Under review as a conference paper at ICLR 2023

LEARNING DYNAMIC ABSTRACT REPRESENTATIONS
FOR SAMPLE-EFFICIENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In many real-world problems, the learning agent needs to learn a problem’s ab-
stractions and solution simultaneously. However, most such abstractions need to
be designed and refined by hand for different problems and domains of applica-
tion. This paper presents a novel top-down approach for constructing state abstrac-
tions while carrying out reinforcement learning. Starting with state variables and a
simulator, it presents a novel domain-independent approach for dynamically com-
puting an abstraction based on the dispersion of Q-values in abstract states as the
agent continues acting and learning. Extensive empirical evaluation on multiple
domains and problems shows that this approach automatically learns abstractions
that are finely-tuned to the problem, yield powerful sample efficiency, and result
in the RL agent significantly outperforming existing approaches.

1 INTRODUCTION

It is well known that good abstract representations can play a vital role in improving the scalability
and efficiency of reinforcement learning (RL) (Sutton & Bartol [2018}; |Yul [2018}; [Konidaris, |2019).
However, it is not very clear how good abstract representations could be efficiently learned without
extensive hand-coding. Several authors have investigated methods for aggregating concrete states
based on similarities in value functions but this approach can be difficult to scale as the number of
concrete states or the transition graph grows.

This paper presents a novel approach for top-down construction and refinement of abstractions for
sample efficient reinforcement learning. Rather than aggregating concrete states based on the agent’s
experience, our approach starts with a default, auto-generated coarse abstraction that collapses the
domain of each state variable (e.g., the location of each taxi and each passenger in the classic taxi
world) to one or two abstract values. This eliminates the need to consider concrete states individ-
ually, although this initial abstraction is likely to be too coarse for most practical problems. The
overall algorithm proceeds by interleaving the process of refining this abstraction with learning and
evaluation of policies, and results in automatically generated, problem and reward-function specific
abstractions that aid learning. This process not only helps in creating a succinct representation of cu-
mulative value functions, but it also makes learning more sample efficient by using the abstraction
to locally transfer states’ values and cleaving abstract states only when it is observed that an abstract
state contains states featuring a large spread in their value functions.

This approach is related to research on abstraction for reinforcement learning and on abstraction
refinement for model checking Dams & Grumberg|(2018); [Clarke et al.| (2000) (a detailed survey of
related work is presented in the next section). However, unlike existing streams of work, we develop
a process that automatically generates conditional abstractions, where the final abstraction on the
set of values of a variable can depend on the specific values of other variables. For instance, Fig.
[TI] displays a taxi world where for different values of the state variables (destination and passengers
locations), meaningful conditional abstractions are constructed for the taxi location. A meaning-
ful abstraction provides greater details in the taxi-location variable around the passenger location
when the taxi needs to pick up a passenger (Fig. [I] (middle)). When the taxi has the passenger, the
abstraction should show greater details around the destination (Fig. [[[right)). Furthermore, our ap-
proach goes beyond the concept of counter-example driven abstraction refinement to consider the
reward function as well as stochastic dynamics, and it uses measures of dispersion such as the stan-
dard deviation of Q-values to drive the refinement process. The main contributions of this paper

Under review as a conference paper at ICLR 2023

are mechanisms for building conditional abstraction trees that help compute and represent such ab-
stractions, and the process of interleaving RL episodes with phases of abstraction and refinement.
Although this process could be adapted to numerous RL algorithms, we focus on developing and
investigating it with Q-learning in this paper.

The presented approach for dynamic ab-
stractions for RL (DAR+RL) can be
thought of as a dynamic abstraction
scheme because the refinement is tied to
the dispersion of Q-values based on the
agent’s evolving policy during learning. It
provides adjustable degrees of compres-

sion (Abel et al| [2016) where the aggres-

SIveness of abstrac.tl.on can b? c.ontyolled Figure 1: Consider a classic taxi world with two passengers
b}’ tumPg the definition of Varla'tlon mn the and a building as the drop-off location where the green area is
dispersion of Q-values. Extensive empir- impassable (left). Meaningful conditional abstractions can be
ical evaluation on multiple domains and constructed, for example, for situations where both passen-
problems shows that this approach auto- gers are at their pickup locations (middle), or one passenger
matically learns abstract representations has already been picked-up (right).

that effectively draw out similarities across

the state space, and yield powerful sample efficiency in learning. Comparative evaluation shows that
Q-learning based RL agents enhanced with our approach outperform state-of-the-art RL approaches
in both discrete and continuous domains while learning meaningful abstract representations.

