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Abstract001

We propose a novel K-step return estima-002
tion method (called KETCHUP) for Reinforce-003
ment Learning(RL)-based knowledge distilla-004
tion (KD) in text generation tasks. Our idea is005
to induce a K-step return by using the Bellman006
Optimality Equation for multiple steps. Theo-007
retical analysis shows that this K-step formu-008
lation reduces the variance of the gradient esti-009
mates, thus leading to improved RL optimiza-010
tion especially when the student model size is011
large. Empirical evaluation on three text gen-012
eration tasks demonstrates that our approach013
yields superior performance in both standard014
task metrics and large language model (LLM)-015
based evaluation. These results suggest that016
our K-step return induction offers a promising017
direction for enhancing RL-based KD in LLM018
research. 1019

1 Introduction020

Knowledge distillation (KD; Hinton et al., 2015)021

refers to training a (typically) small student model022

from a teacher’s output. KD has been increasingly023

important in the LLM era, as larger models achieve024

higher performance (Kaplan et al., 2020) but are025

more difficult to deploy in low-resource scenarios.026

KD approaches can be generally categorized into027

two types: intermediate-layer matching and predic-028

tion matching. Intermediate-layer matching aims029

to match the student’s and teacher’s hidden states,030

encouraging the student to mimic the teacher’s be-031

havior layer by layer (Sun et al., 2019; Jiao et al.,032

2020; Wang et al., 2021). Prediction matching in-033

forms the student of the task to solve, typically by034

minimizing the divergence of output distributions035

(Kim and Rush, 2016; Wen et al., 2023).036

Classic KD for text generation suffers from the037

exposure bias problem (Bengio et al., 2015), as the038

student learns word by word following the teacher’s039

1Our code is released at https://anonymous.4open.
science/r/KETCHUP-4956

or ground truth’s prefix, without accounting for its 040

own previous predictions. RL alleviates this issue 041

by enabling the student to learn through exploration. 042

Hao et al. (2022) induce a step-wise reward func- 043

tion from a language model trained in a supervised 044

way. Building on this, Li et al. (2024) apply RL 045

to text generation KD, where a student model is 046

trained by the REINFORCE algorithm (Williams, 047

1992) maximizing the cumulative reward suggested 048

by the teacher. 049

However, REINFORCE is known to suffer from 050

high variance because it estimates gradient by sam- 051

pled trajectories (i.e., sequences), which can vary 052

significantly (Sutton and Barto, 2018). This issue 053

is further exacerbated in text generation scenarios 054

due to the large action space (i.e., vocabulary size), 055

resulting in unstable learning. 056

In this paper, we propose KETCHUP, a novel 057

K-step return Estimation TeCHnique to Update 058

Policy for RL-based knowledge distillation. Our 059

work is inspired by Li et al. (2024), who derive a 060

Q-value function from the teacher’s policy (next- 061

token probabilities) and induce a reward function 062

based on the Bellman-Optimality Equation (Bell- 063

man, 1952). We propose to estimate the total re- 064

ward based on K-step Bellman optimality. Theo- 065

retical analysis shows that our KETCHUP reduces 066

the variance of the total reward, thus effectively 067

mitigating the high variance issue of RL-based text 068

generation KD. 069

We evaluated our approach on three text gener- 070

ation datasets categorized into different domains: 071

XSum (Narayan et al., 2018) for summarization, 072

the Europarl corpora (Koehn, 2005) for machine 073

translation, and GSM8K (Cobbe et al., 2021) for 074

arithmetic reasoning. Experiments show that our 075

proposed KETCHUP consistently achieves an add- 076

on performance improvement when combined with 077

the recent KD through the RL method (Li et al., 078

2024). We also conduct an empirical analysis to 079

show that the KETCHUP demonstrates lower vari- 080
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ance and converges better than Li et al. (2024), i.e.,081

achieving a higher return and being more stable.082

2 Methodology083

2.1 RL Formulation of Text Generation084

Text generation can be formulated as an undis-085

counted Markov Decision Process (MDP) with tu-086

ple (S,A, T, r). The state space S includes all087

possible (sub)sequences and each of them is repre-088

sented by y<t for some time step t; notice that text089

generation may also depend on an input sequence,090

which is omitted here. The action at ∈ A at step091

t corresponds to the next token yt from the vocab-092

ulary V . The state transition T is a deterministic093

process in text generation, as st+1 is essentially the094

concatenation of st and the newly generated word095

at. The reward function r : S ×A → R provides096

feedback based on (st, at). The goal of RL is to097

find a policy (distribution over actions) to maximize098

the expected return (cumulative rewards).099

A key challenge in applying RL to text genera-100

tion is the lack of well-defined step-wise reward101

functions. To address this, Hao et al. (2022) and Li102

et al. (2024) assume that a language model gener-103

ates the next word from a Boltzmann distribution104

based on the Q-value function,2 given by105

πLM(a | s) =
exp

(
q(s, a)

)∑
a′ exp

(
q(s, a′)

) , (1)106

Due to the shared formula, a language model’s107

pre-softmax logit can be viewed as the Q-value108

function, and with the Bellman optimality equa-109

tion (Bellman, 1952), a step-wise reward function110

can be induced by111

r(st, at) = q(st, at)−max
a′∈A

q(st+1, a
′). (2)112

Then, the goal of RL for text generation KD is to113

optimize the student’s policy, denoted by πθ, to114

maximize the expected cumulative reward:115

J(θ) = Eπθ

[
T∑
t=1

r(st, at)

]
, (3)116

The REINFORCE algorithm (Williams, 1992) is a117

policy gradient method, which is widely used for118

2The Q-value function estimates the expected return (cu-
mulative reward) of taking action a in state s and then fol-
lowing a given policy thereafter, defined by qπ(s, a) =
Eπ

[∑∞
t=0 γ

trt+1

∣∣ s0 = s, a0 = a
]
.

