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Abstract

Inner product-based decoders are among the most
influential frameworks used to extract meaningful
data from latent embeddings. However, such de-
coders have shown limitations in representation
capacity in numerous works within the literature,
which have been particularly notable in graph re-
construction problems. In this paper, we provide
the first theoretical elucidation of this pervasive
phenomenon in graph data, and suggest straight-
forward modifications to circumvent this issue
without deviating from the inner product frame-
work.

1. Introduction
1.1. Background

Real world graph data pertinent to scientific applications
often reside within high-dimensional, non-Euclidean spaces
where a succinct representation remains elusive (Sala et al.
2018; Bronstein et al. 2017; Gu et al. 2018). For instance,
in biochemistry or molecular drug design, the multinodal
nature of the molecular backbone of interest necessitates
devising sophisticated statistical techniques to capture es-
sential node-relational attributes of the data inside of a low-
dimensional latent space (Bordes et al. 2013; David et al.
2020; Chenthamarakshan et al. 2020).

Deep learning has achieved great success in distilling com-
pact latent representations from complex graph data which
preserves their structural integrity (Zeng et al. 2022b; Zeng
et al. 2022a). Once the latent vectors have been synthesized,
they can be channeled into trainable decoders to perform var-
ious tasks such as graph/link reconstruction (Kipf & Welling
2016; Grover & Leskovec 2016; Li et al. 2023) or node clus-
tering (Wang et al. 2017; Park et al. 2019; Kanada et al.
2018). The literature has seen the emergence of a diverse
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array of decoders for shallow embedding schemes such as
Laplacian Eigenmaps (Belkin & Niyogi 2001), DeepWalk
(Perozzi et al. 2014), and node2vec (Grover & Leskovec
2016). In particular, many decoders start by extracting an
ideal representation of the graph input by taking inner prod-
ucts between the latent embeddings of each node (Ahmed
et al. 2013; Cao et al. 2015; Ou et al. 2016). Inner product-
based algorithms also play a critical role in many other
fields of machine learning, such as in computing the simi-
larity in word vector representations in Skip-Gram Negative
Sampling (Mikolov et al. 2013; Levy & Goldberg 2014).

Since its conception and popularization by Kipf & Welling,
2016 for Graph Neural Networks (GNNs), inner product
decoders have empirically been demonstrated to have lim-
itations on expressiveness (Hamilton 2020). This impedi-
ment appears to persist universally whenever inner product
decoders are deployed, for instance when latent representa-
tions are generated probabilistically using adversarial train-
ing to extract maximal node-relational information (Pan
et al. 2018). To our knowledge, no theoretical studies in the
literature have elucidated this pervasive phenomenon.

In this paper, we formalize the notion of low dimensionality
in latent representations using the sign rank (Alon et al.
2017; Hatami et al. 2022), and provide a deterministic bound
on the minimum latent feature dimension necessary for a
faithful reconstruction of the embedded graph. Furthermore,
we present examples of pedagogical graph structures for
which complexifying the latent space permits significantly
lower dimensional latent encodings to be used. Afterwards,
we design a decoding architecture which drastically expands
the representation capacity of inner product decoders that
subsume the expressivity of the aforementioned complex
GNN.

Section 1 discusses the motivation, related work, and our
contributions. Section 2 formulates the problem and gen-
erates low-rank graphs. Section 3 categorically motivates
and proves a lower bound on the minimum latent dimen-
sion necessary for a faithful graph reconstruction. Section 4
details an augmentation scheme to boost decoder represen-
tation capacity. Section 5 presents the experiments, and the
conclusion and possible extensions are given in Section 6.
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1.2. Problem motivation

The adjacency A ∈ {0, 1}N×N of an unweighted, undi-
rected graph is a Hermitian matrix encoding binary infor-
mation, where the entry Aij = 1 indicates a connection
between nodes i and j. In a binary encoding, the values
of the two objects are insignificant. While using 0 or 1 to
represent node relations may appear innocuous, this trans-
lates to nontrivial consequences down the line, such as the
adjacency matrices of sparse graph structures failing to be
low-rank.

This motivates the scheme of training a neural net to dis-
cover a latent embedding while respecting the insignificance
of the binary values. In such an approach, the GNN can
be fit to a set of Hermitian matrices where positive entries
indicate a connection while non-positive entries indicate
a disconnection. This allows the net to search for a low-
dimensional representation from an equivalence class of
adjacencies, where each class holds uncountably infinite
cardinality.

Figure 1. The adjacency A of the 4-dimensional 3 × 3 × 3 × 3
grid graph shown on the left has matrix rank 62, whereas the right-
most matrix has matrix rank 6. Both matrices belong to the same
equivalence class under the sign mapping applied elementwise.

Under this approach, we study the classes of graphs repre-
sentable by low-rank embeddings, giving a complete classi-
fication of all graphs up to rank 3. We also present a variety
of different strategies for proving that a graph cannot be
represented by a low-rank embedding, and introduce cutoffs
(Section 4) to drastically enhance the performance of inner
product decoding architectures. Cutoffs are trainable linear
weights in the decoder that can be selected to scale propor-
tionally to the number of latent feature dimensions, which
maintains economical cost as the number of nodes grows
high-dimensional.

1.3. Notable related work

Given a feature matrix X ∈ RN×d and an adjacency matrix
A ∈ RN×N , a Graph Convolutional Network (GCN) can
be utilized to learn a latent mapping X 7→ Z ∈ RN×f ,
where f is the latent dimension. Arguably, the most famous
example of a GCN employing an inner product decoder
is given by the seminal paper by Kipf & Welling, 2016,
which details a straightforward Graph Autoencoder (GAE)
architecture. In their inference model, the latent matrix Z is

formed by message passing through the two layer network
GCN(X,A) = ÃReLU(ÃXW0)W1.

After computing the latent embedding Z with i-th row vector
wi, a stochastic decoding model is formed by taking inner
products,

p (Aij = 1 |Z ) = σ
(
w⊤

i wj

)
, (1)

where σ denotes the sigmoid. In essence, the decoding is
done by interpreting entries of σ(ZZ⊤) as Bernoulli proba-
bilities of successful connections between the nodes, which
forms a distribution over computed adjacency matrices Â.
Additional details are given in Appendix 1.

During this process, the latent dimension f is tuned em-
pirically as a hyperparameter until the preferred model be-
havior is observed. As the node count of the embedded
graph grows, a significantly lower value of f which infers or
reproduces the adjacency A is desirable due to prohibitive
computational cost.

1.4. Our Contributions

The sign rank is typically studied using VC dimensions,
where previous works have attempted to form subexponen-
tial time algorithms for computing the sign rank (Lee &
Shraibman 2009; Hatami et al. 2022). In this work, we
dislocate sign rank considerations from VC dimension by
introducing cutoffs that transmute planar classifiers into
conic classifiers. Furthermore, we show that conic classi-
fication can be learned using a very low-rank ensembling
operation, which permits the classifier to attain pairwise
distinct classification thresholds to establish node relational
strength in graph data.