[3

The rest of this paper is organized as follows. Sec.[2] summarizes the related work followed by a
discussion on the necessary backgrounds in Sec.[3] Sec.[presents our dynamic abstraction learning
method for sample-efficient RL. The empirical evaluations are demonstrated in Sec.[3] followed by
the conclusions in Sec.[6l

2 RELATED WORK

Offline State Abstraction. Most early studies focus on action-specific (Dietterich, [1999) and
option-specific (Jonsson & Barto], [2000) state abstraction. Further, [Givan et al.| (2003) introduced
the notion of state equivalence to possibly reduce the state space size by which two states can be
aggregated into one abstract state if applying a mutual action leads to equivalence states with similar
rewards. Later on,/Ravindran & Barto|(2004)) relaxed this definition of state equivalence by allowing
the actions to be different if there is a valid mapping between them. Offline state abstraction has
further been studied for generalization and transfer in RL (Karia & Srivastava, 2022)) and planning

(Srivastava et al 2012).

Graph-Theoretic State Abstraction. Mannor et al.| (2004)) developed a graph-theoretic state ab-
straction approach that utilizes the topological similarities of a state transition graph (STG) to ag-
gregate states in an online manner. Mannor’s definition of state abstraction follows Givan’s notion
of equivalence states except they update the partial STG iteratively to find the abstractions. Another
comparable method proposed by [Chiu & Soo| (2010) carries out spectral graph analysis on STG to
decompose the graph into multiple sub-graphs. However, most graph-theoretic analyses on STG,
such as computing the eigenvectors inChiu & Soofs work, can become infeasible for problems with
large-scale state space.

Monte-Carlo Tree Search (MCTS). MCTS approaches offer viable and tractable algorithms for
large state-space Markovian decision problems (Kocsis & Szepesvari, 2006). Jiang et al.| (2014)
demonstrated that proper abstraction effectively enhances the performance of MCTS algorithms.
However, their clustering-based state abstraction approach is limited to the states enumerated by
their algorithm within the partially expanded tree, which makes it ineffectual when limited samples
are available to the planning/learning agent.[Anand et al| (2015)) advanced Jiang’s method by com-
prehensively aggregating states and state-action pairs aiming to uncover more symmetries in the do-
main. Owing to their novel state-action pair abstraction extending Givan and Ravindran’s notions of
abstractions, [Anand et al.’s method results in higher quality policies compared to other approaches
based on MCTS. However, their bottom-up abstraction scheme makes their method computation-

Under review as a conference paper at ICLR 2023

ally vulnerable to problems with significantly larger state space size. Moreover, their proposed state
abstraction method is limited to the explored states since it applies to the partially expanded tree.

Counterexample Guided Abstraction Refinement (CEGAR). CEGAR is a model checking
methodology that initially assumes a coarse abstract model and then validates or refines the initial
abstraction to eliminate spurious counterexamples to the property that needs to be verified (Clarke
et al.l 2000). While most work in this direction focuses on deterministic systems, research on
the topic also considers the problem of defining the appropriate notion for a “counterexample”
in stochastic settings. E.g., (Chadha & Viswanathan| (2010) propose that a counterexample can be
considered as a small MDP that violates the desired property. However, searching for such coun-
terexamples can be difficult in the RL setting where the transition function of the MDP is not avail-
able. Seipp & Helmert| (2018)) developed algorithms for planning in deterministic environments that
invoke the CEGAR loop iteratively on the same original task to obtain more efficient abstraction
refinement. These methods do not consider the problem of building abstractions for stochastic plan-
ning or reinforcement learning.

3 BACKGROUND

Markov decision Processes (MDPs) (Bellman, [1957; [Puterman| [2014) are defined as a tuple
(8§, A, T,R,v), where S and A denote the state and action spaces respectively. Generally, a con-
crete state s € S can be defined as a set of n state variables such that V = {v;|i = 1, ...,n}. In this
paper, we focus on problems where the state is defined using a set of variables. An extension to par-
tially observable settings where the agent receives an image of the state is a promising direction for
future work. 7 : S x Ax S — [0, 1] is a transition probability function, R : § x A — R is areward
function, and +y is the discount factor. The unknown policy 7 is the solution to an MDP, denoted as
m:S — A. We consider the RL settings where an agent needs to interact with an environment that
can be modeled as an MDP with unknown 7. The objective is to learn an optimal policy for this
MDP.

When the size of the space state increases significantly, most of the RL algorithms fail to solve
the given MDP due to the curse of dimensionality. Abstraction is a dimension reduction mecha-
nism by which the original problem representation maps to a new reduced problem representation
(Giunchiglia & Walsh, [1992). We adopt the general definition of state abstraction proposed by L1
et al.|(2006).