RL in NLP (Hao et al., 2022; Li et al., 2024). 119

∇θJ(θ) = Eπθ

[
T∑
t=1

Gt∇θ log πθ(at | st)

]
(4) 120

where Gt =
∑T

i=t r(si, ai) is a cumulative reward 121

(i.e., return) from step t, and the expectation is 122

approximated by Monte Carlo samples from the 123

distribution πθ. 124

2.2 Our KETCHUP Method 125

In this work, we address RL-based KD and pro- 126

pose to refine the learning signal Gt in Eqn. (4) 127

by extending the one-step reward induction to K 128

steps, which alleviates the high variance issue of 129

RL. The key idea is to apply the Bellman optimal- 130

ity equation for multiple steps, therefore directly 131

connecting the Q-values at the current state with 132

those of a future state. 133

We begin by considering the sum of rewards in 134

Eqn. (2) over K consecutive steps starting from 135

step t, denoted by Gt:t+K : 136

Gt:t+K :=
K−1∑
i=0

r(st+i, at+i) 137

=

K−1∑
i=0

[
q(st+i, at+i)−max

a′∈A
q(st+i+1, a

′)
]

138

=q(st, at)−max
a′∈A

q(st+K , a′) (5) 139

where Eqn. (5) assumes that an optimal action 140

at+i+1 = argmaxa′∈A q
(
st+i+1, a

′) is taken. 141

However, a student’s policy may not be optimal; 142

therefore, Eqn. (5) becomes an approximation, de- 143

noted by Ĝt:t+K ,: 144

Ĝt:t+K = q(st, at)−max
a′∈A

q(ŝt+K , a′) (6) 145

where ŝt+K is the state at the (t+K)th step after 146

following the student’s policy. This is a reasonable 147

approximation because, in KD, a student is usually 148

pretrained in a meaningful way (Turc et al., 2019; 149

Lee et al., 2023; Kim et al., 2024) and the approxi- 150

mation will be more accurate as the optimization 151

proceeds. 152

Building upon the K-step reward formula- 153

tion, we can obtain an approximate return 154

Ĝt by considering intervals of K steps, i.e., 155
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Algorithm 1 KETCHUP

Input: Non-parallel dataset D; teacher Q-value
function q : S ×A → R; student policy πθ with
initial parameters θ; segment length K; learning
rate η; maximum rollout length T ; number of
iterations U
Output: Trained student policy πθ
for j ← 1 to U do

Sample a source sentence x ∈ D
Set the initial state s0 ← x
Generate a trajectory τ = {(s0, a0), (s1, a1)
, . . . , (sT , aT )} by sampling from πθ
Initialize gradient accumulator: g ← 0
for t← T to 0 do

if t = T then
ĜT ← q(sT , aT )

else if T − t < k then
Ĝt ←

[
q(st, at)−max

a′∈A
q(st+1, a

′)
]
+Ĝt+1

else
Ĝt ←

[
q(st, at)−max

a′∈A
q(st+K , a′)

]
+Ĝt+K

end
g ← g + Ĝt∇θ log πθ(at | st)

end
θ ← θ + η g

end
return πθ

Ĝt:t+K , Ĝt+K:t+2K , · · · . Formally, we have156

Ĝt =

⌊T−t+1
K ⌋∑
i=0

Ĝt+iK:t+(i+1)K157

=

⌊T−t+1
K ⌋∑
i=0

[
q(st+iK , at+iK)−max

a′∈A
q(ŝt+(i+1)K , a′)

]
.

(7)

158

which will be used in our RL-based generation KD.159

In particular, the student’s policy is used to sam-160

ple a sequence of actions (i.e., output words). Then,161

the sequence is fed to the teacher model, which162

evaluates the sequence by Eqn. (7). Finally, we163

follow the policy gradient formula, but use the ap-164

proximate return for the update:165

∇θJ(θ) ≈ Eπθ

[
T∑
t=1

Ĝt∇θ log πθ(at | st)

]
(8)166

where Ĝt is our approximate return defined in167

Eqn. (7). The process is shown in Algorithm 1.168

2.3 Bias and Variance Analysis 169

Although the REINFORCE algorithm (Williams, 170

1992) estimates gradients in an unbiased way, it is 171

known to be noisy and prone to high variance in the 172

gradient estimation, which may lead to instability 173

in learning (Greensmith et al., 2004; Mnih et al., 174

2016; Bjorck et al., 2022). 175

A standard method to mitigate this issue is to 176

subtract a baseline term bt from the actual return: 177

Ĝt = Gt − bt. (9) 178

For example, the average return over a batch 179

(Rosenberg, 2021) is commonly used as the base- 180

line term to stabilize the REINFORCE algorithm. 181

Our KETCHUP approach is a variant of REIN- 182

FORCE with baseline. This can be seen by examin- 183

ing the difference between the actual return Gt and 184

our approximate return Ĝt. In our KD application, 185

the actual return Gt is given by accumulating the 186

reward defined in Eqn. (2). In other words, we have 187

Gt =
T∑
i=0

(
q(st+i, at+i)−max

a′∈A
q(st+i+1, a

′)
)
.

(10)

188

Combining Eqns. (7), (9), and (10), we can inter- 189

pret our approximate return Ĝt as introducing a 190

baseline term with the following form 191

bt =

T−1∑
i=0

i ̸≡0 (mod k)

[
q(st+Ki+1, at+Ki+1)−max

a′∈A
q(st+Ki+1, a

′)
]
.