By linking the sign rank, graph reconstructions, and non-
linear classifiers, we present a powerful new theory on graph
representations which explains why the standard real inner
product decoder is a provably weak choice for distilling
graph data despite their ubiquity in other areas of machine
learning. Finally, we provide concrete examples illustrating
how the algebraic latent substructure induced by the com-
plexification of the neural net allows the decoder to sidestep
the aforementioned limitations entirely. To our knowledge,
this paper also presents the first use of an ML architecture to
compute what may be realized as an extremely tight upper
bound to the sign rank.

2. Classifying Low Rank Graphs
We define the function sign : R→ {+,−} to take the neg-
ative value in R≤0 and positive otherwise. Assigning the
positive value to 0 does not confer any substantive changes
to the results presented in this paper. The following defini-
tion is written for a complex field for clarity.
Definition 2.1. Let A ∈ RN×N and F = C. Then, the
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complex sign rank of A is the minimal f such that there
exists Z ∈ FN×f with columns zi satisfying

sign(A) = sign

Re


 ∣∣z1∣∣

∣∣
z2∣∣ . . .

∣∣
zf∣∣
×


z⊤1
z⊤2
...
z⊤f



 .

The real sign rank is given by replacing F = R.

In this paper, rank is taken by default to mean real sign rank
unless noted otherwise. This is consistent with the current
paradigm of working in the real field for graph machine
learning.

2.1. Graphs of rank 1

As we have relaxed the requirement that the adjacency
matrix must contain binary values, it is natural to ques-
tion how much more information can be embedded in the
latent representation Z. It is easy to classify all graphs
of rank 1 with N nodes by taking conjugate multiples of
z ∈ {0, 1}N ∪ {−1, 1}N , zz⊤. By a straightforward count-
ing argument, this cannot possibly reproduce all graph struc-
tures with N nodes.

2.2. Classification of graphs of ranks 2 or 3

We now work towards presenting a complete classification
of rank 2 graphs by providing a framework capable of gen-
erating all permissible sign combinations. To avoid trivial
(and thus uninteresting) counterexamples in the theory, we
limit the analysis to graphs that do not admit self-loops and
ignore adjacency diagonals.

Figure 2. Examples of rank ≤ 2 graphs.

The easiest approach to generating rank 2 graphs that we
could find was to take conjugate multiples of a real matrix
function with two column dimensions. For k1, . . . , kn ∈ R,
let

Z =


cos(k1x) sin(k1x)
cos(k2x) sin(k2x)

...
...

cos(kNx) sin(kNx)

 , Ã = ZZ⊤. (2)

The entries of the low rank representation Ã are expressible
as a single trigonometric function, Ãij = cos((ki − kj)x).
Out of all matrix functions available, the reason for choos-
ing (2) is suggested by Lemmas 2.2, 2.3, which intuit that
the expression should be capable of producing all sign com-
binations of rank 2. The proofs are contained in Appendix
2.

Lemma 2.2. Let ki :=
√
pi where p1 < p2 < . . . are any

sequence of positive integer primes. Limiting the indices
to the lower triangular portion i > j, the periods of Ãij

can never match. That is, there exists no n1, n2 ∈ Z̸=0 such
that n1t1 = n2t2, where t1, t2 are periods of Ãij , Ãi′,j′ for
{i, j} ≠ {i′, j′}.

Therefore, each entry of Ã is of the form cos(θx), where the
θ are unique to every lower triangular entry. Note that x = 0
initializes all such entries to be 1, and Lemma 2.2 guarantees
that this will never happen again as we vary x over the real
line. However, the values of any two non-diagonal entries
can become arbitrarily close to 1 pairwise as we vary x far
afield. This is formally expressed by Lemma 2.3, which
possesses an elegant proof (Appendix 2.1).

Lemma 2.3. Let t1, t2 be as in Lemma 2.2. Then for any
ε > 0, there exists n1, n2 ∈ Z>0 such that |n1t1 − n2t2| <
ε.

Taken together, Lemmas 2.2 and 2.3 ensure that any two
distinct lower triangular entries of Ã may never simulta-
neously take the value 1 for any x ̸= 0, but may become
arbitrarily close to 1 for large enough x. At this point, their
relationship resets from the perspective of their periods. As
we demand that ε converges to 0+, it is expected that this
reset happens farther afar in the real line. Due to the pair-
wise periodic regularity of the entries of Ã which emerges
despite their perpetually imbalanced periods (Lemma 2.2),
it is natural and intuitive that all possible sign combinations
of rank 2 should be taken as we vary x ∈ R.

The following proposition, which admits a simple proof,
formally confirms that this is indeed the case.

Proposition 2.4. Let Z, Ã be as in (2). Then, for any rank
2 adjacency A representing a connected graph, there exists
(k1, . . . , kn) such that sign(A) = sign(Ã).

Proof. As A is rank 2, there exists ZA ∈ RN×2 such that
sign(A) = sign(ZAZA

⊤). Denoting the i-th row of ZA

as wi, note that wi ̸= 0 for all i (otherwise the i-th node is
disconnected). Scaling the length of wi by a positive scalar
does not impact the sign of Ãij = ⟨wi,wj⟩, which allows
us to normalize ||wi||ℓ2 = 1. Finally, note that for any point
(a, b) ∈ S1 and x ̸= 0 arbitrarily fixed, there exists a k such
that (cos(kx), sin(kx)) = (a, b).

An analogous geometric argument on the sphere S2 gener-
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alizes Proposition 2.4 to rank 3 graphs.

Proposition 2.5. For k1, k′1, . . . , kN , k′N ∈ R, let

Z =


cos(k1x) sin(k

′
1x) cos(k1x) cos(k

′
1x) sin(k1x)

cos(k2x) sin(k
′
2x) cos(k2x) cos(k

′
2x) sin(k2x)

...
...

...
cos(kNx) sin(k′Nx) cos(kNx) cos(k′Nx) sin(kNx)


and Ã = ZZ⊤. Then for any connected rank 3 adjacency
A, there exists ki, k′i such that sign(A) = sign(Ã).

Figure 3. Examples of rank ≤ 3 graphs.

3. Lower Bounds for Graph Rank
The discussion in Section 2.1 leads naturally to a similar
question: Can all graphs be embedded in a rank 2 represen-
tation? We give an answer to the negative by constructing
a counterexample. Due to the mechanical nature of the
construction, we have elected to detail full proofs in the
appendix while providing only key outlines in the main text.

Theorem 3.1. There exists a graph with adjacency A such
that

sign(A) ̸= sign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ z⊤3

z⊤4

] = sign (RC)

for R,C⊤ ∈ RN×2.

Proof. Appendix 3.1. The construction is performed by
assigning particular sign combinations to the entries of
sign(A). In this way, a choice of latent representations1

r1, r2 for nodes 1, 2 satisfying the relationship pictorially
depicted in Figure 4 (a) can be enforced. If node 3, repre-
sented by r3 (not shown), is to be connected to nodes 4, 6
and disconnected with nodes 5, 7, this implies there exists a
line ℓ3 passing through the origin O in R2 which leaves r4,
r6 on one side of the induced hyperplane while leaving r5,
r7 on the other. Clearly, this is impossible.

Remark 3.2. Instead of learning sign(A), one may consider
learning − sign(A) as the latter is also a binary encoding.