Definition 1 Let M = (S, A, T,R,) be the ground MDP from which the abstract MDP M =
(S, A, T,R,v) can be derived via a state abstraction function ¢ : S — S, where the abstract
state mapped to concrete state s is denoted as ¢(s) € S and ¢p~'(8) is the set of concrete states
associated to § € S. Further, a weighting function over concrete states is denoted as w(s) with

s € S s.t. for each 5 € S, Dseo-1(s) W(s) = 1, where w(s) € [0,1]. Accordingly, the abstract
transition probability function T and reward function R are defined as follows:

R(5,a) = Z w(s)R(s,a), 7(5,a,5) Z Z T(s,a,s).

s€¢p—1(5) s€EPT1(5) s'€p~1(5)

When it comes to the decision-making in an abstract MDP, all concrete states associated with an
abstract state 5 € S are perceived identically. Accordingly, the relat10n between abstract policy
7 : S — A and the concrete policy 7 : S — A can be defined as 7(s) = 7 ¢(_s) forall s € S.
Further, the value functions for an abstract MDP are denoted as V”(S) *(S), Q™(S,a), and
Q* (S a). For more on RL and value functions see Sutton & Barto|(2018)), for MDPs, see (Bellmarn),
1957; |Puterman, [2014), and for more on the notion of abstraction, refer Giunchiglia & Walsh|(1992);
Li et al.|(2006).

4 OUR APPROACH

4.1 OVERVIEW

Starting with state variables and a simulator, we develop a domain-independent approach for dynam-
ically computing an abstraction based on the dispersion of Q-values in abstract states. The idea of
dynamic abstraction is to learn a problem’s solution and abstractions simultaneously. We propose a

Under review as a conference paper at ICLR 2023

top-down abstraction refinement mechanism by which the learning agent effectively refines an initial
coarse abstraction through acting and learning. We illustrate this mechanism with an example.

Example 1 Consider a 4x4 Wumpus world consisting of a pit at (2,2) and a goal at (4,4). In this
domain, every movement has a reward -1. Reaching the goal results in a positive reward of 10 and
the agents receive a negative reward -10 for falling into the pit. The goal and the pit are the terminal
states of the domain. The agent’s actions include moving to non-diagonal adjacent cells at each time
step s.t. A = {up, down, left, right}.

Considering Example [T} Fig.] (left) shows
a potential initial coarse abstraction in which

Abstacton Agsetﬁrgft?on the domain of each state variable (here
1|axk a horizontal and vertical locations) is split into
2| == two abstract values and S; and S; contain
3 the pitfall and goal location respectively. As a
4 iy result, when learning, the agent will observe

1 2 3 4 a high standard deviation on the values of

Q(S1,1ight), Q(S1, down), Q(S4, right),

and Q(S4,down) because of the presence
of terminal states with large negative or
positive rewards. Guided by this dispersion
of Q-values, the initial coarse abstraction should be refined to resolve the observed variations. Fig.
[2] (right) exemplifies an effective abstraction refinement for Example [I] demonstrated as a heatmap
of Q-values. Notice that the desired abstraction is a heterogeneous abstraction on the domains of
state variable values where the abstraction on a variable depends on the value of the other variables:
let 2 and y be the horizontal and vertical locations of the agent in Example [T] respectively and their
domain be {1,2,3,4}. When y > 2, the domain of x (originally {1, 2, 3,4}) is abstracted into sets
{1,2}, {3}, and {4}, but when y < 2, the domain of z is abstracted into sets {1}, {2}, and {3, 4}.

The next section (Sec. .2 presents our novel approach for automatically computing such abstrac-
tions while carrying out RL.

Figure 2: An example of dynamic heterogeneous abstrac-
tion refinement for a Wumpus world.

4.2 CONDITIONAL ABSTRACTION TREES

The value of a state variable v; inherently falls within a known range. Partitioning these ranges is
one way to construct state abstractions. However, in practice, the abstraction of one state variable
is conditioned on a specific range of any other state variables. Accordingly, we need to maintain
and update such conditional abstractions via structures that we call Conditional Abstraction Trees
(CATs) while constructing the state abstractions.