(11)

192

Unlike conventional, policy-independent base- 193

lines (Sutton and Barto, 2018; Rosenberg, 2021), 194

our baseline depends on the selected actions and 195

thus introduces bias into the expected return esti- 196

mation. However, our approach can alleviate the 197

high variance issue of REINFORCE with mild as- 198

sumptions, as shown by the following theorem. 199

Theorem 1 (Variance Reduction via K-Step Re- 200

turn). Let Gt be the actual return and Ĝt be the 201

K-step approximate return for some sequences 202

sampled from the student policy π. Assuming that 203

the state–action–reward tuples (st, at, rt) are iid 204

drawn at different steps, we have: 205

Var[Ĝt] ≤ Var[Gt]. (12) 206

Proof. See Appendix A. 207
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The iid assumption is reasonable and widely208

adopted in theoretical RL research (Kearns and209

Singh, 2000; Bhandari et al., 2018; Xu et al., 2020),210

because in many environments the dependencies211

decay rapidly and correlation is further weakened212

when a large batch of samples are considered.213

Overall, Theorem 1, along with the derivations214

in Appendix A, indicates that our KETCHUP al-215

leviates variance at a power rate as K increases.216

Although this method introduces a bias term in217

the gradient estimation, the bias is effectively mit-218

igated: it diminishes for smaller values of K and219

converges to zero as the student policy becomes220

more optimal. Detailed bias analysis is given in221

Appendix B. Such a trade-off is wildly applied in222

existing RL literature, as seen in Temporal Dif-223

ference (TD) learning (Sutton, 1988), Actor–Critic224

algorithms (Konda and Tsitsiklis, 1999; Mnih et al.,225

2016), and Deep Q-Network (DQN; Mnih et al.,226

2015).227

3 Experiments228

In this section, we present the empirical evaluation229

and analysis of our proposed KETCHUP. We be-230

gin by describing the datasets, baseline methods,231

and implementation details, followed by the main232

results and detailed analyses.233

3.1 Settings234

Tasks, Datasets, and Metrics. We evaluate our235

approach on various text generation tasks that are236

frequently considered in previous literature (Maruf237

et al., 2018; Magister et al., 2023; Wen et al., 2023;238

Touvron et al., 2023; Biderman et al., 2024; Wang239

et al., 2024).240

• XSum Summarization. The Extreme Summa-241

rization (XSum) is a challenging dataset for242

text summarization introduced by Narayan243

et al. (2018), where the summaries are highly244

abstractive as they emphasize key ideas with245

novel wordings. The dataset consists of approxi-246

mately 226,000 BBC articles paired with single-247

sentence summaries. We employ ROUGE (Lin,248

2004) as the primary metric, which is common249

practice in summarization (Ravaut et al., 2024;250

Van Veen et al., 2024; Agarwal et al., 2025).251

• Europarl EN–NL Translation. Europarl252

(Koehn, 2005) is a high-quality, multilingual par-253

allel corpus extracted from European Parliament254

proceedings. Its texts are professionally pro-255

duced and carefully aligned, ensuring reliable,256

well-edited data. We choose English-to-Dutch, 257

a relatively low-resource translation direction, 258

to facilitate our distillation experiments. We 259

report the BLEU score (Papineni et al., 2002), 260

character-level F score (chrF, Popović, 2015), 261

and translation edit rate (TER, Snover et al., 262

2006), following the standard evaluation in ma- 263

chine translation (Barrault et al., 2019; Hrabal 264

et al., 2024). 265

• GSM8K Reasoning. Grade School Math 266

8K (GSM8K, Cobbe et al., 2021) is a popular 267

dataset consisting of around 8,000 grade school- 268

level math problems with detailed step-by-step 269

solutions. It is designed to evaluate a model’s 270

abilities in mathematical reasoning and multi- 271

step problem-solving. The standard evaluation 272

metric for GSM8K is solution accuracy (Wang 273

et al., 2024; Setlur et al., 2025), which is adopted 274

in our experiments. 275

We employ the standard training, validation, and 276

test splits for XSUM (Narayan et al., 2018) and 277

Europarl (Koehn, 2005). For GSM8K, the standard 278

split comprises only training and test sets (Cobbe 279

et al., 2021). We adopt the open-source split pro- 280

vided by Wang et al. (2024), where the validation 281

set is constructed by randomly selecting examples 282

from the original training data. 283

Implementation Details. In our KD, the teacher 284

is the 3B-parameter FLAN-T5-XL model (Chung 285

et al., 2024), which shares the same architecture 286

as prior work (Li et al., 2024). For the summariza- 287

tion task, we directly prompt FLAN-T5-XL as it 288

has already been instruction-finetuned for summa- 289

rization. On the other tasks, FLAN-T5-XL yields 290

subpar performance if prompted directly; we fine- 291

tune the model as the teacher, which is commonly 292

practiced in KD research (De Gibert et al., 2024; 293

Setiawan, 2024; Ye et al., 2025). 294

The student uses the 250M-parameter T5-base 295

model Raffel et al. (2020), which is consistent with 296

the configuration in Wen et al. (2023) and Li et al. 297

(2024). 298

Following previous KD studies (Wen et al., 2023; 299

Li et al., 2024), we perform pre-distillation, where 300

the student is pretrained by the cross-entropy loss 301

based on the teacher’s outputs. This ensures a 302

meaningful initialization of the student model and 303

enables effective exploration for reinforcement 304

learning. Notice that text generation has a much 305

larger state–action space than a typical RL envi- 306

ronment such as Atari games (Mnih et al., 2015). 307
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Figure 1: Average predicted return vs Approaches.