1Latent vectors are denoted by ri to be consistent with the
notation used in the appendix.

But even in this case, if there exists R,C such that

− sign(A) = sign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ z⊤3

z⊤4

] = sign (RC),

then this must imply that

sign(A) = s̃ign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ − z⊤3

− z⊤4

] = sign (R(−C)) ,

where s̃ign : R→ {+,−} takes the negative sign on R<0.
An analogous argument can be made to demonstrate the
impossiblity of such a result for general A.

(a) (b) (c)

Figure 4. (a) Intermediary step in the construction of a class of
graphs which do not admit a latent representation of rank 2. (b)
The three node types appearing in a planar grid graph. (c) w1

corresponds to the center node in (b)-(ii), whereas wi for i ∈ [2, 4]
depicts the neighboring nodes. For each of these nodes to be
disconnected, any two distinct wi,wj vectors for i, j ∈ [2, 4]
must form an obtuse angle.

An alternative proof strategy is formed by studying the
permissible low-rank representations of induced subgraph
structures. It is clear that the rank of a graph must be no
smaller than the rank of a node-induced subgraph.

Theorem 3.3. Any planar (two dimensional) square grid
graph with more than 4 nodes cannot be rank 2.

Proof. Appendix 3.2. It suffices to show that there exists an
induced subgraph of rank greater than 2. We target the 3-
star graph shown in Figure 4 (b)-(ii), where the central node
is represented by w1 in (c). Afterwards, the pigeonhole
principle gives that any three vectors which belong in the
interior of the hyperplane induced by ℓ1 in the direction of
w1 must form at least one pairwise acute angle (thereby
admitting a positive value under the inner product). This
induces at least 1 connection between the non-central nodes,
violating a core property of star graphs that non-central
nodes are pairwise disconnected.

The proof of Theorem 3.3 is particularly insightful in its
use of the pigeonhole principle. Any two vectors in a space
isomorphic to RN has a natural notion of an angle induced
by the inner product, and two nodes are connected if and
only if their vector representations form an acute angle. Due
to the restriction that the (minimum) angle between any
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two vectors must lie between [0, π/2) for the corresponding
nodes to be connected, we quickly consume the available
degrees of freedom for latent vectors to accurately recon-
struct the original graph. The ideas behind the proofs of
Theorems 3.1 and 3.3 can be collected into the following
theorem, which subsumes the previous results.

Theorem 3.4. The rank of an N − 1 star graph is lower
bounded by (N + 1)/2.

Proof. Let w1 ∈ Rf represent the central node in the latent
space. As w1 ̸= 0, set w1 = e1 without loss of generality
for {ei}1:f the standard basis. Then, E = {±ei}2:f with
2f − 2 elements is the maximal set satisfying perpendic-
ularity with e1. Furthermore, there exists no latent vector
w ̸= e1 satisfying ⟨w, e1⟩ > 0 and ⟨w, e⟩ ≤ 0 for ∀e ∈ E.
This implies that the (2f − 2)-star graph cannot be repre-
sented in Rf , and rearranging N − 1 = 2f − 2 gives the
bound.

In contrast, Theorem 3.5 shows that the complex field is far
more economical for embedding star graphs.

Theorem 3.5. An (N − 1)-star graph is complex rank 1 for
any N .

A proof is given in Appendix 3.3 by construction. Theo-
rem 3.5 confirms that moving to the complex latent space
allows for alternative graph structures to be faithfully (i.e.
||A−Â||F = 0 for Â the computed adjacency) represented
by the low-dimensional encoding. Finally, we note that The-
orem 3.4 implies a lower bound on the minimal number of
latent dimensions required to reconstruct an arbitrary graph.

Corollary 3.6. For graph G, let H be the largest induced
(NH−1)-star subgraph. Then any faithful real latent encod-
ing of G must possess at least ⌈(NH + 1)/2⌉ dimensions.

4. Decoder Augmentation with Cutoffs
In Section 3, we saw that the inner product decoder imputes
a connection whenever an acute angle is formed between
the latent vectors, quickly depleting the available degrees of
freedom. To remedy this issue, we motivate a strategy using
cutoffs to relax the angle constraint [0, π/2) that indicates a
connection between nodes, which assigns a different angle
connection range [0, θi) to every node i. For simplicity, we
work in the real space. To enhance clarity, we begin with a
visual explanation.

In Figure 5 (a), the leftmost picture depicts the region of
connectivity for node 1, where a connection to all nodes
with latent vector representations within the region is es-
tablished. In the vanilla decoder sign(ZZ⊤), the region
of connectivity is a hyperplane induced by the line passing
through the origin which is perpendicular to the latent vector.
This indicates that nodes 2, 3 and 2, 4 are also connected as

the angle between their latent embeddings is acute. Intro-
ducing a cutoff then morphs the connective region from a
hyperplane to a cone due to the action of si (see following
discussion) on the connective angle θ1, severing the connec-
tion with node 1 and nodes 3, 4. In the third picture, the
GNN learns to modify the latent embeddings and cutoffs
so that the connection to node 1 is reestablished, as well as
sharpening the pairwise connective angles between wi,wj

for i, j ∈ [2, 4] causing nodes 2, 3, 4 remain disconnected.
In the rightmost picture, the latent embedding is decoded
to represent the 3-star graph, which is not expressible in
two dimensions without cutoffs. The following discussion
elucidates this procedure in finer detail.

Consider an f -dimensional latent embedding

sign(A) = sign




w⊤
1

w⊤
2
...

w⊤
N

×
 ∣∣w1∣∣

∣∣
w2∣∣ . . .

∣∣
wN∣∣




where wi are the rows of the latent matrix Z. Multiply-
ing each wi by a positive scalar does not impact the sign
of the inner product ⟨wi,wj⟩ = ||wi||ℓ2 ||wj ||ℓ2 cos(θij),
thus we normalize wi to unit ℓ2-length. In what follows,
we will multiply wi by a small positive scalar si, but
due to constraining ||wi||ℓ2 = 1, the action of the scalar
will be interpreted to have been passed onto the angle θij ,
θ̂ij = si(θij). In other words, θ̂ij will be computed from
⟨siwi,wj⟩ = cos(θ̂ij). For clarity, we leave all other wj

untouched for j ̸= i and work singularly with wi.

Under this interpretation, the action of si with small mag-
nitude pushes θij ∈ [0, π/2)

⋃
(π/2, π] toward θ̂ij ≈ π/2,

while large si pulls θij toward θ̂ij ≈ 0, π depending on
whether θij was on the left or right of π/2, respectively
(Figure 5 (b),(d)). A cutoff c enforces that nodes i, j are
connected if and only if ⟨wi,wj⟩ > c (see equation (3)).
This can be interpreted as reducing the angle of connectivity
assigned to node i from θi = π/2 to 0 < θi < π/2 (Figure
5 (a)). The action of si with small magnitude then pulls
θi closer to the origin to form θ̂i ≈ 0 (Figure 5 (c)), while
large si pushes θi away to θ̂i ≈ π/2 (Figure 5 (e)).