1234 0., Fig. [(right) exemplifies a partially
expanded CAT for the problem in Ex-
ample [I] This problem can be rep-
resented by two state variables, i.e.
agent’s horizontal and vertical loca-
tion denoted as = and y respectively.
The tree’s root node contains the
global ranges (The first range refers
to the horizontal location x and the
second range refers to the vertical lo-
cation y) for both of these state vari-
ables representing an initial coarse
abstraction (in white). The annota-
tions visualize how this initial ab-
straction can be further refined w.r.t
a state variable resulting in new con-
ditional abstractions (symmetric an-
notations are not shown for the sake
of readability). The refinement proce-
dure of the Wumpus world associated to each level of the tree is also displayed in Fig. [3 (left).

B WN P

potential abstractions
for further refinement

Figure 3: This figure illustrates a Conditional Abstraction Tree
(CAT) for Example m Ranges written inside the nodes represent
0; € ©. Each node represents a conditional abstraction.

Under review as a conference paper at ICLR 2023

Given the set of state variables V), we define an abstract state using the set of partitions, one for
each variable v;, where each partition 6; is an interval of the form [l;, h;]. Thus, a 2-D abstract
state for Example could be defined by 6; = [1,4] and 62 = [1,2]. An abstraction is defined
as © = {0;|i € [1,n]}, where n = |V|. In fact, CAT is a hierarchical abstraction tree starting
with an initial abstraction ©,,,;; that represents the original range for each state variable v; € s s.t.
Oinit = {0;]i € [1,n]andl; = v™™ and h; = v"**}, where v and v!"** denote the lower
and upper bounds on the range of v; respectively. In Example [T} there are two state variables so the
initial abstraction is ©;,;: = {[1,4], [1,4]}. The initial abstraction also induces the starting coarse
abstraction since the range for each state variable suggests that all values for all state variables is
compressed into one abstract state.

This initial coarse abstraction induced by the initial abstraction ©;,;; needs to be further refined
so that the learning agent can improve its performance through a more fined representation of the
problem. We define a refinement function §(O, ¢, f) that splits the range of partition §; € © of
state variable v; into f equal ranges resulting in f new abstractions. Now, we formally define the
refinement function 6(©, 4, f).

Definition 2 Let © = (61, ...,0,,) be an abstract state for a domain with variables vy, . .. v,. We
define the f-split refinement of © w.r.t. variable i as 5(0,i, f) = {©',...,07} where all ©’s are
the same as © on 0y for k # 4. 0; = [l, h] is partitioned with f new boundaries at least ||0||/ f
values apart: 1,11,la, ..., Iy, hwherel, =1+ x x [[(h—1)/f]].

Next, we need to define the relation between two given abstractions in the form of © in order to
determine if one is obtained by refining the other one.

Definition 3 Let U be the set containing all possible abstractions. Given ©,,0;, € ¥, we say Oy,
is obtained by refining ©,,, denoted as Oy > O, iff (Vi € [1,n])(0° C 6%). Moreover, O, >0, =
O, < Oy. Although this definition determines an ancestral relation between O, and ©y, we need to
know the factor f by which ©, has been refined to determine if ©y, is the direct result of refining
O,. We say O, is obtained directly by refining ©,, denoted as ©, > O, iff I i (02 C 02),
(Vkpi € [1,n]) (0 = 03) and |67] x f = [0F].

With these definitions in hand, we can now formally define CAT as an undirected tree to construct
and maintain the hierarchy of the conditional partitions. Conditional Abstraction Tree (CAT), de-
noted as &, represents a tree structure specifying the topology between conditional abstractions in
the form of ©.

Definition 4 A conditional abstraction tree (CAT) is defined as & = {N, E}, where N is the set
of nodes and E is the set of edges. Each node in N corresponds to an abstraction ©, s.t. N =
{0 |m € [1,n¢]}, where ng is the cardinality of CAT, and Oroot = Oinst, where Orooy is the
root node of the tree. Every parent ©,, and child ©. nodes in § are connected via an edge e;, s.1.

e¢ = O, > O,. Additionally, L¢ = {0,,|(Vk € [1,n¢])(0,, ¥ Oy)} is defined as the set of leaf

f
nodes. L¢ represents the set of abstract states in &.

Given CAT ¢ and the value of a concrete state s, the
mapping ¢(s) : S — S can be done via a level-order - -
tree search starting from ©,,.,;. The correspond- Algorithm 1: State Abstraction

ing abstract state § is in the node O foynq iff Vi € FindAbstract (CAT &, Ostart, 5):

[1,n] v; € 67°*" (inclusion condition) and O jouna 1+ if (Yvi € 8)(v; € 65'"") then

is a leaf node, i.e. © founa € L. Alg.[T|computes the if ©,4qr¢ € Le then

¢ : S — S mapping for a given concrete state s return O g;qr¢

under CAT ¢, starting from CAT’s root node O,.,¢. else

FindAbstract(&, Ogtart, s) starts the level-order children « Children(©start)
search from Ogyy,¢ and it always finds the corre- for ©piia € children do
sponding abstract state when © 447t = ©,.00¢. This if (Vo; € 5)(v; € 05""'%) then
algorithm checks the inclusion condition first for FindAbstract (&, O cpita, 5)
Ostart (Line[T]in Alg.[I). If © g44r¢ is not a leaf node,
the algorithm checks the inclusion condition for children of © 4+ (Line[7]in Alg.[T) and if a child
satisfies the condition, FindAbstract gets invoked recursively (Line[§]in Alg. [I).

