Fine-tuning). For downstream classification, we evaluated on four
benchmark datasets to assess transfer and generalization: (1) the TUAB Abnormal EEG Cor-
pus (Obeid & Picone, 2016) for abnormal/normal clinical EEG classification, (2) the TUEV
dataset (Obeid & Picone, 2016) for event-related abnormality detection, (3) the PhysioNet Motor
Imagery (MI) dataset (Goldberger et al., 2000) for non-clinical cognitive classification, and (4) an
independent multi-class clinical corpus labeled with ICD-10 diagnostic codes (see Appendix A)
assigned by expert clinicians. For all datasets, we followed the same channel selection and prepro-
cessing pipeline as used in pre-training: only recordings with all 16 standardized channels were in-
cluded, data were bandpass and notch filtered, downsampled to 200 Hz, segmented into fixed-length
windows (16 seconds), and artifact-laden epochs were discarded. Subject-level stratified splits were
employed consistently to avoid data leakage between training and evaluation sets.

Training Protocols. All models were trained and evaluated under identical conditions to ensure
a fair comparison. Each model was run across three independent trials, varying only in random
parameter initialization while keeping all dataset splits, hyperparameters, and training procedures
fixed. To assess robustness, performance was further evaluated on multiple resampled test subsets
(1000 bootstraps). Complete details on hyperparameters, training schedules, and computational
resources are provided in Appendix B.

5 RESULTS

5.1 PRE-TRAINING: MASKED MODELING PERFORMANCE

Pre-training objective and loss interpretation. Our pre-training setup employs a masked mod-
eling paradigm, where the model is trained to infer the content or position of masked input patches
using context from the visible patches. In this formulation, the model receives EEG sequences
with a random subset of patches masked, and its task is to predict the correct positions (indices) of
these masked patches based on the representations of the unmasked ones. This is implemented as a
cross-entropy position classification loss:

Lrec = −
∑
i∈M

log p(yi = ŷi | x\i), (3)

where M is the set of masked token indices, yi is the true position label for patch i, and ŷi is the
predicted position, conditioned on all unmasked observations x\i. This encourages learning global
and robust representations that enable the model to recover missing or occluded information.
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To further regularize training and improve generalization, a symmetric version of the reconstruction
loss is calculated over the unmasked (visible) patches as well. The total loss used to train the encoder
is then

Ltotal = Lrec + Lsym
rec , (4)

where Lsym
rec is the cross-entropy loss computed analogously for the visible tokens. By optimizing

reconstruction on both masked and unmasked parts of the input, the model is guided to learn more
stable and transferable representations.

Table 1: Comparison of pre-training metrics for LaBraM and stLaBraM after 70 epochs. stLaBraM
achieves higher MLM accuracy and lower reconstruction and total loss, with negligible computa-
tional overhead.

Model Params MLM Acc Lrec Ltotal Training time (hh:mm:ss)

LaBraM (baseline) 9.154× 106 0.259 1.701 6.804 1:44:31
stLaBraM (ours) 9.155× 106 0.363 1.314 5.256 1:46:57

As shown in Table 1 and the loss/accuracy curves in Figure 3, stLaBraM achieves a significantly
higher masked language modeling (MLM) accuracy and a substantially reduced reconstruction loss
compared to baseline LaBraM (MLM acc: 0.363 vs 0.259, representing a 40.2% relative improve-
ment, and Lrec: 1.314 vs 1.701, a 22.8% relative reduction) at nearly every epoch, highlighting a
consistent performance gap throughout training.

To evaluate the model-agnostic benefits of our approach, we additionally integrated interpretable
spatial-temporal filtering into the CBraMod architecture. As detailed in Appendix C, similar trends
are observed: stCBraMod consistently outperforms the baseline, yielding mean squared error (MSE)
reduction by approximately 43.1%.

Importantly, these improvements are achieved with negligible additional computational overhead:
both the number of parameters and the training time remain nearly unchanged for the st-augmented
models. All models—including LaBraM, stLaBraM, CBraMod, and stCBraMod—were pre-trained
from scratch on matched TUH splits using the masked modeling objective, with full training and
evaluation protocols detailed in Appendix B. The persistent performance gap observed across both
architectures further supports that our interpretable patch embedding leads to fundamentally im-
proved training dynamics and model representations.

