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ABSTRACT

We propose NODE-SAT, a novel temporal graph learning model that integrates
Neural Ordinary Differential Equations (NODEs) with self-attention mechanisms.
NODE-SAT’s design requires only historical 1-hop neighbors as input and com-
prises three key components: a temporal link processing module utilizing NODE-
guided self-attention layers to capture temporal link information, a node represen-
tation module summarizing neighbor information, and a prediction layer. Exten-
sive experiments across thirteen temporal link prediction datasets demonstrate that
NODE-SAT achieves state-of-the-art performance on most datasets with signifi-
cantly faster convergence. The model demonstrates high accuracy, rapid conver-
gence, robustness across varying dataset complexities, and strong generalization
capabilities in both transductive and inductive settings in temporal link prediction.
These findings highlight NODE-SAT’s effectiveness in capturing node correla-
tions and temporal link dynamics.

1 INTRODUCTION

Temporal graphs have emerged as a powerful tool for modeling complex, evolving systems across
various domains Kazemi et al. (2020); Yu et al. (2017); Bui et al. (2022). These time-varying struc-
tures represent entities as nodes and their interactions as timestamped links, capturing the chronolog-
ical evolution of relationships in diverse scenarios. In social networks, temporal graphs are highly
effective at analyzing user interactions and predicting future connections Kumar et al. (2019); Song
et al. (2019). Within e-commerce platforms, they play a crucial role in modeling user-item interac-
tions and recommending products Li et al. (2020); Fan et al. (2021); Yu et al. (2022); Zhang et al.
(2022b). In the field of transportation, temporal graphs prove invaluable for analyzing traffic patterns
and optimizing routes Yu et al. (2017); Wu et al. (2019); Guo et al. (2019). Furthermore, they have
shown great promise in modeling and predicting the behavior of complex physical systems Huang
et al. (2020b); Sanchez-Gonzalez et al. (2020). Representation learning on temporal graphs can
be categorized into continuous-time and discrete-time Huang et al. (2020a). This study focuses on
continuous-time representation learning. Unlike discrete-time methods that aggregate interactions
into fixed intervals, continuous-time models maintain the exact timing of events, allowing for a more
nuanced understanding of the graph’s evolutionary patterns.

Conventional approaches to temporal graph learning typically integrate Recurrent Neural Networks
(RNNs), temporal attention mechanisms, and Graph Neural Networks (GNNs) to model both tem-
poral information and structural relationships Trivedi et al. (2019); Xu et al. (2020). However, a
recent study introducing GraphMixer Cong et al. (2023) challenges this complexity with a simple
design. GraphMixer utilizes only 1-hop neighbor information, link features, and node features, pro-
cessing temporal graph data through an MLP-Mixer Tolstikhin et al. (2021) architecture. Despite its
simplicity, GraphMixer achieves performance comparable to or surpassing more complex models
across various temporal graph learning tasks. The success of GraphMixer raises important ques-
tions about the necessity of complex architectures in temporal graph analysis. Its effectiveness lies
in the efficient integration of spatial and temporal information. This finding suggests that simplicity
can match or exceed the performance of more sophisticated approaches in capturing temporal graph
learning.

While GraphMixer demonstrates effectiveness in general temporal graph learning tasks, specific
domains such as traffic prediction require tailored approaches to address their unique challenges.
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Traffic prediction, a critical component of intelligent transportation systems, demands models that
can capture complex spatio-temporal dependencies and evolving patterns in urban mobility. In this
context, Neural Ordinary Differential Equations (NODEs) Chen et al. (2018) have emerged as a
promising framework Fang et al. (2021); Choi et al. (2022). NODEs, which model continuous-time
dynamics, offer a mathematically approach to representing the fluid nature of traffic flows and their
temporal evolution.

Drawing inspiration from GraphMixer Zhang et al. (2022a) and NODEs Chen et al. (2018); Poli
et al. (2019), we propose a novel method to model temporal graph dynamics. Our method lever-
ages continuum-depth models to capture the intricate evolution of temporal graphs, utilizing NODE
frameworks to model the continuous-time dynamics of graph structures. This method enables us to
learn differential equations that describe the temporal evolution of link features and node features,
providing a more nuanced and continuous representation of graph dynamics. By integrating these
concepts, our method offers a more detailed and smooth perspective on how graphs evolve over
time, capturing complex interactions and changes in graph structures.

Our method employs an ODE layer to integrate hidden representations across the temporal graph,
yielding continuous-time temporal embeddings for each node. Our model’s ability to identify and
analyze complex temporal patterns is enhanced through the incorporation of a self-attention mech-
anism Vaswani et al. (2017). The attention layer is applied to the representations generated by the
ODE solver. By combining ODE-based continuous-time modeling with self-attention, our method
effectively captures node features and richer temporal link information. This integration allows for
a more comprehensive understanding of temporal dynamics in graph data. To encourage future re-
search, we have made NODE-SAT available at https://anonymous.4open.science/r/
NODE-SAT-6F12. Our key contributions can be summarized as follows:

1. Novel Temporal Graph Neural Network Architecture: We propose a new architecture
that combines continuous-time modeling with graph neural networks, specifically designed
to capture the dynamic nature of temporal graphs.

2. Continuous-Time Temporal Embeddings: Our method generates continuous-time tem-
poral embeddings for each node by integrating hidden representations using an ODE solver,
capturing the evolving nature of temporal link and graph structure.

3. Robust Framework for Temporal Graph Analysis: By combining NODEs with self-
attention, we provide a robust framework for modeling and predicting links in temporal
graphs, offering a continuous-time perspective that can potentially capture subtle temporal
dynamics often overlooked by discrete-time models.

2 PRELIMINARY AND EXISTING WORKS

2.1 TEMPORAL LINK PREDICTION

Temporal link prediction in temporal graphs involves analyzing the evolution of a network
G(V,E, T ) over time, where V is the set of nodes, E is the set of edges, and T represents the
time steps {t1, t2, ..., tn}. Given the observed graph states Gt for t ∈ {t1, ..., tn−1}, our goal is to
predict the probability P (eij |Gtn) of a link eij forming between nodes vi and vj at the future time
tn.

Figure 1 illustrates the temporal link prediction process. The solid lines represent known connections
between nodes at different time steps (t1 to t4). The dashed red lines indicate potential future
connections at time t4 that the model aims to predict.