Under review as a conference paper at ICLR 2023

Any state abstraction under a given CAT ¢ induces an abstract representation of the underlying
concrete MDP M. Thus, an MDP M can have two abstract representations M, and M, under two
CATs &, and &, respectively. We define a relational operation to decide which abstract MDP is finer.

Definition 5 Given MDPs M, and M, abstracted under &, and &, we say M, is strictly finer than
My, denoted as g = M, iff VO € Le, 36° € L¢, (0% > ©Y). We also say M, is finer than M,
denoted as M, = M,, iff VO € L¢, 30° € L¢, (02> 0P v O =).

4.3 LEARNING DYNAMIC ABSTRACTIONS

Definition formalizes the abstraction tree by which the mapping ¢(s) : S — S can be performed
using a level-order search (see Alg. [I)), while Definition [2] explains how a node of a CAT can be
refined with respect to a state variable v; through the refinement function (0, 4, f). However, our
objective is to interleave RL episodes with phases of abstraction refinement leading to an enhanced
abstract policy 7 for a given concrete MDP M. We need to develop a mechanism that 1) observes
the dispersion of Q-values while the RL agent is acting and learning through the abstract MDP M,
and 2) refines unstable abstract states w.r.t a state variable.

Therefore, our approach, Dynamic Abstractions for RL (DAR+RL), consists of three phases: 1) the
RL agent performs Q-learning over the abstract state space S defined by leaves of the current CAT
and learns an abstract policy 7; 2) the RL agent continues interacting with the environment via the
abstract policy ™ and DAR+RL evaluates the computed abstraction by observing the dispersion of
Q-values; and 3) DAR+RL refines the current abstraction by finding unstable abstract states in &.
One needs to blame a state variable v; for each unstable state since the refinement can be conducted
Ww.I.t to one state variable as defined in Definition 2l

Let S(M, &,) denote the evaluation function which is simply an RL routine where the learning
agent interacts with an MDP M through a fixed policy 7 under the abstraction computed by & for
one single episode; Throughout one episode of evaluation, the observed dispersion of Q-values is
defined as D = {d,,|m € [1,nstep]}. The observed dispersion D is the set of observed Q™ (S, a)
values for one episode (up to 74, steps) of evaluation.

To obtain a better exploration over the
abstract states, the evaluation function

Algorithm 2: Learning Dynamic Abstractions B(M,¢,7) needs to be executed for

Input: M, f Neval > 1 episodes. That being said, T’

Output: M, &, 7 ~ denotes all observed dispersion obtained by
1: initialize O;p;, &, and Q executing the evaluation function for 7eqq;
2: for episode = 1,n¢p; do episodes, where I' = {D,,,|m € [1, neyai}-
3 s < reset () Let UnstableState(I") denote a function
4 for steps in episode do that finds the set of unstable states in the form
5: 5§+ FindAbstract(, Onit, S) of © based on the dispersion of Q-values in
6: a < 7(5) I'. Besides, UnstablevVar(I',©) denotes
7 s',7,done < step(extend(a)) a function that finds the accountable state
8: s’ <~ FindAbstract(§, Oinit,) variable for each unstable state, given the
9: T+ train™(5,%,a,7) dispersion log T'. Altogether, within the
10: 8,5+ ¢,§ DAR+RL learning, evaluation, and refine-
11: if M needs refinement then ment phases, the learning agent learns the
12: for e = 1, ncyq do solution to the MDP M while learning the
13: I'.append(evaluate(M,&, 7)) dynamic abstractions.

14: unstable + UnstableState(T)

15: for each © in unstable do

16: i « Unstablevar(T,O) 4.4 DAR+RL ALGORITHM

}; g_ﬁeg;iarteef;;:e(% Zéf 7)10 des) Alg. [2|illustrates the procedure by which the

agent learns an MDP’s solution and abstrac-
tions simultaneously through learning, eval-
uation, and refinement phases explained in
Sec.[4.3] First, the initial coarse abstraction needs to be automatically constructed through initializ-
ing ©;,¢, based on the known ranges for each state variable v;, and constructing a CAT £ with only
the root node (Line in Alg. . The initial ¢ induces an abstract MDP M for the given MDP M.