5.2 DOWNSTREAM AND MODEL-AGNOSTIC EVALUATION

Our interpretable front-end yields consistent, model-agnostic improvements across a diverse range
of tasks. For example, on the TUAB benchmark, stLaBraM outperforms LaBraM with a balanced
accuracy of 0.810 ± 0.004 versus 0.797 ± 0.004—a 1.6% relative accuracy gain—when using a
patch embedding module frozen after pretraining. We freeze this module to preserve the general
and interpretable spatial-temporal filters learned on large-scale data, enabling a fair assessment of
their transferability to downstream settings. Similar trends persist across event-related and cognitive
domains: on TUEV, balanced accuracy improves from 0.581 to 0.602 (a 3.6% relative gain), while
on PhysioNet MI, accuracy substantially increases from 0.471 to 0.634 (a relative improvement of
34.6%), again with the pretrained patch embedder kept frozen, underscoring robust transferability
to both out-of-distribution and non-clinical settings.

CBraMod benefits similarly: the stCBraMod variant delivers a statistically significant relative im-
provement of 2.3% over the baseline, further demonstrating that our spatial-temporal patch embed-
ding enhances not only LaBraM but also other advanced EEG architectures (see Appendix C for
detailed metrics).

Ablation studies stress the necessity of combining both spatial and temporal filtering: while accuracy
shows negligible change for spatial-only architectures (0.798 ± 0.004), the full spatial-temporal
block yields a clear improvement (0.810 ± 0.004). These analyses also show enhanced robustness
to data corruption, highlighting that our method leverages physiologically meaningful structure.
Additional results and ablations are presented in Appendix D.
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Figure 3: Pre-training results show that stLaBraM achieves lower reconstruction loss and higher
MLM accuracy than LaBraM, indicating improved learning dynamics and representation quality
from our interpretable spatial-temporal patch embedding.

Table 2: Balanced accuracy for LaBraM and stLaBraM across four benchmark EEG datasets. These
benchmarks span a diverse range of real-world EEG scenarios—including clinical (TUAB, ICD-10),
event-related abnormality detection (TUEV), and non-clinical cognitive tasks (PhysioNet MI)—thus
providing a rigorous evaluation of both in-distribution and challenging OOD settings. stLaBraM
consistently outperforms the strong LaBraM baseline across all tasks, clearly demonstrating the
broad effectiveness and versatility of our spatial-temporal architecture.

Dataset Number
of classes

LaBraM
(Balanced Acc.)

stLaBraM (ours)
(Balanced Acc.)

TUAB (Obeid & Picone, 2016) 2 0.797± 0.004 0.810± 0.004
ICD-10 (Appendix A) 3 0.503± 0.008 0.514± 0.008
PhysioNet MI (Goldberger et al., 2000) 4 0.471± 0.018 0.634± 0.019
TUEV (Obeid & Picone, 2016) 6 0.581± 0.004 0.602± 0.003

5.3 GENERALIZATION, INTERPRETABILITY, AND CLINICAL RELEVANCE

stLaBraM generalized robustly to event and cognitive datasets, outperforming prior foundation
models across all domains tested. For Fig. 4, all interpretable block filters are shown—no cherry-
picking—and represent aggregate spatial and spectral disparities between classes, consistently align-
ing with known EEG biomarkers: abnormal runs exhibit high delta, low alpha/beta, matching liter-
ature (Buzsáki, 2006). Our method enables direct pattern visualization, supporting rigorous source
localization and medical auditability.

Theoretically, the block’s effect is grounded in spatial-temporal filter design: under plausible SNR
and data/task conditions, spatial-temporal tuning converges to meaningful neural or artifact sources,
as analytically motivated and empirically validated here and in prior work (Haufe et al., 2014; Pet-
rosyan et al., 2021). Unlike perturbation-based ‘explanations,’ our method’s patterns are suitable for
subsequent inverse modeling.

Figure 4 displays the learned representations on a pair of normal and abnormal EEGs. We show, for
each model branch, the difference in spatial patterns gi (4a) and the corresponding pair of the power
spectral density profiles (4b) in the normal and abnormal conditions. These visualizations high-
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(a) Branchwise topomap of spatial pattern differ-
ences (normal − abnormal). (b) Temporal patterns for each branch and class.