The student performs greedy action selection when308

generating a sequence. Our return induction builds309

upon K-step Bellman optimality equations, and310

the hyperparameter K is critical in our framework.311

We report performance for K ∈ {2, 4, 8, 16} in our312

experiments.313

Competing Methods. We compare our314

KETCHUP against both divergence-based and315

RL-based text generation KD:316

• SeqKD (Kim and Rush, 2016). This is a clas-317

sic method where the student maximizes like-318

lihood of teacher-generated sequences.319

• KL Distillation (Hinton et al., 2015). It mini-320

mizes the Kullback–Leibler (KL) divergence321

between student and teacher distributions. No-322

tice that SeqKD is a hard version of KL distil-323

lation.324

• JS Distillation (Wen et al., 2023). Jensen–325

Shannon (JS) divergence is a symmetric di-326

vergence that overcomes the over-smoothing327

problem of KL divergence (Wei et al., 2019;328

Wen et al., 2023).329

• TVD Distillation (Wen et al., 2023). The330

Total Variation Distance (TVD) is another331

symmetric divergence and is shown to outper-332

form other methods (Wen et al., 2023). Such333

a method is also explored in Agarwal et al.334

(2024) with a tunable ratio between the two335

terms of TVD.336

• LLMR (Li et al., 2024). In this method, a337

reward function is induced from a teacher lan-338

guage model by one-step Bellman optimal-339

ity (Hao et al., 2022). Then, the student model340

is trained by RL towards the induced reward.341

Since our approach reduces the variance of RL, we342

consider alternative variance reduction techniques343

under the LLMR framework:344

• LLMR + Mean Baseline. Using the average345

reward in a batch as a baseline is commonly346

used for stabilizing RL training (Sutton and347

Barto, 2018). 348

• LLMR + Min-Variance Baseline. This is 349

an advanced variant that is shown to be theo- 350

retically optimal when the baseline is derived 351

from batch data (Rosenberg, 2021). 352

For a fair comparison, we apply the same set- 353

tings in Section 3.1 (when applicable) to the com- 354

peting methods as we do to our approach. Specifi- 355

cally, all methods adopt pre-distillation to ensure a 356

meaningful student initialization, and all RL meth- 357

ods use the same action selection procedure. 358

3.2 Main Results 359

As mentioned in Section 2.2, the primary advan- 360

tage of our KETCHUP is its enhanced RL optimiza- 361

tion compared with classic REINFORCE. In this 362

part, we will first show that our approach indeed 363

achieves a higher return (cumulative reward) in 364

RL. Then, we will show that our approach leads to 365

improved performance in NLP tasks. 366

Return in RL. The goal of RL is to learn a policy 367

maximizing the cumulative reward, also known as 368

the return. Therefore, we may use it to evaluate the 369

outcome of RL training. 370

Figure 1 shows the return score that is defined 371

in Eqn. (10), where the return is averaged over 372

different test samples, using various RL methods 373

in the three NLP tasks. As seen, our KETCHUP 374

consistently achieves a higher average return than 375

competing approaches across all the tasks. This in- 376

dicates that our KETCHUP learns a superior policy 377

in terms of the return, which is precisely the RL 378

objective. 379

In addition, we observe that an increased K 380

may not necessarily improve the return. This is 381

because our KETCHUP introduces bias despite its 382

reduced variance (Section 2.3). Therefore, a trade- 383

off should be sought when choosing the K value. 384

NLP Task Performance. Table 1 presents the 385

results of our approach in terms of text generation 386
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Model
XSum Europarl EN-NL GSM8K

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BLEU4↑ chrF↑ TER↓ Accuracy(%)↑

Teacher 41.32 18.86 33.79 25.36 51.11 63.17 40.71
Student 19.60 3.19 13.72 0.95 24.80 100.21 0.00

Distilled
Student

SeqKD (Kim and Rush, 2016) 33.54 11.90 26.67 22.09 48.33 66.18 20.02
KL (Hinton et al., 2015) 34.36 12.86 27.38 22.35 48.58 65.93 23.96
JS (Wen et al., 2023) 34.87 13.18 27.84 22.55 48.71 65.74 24.72
TVD (Wen et al., 2023) 35.17 13.30 28.10 22.63 48.66 65.79 24.94
LLMR (Li et al., 2024) 35.54 13.70 28.56 22.72 49.04 65.38 25.21
LLMR + Mean baseline 35.60 13.76 28.64 22.67 49.03 65.39 25.39
LLMR + Min-Var baseline 35.59 13.78 28.66 22.70 48.97 65.55 25.10
KETCHUP (K = 2) 36.03 13.95 28.89 22.93 49.25 65.15 25.32
KETCHUP (K = 4) 35.96 13.96 28.87 22.93 49.21 65.21 25.40
KETCHUP (K = 8) 35.68 13.88 28.76 22.95 49.23 65.20 25.71
KETCHUP (K = 16) 35.31 13.68 28.51 22.94 49.24 65.18 25.47

Table 1: Main results on XSum, Europarl EN–NL, and GSM8K datasets. The best student result is in bold. ↑/↓The
higher/lower, the better. We prompt the teacher and off-the-shelf student in a zero-shot manner to gain the first
two rows. We select the best checkpoint based on the performance of the held-out validation set and report the
performance of these checkpoints on the test set for all distilled students.