3 RELATED WORKS

3.1 TEMPROAL GRAPH LEARNING

Temporal graph learning methods model network evolution over time, with various approaches ad-
dressing this challenge. JODIE Kumar et al. (2019) uses recurrent neural networks (RNNs) to
update node representations based on past interactions, while DySAT Sankar et al. (2020) employs
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Link Prediction via Node Feature Link Prediction via Link Feature

Time Information

Figure 1: Temporal link prediction with node feature and Link feature along with time information.
Specifically, the model is trained to predict the ground-truth links via node and link features at t2
and t3. Note that the examples on t2 and t3 demonstrate how two types of features contribute to the
link prediction process. The ultimate goal is to predict the unobserved links at the current time t4.

self-attention on graph snapshots to capture structural changes. TGAT Xu et al. (2020) combines
spatial and temporal information by augmenting node features with time encoding. TGN Rossi et al.
(2020) merges RNNs with graph attention for joint temporal and spatial modeling. DyGFormer Yu
et al. (2023) utilizes Transformers Vaswani et al. (2017) to extract long-term temporal information,
and GraphMixer Cong et al. (2023) offers a simple method with a combination of link and node
encoders and MLP-Mixer to summarize the information. These methods aim to effectively capture
both spatial and temporal information in temporal graphs, enabling applications like link prediction
and node classification.

3.2 NEURAL ODE

Complex dynamic systems can be modeled using a set of nonlinear first-order ordinary differential
equations (ODEs) Strogatz (2018); Guckenheimer & Holmes (2013); Kuznetsov (2013). These
ODEs describe the temporal evolution in continuous time t ∈ R. Let xi(t) ∈ Rk represent the
state vector of the i-th variable at time t, and F denote the ODE function governing the system’s
dynamics. Given the initial conditions x1(0),x2(0), . . . ,xM (0) and the function F , the system’s
evolution can be solved using numerical ODE solvers such as the Runge-Kutta method Press et al.
(2007). The solution for any variable i at an arbitrary time τ can be expressed as:

xi(τ) = xi(0) +

∫ τ

0

F(x1(t),x2(t), . . . ,xM (t), t) dt (1)

This formulation allows for the evaluation of the system’s state at any desired time point, providing
a continuous representation of the dynamic process.

Neural Ordinary Differential Equation (NODE) Chen et al. (2018) is a continuous-depth deep neural
network model. It represents the derivative of the hidden state with a neural network:

dh(t)

dt
= Φ(h(t),θ, t) (2)

where h(t) denotes the hidden state of a dynamic system at time t, Φ is a function parameterized by
a neural network describing the derivative of the hidden state with respect to time, and θ represents
the parameters in the neural network. The output of a NODE framework is calculated using an ODE
solver with an initial value:

h(τ1) = h(τ0) +

∫ τ1

τ0

Φ(h(t), t,θ) dt (3)

where τ0 is the initial time point, τ1 is the output time point, and h(τ1) and h(τ0) represent the
hidden state at τ1 and τ0, respectively. Thus, NODE can output the hidden state of a dynamic
system at any time point and deal with continuous-time data, which is extremely useful in modeling
continuous-time dynamic systems.

Traditionally, the ODE function F is usually hand-made based on domain knowledge, such as robot
motion control and fluid dynamics Murray (2017); Huang et al. (2023). This approach is challenging
without an extensive understanding of the underlying principles. NODEs parameterizing F with a
neural network and learning it in a data-driven way. This approach combines neural networks with
ODEs, showing strong results in many different fields.
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Figure 2: Framework of proposed model.

4 METHOD

Our model learns continuous-time representations of nodes in temporal graphs through three key
components. The link processing module employs a neural ODE to guide a self-attention layer, cap-
turing complex temporal link information. The node processing module generates node represen-
tations that capture structural information from the graph. A prediction layer utilizes these learned
representations to predict links at future time points. Figure 2 is the framework of our method.

4.1 NODE-SAT

In this section, we present the framework of NODE-SAT, detailing its architecture and key compo-
nents. For each node vi in the graph, we represent its temporal link information as a chronologically
ordered sequence:

T (vi) = (t1,xi,j1(t1))⊕ · · · ⊕ (tn,xi,jn(tn)) (4)

where tk represents timestamps with t1 < · · · < tn, xi,j(t) denotes the link features between nodes
vi and vj at time t, and ⊕ is the concatenation operator. To balance computational efficiency with
the recency of information, we retain only the K most recent temporal link entries, where K is a
hyperparameter.

To enhance the model’s ability to capture temporal patterns, we apply a learnable time encoder Xu
et al. (2020). For each timestamp tk, we compute a time encoding vector ϕ(tk) using a learnable
function:

ϕ(tk) = cos(tkw + b) (5)

where w and b are learnable parameters. This time embedding ϕ(tk) is then concatenated with the
link features:

T̃ (vi) = (xi,j1(t1);ϕ(t1))⊕ · · · ⊕ (xi,jn(tn);ϕ(tn)) (6)

To ensure uniform input dimensions, we apply zero-padding to standardize the length of all temporal
vectors T̃ (vi). Following the padding operation, we employ a MLP to summarize the information
contained in these vectors:

hi(T ) = MLP(T̃ (vi)) (7)

where hi(T ) is the embedding of vi that contains the temporal link information from t1 to tn. The
final temporal link embedding is generated through a process that incorporates NODEs, allowing us
to model the continuous-time evolution of temporal information of each node:

hi(T )τ = hi(T )τ0 +

∫ τ

τ0

f(hi(T ), θ) dT (8)

where hi(T )τ is the final temporal link embedding for node vi at future time τ , τ0 is the current
time, f is a neural network, θ representing parameter of the neural network. we consider the time
parameter of the ODE, τ , as a hyperparameter. The integration of NODEs into our model architec-
ture provides a powerful mechanism for controlling the evolution of representations. This method
allows us to model the continuous-time dynamics of the graph structure more accurately. We can
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estimate temporal link representations at any arbitrary future time point τ . This capability enhances
the model’s flexibility and generalizability. In our model, higher τ values allow the temporal link
embeddings to evolve over a longer time span, capturing more extended temporal dynamics, while
lower τ values focus on shorter-term changes.

After the output from the Neural ODE, we introduce a self-attention layer to further process and
integrate the temporal link information. This step allows the model to capture complex interrela-
tionships between different time points, generating a richer final representation. The self-attention
layer Vaswani et al. (2017) is computed as follows:

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

)
V (9)

where Q, K, and V are the Query, Key, and Value matrices respectively, and dk is the dimension
of the key vectors. In our case, Q, K, and V all originate from the same input h(vi). The final
temporal link representation is generated by combining the original temporal link representation
with the output of the attention layer:

h(vi) = hi(T ) + Attention(hi(T )τ ,hi(T )τ ,hi(T )τ ) (10)

Here, hi(T ) is original temporal link representation, hi(T )τ is the temporal link representation
after being processed by NODE, and Attention(hi(T )τ ,hi(T )τ ,hi(T )τ ) is the output of the self-
attention. In this way, our model is able to capture dynamic changes in the continuous time do-
main using NODEs, learn interdependencies between different time points through the self-attention
mechanism, and combine original link information with temporally evolved information to generate
a more comprehensive representation for each node. The final representation h(vi) contains much
richer temporal link information, considering both the continuous time evolution and the relation-
ships between discrete time points.