Figure 4: Learned model representations for normal and abnormal EEGs using stLaBraM. (a) Dif-
ferences in branchwise spatial patterns reveal how the model isolates key discriminative source
locations for abnormality; (b) Temporal patterns show class-specific spectral profiles, such as the
reduction of alpha/beta activity and increase of delta power in the abnormal condition. These visu-
alizations link model features to neurophysiological signatures.

light features the model finds discriminative for abnormality. Several spatial topography patterns
(branches 9, 12, 14, and 16) illustrate model’s focusing on the compact frontal neuronal sources.
Their corresponding PSDs illustrate that in the abnormal condition the activity in the basic high
frequency ranges (alpha: 8-12 Hz, beta: 15-25 Hz) is suppressed while for all mentioned branches
lower frequency components (delta: 0.5-3 Hz) exhibit dominating power in the abnormal condition.

These findings by our architecture are in line with the EEG slowing phenomenon that hallmarks var-
ious pathological brain conditions, including encephalopathies, traumatic brain injury, and neurode-
generative diseases such as Alzheimer’s. It is characterized by increased power in the delta band and
decreased power in higher-frequency alpha and beta bands, typically most prominent over frontal
and central regions Niedermeyer & da Silva (2005); John (2021); Pucci et al. (1998). This spectral
shift reflects widespread cortical dysfunction or disconnection and has been quantitatively confirmed
in both clinical and research settings Tolonen et al. (2018); Babiloni et al. (2004). Therefore, after
screening the EEG data from the TUAB corpus and training on the downstream classification task,
stLaBraM discovered the EEG slowing phenomenon and reached conclusions consistent with the
domain-specific literature.

Figure 5 shows topographic clusters collected from the TUAB dataset. We can observe that several
clusters (1, 7, 10, 15, 16) are most likely reflecting eye movements activity, while clusters 4, 5, 8,
12, and 14 correspond to fronto-central brain sources. Clusters 5 and 12 of the opposite polarity also
exhibit occipital alpha rhythm component known to be one of the dominant features in the EEG.
Noteworthy are the clusters 9 and 11 that likely correspond to the cardiac components.

6 CONCLUSION

We addressed key limitations in the interpretability and generalization of EEG foundation models by
introducing explicit, factorized spatial and temporal filter banks into the patch embedding module
of LaBraM. Our approach was evaluated on a comprehensive array of benchmarks—including clin-
ical diagnosis (TUAB, ICD-10), event-related detection (TUEV), and non-clinical cognitive tasks
(PhysioNet MI)—covering both in-distribution and out-of-distribution settings. Across all tasks, st-
LaBraM delivered consistent accuracy gains, such as a 1.6% relative improvement on TUAB and a
34.6% relative gain on PhysioNet MI, with further substantial error reduction observed in model-
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Figure 5: Topography clusters from the TUH dataset, identified via stLaBraM’s interpretable spatial
filters. Our approach separates neurophysiological patterns (frontal/central/occipital rhythms) from
common artifacts (eye movements, cardiac activity), enabling transparent inspection and domain
validation of learned EEG representations.

agnostic extensions like stCBraMod (e.g., 43.1% decrease in MSE loss). These advances come with
negligible computational overhead and without adding model complexity.

Beyond performance metrics, the spatial-temporal filters learned by our models are directly in-
spectable and reliably map to neurophysiologically meaningful patterns, such as the characteris-
tic EEG slowing in abnormal conditions. This facilitates neuroscientific insight, supports clinical
auditability, and provides a practical alternative to black-box or perturbation-based explainability
techniques. Complementary ablation studies confirm that both spatial and temporal components are
essential for these gains, and robustness analyses demonstrate that improved representations persist
across varied electrode configurations.

Together, these results highlight the critical value of embedding neurophysiological priors in model
design—enabling both improved interpretability and robust generalization for clinically relevant
EEG applications. Our framework is theoretically grounded, computationally efficient, and compat-
ible with standard clinical EEG protocols, paving the way for transparent, trustworthy deep learning
in neuroscience and medicine.

Future work will extend this approach to multi-modal or cross-subject EEG, integrate additional
neuroscientific priors, systematically assess interpretability with clinical experts, and explore its
synergy with well-established supervised baselines. We hope this work brings the community closer
to transparent, robust, and impactful foundation models for neurophysiological and clinical data.