Now, acting on all other wj simultaneously with the sj’s
motivates the decoder

sign(A) = sign(ZZ⊤ − c11⊤), (3)

where 1 ∈ RN is the standard 1-vector. If the wi are nor-
malized to unit length, this decoder assigns a singular angle
of connectivity θi for wi. But as this normalization need not
hold in practice, the value of θi varies depending on which
j is being considered for each wi,wj pair2. Enriching the

2One way to see this is to assume ||w1||ℓ2 = 1, ||wj ||ℓ2 ̸= 1
for j ̸= 1. The lengths of the wj act on θ1 accordingly.
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(a) Utilizing cutoffs to represent the 3-star graph in two dimensions.

(b) 0 < si < 1 (c) 0 < si < 1 (d) 1 < si (e) 1 < si

Figure 5. In (b-e), the connection of node i with node j is severed due to si where a cutoff value c is depicted as a solid dashed line. (b-c)
shows the action of small si on θij , θi. θij is pushed to π/2 while θi is pulled toward the origin. (d-e) shows a similar phenomenon, but
for larger si.

degree of freedom in which the decoder is allowed to vary
the connective angle θi for each wi,wj pair, we have the
decoding architecture

sign(A) = sign(Z1Z
⊤
1 − Z2CZ⊤

2 ), (4)

where Zi ∈ RN×fi and C ∈ Rf2×f2 is diagonal with
Cii = ci.

4.1. Complex latent embeddings

We remark that decoder (4) is reminiscent of decoding in the
complex field, in that if Z = Zr + iZi, then Re(ZZ⊤) =
ZrZ

⊤
r − ZiZ

⊤
i . Thus, the decoding scheme derived here

can also be seen as a generalization of a decoder acting on
complex latent representations. The imaginary component
of a complex embedding is responsible for discovering the
optimal cutoff tolerance for each i, j node pair, which is
learnable as a parameter.

As a practical matter, working in the complex field is natural
during the decoding phase. Any symmetric real adjacency
matrix has an orthogonal eigendecomposition A = UΛU⊤,
and there may exist no real latent embedding such that
A ≈ ZZ⊤ in contrast to complex latent embeddings which
are immediate from the eigendecomposition.

4.2. Generalizations

We can enhance the expressivity of the decoder further by
noting that (4) is subsumed by

sign(A) = sign(Z1C1Z
⊤
1 − Z2C2Z

⊤
2 ), (5)

where the weights of the decoder, Ci, are diagonal. The
RHS is equivalent to sign(ZCZ⊤) for Z = [Z1,Z2] and

C = diag(C1,−C2). This formulation allows the algo-
rithm to learn a latent embedding and cutoff dimensions
f1, f2 given their sum f1 + f2. Note that this architecture
is very similar in structure to the eigendecomposition. Fur-
thermore, the matrix rank of ZCZ⊤ is upper bounded by
f1 + f2 ≪ N .

Alternatively, consider the decoder

sign

(
k∑

n=0

(−1)nC4nZnC4n+1C4n+2Z
⊤
nC4n+3

)
(6)

for diagonal, (upper or lower) bidiagonal, or tridiagonal Ci.
The intuition is to act on the latent encoding Zj from the
left and the right by highly sparse matrix multiplication Ci

to allow Zj to uphold maximal flexiblity while maintaining
economical cost. This decoder can be interpreted as accu-
mulating the messages from k+1 linear layers with weights
Ci acting as a ‘pivot’ to optimize the latent representations
CiZjCk.

Activating C4n+1 or C4n+2 increases the number of learn-
able parameters by O(fi), whereas activating C4n or
C4n+3 costs O(N). In particular, activating all entries of
the former two Ci leaves minimal impact on the number
of parameters while enhancing the expressive capacity of
the neural net. Thus while making only modest changes to
the general architecture, these decoding strategies should
drastically enhance the representation capacity by utilizing
cutoffs, which are straightforward to implement.

6



Sign Rank Limitations for Inner Product Graph Decoders

Figure 6. Introducing cutoffs offer drastic improvements to the representation capacity of the inner product (GAE) architecture. All
numerical plots display the log-normalized distance against h2, and dotted lines indicate a probabilistic decoding whereas solid lines
denote a sign decoding. Dotted-dash lines indicate both a sign (left) and probabilistic (right) reconstruction. h2 is varied 2 to 16,
equispaced, in upper left where GAE (top) and DGAE (bottom) are compared. Training is done for 30000 epochs on NVIDIA GeForce
RTX 3060 GPU with learning rate 10−4 and weak regularization λ = 10−7. Boundary color coding is matched with legend architecture
colors given in the upper right, and all colormaps visualize computed adjacencies constrained by latent rank.

5. Architectures and Experiments
5.1. Architectures

Arguably, the most well-known GCN utilizing the inner
product decoder is the seminal Kipf & Welling framework.
We target their autoencoding inference model (GAE) by
learning a latent embedding for grids and chains. Previous
discussions intuit that the grid and chain backbones will
suffer from superfluous and erroneous node connections
in the reconstruction. Introducing learnable cutoffs as in
Section 4.2 should then sever these edges during model
training.

The GAE is given by

AReLU (AXW0)W1 = Z0, Â = B
(
σ
(
Z0Z

⊤
0

))
,

where B indicates elementwise Bernoulli sampling. We
allow a flexible cutoff space to the decoder by introducing a
sparse diagonal parameter C0,

AReLU (AXW0)W1 = Z0, Â = sign
(
Z0C0Z

⊤
0

)
,

denoted by DGAE (5). C0 is learned by propagating the
latent representation Z0 through a linear layer prior to de-
coding.

An alternative architecture is formed via equation (6), de-
noted by mGAE:

AReLU (AXW2n+1)W2n+2 = Zn,

Â = sign

(
k∑

n=0

(−1)nC4nZnC4n+1C4n+2Z
⊤
nC4n+3

)
.

We take m to be the number of Zn. Finally, the CGAE is
given as the complex counterpart to the GAE, where the
entries of A,X, and Wi live in the complex field. The
imaginary portion of Z0Z

⊤
0 is truncated prior to apply-

ing the sign map to form Â, and ReLu acts independently
on each dimension during training, i.e. ReLu(a + ib) =
ReLu(a) + iReLu(b). In all nets, edges can be decoded
probabilistically by replacing sign with B ◦ σ(·) and vice
versa.

5.2. Experiments

Feature information is first propagated to h1 hidden dimen-
sions, then to h2 latent dimensions during encoding. For
the CGAE, we first project to h1/2 complex hidden dimen-
sions (corresponding to h1 real dimensions considering the
real and imaginary parts separately), then to h2/2 complex

7
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latent dimensions for fair comparison. The training loss is
given by

L (A,Z) = BCE
(
A, σ ◦Re(ZZ⊤)

)
+λ||A−Re(ZZ⊤)||F .

We instantiate the 2GAE by inactivating all Ci = I to
establish a comparison to the CGAE, and the 4GAE by
inactivating all but one diagonal C4n+1 for every Zn, I =
C4n = C4n+2 = C4n+3.