After processing the temporal link information, we now shift our focus to node features in temporal
graphs. Following the studys of GraphMixer Zhang et al. (2022a) and DyGformer Yu et al. (2023),
we also adopt the strategy of using only 1-hop neighbor information. This simplified input data not
only simplifies the model structure but also retains the most direct and relevant local information
in the graph. Let vi denote a node in the graph, and define its 1-hop neighbor within the time
interval [t, t0] as N (vi; t, t0). We introduce an adaptive node feature computation that accounts for
the varying neighborhood sizes:

s(vi) = x(vi) +
1

|N (vi; t0 − t, t0)|
∑

vj∈N (vi;t0−t,t0)

αij · x(vj) (11)

Here, xnode
i represents the feature vector of node vi, and αij is an adaptive weighting factor defined

using the standard softmax function:

αij =
exp(x(vij))∑

vk∈N (vi;t0−t,t0)
exp(x(vik))

(12)

After we get temporal link embeddings and node embeddings, we can use them for various graph
tasks like link prediction and node classification.

4.2 PREDICTION LAYER

For link prediction, we design a link classifier that determines the existence of a link between two
nodes at a future time. This classifier utilizes two inputs: (1) h(vi), the temporal link embeddings,
which capture the temporal link information of node vi, and (2) s(vi), the node embeddings, which
contain the node features and 1-hop neighbor information. We define the representation of node vi,
which combines the temporal link embeddings and node embeddings, as the concatenation of these
two embeddings:

E(vi) = [s(vi)⊕ h(vi)] (13)

where ⊕ denotes vector concatenation. To predict whether an interaction occurs between nodes vi
and vj at a future time, we employ a two-layer MLP model. This prediction layer takes E(vi) and
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E(vj) as inputs and outputs the probability of a link forming between nodes vi and vj at the future
time. Formally, we can express this as:

P (linkij) = MLP(E(vi),E(vj)) (14)

P (linkij) is the likelihood that there exist a link between vi and vj . Our method considers both node
features and much richer dynamic temporal information, enabling a more comprehensive prediction
of link formation.

5 EXPERIMENTS

5.1 DATASET AND BASELINES

Our study includes thirteen diverse datasets, collected by Poursafaei et al. (2022), spanning various
domains: Wikipedia, Reddit, MOOC, LastFM, Enron, Social Evolution, UCI, Flights, Canadian
Parliament, US Legislature, UN Trade, UN Vote, and Contact. Detailed statistics of these datasets
are presented in Table 4. We evaluate our approach against nine state-of-the-art temporal graph
learning baselines, representing a broad spectrum of techniques including GNNs, memory networks,
random walks, transformers, MLP-mixers, and sequential models: DyGFormer Yu et al. (2023),
JODIE Kumar et al. (2019), DyRep Trivedi et al. (2019), TGAT Xu et al. (2020), TGN Rossi et al.
(2020), CAWN Wang et al. (2021a), EdgeBank Wang et al. (2021b), TCL Wang et al. (2021b), and
GraphMixer Cong et al. (2023).

5.2 EVALUATION

We evaluate our model’s performance in dynamic link prediction, following established method-
ologies Yu et al. (2023); Rossi et al. (2020); Wang et al. (2021a). Our task involves predicting the
probability of a link forming between two nodes at a specific time, considering both transductive
(future links between observed nodes) and inductive (links involving unseen nodes) scenarios. For
evaluation, we employ Average Precision (AP) and Area Under the Receiver Operating Charac-
teristic Curve (AUC-ROC) metrics. We adopt random, historical, and inductive negative sampling
strategies as described in Poursafaei et al. (2022); Yu et al. (2023). Each dataset is chronologically
split into 70% training, 15% validation, and 15% testing sets.

5.3 OVERALL PERFORMANCE

We report the performance of different methods on the AP metric for transductive temporal link
prediction with three negative sampling strategies (random, historical, and inductive) in Table 1.
The best results are emphasized by bold fonts, and the second-best results are underlined. Please
refer to Table 7, Table 8 and Table 9 for the results of AP for inductive dynamic link prediction tasks.

The results demonstrate the consistently high performance of NODE-SAT across various datasets
and experimental settings. In the random (rnd) negative sampling strategy setting, NODE-SAT con-
sistently outperformed other methods, achieving perfect 100% accuracy (±0.00) on 6 out of 13
datasets, including Wikipedia, Reddit, Social Evolution, Flights, and Can.Parl. Even on challeng-
ing datasets like UN Trade and UN Vote, NODE-SAT maintained high accuracy (95.47% ±0.89
and 83.89% ±3.00 respectively), significantly surpassing other methods. For the historical (hist)
negative sampling strategy setting, NODE-SAT continued its strong performance, achieving 100%
accuracy on 5 datasets and over 95% accuracy on 4 others. Notably, it showed remarkable im-
provement on complex datasets like UN Trade (95.79% ±1.28) compared to the next best method
(EdgeBank at 81.32%). The inductive (ind) negative sampling strategy setting, often considered
the most challenging, further highlighted NODE-SAT’s capabilities. It maintained 100% accuracy
on 3 datasets and achieved over 95% accuracy on 5 others. Across all settings, NODE-SAT consis-
tently outperformed state-of-the-art methods like DyGFormer, GraphMixer, and TGN. Our method’s
ability to maintain high accuracy with low standard deviations across diverse datasets and settings
underscores its reliability and effectiveness in temporal graph learning.

Fig 3, Fig 4, and Fig 5 illustrate the training loss and ROC AUC for the Can.Parl, MOOC,
and Wikipedia datasets. NODE-SAT consistently outperforms state-of-the-art methods like TCL,
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Table 1: AP for transductive dynamic link prediction with random, historical, and inductive negative
sampling strategies. NSS is Negative Sampling Strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer NODE-SAT
Wikipedia 96.50 ± 0.14 94.86 ± 0.06 96.94 ± 0.06 98.45 ± 0.06 98.76 ± 0.03 90.37 ± 0.00 96.47 ± 0.16 97.25 ± 0.03 99.03 ± 0.02 100 ± 0.00
Reddit 98.31 ± 0.14 98.22 ± 0.04 98.52 ± 0.02 98.63 ± 0.06 99.11 ± 0.01 94.86 ± 0.00 97.53 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 100 ± 0.00
MOOC 80.23 ± 2.44 81.97 ± 0.49 85.84 ± 0.15 89.15 ± 1.60 80.15 ± 0.25 57.97 ± 0.00 82.38 ± 0.24 82.78 ± 0.15 87.52 ± 0.49 99.50 ± 0.29
LastFM 70.85 ± 2.13 71.92 ± 2.21 73.42 ± 0.21 77.07 ± 3.97 86.99 ± 0.06 79.29 ± 0.00 67.27 ± 2.16 75.61 ± 0.24 93.00 ± 0.12 94.92 ± 0.98
Enron 84.77 ± 0.30 82.38 ± 3.36 71.12 ± 0.97 86.53 ± 1.11 89.56 ± 0.09 83.53 ± 0.00 79.70 ± 0.71 82.25 ± 0.16 92.47 ± 0.12 98.68 ± 1.58
Social Evo. 89.89 ± 0.55 88.87 ± 0.30 93.16 ± 0.17 93.57 ± 0.17 84.96 ± 0.09 74.95 ± 0.00 93.13 ± 0.16 93.37 ± 0.07 94.73 ± 0.01 100 ± 0.00