ETHICS STATEMENT

All EEG data used in this study were collected with informed consent and oversight from Institu-
tional Review Boards (IRBs) or equivalent ethics committees, as applicable. All datasets were fully
de-identified prior to use in accordance with relevant privacy and data-protection regulations. The
clinically coded dataset (e.g., ICD-10 coded annotations) is not publicly released to protect partic-
ipant confidentiality; qualified researchers may request access after the review period, subject to
appropriate data use agreements and any required IRB approvals. Data processing followed pro-
tocols designed to minimize any risk of re-identification or misuse of sensitive information. We
acknowledge potential biases of the dataset (e.g., demographic and clinical imbalances) in the Ap-
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pendix A. No personally identifiable information was accessed or shared, and all analyses were
conducted solely for scientific research. We adhere to the ICLR Code of Ethics, including avoid-
ing discrimination, stigmatization, or harm; potential applications should not be used for clinical
decision-making without appropriate validation and oversight.

REPRODUCIBILITY STATEMENT

We describe in detail model architecture, datasets, and preprocessing as well as provide mathemat-
ical formulas for interpretable layers in the main text and provide full training details and hyperpa-
rameters in the Appendix B, including hardware specifications, to facilitate independent replication.
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A ICD-10 DATASET COLLECTION AND DESCRIPTION

The ICD-10 EEG dataset used in this study was collected from multiple clinical partner sites specif-
ically for the purpose of validating foundation EEG models in out-of-distribution (OOD) scenarios.
Detailed characteristics are as follows:

• Subjects: About 7,000 unique patients (age range: 4–92, around 60% male), presenting
for routine or diagnostic EEG studies.

• Diagnostics and labeling: Each subject assigned a primary diagnosis by a licensed neu-
rologist according to ICD-10 codes. For our benchmark, we focus on three groups:

– F00–F09 (organic mental disorders such as dementia and delirium), 3210 samples;
– F20–F29 (schizophrenia and related disorders), 2346 samples;
– F70–F79 (intellectual disabilities), 1219 samples.

• EEG Acquisition: All recordings were performed with approval of institutional review
boards/ethics committees at each participating center, using standard clinical EEG hard-
ware and protocols. Sampling rates ranged from approximately 200 to 500 Hz, with 16 to
19 channel montages.

• Preprocessing: Preprocessing followed the procedures in Section 4 and included channel
mapping to the standardized 16-channel montage, artifact rejection, and segmentation.

11

https://arxiv.org/abs/2412.07236
https://arxiv.org/abs/2402.10251
https://arxiv.org/abs/2402.10251


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

• Data Independence: No subject or recording in our ICD-10 dataset overlaps with the
TUH/TUAB corpus or any other public EEG benchmark.

• Ethics and Consent: All patients participating in the study provided written informed
consent in accordance with institutional guidelines and regulations, and data collection
protocols were reviewed and approved by the relevant institutional review boards (IRBs)
or ethics committees at each participating clinic.

• Availability: The dataset is not publicly downloadable due to clinical privacy restrictions,
but may be available to qualified researchers on reasonable request and with appropriate
IRB approval.

B PRE-TRAINING AND FINE-TUNING PROTOCOLS

Table 3: LaBraM and stLaBraM training hyperparameters for pre-training and fine-tuning.

Hyperparameter Pre-training Fine-tuning

Batch size 256 64
Peak learning rate 5 × 10−4 5 × 10−4

Minimal learning rate 1 × 10−5 1 × 10−5

Learning rate scheduler Cosine Cosine
Optimizer AdamW AdamW
Adam β1, β2 (0.9, 0.98) (0.9, 0.999)
ϵ 1 × 10−8 1 × 10−8

Weight decay 0.05 0.05
Total epochs 70 60
Warmup epochs 5 5
Gradient clipping 3.0 3.0
Layer scale init 0.1 –
Hardware (GPUs, memory) 2 × NVIDIA A100 80GB 1 × NVIDIA A100 80GB

Table 4: CBraMod and stCBraMod training hyperparameters for pre-training and fine-tuning, fol-
lowing the same dataset splits and general procedure as for LaBraM.

Hyperparameter Pre-training Fine-tuning

Batch size 256 64
Peak learning rate 5 × 10−4 1 × 10−4

Minimal learning rate 1 × 10−4 1 × 10−6

Learning rate scheduler Cosine Cosine
Optimizer AdamW AdamW
Adam β1, β2 (0.9, 0.999) (0.9, 0.999)
ϵ 1 × 10−8 1 × 10−8

Weight decay 0.05 0.05
Total epochs 40 60
Warmup epochs – –
Gradient clipping 1.0 1.0
Hardware (GPUs, memory) 2 × NVIDIA A100 80GB 1 × NVIDIA A100 80GB

This standardized protocol ensures rigorous, reproducible evaluation and fair comparison across
foundation model variants and pretraining strategies.
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C MODEL-AGNOSTIC EVALUATION: STCBRAMOD RESULTS

To further demonstrate the universality and model-agnostic effectiveness of our interpretable spatial-
temporal patch embedding, we integrated it into the CBraMod backbone, yielding stCBraMod.
Both CBraMod and stCBraMod were pre-trained from scratch on the same TUAB splits under the
same masked modeling objective as for LaBraM/stLaBraM (see Section B).