19: return M &, 7

Under review as a conference paper at ICLR 2023

Then, the learning phase of DAR+RL starts by employing the Q-learning routine (Lines [2] to[I0]in
Alg. [2). In other words, throughout the learning phase (lines 2] to [2) Alg. 2]implement the vanilla
Q-learning over abstract states computed from the CAT. In this phase, induced by the computed
state abstraction, extended actions (taking a concrete action repeatedly until the agent reaches a new
abstract state, blockage, or a terminal concrete state) are applied to the environment instead of the
concrete actions (Line[7]in Alg.[2)). As the result, the agent enhances the abstract policy 7 to learn
the solution to the abstract MDP M.

Since the initial abstraction is likely to be too coarse, DAR+RL checks the refinement condition
(Line [TT)in Alg. [2) at the end of each learning episode to initiate an evaluation phase followed by
a refinement phase. We set DAR+RL to check the recent success rate of the RL agent every n¢peck
episodes where the refinement condition evaluate to true if the success rate is below some threshold.
The choice of the refinement condition introduces a trade-off. On one hand, we want to obtain a
near optimal abstraction that enables the agent to learn the solution effectively. On the other hand,
the abstract policy 7 should be trained enough to be used in the evaluation phase for refinement
purposes. When the refinement condition is true, the algorithm runs the evaluation function 5 (a
standard Q-learning routine with a fixed policy) for n¢,q; episodes (Line[I3]in Alg.[2). During the
evaluation phase, it is likely to encounter an abstract state 5 multiple times. Since the policy is
fixed in this phase, comparing different Q-values for the same pair of state-action (s, 7(a)) exposes
potential inconsistencies in the abstract state 5. To capture such inconsistencies, for all observed
abstract states, DAR+RL logs different computed Q-values and store them in I'. Then, for each
abstract state 5 in I', DAR+RL calculates the normalized standard deviation of all logged Q(s, 7(a))
(Line[14]in Alg[2). Considering these calculated values, UnstabelState(I") finds the unstable
states (abstract states with high variations) using clustering techniques. Finally, the unstable states
are refined and the abstraction tree is updated accordingly in Lines[I5]to[I8]

5 EMPIRICAL EVALUATIONS

To assess the performance of DAR+RL, we conducted empirical analysis on three discrete domains:
Office World adapted from |Icarte et al.| (2018), Wumpus World derived from [Russell & Norvig
(2020), Taxi World adapted from the OpenAl Gym environment Taxi-v3 (https://www.gymlibrary.
ml/environments/toy _text/taxi/) and introduced by |Dietterich| (2000), and one continuous domain:
Water World based on |[Karpathy| (2015); [carte et al.| (2018)). All of the domains used are stochastic
continuous/discrete problems with varying dimensionality (from 2 to 14). All the details regarding
the domains and task descriptions are included in the supplementary document. We aim to investi-
gate the following:

* Does DAR+RL improve the sample efficiency of vanilla Q-learning without any expert
knowledge?

* Is DAR+RL scalable to high-dimensional tasks?

* Does DAR+RL recognize similar abstractions for similar sub-problems in a larger task?

For the comparative study, we selected the following baselines: (1) Option-critic Bacon et al.|(2017),
(2) JIRP Xu et al.| (2020), (3) tabular Q-learning [Watkins & Dayan| (1992), (4) DQN Mnih et al.
(2013), (5) A2C Mnih et al.| (2016)), and (5) PPO |Schulman et al.| (2017). Option-critic is a Hier-
archical RL (HRL) approach that discovers options autonomously while learning option policies
simultaneously. JIRP automatically infers reward machines and policies for RL. We chose these
state-of-the-art methods as baselines as they do not require expert knowledge as input. We also com-
pared with deep RL methods: DQN, A2C, and PPO. The details of parameters and hyperparameters
are included in the supplementary document.