For visual clarity, we first present several results using ped-
agogical graph structures. Figure 6 targets the 8 × 8 × 2
(short grid), 27 × 27 (long grid) planar grid graphs, and a
chain composed of linking 6-cycles 140 times (long chain).
For short graphs, the hidden dimensions used were h1 = 30
while varying h2 from 2 to 16; long graphs used h1 = 120
and h2 was varied from 4 to 100. For the GAE only, h1

was set to node count when plotting log-normal distance
in order to meaningfully project to large latent dimension
h2. Appendix 4 contains full details as well as additional
results (e.g. long diverse chain of 1200 nodes successfully
embedded in only 8 latent dimensions). Treatment of Cora
and CiteSeer graphs (Yang et al. 2016) with 2708, 3327
nodes, respectively, are given in Appendix E and similarly
reinforce the strength of the augmented architectures.

Figure 7. (Top) Input long chain graph of 140 linked 6-cycles,
h2 = 8 deterministic reconstruction, and h2 = 8, 16 probabilis-
tic reconstructions. (Bottom) h2 = 36, 56, 80, 100 probabilistic
reconstructions, all synthesized via 4GAE under identical hyper-
parameters as Figure 6, left to right.

While being prone to bias, an inherent advantage of the sign
decoder is its ability to deterministically extract a robust
structure from a low-confidence environment. All architec-
tures augmented by cutoffs flawlessly reconstructed input
graphs for h2 ≥ 8 (Figure 7, Appendix 4). We further note
that a faithful reconstruction via sign decoding necessarily
implies a faithful probabilistic reconstruction via B ◦ σ un-
der weaker normalization λ, in that scaling the magnitude
of the latent vector entries by a large positive constant will
drive the positive and negative entries of Ã toward 1,−1
respectively under the sigmoid.

The normal distance d(A, Ã) = ||A − σ(Ã)||2F /N2 con-
firms that the entangled pictorial reconstruction of the proba-
bilistically sampled Â is the result of unrobustness in graph

visualization for large node count. In all examples, the aug-
mented architectures captured essential structural attributes
such as n-cycles and chained structures, while the GAE
struggles significantly even for very high latent dimensions.
We note that the augmented architectures empirically re-
mained stable under reduction in h1 (Appendix 4.1).

5.2.1. RANKS OF REAL-WORLD GRAPHS

All molecules with more than 27, 36, 40, 60 nodes from
QM-9, Zinc, TU-Enzymes, TU-Protein datasets (Wu et al.
2018; Gomez-Bombarelli et al. 2018; Morris et al. 2020)
are treated via GAE and DGAE, totaling 35, 118, 162, 176
graphs. For all datasets, the DGAE succeeds in distilling a
faithful embedding under h2 = 10 latent dimensions while
the GAE mostly fails for up to h2 = 80. Results are summa-
rized in Figure 8, where the histograms are plotted as ‘densi-
ties’ for better viewability. We note that there are datasets in
which the GAE performs competitively (e.g. QM7-b), but
nevertheless still fails to exceed the performance of DGAE.
A shallow embedding architecture was enforced by taking
h1 = 2h2 while varying h2 in order to achieve maximal
model compression.

Figure 8. (Left) All graphs in the molecular benchmarks were faith-
fully embedded in ≤ 10 latent dimensions. Histograms are nor-
malized to densities for better viewability. (Right) Node number
versus molecule count histograms of filtered Enzyme and Protein
datasets. Note that all molecules in filtered QM9 dataset have 29
nodes, and 37 nodes for all but one (38 nodes) for the Zinc dataset
[both not shown].

6. Conclusion
In this paper, we show that the widely used inner product
decoder is unable to efficaciously establish node relational
strength for graph memorization tasks. Furthermore, alge-
braic arguments advocate utilitarian design principles such
as latent complexification that provably enhances the per-
formance of GNN architectures utilizing the inner product
decoder. To our knowledge, this is the first theoretical study
elucidating the pervasive phenomenon of the often inad-
equate performance of inner product decoders for graph
structured data.
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Figure 9. VAE with h2 = 597, and DVAE, 4VAE, CVAE with h2 = 36, all reconstructed from latent projections of the long chain of
140 linked 6-cycles via B ◦ σ, left to right. We prove that inner product decoding, while universally utilized in machine learning, is not
suitable for establishing node strength relations in graph reconstruction problems due to restrictive degrees of freedom in the latent space.
Introducing cutoffs, a straightforward yet drastically powerful design choice, significantly augments the expressive capacity of the GCN
architecture without deviating from the inner product framework. Identical hyperparameters as Figure 6 in the main paper were used.

A. Kipf & Welling’s GAE Framework
The adjacency A ∈ RN×N of an unweighted, undirected graph is a Hermitian matrix encoding binary information, where
the entry 1 indicates a connection between two nodes while 0 indicates a disconnection. Given a feature matrix X ∈ RN×d,
a Graph Convolutional Network (GCN) can be utilized to find a latent mapping X 7→ Z ∈ RN×f , where f is the latent
dimension. In Kipf and Welling (2016), a simple variational inference model is given:

q(Z | X,A) =

N∏
i=1

q (zi | X,A) , for q (zi |X,A ) = N
(
zi
∣∣µi,diag

(
σ2

i

))
.

The mean matrix µ with columns µi and the log-variance matrix log (σ) are found by message passing through the two
layer GCN(X,A) = ÃReLU

(
ÃXW0

)
W1. All weights are real while the first layer parameters W0 are tied to be

identical. Ã = D− 1
2AD− 1

2 was taken to be the symmetrically normalized adjacency matrix to control for node degree
variance. After computing the latent embedding Z, a generative decoding model is formed by taking inner products,

p(A | Z) =
N∏
i=1

N∏
j=1

p (Aij |zi, zj ) , for p (Aij = 1 |zi, zj ) = σ
(
z⊤i zj

)
,

where σ denotes the sigmoid. In essence, the decoding is done by interpreting entries of σ
(
ZZ⊤

)
as Bernoulli probabilities

of successful connections between the nodes, which forms a distribution over (not necessarily symmetric) adjacency matrices
Â. Â may be artificially symmetrized by substituting Âij ← 1 if the ij-th entry of

(
Â+ Â⊤

)
/2 is nonzero, which permits

an interpretation as an undirected graph.

This model is minimized over the Evidence Lower Bound (ELBO), which induces an adversarial competition between
a reconstruction of the desired adjacency A and the KL-divergence, meant to constrain the generative model to remain
faithful to its Gaussian prior. During this process, the latent dimension f is tuned empirically as a hyperparameter until the
preferred model behavior is observed. Especially as the graph grows high dimensional, a significantly lower value of f
which reproduces the original adjacency A is desirable due to the prohibitive computational cost. Note that the removal of
the variance matrix log(σ) deduces an autoencoder model, which is commonly denoted by GAE within the literature.