Pre-training dynamics. stCBraMod consistently exhibited lower masked modeling reconstruction
loss and faster convergence than CBraMod:

• At 10 epochs, MSE decreased from 0.00244 (CBraMod) to 0.00165 (stCBraMod), a 32.4%
relative reduction.

• At 40 epochs, MSE decreased from 0.00218 to 0.00124, a 43.1% relative reduction.

These trends mirror those observed for stLaBraM, indicating that the proposed spatial-temporal
embedding improves representation learning irrespective of the backbone.

Downstream TUAB abnormal EEG classification. After fine-tuning, stCBraMod outperforms
CBraMod in balanced accuracy (mean±std over n=3 random seeds; robustness assessed with 1,000
bootstrap test samples):

• CBraMod: 0.7967 ± 0.0030;

• stCBraMod (ours): 0.8147 ± 0.0034.

This corresponds to an absolute gain of +0.0180 balanced accuracy and a relative improvement of
+2.3% over the baseline, consistent across seeds and robust to resampling.

In summary, the spatial-temporal interpretable patch embedding yields clear benefits in both pre-
training loss and downstream performance, supporting its model-agnostic utility beyond a single
backbone.

D ABLATION STUDIES

We ablate the spatial and temporal filtering modules and assess robustness to sensor corruption. We
report balanced accuracy (mean ± std) on the TUAB Abnormal EEG Corpus (Obeid & Picone,
2016).

Spatial–temporal module contribution. The spatial-only variant provides negligible improvement
over the baseline, whereas the full spatial–temporal block delivers a clear, statistically robust gain
(Table 5). Relative to the baseline, the full block improves balanced accuracy by +0.013 absolute
(from 0.797 to 0.810), corresponding to a +1.63% relative increase and an effect size exceeding
3× the reported standard deviation. In contrast, removing temporal filtering yields only +0.001
absolute (+0.13% relative), indicating that joint spatial–temporal modeling is essential.

Table 5: Ablation of spatial/temporal modules on TUAB abnormal EEG classification. ∆ columns
are absolute and relative change vs. the baseline.

Variant Balanced Acc. Abs. ∆ vs. base Rel. ∆ vs. base
No interpretable block (baseline) 0.797± 0.004 – –
Spatial-only (no temporal filtering) 0.798± 0.004 +0.001 +0.13%
Full spatial–temporal block (ours) 0.810± 0.004 +0.013 +1.63%

Robustness to sensor corruption (channel masking). We quantify sensitivity to physiologically
meaningful sensor locations by masking channels (Table 6). Masking frontal electrodes (FP1, FP2,
F7, F8, FZ) causes a drop of −0.068 absolute (from 0.810 to 0.742), i.e., −8.40% relative, suggest-
ing the model leverages frontal activity relevant to the task. Randomly masking half the channels
results in a −0.045 absolute (−5.56% relative) decrease, indicating reasonable robustness yet clear
dependence on sensor availability.
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Table 6: Robustness to channel masking on TUAB. ∆ columns report change relative to the full
16-channel model.

Masking scenario Balanced Acc. Abs. ∆ vs. full Rel. ∆ vs. full
All 16 channels (full model) 0.810± 0.003 – –
Mask frontal (FP1, FP2, F7, F8, FZ) 0.742± 0.003 −0.068 −8.40%
Mask 8 random channels 0.765± 0.006 −0.045 −5.56%

Taken together, these results indicate that the interpretable front end relies on physiologically
grounded features—particularly frontal activity relevant to abnormality—while degrading grace-
fully under partial channel availability. This aligns with clinical knowledge and supports the validity
of the learned spatial filters. Practically, it suggests stLaBraM can operate across heterogeneous or
partially missing montages with modest performance loss, and motivates future work on channel-
agnostic training (e.g., sensor dropout, montage harmonization) and source-space alignment to fur-
ther improve robustness.
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