For each domain, we executed 10 independent runs for each algorithm and report the mean success
rates averaged over last 100 training episodes along with the standard deviations. We also report
normalized cumulative reward for each domain and method obtained by evaluating the agent on
10 simulation runs, after stopping training at intervals of 10 episodes. We use implementation of
DQN, A2C, and PPO from the Stable-Baselines3 by Ratffin et al.|(2019). Our code is included in the
supplementary material. We now discuss our results and analysis in detail below.

https://www.gymlibrary.ml/environments/toy_text/taxi/
https://www.gymlibrary.ml/environments/toy_text/taxi/

Under review as a conference paper at ICLR 2023

—— DAR+RL (ours) —— Q-learning — JIRP —— Option-critic —— DQN — A2C — PPO
Office World Wumpus World Taxi World Water World
1.0 - g g g
@ 0.8 4 4 4
s
©
e
¢ 0.6 g g g
9]
1 1
S 04+ 1 1 1
a
0.0 - T T T =T /\- T T T T - T T T T T
0 1K 2K 3K 0 1K 2K 3K 4K 5K 0 5K 10K 15K 20K 0 2K 5K 7K 10K
2
© 1.0 1 1 v T
2
&
) 0.8 E T
2
=] i
0.6 B 1
=}
£] .
3 041 g
° T -
= i
g 0.0 4
<] T T T T T T T T ™ T T T T — T T T T
= 0 1K 2K 3K 0 2K 5K 7K 10K 10 2K 5K 7K 10K 0 2K 5K 7K 10K

Episodes

Figure 4: (Top) Success rates (mean and standard deviation) for 10 independent runs averaged over last 100
training episodes for all the methods, and (Bottom) normalized cumulative reward for 10 simulation runs ob-
tained every 10 training episodes for DAR+RL (ours) and the second-best performing baseline for Office World
(36x36), Wumpus World (64x64), Taxi World (30x30), and Water World (300x300) domains.

5.1 RESULTS

Fig.] (Top) shows comparison among success rates achieved by all the methods on all the domains.
In Office world, DAR+RL outperforms all the baselines and almost converges to a success rate of 1
in around 2000 episodes, whereas, PPO reaches an approximate success rate of 0.8 in 2500 episodes
and has a high standard deviation. DQN reaches a success rate of only 0.65 within 3000 episodes
and rest of the baselines struggle to learn and are stuck below 0.2 success rate. In Wumpus world,
DAR+RL converges to success rate of 1 within 4000 episodes and significantly outperform all the
baselines which are stuck below a success rate of only 0.2. In Taxi world, DAR+RL achieves a
success rate of almost 1.0 within 12000 episodes of training, while Q-learning and Option-critic
perform better than other baselines achieving approximate success rates of 0.75 and 0.4 respectively
within 20000 episodes. Even in the continuous Water world domain, DAR+RL learns slightly faster
than PPO while all other baselines perform poorly and are stuck below a success rate of 0.4. We
performed further evaluation on DAR+RL and the second-best performing baseline on each domain
as shown in the Fig. 4] (Bottom) by evaluating the policies learned by the agent. In Office and Water
worlds, DAR+RL outperforms PPO, and in Wumpus world, DAR+RL gains significantly higher
cumulative reward than Q-learning.

5.2 ANALYSIS

Sample efficiency in the absence of input expert knowledge. The results presented in Section[5.1]
demonstrate that DAR+RL’s performance is superior to all baselines in both discrete and continuous
domains. This is categorically the effect of the learned conditional abstractions by DAR+RL made
available to the vanilla Q-learning algorithm. This effect can be perceived from two perspectives:
1) the meaningful conditional abstractions that are automatically constructed by DAR+RL spotlight
the most informative aspects of the state space, leading to more sample-efficient learning; and 2) the
Q-learning agent benefits from significantly higher levels of exploration over state and action spaces
due to the nature of abstraction. This intense exploration can cause more penalization of the agent

Under review as a conference paper at ICLR 2023

at the early stages of learning (see cumulative rewards of DAR+RL in taxi and office world) but
eventually leads to faster learning and superior performance reflected in the success rate.

Scalability to high-dimensional tasks. RL algorithms that learn policy 7 from a concrete MDP M
suffer from the curse of dimensionality as the size of the state space increases. This explains why
most of the baselines fail to learn the Wumpus world, as a basic domain, when the size of the grid
increases drastically, as shown in Fig.] In contrast, the top-down abstraction refinement scheme
of DAR+RL scales effectively to problems with relatively larger state space. As a result, the ab-
stract representations learned by DAR+RL empowered vanilla Q-Learning algorithm to learn those
problems relatively fast and efficiently. We conducted further experiments on scalability and com-
putational complexity of DAR+RL and baselines and the results are presented in the supplementary
document.

Abstractions learned in similar sub-problems. One im-

portant property of DAR+RL’s framework is to construct g G
identical abstractions across the state space for similar

| =

\ B

sub-problems. This capability of DAR+RL is critically
beneficial in large problems where options can be gen-
eralized across identically constructed abstractions. Fig.
demonstrates two constructed conditional abstractions
by DAR+RL for an 88 taxi world. In Fig. [5] (middle), Figure 5: Drawing out similarities across
the passenger is located at top-left and the destination is State space of a 8x8 taxi world via
located at the bottom-left of the map. Besides, in Fig.[§] DAR+RL’s automatic abstraction.