rnd UCI 89.43 ± 1.09 65.14 ± 2.30 79.63 ± 0.70 92.34 ± 1.04 95.18 ± 0.06 76.20 ± 0.00 89.57 ± 1.63 93.25 ± 0.57 95.79 ± 0.17 99.16 ± 0.72
Flights 95.60 ± 1.73 95.29 ± 0.72 94.03 ± 0.18 97.95 ± 0.14 98.51 ± 0.01 89.35 ± 0.00 91.23 ± 0.02 90.99 ± 0.05 98.91 ± 0.01 100 ± 0.00
Can. Parl. 69.26 ± 0.31 66.54 ± 2.76 70.73 ± 0.72 70.88 ± 2.34 69.82 ± 2.34 64.55 ± 0.00 68.67 ± 2.67 77.04 ± 0.46 97.36 ± 0.45 99.99 ± 0.01
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52 ± 3.16 75.99 ± 0.58 70.58 ± 0.48 58.39 ± 0.00 69.59 ± 0.48 70.74 ± 1.02 71.11 ± 0.59 86.34 ± 6.52
UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 65.03 ± 1.37 65.39 ± 0.12 60.41 ± 0.00 62.21 ± 0.03 62.61 ± 0.27 66.46 ± 1.29 95.47 ± 0.89
UN Vote 63.91 ± 0.81 62.81 ± 0.80 52.21 ± 0.98 65.72 ± 2.17 52.84 ± 0.10 58.49 ± 0.00 51.90 ± 0.30 52.11 ± 0.16 55.55 ± 0.42 83.89 ± 3.00
Contact 95.31 ± 1.33 95.98 ± 0.15 96.28 ± 0.09 96.89 ± 0.56 90.26 ± 0.28 92.58 ± 0.00 92.44 ± 0.12 91.92 ± 0.03 98.29 ± 0.01 100 ± 0.00
Wikipedia 97.37 ± 0.07 97.13 ± 0.07 97.73 ± 0.03 98.67 ± 0.04 98.89 ± 0.02 98.71 ± 0.00 97.39 ± 0.11 97.99 ± 0.02 99.14 ± 0.01 100 ± 0.00
Reddit 98.70 ± 0.09 98.77 ± 0.02 98.91 ± 0.01 99.01 ± 0.03 99.29 ± 0.01 99.52 ± 0.00 98.35 ± 0.02 98.13 ± 0.01 99.38 ± 0.01 100 ± 0.00
MOOC 84.51 ± 1.26 86.41 ± 0.30 89.29 ± 0.15 91.88 ± 0.97 84.21 ± 0.24 84.66 ± 0.00 86.95 ± 0.20 87.01 ± 0.13 90.68 ± 0.37 99.83 ± 0.17
LastFM 88.68 ± 1.01 88.56 ± 1.23 90.06 ± 0.13 92.42 ± 1.99 94.38 ± 0.04 97.52 ± 0.00 87.56 ± 1.16 91.69 ± 0.14 97.16 ± 0.07 98.04 ± 1.03
Enron 89.77 ± 0.18 89.19 ± 1.87 81.32 ± 0.62 91.63 ± 0.65 93.16 ± 0.06 95.58 ± 0.00 87.32 ± 0.44 89.31 ± 0.11 95.27 ± 0.08 99.01 ± 1.32
Social Evo. 91.59 ± 0.36 91.48 ± 0.20 94.55 ± 0.11 94.89 ± 0.11 88.47 ± 0.07 92.02 ± 0.00 94.74 ± 0.11 94.87 ± 0.05 95.87 ± 0.01 100 ± 0.00

hist UCI 93.76 ± 0.60 79.05 ± 1.47 89.08 ± 0.44 95.70 ± 0.60 97.13 ± 0.04 94.13 ± 0.00 94.23 ± 0.92 96.39 ± 0.33 97.55 ± 0.10 99.14 ± 0.23
Flights 96.95 ± 0.96 96.98 ± 0.40 96.30 ± 0.10 98.66 ± 0.08 98.94 ± 0.01 98.07 ± 0.00 94.54 ± 0.01 94.36 ± 0.03 99.24 ± 0.01 100 ± 0.00
Can. Parl. 78.80 ± 0.20 77.52 ± 1.72 80.35 ± 0.45 80.46 ± 1.45 79.68 ± 1.45 84.91 ± 0.00 79.17 ± 1.66 84.73 ± 0.29 98.55 ± 0.27 100 ± 0.00
US Legis. 83.69 ± 0.92 84.40 ± 0.24 79.62 ± 1.93 84.92 ± 0.35 81.19 ± 0.29 81.03 ± 0.00 80.72 ± 0.29 81.57 ± 0.62 81.83 ± 0.36 92.15 ± 6.35
UN Trade 71.49 ± 0.19 70.39 ± 0.57 69.22 ± 0.11 71.55 ± 0.84 71.78 ± 0.07 73.62 ± 0.00 69.78 ± 0.02 70.07 ± 0.17 72.95 ± 0.79 97.76 ± 0.46
UN Vote 73.02 ± 0.51 72.39 ± 0.50 64.47 ± 0.61 74.25 ± 1.35 65.02 ± 0.06 76.05 ± 0.00 64.07 ± 0.19 64.22 ± 0.10 67.11 ± 0.26 89.64 ± 2.51
Contact 96.62 ± 0.75 97.07 ± 0.08 97.26 ± 0.05 97.67 ± 0.31 93.08 ± 0.16 98.21 ± 0.00 94.74 ± 0.07 94.40 ± 0.02 98.89 ± 0.01 100 ± 0.00
Wikipedia 96.34 ± 0.15 93.66 ± 0.06 96.44 ± 0.06 98.11 ± 0.07 98.47 ± 0.03 86.49 ± 0.00 95.81 ± 0.18 96.70 ± 0.03 98.77 ± 0.02 100 ± 0.00
Reddit 98.03 ± 0.16 97.86 ± 0.05 98.21 ± 0.02 98.34 ± 0.07 98.92 ± 0.01 92.51 ± 0.00 97.01 ± 0.02 96.77 ± 0.01 99.05 ± 0.01 100 ± 0.00
MOOC 77.62 ± 2.70 79.10 ± 0.55 83.69 ± 0.17 87.32 ± 1.77 77.59 ± 0.27 49.96 ± 0.00 79.55 ± 0.27 80.08 ± 0.17 85.46 ± 0.54 99.33 ± 0.38
LastFM 63.97 ± 2.37 64.89 ± 2.45 67.04 ± 0.23 71.15 ± 4.39 83.67 ± 0.07 70.93 ± 0.00 59.39 ± 2.39 68.70 ± 0.27 91.04 ± 0.13 91.89 ± 2.13
Enron 81.98 ± 0.33 78.63 ± 3.72 65.15 ± 1.07 83.51 ± 1.23 87.61 ± 0.10 76.91 ± 0.00 75.30 ± 0.79 78.15 ± 0.18 90.90 ± 0.13 97.51 ± 3.29
Social Evo. 88.89 ± 0.62 87.57 ± 0.34 92.37 ± 0.19 92.81 ± 0.19 82.93 ± 0.10 66.98 ± 0.00 92.17 ± 0.18 92.46 ± 0.08 94.04 ± 0.01 100 ± 0.00