This paper formalizes the notion of dimensionality in latent representations using the sign rank, and supplies examples
of pedagogical graph structures (stars, grids, and chains) for which complex decoding structures permit significantly
lower-dimensional latent encoding to be used. In particular, we provide a theoretical justification as to why transitioning to
the complex field for Graph Neural Networks (GNNs) greatly diversifies the range of permissible low-dimensional latent
embeddings while minimally sacrificing expressivity. Guided by theory, we design a decoding architecture which expands
the representation capacity of low dimensional embeddings and subsumes the expressivity of complex GNNs.
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B. Generation of Rank 2 and Rank 3 Graphs
The easiest approach to generating rank 2 graphs that we could find was to take conjugate multiples of a real matrix function
with two column dimensions. For k1, . . . , kn ∈ R≥0, let

Z =


cos(k1x) sin(k1x)
cos(k2x) sin(k2x)

...
...

cos(kNx) sin(kNx)

 , Ã = ZZ⊤. (2)

The entries of the low rank representation Ã are expressible as a single trigonometric function, Ãij = cos((ki − kj)x). Out
of all matrix functions available, the reason for choosing (2) is given by Lemmas 2.2, 2.3, which naturally intuits that the
expression should be capable of producing all sign combinations of rank 2.

B.1. Proofs of Lemmas 2.2 and 2.3

Lemma B.1. Let ki :=
√
pi where p1 < p2 < . . . are any sequence of positive integer primes. Limiting the indices to

the lower triangular portion i > j, the periods of Ãij can never match. That is, there exists no n1, n2 ∈ Z̸=0 such that
n1t1 = n2t2, where t1, t2 are periods of Ãij , Ãi′,j′ for {i, j} ≠ {i′, j′}.

Proof. The period tij of Ãij is given by 2π/(|ki− kj |). Let us assume for contradiction that n1t1 = n2t2 is satisfied. Then,
we have

2n1π

|ki − kj |
=

2n2π

|ki′ − kj′ |
=⇒ n2

1(ki′ − kj′)
2 = n2

2(ki − kj)
2.

Thus, there must exist an integer m such that

m = 2n2
1
√
pi′pj′ − 2n2

2
√
pipj ,

but taking squares give that√pi′pj′pipj must be rational, a contradiction to {i, j} ≠ {i′, j′}.

Therefore, each entry of Ã is of the form cos(θx), where the θ are unique to every lower triangular entry. Note that x = 0
initializes all such entries to be 1, and Lemma 2.2 guarantees that this will never happen again as we vary x over the real
line. However, the values of any two non-diagonal entries can become arbitrarily close near 1 as we vary x far afield. This is
formally expressed by Lemma 2.3, which possesses an elegant proof.

Lemma B.2. Let t1, t2 be as in Lemma B.1. Then for any 0 < |ε| < 1 there exists n1, n2 ∈ Z>0 such that |n1t1−n2t2| < ε.

Proof. We assume without loss of generality that t1 < t2. Then, there exists two sequences of increasing integers
m1 ≪ m2 ≪ . . . and ℓ1 ≪ ℓ2 ≪ . . . which satisfies n2t2 − n1t1 ∈ [0, t1], where n1 = ℓi, n2 = mi for i = 1, 2, . . . . We
divide the interval [0, t1] into k = ceil(t1/|ε|) + 1 subintervals. By the pigeonhole principle, we know that at least two
values of n2t2−n1t1 must fall within the same subinterval by considering n1 = ℓi, n2 = mi for i = 1, 2, . . . , k+1. Denote
these two indices (ℓ1,m1) and (ℓ2,m2) for simplicity. This immediately gives that |(m2 −m1)t2 − (ℓ2 − ℓ1)t1| < |ε|,
which concludes the proof.

Taken together, Lemmas 2.2 and 2.3 ensure that any two distinct lower triangular entries of Ã may never simultaneously take
the value 1 for any x ̸= 0, but may become arbitrarily close to 1 for large enough x. At this point, their relationship resets
from the perspective of their periods. As we demand that |ε| converges to 0+, it is expected that this reset happens farther
afar in the real line. Due to the pairwise periodic regularity of the entries of Ã which emerges despite their perpetually
imbalanced periods (Lemma 2.2), it is clear that all possible sign combinations of rank 2 should be taken as we vary x ∈ R.

The following Proposition formally proves that this is indeed the case. The proof is given by a straightforward geometric
argument on S1, which is detailed in the main paper.

Proposition B.3. Let Z, Ã be as in (2). Then, for any rank 2 adjacency A representing a connected graph, there exists
(k1, . . . , kn) such that sign(A) = sign(Ã).
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It is clear that an analogous geometric argument on S2 generalizes Proposition 2.4 to rank 3 graphs. The only difference is
that the argument is made using spherical coordinates instead of polar coordinates.
Proposition B.4. For k1, k′1, . . . , kn, k

′
n ∈ R≥0, let

Z =


cos(k1x) sin(k

′
1x) cos(k1x) cos(k

′
1x) sin(k1x)

cos(k2x) sin(k
′
2x) cos(k2x) cos(k

′
2x) sin(k2x)

...
...

...
cos(kNx) sin(k′Nx) cos(kNx) cos(k′Nx) sin(kNx)

 (7)

and Ã = ZZ⊤.Then for any rank 3 adjacency A, there exists ki, k′i such that sign(A) = sign(Ã).

Propositions 2.4 and 2.5 provide a formal algorithm to generate graphs of ranks 2 or 3. Figure 10 provides additional
examples of low-rank graphs as well as parameters used.

C. Guaranteed lower bounds for graph rank
In this section, we construct a class of graphs that cannot admit a representation of rank 2. If all graphs are rank 2, then for
any adjacency A, there must exist vectors z1, z2, z3, z4 ∈ RN such that

sign(A) = sign(ZZ⊤) = sign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ z⊤3

z⊤4

] . (8)

We prove that this cannot happen for Z real.

C.1. Not all graphs are of rank 2

Theorem C.1. There exists a graph adjacency A such that

sign(A) ̸= sign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ z⊤3

z⊤4

] = sign (RC) (9)

for R,C⊤ ∈ RN×2.

Proof. As relabeling the nodes permutes the rows of R and columns of C, we arbitrarily fix a permutation without loss of
generality. Let A be such that the first column A[:, 1] admits a singular − only on the last entry and + otherwise, that is,
(+, . . . ,+,−)⊤. This ensures that the first column of C is nontrivial, c1 ̸= 0. Now, let A[4 : 7, 2] admit two + and two −.
For ri the i-th row of R, we denote nodes i ∈ [4, 7] such that ⟨ri, c1⟩ > 0, ⟨ri, c2⟩ > 0 to be Group 1, and ⟨ri, c1⟩ > 0,
⟨ri, c2⟩ ≤ 0 to be Group 2. Choose precisely 1 node each from Group 1 and Group 2, and assign + to the corresponding
entries in A[:, 3]. For the two nodes not chosen, we assign −. As c1 and c2 are distinct and non-zero, there cannot exist
c3 which admits this sign combination (see Figure 11 (a) caption for details). Now, choose the remaining signs of A so
that no first seven rows or columns admit a singular sign excluding the diagonals, ensuring that none of ri or ci are 0 for
i = 1, . . . , 7.