performance.387

We first examine the performance of directly388

prompting the teacher and the non-distilled student389

model in a zero-shot manner, offering empirical390

lower and upper bounds for the KD process. Note391

that the bounds are not theoretically guaranteed;392

instead, KD is empirically expected to improve393

the student’s performance but may still underper-394

form the teacher, especially when the student is395

small. In our setup, the student is a T5-base model,396

which does not yield reasonable performance when397

prompted directly.398

We then consider divergence-based distillation399

methods, including SeqKD and KL/JS/TVD distil-400

lations. As seen from the table, symmetric meth-401

ods (JS, TVD)—which involve both exploitation402

of teacher predictions and exploration based on403

student predictions—tend to surpass asymmetric404

methods (SeqKD, KL), where the student follows405

teacher predictions without any exploration. The406

results are consistent with previous findings (Wen407

et al., 2023; Agarwal et al., 2024).408

Next, we evaluate LLMR (Li et al., 2024), a409

text generation KD approach using REINFORCE.410

Results show that LLMR provides certain perfor-411

mance gain over non-RL KD methods, which is412

likely stemmed from the student’s self-exploration,413

aligning with the observations in Li et al. (2024)414

and other recent RL-based text generation research415

(Ouyang et al., 2022; Liu et al., 2024; DeepSeek-AI416

et al., 2025).417

To mitigate the high variance of REINFORCE in418

LLMR, we incorporate classic RL baseline terms419

(mean baseline and min-variance baseline) that are420

estimated from batch data. However, these methods 421

are not effective in our scenario, as text generation 422

has a very large state–action space, which makes 423

the generated outputs in a batch less representative 424

and the baseline term less useful. 425

By contrast, our KETCHUP employs a novel 426

baseline formulation that largely reduces the vari- 427

ance of RL (Theorem 1) and improves RL optimiza- 428

tion (Figure 1). Consequently, it delivers a note- 429

worthy add-on performance gain on top of LLMR 430

across three text generation tasks. 431

In the experiment, we also observe that a mod- 432

erate K between 2 to 8 leads to the highest NLP 433

performance, which is consistent with the return 434

analysis in Figure 1. It is also noticed that RL 435

return and NLP performance are not perfectly cor- 436

related, as the induced reward may not fully reflect 437

the task metric such as BLEU and ROUGE scores, 438

which is also known as reward hacking (Amodei 439

et al., 2016; Hao et al., 2022; Ouyang et al., 2022). 440

Summary. Our main results show that the pro- 441

posed KETCHUP (with a moderate K) improves 442

RL optimization, which is generally translated to 443

higher performance in various NLP tasks. 444

3.3 In-Depth Analyses 445

Variance and bias analysis. As shown by the 446

theoretical analysis in Section 2.3, our approach 447

provides a bias–variance trade-off by largely reduc- 448

ing the variance, although introducing a bias term. 449

We empirically verify them in this analysis. 450

Figure 2a shows the variance of the K-step re- 451

turn, where we sample 32 outputs for a given input 452

and use Eqn. (20) to estimate the variance of return; 453
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(a) Variance (b) Bias

Figure 2: Variance and bias with different K values.

the variance is further averaged over 10K input sam-454

ples. For the bias, we use Eqn. (25) for empirical455

estimation, and the results are shown in Figure 2b.456

We choose the value of K from {1, 2, 4, 8, 16} to457

see the trends. Note that K = 1 corresponds to458

the competing approach LLMR (Li et al., 2024).459

In addition, we examine the impact of the initial460

student policy by considering students with various461

KL divergence levels from the teacher policy: a462

smaller KL divergence indicates that the student463

and teacher are more resemblant.464

We observe that the variance decreases drasti-465

cally as K increases, while the bias term increases466

steadily. The observations align with our theoret-467

ical analysis in Section 2.3 and Appendix B, sug-468

gesting the need for seeking a moderate K value to469

balance bias and variance.3470

We also observe that when the student policy471

is initialized closer to the teacher policy (i.e., a472

smaller KL divergence), our KETCHUP generally473

demonstrates lower bias and variance. The bias474

reduction is predicted by our theoretical analysis475

in Appendix B, whereas the variance reduction476

is an empirical observation. Overall, the results477

demonstrate that pre-distillation is important to RL478

training for text generation, which is consistent479

with previous work (Ouyang et al., 2022; Li et al.,480

2024; DeepSeek-AI et al., 2025).481

Model Size. We analyze RL-based KD ap-482

proaches with different student sizes. Figure 3483

presents the learning curves for student models ini-484

tialized from T5-small (77M parameters), T5-base485

(250M parameters), and T5-large (800M parame-486

ters) using our K-step approach and the competing487

LLMR approach.488

3Our bias–variance trade-off is different from that in a
regression analysis (Hastie et al., 2009; Vapnik, 2013), where
the total squared error is the sum of variance and squared bias,
plus an irreducible noise. By contrast, the variance of return
affects the smoothness of RL training, while bias affects the
optimum quality (if converging); their total effect is not given
by a simple addition.

Dataset Method Overall Informativeness Coherence

XSum
TVD 67.50% 68.15% 65.90%
LLMR 69.95% 70.55% 66.30%
KETCHUP 73.50% 73.90% 70.40%

EN-NL
TVD 53.80% 54.15% 54.85%
LLMR 56.45% 55.85% 56.30%
KETCHUP 58.85% 57.95% 58.45%

Table 2: LLM-based evaluation on the summarization
and translation tasks. EN-NL refers to Europarl EN-NL
dataset. We show the winning rates of each method over
the KL distillation baseline in terms of overall quality,
informativeness, and coherence.