ind UCI 86.96 ± 1.21 58.30 ± 2.55 74.63 ± 0.78 90.39 ± 1.15 93.99 ± 0.07 67.48 ± 0.00 86.89 ± 1.80 91.37 ± 0.63 94.71 ± 0.19 97.14 ± 0.58
Flights 94.77 ± 1.92 94.38 ± 0.80 92.84 ± 0.20 97.51 ± 0.15 98.24 ± 0.01 84.84 ± 0.00 89.35 ± 0.02 89.07 ± 0.06 98.71 ± 0.01 100 ± 0.00
Can. Parl. 64.13 ± 0.34 60.95 ± 3.06 65.55 ± 0.80 65.72 ± 2.59 64.57 ± 2.59 55.10 ± 0.00 63.07 ± 2.96 72.83 ± 0.51 96.66 ± 0.50 99.99 ± 0.01
US Legis. 70.38 ± 1.68 70.27 ± 0.43 62.41 ± 3.50 71.08 ± 0.64 64.87 ± 0.53 48.11 ± 0.00 63.50 ± 0.53 64.83 ± 1.13 65.24 ± 0.65 87.28 ± 6.50
UN Trade 61.41 ± 0.34 59.45 ± 1.03 57.42 ± 0.20 61.51 ± 1.52 61.91 ± 0.13 54.16 ± 0.00 58.26 ± 0.03 58.71 ± 0.30 63.10 ± 1.43 94.32 ± 1.11
UN Vote 59.15 ± 0.90 57.93 ± 0.89 46.21 ± 1.09 61.18 ± 2.41 46.91 ± 0.11 50.36 ± 0.00 45.87 ± 0.33 46.10 ± 0.18 49.93 ± 0.47 76.77 ± 5.14
Contact 94.51 ± 1.47 95.30 ± 0.17 95.65 ± 0.10 96.36 ± 0.62 88.48 ± 0.31 89.31 ± 0.00 91.05 ± 0.13 90.47 ± 0.03 97.89 ± 0.01 100 ± 0.00
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JODIE, TGAT, TGN, and DyGformer across multiple metrics. It achieves the lowest training loss
and highest ROC AUC scores, particularly on the MOOC and Can.Parl datasets, with ROC AUC
approaching 1.0 on Can.Parl. NODE-SAT demonstrates accelerated convergence, reaching stable
performance in fewer epochs than its counterparts, while maintaining exceptional stability with min-
imal fluctuations. Its consistent high performance across datasets of varying sizes and complexities
underscores its scalability and robustness in temporal graph learning.

Figure 3: Training Loss Comparison

Figure 4: Training Loss Comparison

Figure 5: Training ROC AUC Comparison

6 ABLATION STUDY

6.1 EMPIRICAL EVALUATION OF NODE INTEGRATION IN NODE-SAT

We are interested in investigating the impact of incorporating NODE on our model’s performance
across various temporal graph datasets. Our study aims to assess how NODE influences the effec-
tiveness of NODE-SAT. To quantify this effect, we conducted a comparative analysis between two
versions of our model: NODE-SAT with NODE integration and NODE-SAT without NODE. Ta-
ble 2 presents the results of this performance comparison. The performance comparison between
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Table 2: Performance Comparison: NODE-SAT with and without NODE

Datasets Without NODE With NODE
Wikipedia 99.99 ± 0.00 100 ± 0.00
Reddit 100 ± 0.00 100 ± 0.00
MOOC 99.51 ± 0.11 99.61 ± 0.20
LastFM 89.65 ± 2.41 94.92 ± 0.98
Enron 73.61 ± 6.48 98.68 ± 1.58
Soc. Evol. 100 ± 0.00 100 ± 0.00
UCI 97.48 ± 0.79 99.16 ± 0.72
Flights 100 ± 0.00 100 ± 0.00
Can. Parl. 98.29 ± 3.12 99.99 ± 0.01
US Leg. 77.89 ± 14.11 86.34 ± 6.52
UN Trade 63.05 ± 5.13 95.47 ± 0.89
UN Vote 54.60 ± 0.57 83.89 ± 3.00
Contact 100 ± 0.00 100 ± 0.00

NODE-SAT with and without NODE reveals significant benefits of incorporating NODE into our
model. Across the 13 datasets tested, NODE integration either maintains or improves performance
in all cases. The most dramatic improvements are observed in the UN Trade and UN Vote datasets,
with increases of 32.42 and 29.29 percentage points respectively. Substantial enhancements are also
seen in the Enron dataset (25.07 points) and LastFM (5.27 points). NODE integration often leads to
increased stability, as evidenced by reduced standard deviations in datasets like Enron (from 6.48 to
1.58) and UN Trade (from 5.13 to 0.89). While some datasets (Wikipedia, Reddit, Social Evolution,
Flights, and Contact) already achieve optimal or near-optimal performance without NODE, its inte-
gration either maintains this high performance or slightly improves it, as in the case of Wikipedia.
Notably, in datasets with lower initial performance, such as US Legis. and UN Vote, NODE-SAT
demonstrates substantial improvements while also reducing variability. This consistent enhancement
across diverse dataset types strongly supports the integration of NODE in temporal graph models,
demonstrating its effectiveness in capturing complex temporal dynamics.