Remark C.2. Instead of learning sign(A), one may consider learning − sign(A) instead. But even in this case, if there
exists R,C such that

− sign(A) = sign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ z⊤3

z⊤4

] = sign (RC) (10)

for the A constructed above, then this must imply that

sign(A) = s̃ign

 ∣∣z1∣∣
∣∣
z2∣∣
× [ − z⊤3

− z⊤4

] = sign (R(−C)) , (11)

where s̃ign : R → {+,−} takes the negative sign on R<0. An analogous argument can be made to demonstrate the
impossibility of such a result for general A.
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(a) Rank ≤ 2 (b) Rank ≤ 2 (c) Rank ≤ 2 (d) Rank ≤ 2

(e) Rank ≤ 2 (f) Rank ≤ 2 (g) Rank ≤ 2 (h) Rank ≤ 2

(i) Rank ≤ 3 (j) Rank ≤ 3 (k) Rank ≤ 3 (l) Rank ≤ 3

(m) Rank ≤ 3 (n) Rank ≤ 3 (o) Rank ≤ 3 (p) Rank ≤ 3

Figure 10. Propositions 2.4 and 2.5 induce a straightforward algorithm that generates low-rank graphs given the input (N, a, b,m). N
administers the total node count, and x is varied over the endpoints of the m− 1 equidistant interval partition of [a, b]. The parameters
k were chosen to be ki = i/N and k′

i = ki/2. The sign mapping was applied to Ã and the adjacency appended given an identical
graph had not already been discovered. Afterwards, graphs displaying symmetric or otherwise intriguing node-relational attributes in the
visualization were manually selected from the thousands of graphs generated. All rank ≤ 2 graphs in the main paper and supplement were
collected from the pool (30, 0, 50, 1000), (15, 0, 50, 1000), (50, 0, 100, 2000), (30, 0, 100, 5000) while rank ≤ 3 graphs were chosen
from (15, 0, 50, 1000), (20, 0, 50, 5000), (10, 0, 150, 5000), (50, 0, 150, 500).

C.2. Grid graphs are not rank 2

Theorem C.3. Two dimensional planar grid graphs composed of more than one 4-cycle cannot be rank 2.

Proof. To show that a grid graph is not of rank 2, we decompose the grid into subgraphs, where we allow for nodes and edges
to be repeatedly represented in multiple subgraphs. We need only impose that all edges connecting any two subgraph nodes
in the original graph must be preserved in each subgraph. If any of the subgraph structures do not admit a representation of
rank 2, the entire graph cannot be represented by rank 2. In particular, we will show that the 3-star graph shown in Figure 11
(b)-(iii) possesses this property. For contradiction, assume that there exists a real Z of latent dimension f = 2 such that
sign(A) = sign(ZZ⊤). We note that none of the row vectors of Z, wi, can be 0 as no node is fully disconnected with all
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(a)

(b)

(c)

Figure 11. (a) As c1, c2 are distinct and non-zero, the angle ν > 0 between ℓ1, ℓ2 (ℓi is the line perpendicular
to ci passing through the origin O) is nontrivial. r4, r5 are in Group 1, r6, r7 in Group 2. Suppose we have
selected r4, r6 in the proof of Theorem 3.1, assigning A43 = A63 = + to the corresponding entries in
A[:, 3] and A53 = A73 = −. There exists no line ℓ3 ̸= ℓ1 going through O that leaves r4, r6 on one side
of the hyperplane induced by ℓ3 while leaving r5, r7 on the other. Thus, no vector c3 can exist satisfying
the imposed sign configuration as c3 is pairwise linearly independent to c1. (b) The three kinds of nodes
appearing in a planar grid graph. The majority are of form (iii) as N → ∞. (c) w1 corresponds to the
center node in (b)-(ii), whereas wi for i ∈ [2, 4] depicts the neighboring nodes. For each of these nodes to
be disconnected, any two distinct wi,wj vectors for i, j ∈ [2, 4] must form an obtuse angle. However, the
pidegonhole principle immediately gives that the existence of three such vectors wi is sufficient to violate
this requirement, as being connected with node 1 constrains the three vectors to lying in the interior of a
hyperplane induced by ℓ1. As the 3-star graph may be identified as an induced subgraph of the 4-star graph
in (b)-(iii), the 4-star graph is rank greater than 2.

other nodes. Let the central node in (iii) be represented by w1. Then the other three nodes w2, w3, w4 must be bounded
by the interior of a hyperplane separated by ℓ1 (see Figure 11 (c) caption), which is impossible due to the pigeonhole
principle.

C.3. Complexification of latent space for star graph encoding

Theorem C.4. Any star graph is of complex rank 1.

Proof. A construction is given in Figure 12.

Figure 12. For zr, zim ∈ RN the real and imaginary components of z ∈ CN ,

sign(A) = sign
(
Re

(
zzT

))
= sign

 ∣∣
zr∣∣

∣∣
zim∣∣

×
[

z⊤r
− z⊤im

] = sign (RC) .

Denote the i-th row of R as wi, and its reflection in the axis of the first coordinate to be wi. The representation
of an (N − 1)-star graph can be constructed in R2 as shown in the left. w2 forms a π/4 angle with the
horizontal axis.

D. Hyperparameter Selection
D.1. On minimal ℓ2 regularization

While being robust to alternations in the hidden dimension h1 (Figure 13 (b,f)), the architectures presented are more sensitive
to ℓ2 regularization. Figure 13 (a-e) demonstrates the effect of varying the regularization rate λ = 1, 10−7, 10−14, as well as
using the squared Frobenius norm in the loss. Increasing regularization inhibits graph memorization as the backpropagation
is less able to respect the insignificance of the binary encoding in the graph adjacency. In fact, regularization was utilized
only to forbid entries of Ã from diverging in magnitude during training. We note also that choosing a smaller learning rate
γ = 10−4 enables more precise memorization than higher learning rates (e.g. Figure 13 (a,e)).
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(a) λ = 1 (b) λ = 10−7 (c) λ = 10−14

(d) Norm squared loss (e) γ = 10−2 (f) h1 = h2

(g) GAE, h2 = 597 (h) DGAE, h2 = 4 (i) 2GAE, h2 = 4 (j) CGAE, h2 = 4

(k) GAE, h2 = 597 (l) DGAE, h2 = 4 (m) 2GAE, h2 = 4 (n) CGAE, h2 = 4

Figure 13. All numerical plots display the log-normalized distance log
(
d(A, Ã)

)
= log

(
||A− σ(Ã)||2F /N2

)
against latent dimension

h2. Training is done for 30000 epochs on NVIDIA GeForce RTX 3060 GPU. (a-c) varies the regularization λ = 1, 10−7, 10−14 and
observes improved memorization capabilities for small λ. Examples of probabilistically reconstructed graphs from latent projections
in (b,c) are given in (g-j) (λ = 10−7) and (k-n) (λ = 10−14). (d) strengthens regularization drastically by squaring the norm, and (e)
increases the learning rate by a factor of O(102). The setting in (f) is identical to (b) except that first layer hidden dimensions in all
encoders were set to be equal to the latent dimensions each encoder projects to, while h1 = 120 was taken for (a-e). The 27× 27 long
grid was chosen as a representative (see also Figure 15) but the trends depicted generalize consistently to all grid/chain graphs tested. As
all test graphs in the paper are featureless, the latent embedding was learned from the one-hot identity feature X = I which trivializes
node relational information.
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(a) Log-normal distance (b) Log-normal distance (c) Original