As seen from the learning curves in Figure 3, the 489

LLMR approach exhibits notable instability during 490

RL training as the model size increases, especially 491

when scaling to T5-large. Such a phenomenon is 492

also reported in the RL literature: a large network 493

is prone to overfit the limited sampled outputs, con- 494

sequently leading to unstable performance on test 495

data (Henderson et al., 2018; Cobbe et al., 2019). 496

On the contrary, our KETCHUP largely alleviates 497

this issue by reducing the variance, which stabilizes 498

the learning curves. Overall, our method achieves 499

smoother training and higher performance with all 500

model sizes, compared with the LLMR approach. 501

LLM Evaluation. We conduct an LLM eval- 502

uation as a surrogate of human evaluation, as 503

classic NLP metrics (such as ROUGE and 504

BLEU) may not fully reflect the quality of 505

generated text. Specifically, we prompt the 506

Qwen2.5-72B-Instruct (Qwen et al., 2025) LLM 507

to conduct a pairwise evaluation of system outputs, 508

against the commonly used KL distillation. We 509

select TVD, LLMR, and our KETCHUP from Ta- 510

ble 1 as the competitors, as pairwise evaluation is 511

expensive. Our LLM evaluation considers multiple 512

criteria, including overall quality, informativeness, 513

and coherence. For each comparison, we query 514

the LLM four times by swapping the two candi- 515

dates and their IDs (namely, A and B), as LLM is 516

prone to ID bias (Zheng et al., 2023) and positional 517

bias (Shen et al., 2023). The detailed prompts are 518

presented in Appendix D. 519

Table 2 shows the results of the LLM evaluation. 520

We observe that our KETCHUP achieves the best 521

winning rate in terms of all criteria (overall quality, 522

informativeness, and coherence) on both datasets. 523

These compelling results are consistent with the tra- 524

ditional task metrics in Table 1 and further demon- 525

strate the effectiveness of our KETCHUP. 526
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Figure 3: Learning curves with different K values and model sizes, where the x-axis is the number of training steps.

4 Related Work527

Knowledge Distillation. The foundation of KD528

is laid by Buciluǎ et al. (2006), who performs KD529

by aligning the logits of the student with those530

of a teacher through squared error minimization.531

This framework is extended by Hinton et al. (2015),532

who propose to use KL divergence to match the533

output probability distributions of the teacher and534

student. Kim and Rush (2016) extend KD to the535

sequence level for auto-regressive models, and Wen536

et al. (2023) further propose a general framework537

of f -divergence minimization to mitigate the mode538

averaging and collapsing issues. These divergence-539

based KD approaches heavily rely on imitation of540

the teacher’s predictions, neglecting the student’s541

active exploration during learning.542

Reinforcement Learning for Text Generation.543

Reinforcement learning (RL) offers a framework544

that enables a language model to explore during545

training. A key challenge in RL-based text genera-546

tion lies in designing reward signals. Early efforts547

by Wu et al. (2018) employ task-specific metrics548

(e.g., BLEU for machine translation) as rewards,549

while Ouyang et al. (2022) leverage human pref-550

erence data to train discriminative reward models.551

However, such methods require human engineering552

or human annotation.553

Bridging RL and text generation KD. Recent554

work has sought to combine RL and KD by deriv-555

ing rewards from teacher models. Hao et al. (2022)556

interpret a supervised-trained language model’s pre-557

softmax logits as Q-values, deriving a step-wise558

reward function via Bellman Optimality equation,559

which alleviates the sparse reward issue commonly560

existing in other RL text generation scenarios (Wu561

et al., 2018; Ouyang et al., 2022). Building on this,562

Li et al. (2024) extend this approach to KD set-563

tings, where they induce a reward function from a564

large language model (serves as a teacher) and train565

a student model to maximize the teacher-induced566

cumulative reward. However, RL is known to suf-567

fer from high variance, and our paper proposes 568

KETCHUP that largely reduces the variance of RL 569

training. 570

Variance Reduction in RL. REINFORCE with 571

baseline (Sutton and Barto, 2018; Rosenberg, 2021) 572

mitigates the high variance issue by subtracting 573

a baseline term derived from batch data. Actor– 574

Critic methods (Konda and Tsitsiklis, 1999; Mnih 575

et al., 2016) address this by learning a value func- 576

tion (critic) as the baseline term, but the inaccurate 577

value estimates from the critic can lead to harmful 578

updates in the actor’s policy, while a poor deci- 579

sion by the actor can adversely affect the critic’s 580

learning. This often results in divergence of RL 581

training (Bhatnagar et al., 2007; Fujimoto et al., 582

2018; Parisi et al., 2019). Recent RL work for 583

large language models avoids learning a critic as 584

the baseline term (DeepSeek-AI et al., 2025). Our 585

KETCHUP exploits the mathematical structure of 586

LM-induced rewards to derive a principled base- 587

line for variance reduction, without learning an 588

auxiliary neural network like a critic. 589

Another line of studies develops conservative 590

policy optimization techniques like TRPO (Schul- 591

man et al., 2015) and PPO (Schulman et al., 2017), 592

which constrain policy updates to prevent insta- 593

bility. Our work of estimating K-step return is 594

compatible with this line of research. This goes 595

beyond the scope of our paper, but can be explored 596

in future work. 597

5 Conclusion 598

In this paper, we introduce KETCHUP, a K-step re- 599

turn induction framework for reinforcement learn- 600

ing for knowledge distillation in the text generation 601

domain. Compared with conventional RL methods, 602

our approach effectively reduces gradient variance, 603

shown by both theoretical and empirical analyses. 604

Extensive experiments across diverse text genera- 605

tion tasks verify that our approach improves RL 606

training and boosts NLP task performance. 607
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Limitations608

While our work demonstrates both theoretical609

depth and empirical effectiveness, it is not without610

limitations. First, our RL-based knowledge distilla-611

tion optimizes an induced reward function, which612

may not fully align with the NLP task (Ouyang613

et al., 2022; Pan et al., 2022; Gao et al., 2023). Nev-614

ertheless, our experiments support the claim that a615

better RL optimization generally leads to improved616

NLP metrics, as shown in Table 1. Also, traditional617

NLP metrics (such as ROUGE and BLEU scores)618

may not fully reflect human judgment. Therefore,619

we have also conducted LLM evaluation as a surro-620

gate of human studies (Chiang and Lee, 2023; Liu621

et al., 2023; Lin and Chen, 2023), during which we622

have carefully eliminated the bias of LLMs (Zheng623

et al., 2023; Shen et al., 2023).624
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A Proof of Theorem 1 1017