6.2 TIME PARAMETER τ INFLUENCE IN NODE-SAT

We investigate the impact of the time parameter τ on NODE-SAT’s performance across various
datasets (Table 3). The results demonstrate NODE-SAT’s stability across various τ values (1.0, 1.3,

Table 3: NODE-SAT Performance Across Different τ Values

Datasets τ = 1 τ = 1.3 τ = 1.5 τ = 1.7 τ = 2.0
Wikipedia 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
Reddit 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
MOOC 99.50 ± 0.29 99.55 ± 0.24 99.61 ± 0.20 99.51 ± 0.20 99.52 ± 0.14
LastFM 93.89 ± 1.92 94.92 ± 0.98 90.64 ± 2.56 93.52 ± 3.53 93.43 ± 2.00
Enron 98.01 ± 2.63 98.68 ± 1.58 98.92 ± 1.20 98.28 ± 1.49 98.87 ± 0.68
Social Evo. 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
UCI 97.86 ± 0.46 99.16 ± 0.72 99.35 ± 0.36 99.21 ± 0.44 99.51 ± 0.29
Flights 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
Can. Parl. 99.99 ± 0.01 100 ± 0.01 100 ± 0.01 99.99 ± 0.02 99.99 ± 0.03
US Legis. 86.34 ± 6.52 60.68 ± 21.98 60.77 ± 24.04 61.39 ± 30.20 69.80 ± 26.05
UN Trade 95.47 ± 0.89 92.62 ± 2.28 93.11 ± 3.13 91.94 ± 0.61 92.44 ± 3.42
UN Vote 81.06 ± 4.63 83.89 ± 3.00 83.27 ± 3.78 84.06 ± 4.67 84.64 ± 3.29
Contact 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
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1.5, 1.7, and 2.0). Higher τ values allow the temporal link embeddings to evolve over a longer
time span, capturing more extended temporal dynamics, while lower τ values focus on shorter-
term changes. Five out of 13 datasets (Wikipedia, Reddit, Social Evolution, Flights, and Contact)
achieve perfect 100% accuracy (±0.0000) for all τ values, while several others (MOOC, Enron, UCI,
and Canadian Parliament) consistently perform above 97%. Some datasets exhibit sensitivity to τ :
LastFM’s accuracy ranges from 90.64% to 94.92% (best at τ=1.3), US Legis. shows high variability
(60.68% to 86.34%, best at τ=1), UN Trade peaks at τ=1 (95.47%), and UN Vote improves slightly
with increasing τ (best at τ=2.0). While τ=1 often yields optimal or near-optimal results, the best
τ value appears dataset-dependent. NODE-SAT’s ability to maintain high accuracy across various
τ values for most datasets underscores its effectiveness in capturing temporal dynamics in diverse
graph datasets, though careful tuning may be beneficial for more complex cases. The optimal choice
of this parameter of NODE-SAT can be influenced by the specific temporal graph dataset. Future
work could explore the relationship between dataset properties and optimal τ values to develop
guidelines for parameter selection in different domains.

7 CONCLUSION

We introduce NODE-SAT, a novel temporal graph learning model that integrates Neural Ordinary
Differential Equations (NODEs) with self-attention mechanisms. Through extensive experiments on
thirteen diverse datasets, NODE-SAT consistently demonstrates outstanding performance in tempo-
ral link prediction tasks, exhibiting exceptional accuracy, rapid convergence, robustness across vary-
ing dataset complexities, and strong generalization capabilities in both transductive and inductive
temporal link prediction settings. The model’s innovative combination of NODEs and self-attention
provides a simple yet powerful framework for temporal graph modeling, allowing for nuanced rep-
resentation of graph evolution and enhanced capture of complex between-node relationships. By
leveraging a continuous-time perspective, NODE-SAT effectively models node correlations and tem-
poral link dynamics, potentially discerning subtle patterns that discrete-time models might overlook.
These results not only validate NODE-SAT’s efficacy in temporal graph learning tasks but also open
up new research directions in continuous-time graph modeling.
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A APPENDIX

A.1 DATASET DETAIL

The thirteen datasets used in our experiments exhibit diverse characteristics, providing a compre-
hensive testbed for our model. They range in size from 74 nodes (Social Evolution) to 10,984 nodes
(Reddit), with edge counts varying from 51,146 (Contact) to 1,873,731 (Social Evolution). Time
spans covered by these datasets are equally varied, spanning from 1 month to 230 years, allowing
for evaluation of both short-term and long-term temporal dynamics. Edge feature counts range from
0 to 172, with Reddit and Wikipedia offering the richest feature sets. Network densities show sig-
nificant variation, from very sparse (Reddit and Wikipedia with densities near 0) to extremely dense
(Social Evolution with a density of 346.86). Average node degrees also vary widely, from 34.13
(Wikipedia) to 50,641.38 (Social Evolution), indicating diverse connectivity patterns.

A.2 IMPLEMENTATION DETAILS

We optimize all models using binary cross-entropy loss as the objective function. We train the mod-
els for 100 epochs and apply an early stopping strategy with a patience of 20. We select the model
that achieves the best performance on the validation set for testing. The learning rate and batch size
are set to 0.0001 and 200, respectively, for all methods across all datasets. We run the methods

12
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Table 4: Statistics of the datasets.

Datasets Domains #Nodes #Links Bipartite Duration Unique Steps
Wikipedia Social 9,227 157,474 True 1 month 152,757
Reddit Social 10,984 672,447 True 1 month 669,065
MOOC Interaction 7,144 411,749 True 17 months 345,600
LastFM Interaction 1,980 1,293,103 True 1 month 1,283,614
Enron Social 184 125,235 False 3 years 22,632
Social Evo. Proximity 74 2,099,519 False 8 months 565,932
UCI Social 1,899 59,835 False 196 days 58,911
Flights Transport 13,169 1,927,145 False 4 months 122
Can. Parl. Politics 734 74,478 False 14 years 14
US Legis. Politics 225 60,396 False 12 congresses 12
UN Trade Economics 255 507,497 False 32 years 32
UN Vote Politics 201 1,035,742 False 72 years 72
Contact Proximity 692 2,426,279 False 1 month 8,064

five times with seeds from 0 to 4 and report the average performance to minimize deviations. Ex-
periments are conducted on an Ubuntu machine equipped with one AMD Ryzen 9 7950X 16-Core
Processor. The GPU device is an NVIDIA RTX 4090.

A.3 BASELINES

A.4 PERFORMANCE HEATMAP FOR TRANSDUCTIVE TEMPORAL LINK PREDICTION

We provide performance heatmaps for transductive temporal link prediction in Fig. 6, Fig. 7, and
Fig. 8.