(right), the passenger is in the taxi and the destination is

located at the top-left. In both cases, the agent should reach the top-left cell of the map which implies
a similarity. DAR+RL discovered this similarity automatically as seen from the generated identical
abstractions (highlighted area) for both the cases.

6 CONCLUSION

We presented a novel approach (DAR+RL) for simultaneously learning dynamic abstract representa-
tions along with the solution to problems formulated as an MDP. The overall algorithm of DAR+RL
proceeds by interleaving the process of refining a coarse initial abstraction with learning and eval-
uation of policies for the underlying RL agent (Q-learning). Besides, we introduced conditional
abstraction trees to compute and represent such refined abstractions throughout the DAR+RL proce-
dure. Extensive empirical evaluation on multiple domains of problems demonstrated that DAR+RL
effectively enables vanilla Q-learning algorithm to learn the solution to large discrete and con-
tinuous problems, with dynamic representations, where state-of-the-art RL algorithms are outper-
formed. This superior performance of vanilla Q-learning compared to algorithms with complex
neural-network-based architecture such as PPO and A2C is due to DAR+RL’s scalable abstraction
construction scheme that effectively draws out similarities across the state space and yields pow-
erful sample efficiency in learning. Future work will consider automatic discovery of generalizable
options utilizing the constructed conditional abstract representations by DAR+RL.

REFERENCES

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pp. 2915-2923. PMLR, 2016.

Ankit Anand, Aditya Grover, Parag Singla, and Mausam. Asap-uct: Abstraction of state-action pairs
in uct. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679—
684, 1957.

Rohit Chadha and Mahesh Viswanathan. A counterexample-guided abstraction-refinement frame-
work for markov decision processes. ACM Transactions on Computational Logic (TOCL), 12(1):
1-49, 2010.

Under review as a conference paper at ICLR 2023

Chung-Cheng Chiu and Von-Wun Soo. Automatic complexity reduction in reinforcement learning.
Computational Intelligence, 26(1):1-25, 2010.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement. In International Conference on Computer Aided Verification, pp. 154—169.
Springer, 2000.

Dennis Dams and Orna Grumberg. Abstraction and abstraction refinement. In Handbook of Model
Checking, pp. 385-419. Springer, 2018.

Thomas Dietterich. State abstraction in maxq hierarchical reinforcement learning. Advances in
Neural Information Processing Systems, 12, 1999.

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decompo-
sition. Journal of artificial intelligence research, 13:227-303, 2000.

Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial intelligence, 57(2-3):323—
389, 1992.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2):163-223, 2003.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila Mcllraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107-2116. PMLR, 2018.

Nan Jiang, Satinder Singh, and Richard Lewis. Improving uct planning via approximate homo-
morphisms. In Proceedings of the 2014 international conference on Autonomous agents and
multi-agent systems, pp. 1289-1296, 2014.

Anders Jonsson and Andrew Barto. Automated state abstraction for options using the u-tree algo-
rithm. Advances in neural information processing systems, 13, 2000.

Rushang Karia and Siddharth Srivastava. Relational Abstractions for Generalized Reinforcement
Learning on Symbolic Problems. arXiv preprint arXiv:2204.12665, 2022.

Andrej Karpathy. Reinforcejs: Waterworld demo, 2015. URL http.//cs. stanford. edu/people/karpa-
thy/reinforcejs/waterworld. html, 2015.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282-293. Springer, 2006.

George Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:1-7,
2019.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. In AI&M, 2006.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 71, 2004.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937. PMLR, 2016.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3, 2019.

10

Under review as a conference paper at ICLR 2023

Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework for non-
exact minimization in markov decision processes. 2004.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach Fourth Edition, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian abstraction refinement for clas-
sical planning. Journal of Artificial Intelligence Research, 62:535-577, 2018.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Applicability conditions for plans
with loops: Computability results and algorithms. Artificial Intelligence, 191:1-19, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279-292, 1992.

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In Proceedings of
the International Conference on Automated Planning and Scheduling, volume 30, pp. 590-598,
2020.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739-5743, 2018.

11

	Introduction
	Related Work
	Background
	Our Approach
	Overview
	Conditional Abstraction Trees
	Learning Dynamic Abstractions
	DAR+RL Algorithm

	Empirical Evaluations
	Results
	Analysis

	Conclusion