(d) VAE, h2 = 4 (e) VAE, h2 = 8 (f) VAE, h2 = 12 (g) VAE, h2 = 16

(h) VAE, h2 = 217 (i) VAE, h2 = 304 (j) VAE, h2 = 426 (k) VAE, h2 = 597

(l) DVAE, h2 = 8 (m) 2VAE, h2 = 8 (n) 4VAE, h2 = 8 (o) CVAE, h2 = 8

(p) DVAE, h2 = 4 (q) 2VAE, h2 = 4 (r) 4VAE, h2 = 4 (s) CVAE, h2 = 4

(t) DVAE, h2 = 4 (u) 2VAE, h2 = 4 (v) 4VAE, h2 = 4 (w) CVAE, h2 = 4

Figure 14. The long diverse chain (c) is comprised of linking 45 4-cycles, 80 6-cycles, and 45 12-cycles totalling 1200 nodes. Training is
performed under identical hyperparameter settings as Figure 13 (c), and the VAE setting in Figure 6 (main text) for (b),(h-k) only, i.e.
h2 = ⌊1.4n⌋ for n = 2 : 19 for h1 node count. (l-o),(t-w) give probabilistic reconstructions whereas (d-k),(p-s) give deterministic sign
reconstructions based on the low-dimensional latent embedding. In particular, we note the contrast between the reconstruction capabilities
illuminated in (h-k) and (l-o).
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(a) DVAE, h2 = 4 (b) 2VAE, h2 = 4 (c) 4VAE, h2 = 4 (d) CVAE, h2 = 4

(e) DVAE, h2 = 4 (f) 2VAE, h2 = 4 (g) 4VAE, h2 = 4 (h) CVAE, h2 = 4

(i) DVAE, h2 = 8 (j) 2VAE, h2 = 8 (k) 4VAE, h2 = 8 (l) CVAE, h2 = 8

(m) DVAE, h2 = 8 (n) 2VAE, h2 = 8 (o) 4VAE, h2 = 8 (p) CVAE, h2 = 8

(q) DVAE, h2 = 12 (r) 2VAE, h2 = 12 (s) 4VAE, h2 = 12 (t) CVAE, h2 = 12

(u) DVAE, h2 = 12 (v) 2VAE, h2 = 12 (w) 4VAE, h2 = 12 (x) CVAE, h2 = 12

Figure 15. Visualized graph reconstructions for the long grid memorization setting in Figure 6, main text. The deterministic sign decoder
has flawlessly reconstructed the long grid for h2 ≥ 8, while the probabilistic decoding B ◦ σ is less precise. Decreasing regularization
λ allows backpropogation to increase the magnitude of the entries of Ã, which pushes the probabilistic reconstruction closer to the
deterministic region (not shown). Odd rows are decoded deterministically, and even rows probabilistically.
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E. Cora and CiteSeer Networks
In this section, we benchmark the original and augmented shallow embedding schemes against the Cora and CiteSeer
datasets (Yang et al. 2016). The hyperparameters used were h1 = 2h2, λ = 10−7, γ = 10−3 and training was done for
20000 epochs for Cora and for 10000 epochs for CiteSeer. The Latent Dimensions entries give the value of h2 used to
instantiate the shallow embedding architectures, and the vertical architecture rank entries provide the ranks of the adjacency
matrices discovered after training completion. The architecture error entries compute ||A− Â||2Frob, which corresponds to
double counting any edges memorized as non-edges in the distilled representation, or any non-edges memorized as edges.
95% confidence intervals are given over 5 experiments for all entries.

In our empirical evaluations, the augmented architectures demonstrated substantial enhancements in terms of robustness and
efficacy in approximating the graph adjacencies. This observation underscores the potential of the augmented models in
capturing intricate graph-based relationships more accurately than their conventional counterparts.

Table 1. Performance Comparison for Cora

LATENT DIM 2 4 6 8 10

VAE ERROR (×104) 229 ± 236 532 ± 55 574 ± 17 559 ± 33 593 ± 36
VAE RANK 1.8 ± 0.39 4 ± 0 6 ± 0 8 ± 0 9.6 ± 0.48
DVAE ERROR (183 ± 219)104 10144 ± 111 9638 ± 154 8678 ± 588 6876 ± 551
DVAE RANK 1.8 ± 0.39 4 ± 0 5.8 ± 0.39 7.8 ± 0.39 10 ± 0
CVAE ERROR 11435 ± 420 10349 ± 147 9453 ± 45 8140 ± 141 6300 ± 222
CVAE RANK 2 ± 0 4 ± 0 6 ± 0 8 ± 0 10 ± 0

Table 2. Performance Comparison for Cora

LATENT DIM 20 40 80 160 320 640

VAE ERROR (×104) 607 ± 21 594 ± 9 573 ± 7 525 ± 5 442 ± 27 337 ± 32
VAE RANK 17.6 ± 1 31.8 ± 1.69 50.4 ± 1.33 74.6 ± 1.18 96 ± 17 146 ± 10
DVAE ERROR 2328 ± 286 1203 ± 309 702 ± 71 450 ± 95 290 ± 107 167 ± 127
DVAE RANK 19.8 ± 0.39 38 ± 1.64 68 ± 2.15 99 ± 2.7 133 ± 5.7 136 ± 17
CVAE ERROR 1594 ± 44 356 ± 55 88 ± 43 35 ± 11 28 ± 20 22 ± 5
CVAE RANK 20 ± 0 40 ± 0 80 ± 0 160 ± 0 320 ± 0 580 ± 15

Table 3. Performance Comparison for CiteSeer

LATENT DIM 2 4 6 8 10

GAE ERROR (×104) 179 ± 321 712 ± 249 862 ± 160 956 ± 17 964 ± 6
GAE RANK 1.8 ± 0.39 3.8 ± 0.39 6 ± 0 7.8 ± 0.39 9.2 ± 0.73
DGAE ERROR (458± 374)104 8849 ± 74 8218 ± 114 7534 ± 276 6600 ± 274
DGAE RANK 2 ± 0 4 ± 0 6 ± 0 8 ± 0 9.8 ± 0.39
CGAE ERROR 25142 ± 12756 12060 ± 3134 8455 ± 159 7612 ± 108 6512 ± 137
CGAE RANK 2 ± 0 4 ± 0 6 ± 0 8 ± 0 10 ± 0

Table 4. Performance Comparison for CiteSeer

LATENT DIM 20 40 80 160 320 640

GAE ERROR (×104) 967 ± 10 947 ± 3 911 ± 13 868 ± 2 820 ± 4 744 ± 8
GAE RANK 17.8 ± 0.73 33.2 ± 0.73 55.6 ± 1.71 67 ± 1.75 84.4 ± 1.47 110 ± 4.25
DGAE ERROR 3909 ± 87 2416 ± 209 2968 ± 2221 1884 ± 330 1160 ± 395 486 ± 594
DGAE RANK 19.6 ± 0.48 35.8 ± 2.43 56.4 ± 4.75 66.2 ± 2.59 74 ± 4.25 96.2 ± 14
CGAE ERROR 3120 ± 124 1336 ± 89 1179 ± 1857 197 ± 216 2177 ± 4153 69 ± 44
CGAE RANK 20 ± 0 40 ± 0 80 ± 0 160 ± 0 316 ± 6 544 ± 21
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