Using K-step returns as a learning signal to learn a student policy π guarantees reduced variance in return 1018

estimation compared to the full trajectory return, i.e., Var[Ĝt] ≤ Var[Gt]. (Detailed in Theorem 1). 1019

Proof. We denote the variance of q(s, a) and maxa′∈A q(s, a′) as: 1020

σ2
S,A = Vars,a

[
q(s, a)

]
, (13) 1021

σ2
S = Vars

[
max
a′∈A

q(s, a′)
]
. (14) 1022

We first decompose the variance of the actual return Gt: 1023

Var[Gt] = Var

[ T−t∑
i=0

rt+i

]
[definition of Gt] (15) 1024

=
T−t∑
i=0

Var
[
q(st+i, at+i)−max

a′∈A
q(st+i+1, a

′)
]

[iid assumption] (16) 1025

=

T−t∑
i=0

(
Var

[
q(st+i, at+i)

]
+Var

[
max
a′∈A

q(st+i+1, a
′)
])

[iid assumption] (17) 1026

=
T−t∑
i=0

(
σ2
S,A + σ2

S
)

(18) 1027

= (T − t+ 1)
(
σ2
S,A + σ2

S
)
. (19) 1028

Next, we decompose the variance of our K-step approximate return Ĝt: 1029

Var[Ĝt] = Var

[⌊T−t
k ⌋∑

i=0

(
q(st+ik, at+ik)−max

a′∈A
q(st+(i+1)k, a

′)
)]

[by Eqn. (7)] (20) 1030

=

⌊T−t
k ⌋∑

i=0

Var
[
q(st+ik, at+ik)−max

a′∈A
q(st+(i+1)k, a

′)
]

[iid assumption] (21) 1031

=

⌊T−t
k ⌋∑

i=0

(
Var

[
q(st+ik, at+ik)

]
+Var

[
max
a′∈A

q(st+(i+1)k, a
′)
])

[iid assumption] (22) 1032

=

⌊T−t
k ⌋∑

i=0

(
σ2
S,A + σ2

S
)

(23) 1033

=
(⌊T − t

k

⌋
+ 1

)(
σ2
S,A + σ2

S
)
. (24) 1034

Comparing Eqns. (19) and (24), we immediately have Var[Ĝt] ≤ Var[Gt], completing the proof. 1035

B Bias Analysis 1036

In this section, we analyze the bias introduced by using the K-step return Ĝt in place of the actual return 1037

Gt. Recall that they differ by a baseline term shown in Eqns. (9) and (11), and this discrepancy introduces 1038

bias in the return estimation: 1039

bias of return = Eπθ

[
(Ĝt −Gt)

]
= Eπθ

[
T−1∑
i=0

i ̸≡0 (mod k)

[
q(st+Ki+1, at+Ki+1)−max

a′∈A
q(st+Ki+1, a

′)
]]

(25)

1040
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gradient estimation:1041

bias of gradient = Eπθ

[
(Ĝt −Gt)∇θ log πθ(at | st)

]
= Eπθ

[
−bt∇θ log πθ(at | st)

]
(26)1042

We show below that a smaller value of K reduces bias, providing a bias-variance tradeoff for REIN-1043

FORCE. Further, we will show that the bias converges to zero as the student policy becomes more optimal,1044

assuming all Q-values are distinct.1045

Bias Reduction with Smaller K. The baseline term defined in Eqn. (11) is given by1046

bt =
T−1∑
i=0

i ̸≡0 (mod k)

[
q(st+Ki+1, at+Ki+1)−max

a′∈A
q(st+Ki+1, a

′)
]
. (27)1047

Since1048

q(st+Ki+1, at+Ki+1)−max
a′∈A

q(st+Ki+1, a
′) ≤ 0, (28)1049

a smaller K reduced the number of terms in the summation. This decreases |bt|, which in turn decreases1050

the magnitude of the gradient bias in Eqn. (26).1051

Bias Convergence to Zero. Suppose the student policy is optimal, i.e., greedy with respect to the1052

teacher’s Q-value function q(s, a), given by1053

at+i = argmax
a′∈A

q(st+i, a
′). (29)1054

It is easy to see from Eqn. (27) that bt = 0, implying that1055

Eπθ

[
bt∇θ log πθ(at | st)

]
= 0. (30)1056

Suppose the Q-values for different actions are distinct (in which case argmax is continuous), the result1057

further suggests that the bias term would converge to zero, if the student policy is closer to optimal during1058

training.1059
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Dataset Task
# of Samples

Train Dev Test
XSum (Narayan et al., 2018) Summarization 202,926 11,332 11,333
Europarl EN-NL (Koehn, 2005) Machine Translation 1,167,808 10,014 10,016
GSM8K (Cobbe et al., 2021) Arithmetic reasoning 6,705 768 1,319

Table 3: Statistics of our datasets.

C Experimental setting Details1060

Training settings: we used the AdamW opti-1061

mizer (Loshchilov and Hutter, 2019) with default1062

hyperparameters β = (0.9, 0.999) on these three1063

datasets. We chose a small batch size of 8 to fit1064

the student. The learning rate is set as 3e−5. All1065

student models were trained for 5 epochs for pre-1066

distillation and another 2 epochs for each advanced1067

distilling method (i.e. JSD and TVD).1068

For further RL-based training, we kept using the1069

same AdamW optimizer with default hyperparam-1070

eters, as well as the batch size of 8, and we set the1071

learning rate to 1e−5. Hyperparameter details for1072

RL-based training is shown in Table 4 & 5.1073

Inference settings: We follow previous work1074

and use greedy decoding consistently for all distil-1075

lations in three datasets.1076

It should also be noted that in the arithmetic1077

Hyperparameter Value

Training Epochs 10
Train Batch size 8
Eval Batch size 32
Optimizer AdamW
Grad Accumulation Steps 32
Eval Split Test
Reward Clip Range [-100, 100]
Dropout 0.0
Learning Rate (LR) 0.00001
Max Input Length 1024 (Xsum) / 80 (Europarl EN-NL)
Max Output Length 64 (Xsum) / 80 (Europarl EN-NL)
Evaluation Greedy

Table 4: Hyperparameter Details for experiments on
Xsum and Europarl EN-NL.