A.5 AP FOR INDUCTIVE DYNAMIC LINK PREDICTION

Tables 7, 8, and 9 present the Average Precision (AP) results for Inductive Dynamic Link Predic-
tion using Random, Historical, and Inductive Negative Sampling, respectively. The tables compare
nine models (JODIE, DyRep, TGAT, TGN, CAWN, TCL, GraphMixer, DyGFormer, and NODE-
SAT) across various datasets. NODE-SAT consistently outperforms other models in most scenarios,
achieving perfect 100% AP on several datasets, particularly in the Random Negative Sampling set-
ting. It maintains strong performance in Historical and Inductive settings, though with slightly
lower scores on some datasets. Notably, NODE-SAT shows remarkable improvement on challeng-
ing datasets like UN Trade and UN Vote. However, it underperforms on the US Legislature dataset
across all settings. Other models, particularly DyGFormer and GraphMixer, often emerge as strong
contenders, frequently achieving the second-best scores. The results demonstrate NODE-SAT’s
overall superiority in Inductive Dynamic Link Prediction tasks, with some specific exceptions, high-
lighting its effectiveness across different negative sampling strategies and diverse datasets.
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Table 5: Dataset Details

Dataset Description
Wikipedia A bipartite interaction graph of edits on Wikipedia pages over one month. Nodes rep-

resent users and pages, links denote editing behaviors with timestamps. Each link has
a 172-dimensional LIWC feature. Includes dynamic labels indicating temporary user
bans.

Reddit A bipartite graph recording user posts under subreddits during one month. Users and
subreddits are nodes, links are timestamped posting requests. Each link has a 172-
dimensional LIWC feature. Includes dynamic labels for user bans.

MOOC A bipartite interaction network of online sources. Nodes are students and course content
units. Links denote student access to content, with 4-dimensional features.

LastFM A bipartite graph of user listening behaviors over one month. Users and songs are nodes,
links represent listening events.

Enron Records email communications between ENRON energy corporation employees over
three years.

Social Evo. A mobile phone proximity network monitoring undergraduate dormitory activities for
eight months. Links have 2-dimensional features.

UCI An online communication network where nodes are university students and links are
messages posted by students.

Flights A dynamic flight network showing air traffic development during the COVID-19 pan-
demic. Nodes are airports, links are tracked flights with weights indicating daily flight
numbers.

Can. Parl. A dynamic political network recording interactions between Canadian MPs from 2006
to 2019. Nodes are MPs, links created when two MPs vote ”yes” on a bill. Link weights
show yearly co-voting counts.

US Legis. A senate co-sponsorship network tracking social interactions between US legislators.
Link weights indicate bill co-sponsorship counts per congress.

UN Trade Contains food and agriculture trade between 181 nations for over 30 years. Link weights
show normalized agriculture import/export values between countries.

UN Vote Records roll-call votes in the UN General Assembly. Link weights increase when two
nations both vote ”yes” on an item.

Contact Describes physical proximity evolution among about 700 university students over a
month. Links denote close proximity, with weights indicating proximity levels.

Table 6: Descriptions of Baselines

Baseline Description
CAWN A continuous-time model that utilizes a novel time encoding method and MLP-based

feature processing. It implements an attention mechanism across multiple time win-
dows to effectively capture temporal patterns in dynamic graphs.

TGN A dynamic graph learning framework featuring a memory module for long-term depen-
dency capture. TGN generates temporal node embeddings through a combination of
message passing and memory update mechanisms.

JODIE An approach using coupled recurrent neural networks to learn dynamic node embed-
dings. JODIE is designed to predict future interactions and node trajectories in dynamic
graphs, employing separate RNNs for updating user and item embeddings.

DyRep A deep recurrent model designed to capture both topological and temporal dependencies
in dynamic graphs. It employs a two-time-scale framework to simultaneously model
structural evolution and node dynamics.

TGAT An extension of graph attention mechanisms to temporal settings. TGAT incorporates
temporal information into node embeddings using advanced time-encoding techniques,
enhancing the model’s ability to handle time-varying graph data.
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Table 7: AP for Inductive Dynamic Link Prediction with Random Negative Sampling (Best Scores
in Bold)

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer NODE-SAT
Wikipedia 94.82 ± 0.20 92.43 ± 0.37 96.22 ± 0.07 97.83 ± 0.04 98.24 ± 0.03 96.22 ± 0.17 96.65 ± 0.02 98.59 ± 0.03 100 ± 0.00
Reddit 96.50 ± 0.13 96.09 ± 0.11 97.09 ± 0.04 97.50 ± 0.07 98.62 ± 0.01 94.09 ± 0.07 95.26 ± 0.02 98.84 ± 0.02 100 ± 0.00
MOOC 79.63 ± 1.92 81.07 ± 0.44 85.50 ± 0.19 89.04 ± 1.17 81.42 ± 0.24 80.60 ± 0.22 81.41 ± 0.21 86.96 ± 0.43 99.29 ± 0.16
LastFM 81.61 ± 3.82 83.02 ± 1.48 78.63 ± 0.31 81.45 ± 4.29 89.42 ± 0.07 73.53 ± 1.66 82.11 ± 0.42 94.23 ± 0.09 94.88 ± 1.71
Enron 80.72 ± 1.39 74.55 ± 3.95 67.05 ± 1.51 77.94 ± 1.02 86.35 ± 0.51 76.14 ± 0.79 75.88 ± 0.48 89.76 ± 0.34 97.07 ± 2.06
Social Evo. 91.96 ± 0.48 90.04 ± 0.47 91.41 ± 0.16 90.77 ± 0.86 79.94 ± 0.18 91.55 ± 0.09 91.86 ± 0.06 93.14 ± 0.04 100 ± 0.00
UCI 79.86 ± 1.48 57.48 ± 1.87 79.54 ± 0.48 88.12 ± 2.05 92.73 ± 0.06 87.36 ± 2.03 91.19 ± 0.42 94.54 ± 0.12 99.21 ± 0.34
Flights 94.74 ± 0.37 92.88 ± 0.73 88.73 ± 0.33 95.03 ± 0.60 97.06 ± 0.02 83.41 ± 0.07 83.03 ± 0.05 97.79 ± 0.02 99.79 ± 0.11
Can. Parl. 53.92 ± 0.94 54.02 ± 0.76 55.18 ± 0.79 54.10 ± 0.93 55.80 ± 0.69 54.30 ± 0.66 55.91 ± 0.82 87.74 ± 0.71 97.34 ± 1.49
US Legis. 54.93 ± 2.29 57.28 ± 0.71 51.00 ± 3.11 58.63 ± 0.37 53.17 ± 1.20 52.59 ± 0.97 50.71 ± 0.76 54.28 ± 2.87 54.58 ± 1.78
UN Trade 59.65 ± 0.77 57.02 ± 0.69 61.03 ± 0.18 58.31 ± 3.15 65.24 ± 0.21 62.21 ± 0.12 62.17 ± 0.31 64.55 ± 0.62 78.52 ± 5.71
UN Vote 56.64 ± 0.96 54.62 ± 2.22 52.24 ± 1.46 58.85 ± 2.51 49.94 ± 0.45 51.60 ± 0.97 50.68 ± 0.44 55.93 ± 0.39 78.12 ± 3.53
Contact 94.34 ± 1.45 92.18 ± 0.41 95.87 ± 0.11 93.82 ± 0.99 89.55 ± 0.30 91.11 ± 0.12 90.59 ± 0.05 98.03 ± 0.02 100.0 ± 0.00