Hyperparameter Value

Training Epochs 5
Train Batch size 8
Eval Batch size 32
Optimizer AdamW
Grad Accumulation Steps 4
Eval Split Test
Reward Clip Range [-100, 100]
Dropout 0.0
Learning Rate (LR) 0.00001
Max Input Length 200
Max Output Length 300
Evaluation Greedy

Table 5: Hyperparameter Details for experiments on
GSM8K.

reasoning task, we follow Wang et al. (2024) and 1078

integrate an external calculator into the decoding 1079

process of both teacher and student models, which 1080

largely improves the models’ performance. More 1081

implementation details can be found in Section 3.2 1082

in Wang et al. (2024). 1083

D Prompts templates for LLM 1084

Evaluation 1085

1086

Table 6 and Table 7 present our prompts template 1087

for LLM evaluation on the summarization task and 1088

machine translation task, respectively.

Please evaluate the overall quality of the following summaries given the document.

Evaluation Criteria:
Overall Quality: A good summary should be both precise and concise, summarizing the most important points in the given document,
without including unimportant or irrelevant details

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for overall quality, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Overall Quality: <one-sentence comparison and explanation>
Preferred: <summary ID>

Please evaluate the informativeness of the following summaries given the document.

Evaluation Criteria:
Informativeness: Does it include the most important details while excluding irrelevant content?

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for informativenss, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: <one-sentence comparison and explanation>
Preferred: <summary ID>

Please evaluate the coherence of the following summaries given the document.

Evaluation Criteria:
Coherence: Is the summary logically structured and easy to follow?

Document: [Source]
Summary [ID1]: [Summary-A]
Summary [ID2]: [Summary-B]

FIRST, provide a one-sentence comparison of the two summaries for coherence, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: <one-sentence comparison and explanation>
Preferred: <summary ID>

Table 6: Prompt templates for LLM evaluation on the
summarization task in terms of overall quality, informa-
tiveness, and coherence. Here, “Source” is the docu-
ment to be summarized. The choices of IDs are “A” and
“B”; “Summary-A” and “Summary-B” are replaced
with model-generated texts. Since LLMs are not robust
to ID and order (Zheng et al., 2023; Shen et al., 2023),
we enumerate different combinations for a given pair,
resulting in four LLM queries.

1089

E Results on more models 1090

KD studies on seq2seq tasks have largely centred 1091

on encoder-decoder structures such as T5 (Raffel 1092

et al., 2020; Chung et al., 2024) and BART (Lewis 1093

et al., 2020) models (Wen et al., 2023; Li et al., 1094

2024; Agarwal et al., 2024; Jung et al., 2024; Wang 1095

et al., 2025). To answer reviewers’ likely question 1096

about KETCHUP’s behaviour on recent popular 1097

decoder-only architectures, we also applied it to 1098

the Qwen1.5 model series (Qwen-Team, 2024) 1099

and report the results in Table 8. 1100
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Please evaluate the overall quality of the following translations from English to Dutch.

Evaluation Criteria:
Overall Quality: A good translation should: 1) faithfully reflect the meaning of the source text; 2) avoid adding unnecessary or irrelevant
details. 3) use natural and fluent Dutch.

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for overall quality, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Overall Quality: <one-sentence comparison and explanation>
Preferred: <translation ID>

Please evaluate the informativeness of the following translations from English to Dutch.

Evaluation Criteria:
Informativeness: Does the translation preserve all key information without adding irrelevant details?

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for informativeness, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: <one-sentence comparison and explanation>
Preferred: <translation ID>

Please evaluate the coherence of the following translations from English to Dutch.

Evaluation Criteria:
Coherence: Is the translation fluent, logically structured, and easy to understand in Dutch?

Source: [Source]
Translation [ID1]: [Translation-A]
Translation [ID2]: [Translation-B]

FIRST, provide a one-sentence comparison of the two translations for coherence, explaining which you prefer and why.
SECOND, on a new line, state only the ID to indicate your choice. Your response should use the format:
Informativeness: <one-sentence comparison and explanation>
Preferred: <translation ID>

Table 7: Prompt templates for LLM evaluation on the
machine translation task in terms of overall quality, in-
formativeness, and coherence. Here, “Source” is the
source sentence to be translated. The choices of IDs are
“A” and “B”; “Translation-A” and “Translation-B” are
replaced with model-generated texts. We still enumerate
different combinations for a given pair, resulting in four
LLM queries.

Model XSum (ROUGE-1↑) Europarl (BLEU4↑) GSM8K (Acc. (%)↑)
Teacher (Qwen1.5-4B) 38.15 21.32 42.08
Student (Qwen1.5-0.5B) 8.80 0.02 0.00
KL (Hinton et al., 2015) 31.29 15.76 26.31
TVD (Wen et al., 2023) 31.18 16.22 26.99
LLMR (Li et al., 2024) 31.61 15.90 27.29
KETCHUP 32.28 16.46 28.13

Table 8: Distillation results on XSum, Europarl EN–NL,
and GSM8K using Qwen1.5 models. Higher ↑ is better.
The best K values are 2, 2, and 16 for the three datasets,
respectively.
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