Table 8: AP for Inductive Dynamic Link Prediction with Historical Negative Sampling (Best Scores
in Bold)

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer NODE-SAT
Wikipedia 68.69 ± 0.39 62.18 ± 1.27 84.17 ± 0.22 81.76 ± 0.32 67.27 ± 1.63 82.20 ± 2.18 87.60 ± 0.30 71.42 ± 4.43 100 ± 0.00
Reddit 62.34 ± 0.54 61.60 ± 0.72 63.47 ± 0.36 64.85 ± 0.85 63.67 ± 0.41 60.83 ± 0.25 64.50 ± 0.26 65.37 ± 0.60 100 ± 0.00
MOOC 63.22 ± 1.55 62.93 ± 1.24 76.73 ± 0.29 77.07 ± 3.41 74.68 ± 0.68 74.27 ± 0.53 74.00 ± 0.97 80.82 ± 0.30 99.24 ± 0.43
LastFM 70.39 ± 4.31 71.45 ± 1.76 76.27 ± 0.25 66.65 ± 6.11 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 97.34 ± 0.97
Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.31 62.91 ± 1.16 60.70 ± 0.36 67.11 ± 0.62 72.37 ± 1.37 67.07 ± 0.62 97.09 ± 0.41
Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.66 ± 1.62 79.83 ± 0.38 94.10 ± 0.31 94.01 ± 0.47 96.82 ± 0.16 100 ± 0.00
UCI 63.11 ± 2.27 52.47 ± 2.06 70.52 ± 0.93 70.78 ± 0.78 64.54 ± 0.47 76.71 ± 1.00 81.66 ± 0.49 72.13 ± 1.87 99.51 ± 0.36
Flights 61.01 ± 1.65 62.83 ± 1.31 64.72 ± 0.36 59.31 ± 1.43 56.82 ± 0.57 64.50 ± 0.25 65.28 ± 0.24 57.11 ± 0.21 99.90 ± 0.08
Can. Parl. 52.60 ± 0.88 52.28 ± 0.31 56.72 ± 0.47 54.42 ± 0.77 57.14 ± 0.07 55.71 ± 0.74 55.84 ± 0.73 87.40 ± 0.85 93.62 ± 8.44
US Legis. 52.94 ± 2.11 62.10 ± 1.41 51.83 ± 3.95 61.18 ± 1.10 55.56 ± 1.71 53.87 ± 1.41 52.03 ± 1.02 56.31 ± 3.46 38.22 ± 3.84
UN Trade 55.46 ± 1.19 55.49 ± 0.84 55.28 ± 0.71 52.80 ± 3.19 55.00 ± 0.38 55.76 ± 1.03 54.94 ± 0.97 53.20 ± 1.07 84.56 ± 1.94

Table 9: AP for Inductive Dynamic Link Prediction with Inductive Negative Sampling (Best Scores
in Bold)

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer NODE-SAT
Wikipedia 68.70 ± 0.39 62.19 ± 1.28 84.17 ± 0.22 81.77 ± 0.32 67.24 ± 1.63 82.20 ± 2.18 87.60 ± 0.29 71.42 ± 4.43 100 ± 0.00
Reddit 62.32 ± 0.54 61.58 ± 0.72 63.40 ± 0.36 64.84 ± 0.84 63.65 ± 0.41 60.81 ± 0.26 64.49 ± 0.25 65.35 ± 0.60 100 ± 0.00
MOOC 63.22 ± 1.55 62.92 ± 1.24 76.72 ± 0.30 77.07 ± 3.40 74.69 ± 0.68 74.28 ± 0.53 73.99 ± 0.97 80.82 ± 0.30 99.24 ± 0.43
LastFM 70.39 ± 4.31 71.45 ± 1.75 76.28 ± 0.25 69.46 ± 4.65 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 97.34 ± 0.97
Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.30 62.90 ± 1.16 60.72 ± 0.36 67.11 ± 0.62 72.37 ± 1.38 67.07 ± 0.62 97.09 ± 0.41
Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.65 ± 1.62 79.83 ± 0.38 94.10 ± 0.31 94.01 ± 0.47 96.82 ± 0.16 100 ± 0.00
UCI 63.16 ± 2.27 52.47 ± 2.06 70.49 ± 0.93 70.73 ± 0.78 64.54 ± 0.47 76.65 ± 1.00 81.64 ± 0.49 72.13 ± 1.87 99.51 ± 0.36
Flights 61.01 ± 1.65 62.83 ± 1.31 64.72 ± 0.36 59.32 ± 1.43 56.82 ± 0.57 64.50 ± 0.25 65.29 ± 0.24 57.11 ± 0.21 99.90 ± 0.08
Can. Parl. 52.58 ± 0.88 52.24 ± 0.31 56.46 ± 0.47 54.18 ± 0.77 57.06 ± 0.07 55.46 ± 0.74 55.76 ± 0.73 87.22 ± 0.85 93.62 ± 8.44
US Legis. 52.94 ± 2.11 62.10 ± 1.41 51.83 ± 3.95 61.18 ± 1.10 55.56 ± 1.71 53.87 ± 1.41 52.03 ± 1.02 56.31 ± 3.46 43.91 ± 7.12
UN Trade 55.43 ± 1.19 55.42 ± 0.84 55.58 ± 0.71 52.80 ± 3.19 54.97 ± 0.38 55.66 ± 1.03 54.88 ± 0.97 52.56 ± 1.07 84.56 ± 1.94
UN Vote 61.17 ± 1.30 60.29 ± 1.78 53.08 ± 3.10 63.71 ± 3.00 48.01 ± 0.84 54.13 ± 2.17 48.10 ± 0.43 52.61 ± 1.26 78.17 ± 4.14
Contact 90.43 ± 2.34 89.22 ± 0.66 94.14 ± 0.45 88.12 ± 1.50 74.19 ± 0.80 90.43 ± 0.17 89.91 ± 0.36 93.55 ± 0.52 100 ± 0.00
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Figure 6: Heatmap of over-all performance(rnd)

Figure 7: Heatmap of over-all performance(hist)
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Figure 8: Heatmap of over-all performance(ind)
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