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Abstract
Modern information retrieval (IR) systems con-
sists of multiple stages like retrieval and ranking,
with Transformer-based models achieving state-
of-the-art performance at each stage. In this pa-
per, we challenge the tradition of using separate
models for different stages and ask if a single
Transformer encoder can provide relevance score
needed in each stage. We present USTAD – a new
unified approach to train a single network that
can provide powerful ranking scores as a cross-
encoder (CE) model as well as factorized embed-
dings for large-scale retrieval as a dual-encoder
(DE) model. Empirically, we find a single USTAD
model to be competitive to separate ranking CE
and retrieval DE models. Furthermore, USTAD
combines well with a novel embedding matching-
based distillation, significantly improving CE to
DE distillation. It further motivates novel asym-
metric architectures for student models to ensure
a better embedding alignment between the stu-
dent and the teacher while ensuring small online
inference cost. On standard benchmarks like MS-
MARCO, we demonstrate that USTAD with our
proposed distillation method leads to asymmetric
students with only 1/10th trainable parameter but
retaining 95-97% of the teacher performance.

1. Introduction
A typical information retrieval (IR) system comprises two
stages: (1) A retriever first selects a small subset of poten-
tially relevant candidate documents (out of a large collec-
tion) for a given query; and (2) A reranker then identifies
a precise ranking among the candidates provided by the re-
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triever. Dual-encoder (DE) models are the de-facto architec-
ture for retrievers (Lee et al., 2019; Karpukhin et al., 2020a).
Such models independently embed queries and documents
into a common space via query and document encoders,
respectively, and capture their relevance by simple opera-
tions on these embeddings such as the inner product. This
enables offline creation of a document index, supporting
fast retrieval during inference via efficient maximum inner
product search implementations (Guo et al., 2020; Johnson
et al., 2021), with online query embedding generation pri-
marily dictating the inference latency. Cross-encoder (CE)
models, on the other hand, are preferred as rerankers, ow-
ing to their excellent performance (Nogueira & Cho, 2019;
Dai & Callan, 2019; Yilmaz et al., 2019). A CE model
jointly encodes a query-document pair via a single encoder
while enabling early interaction among query and document
features. Employing a CE model for retrieval is often in-
feasible, as it would require processing a given query with
every document in the collection at inference time.

A recent line of work explores late interaction models that
provide a middle ground between DE and CE models (Pang
et al., 2016; Xiong et al., 2017a; Dai et al., 2018; Hofstätter
et al., 2020; Khattab & Zaharia, 2020; Menon et al., 2022; Li
et al., 2023). These model ensure computational efficiency
by utilizing two encoders similar to DE, while allowing for
a complex interaction beyond simple inner product for better
modeling of the true query-document relevance.

The presence of multiple models with different functional-
ities and quality-cost operating points increases the com-
plexity of developing and maintaining such IR pipelines.
Interestingly, all of these models increasingly rely on Trans-
formers (Vaswani et al., 2017) to design the underlying
encoders. Given that Transformers provide an extremely
powerful architecture (Yun et al., 2020; Menon et al., 2022)
that has the ability to produce high-quality individual rep-
resentations for query and document features in isolation
as well as joint query-document representations from query
and document features together, it’s natural to ask:

Can we train a unified Transformer encoder that can
simultaneously enable CE, DE, and late interaction models
when combined with different suitable scoring functions?
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Figure 1. Left: USTAD model architecture (Sec.4). USTAD can provide diverse query-document relevance scores as well as their
individual representation by varying the input to the unified model. Right: From USTAD or any DE model, we can employ embedding
matching-based distillation (Sec. 5) along with traditional score-based distillation. Additionally, student can be configured as asymmetric
DE that inherits a large (non-trainable) document encoder from USTAD/DE teacher combined with a small (trainable) query encoder.

In this paper, we affirmatively answer this question by pre-
senting USTAD – a unified single-model training achieving
diverse scores. USTAD greatly simplifies the training and
maintenance of the overall IR pipeline. It enables joint
training of CE, DE, and late interaction models that share a
common Transformer encoder without compromising the
performance compared to separately trained models.

However, state-of-the-art performance is only achieved by
very large encoders (Ni et al., 2022; Neelakantan et al.,
2022), which can be prohibitive for many application. Tradi-
tionally, knowledge distillation (Bucilǎ et al., 2006; Hinton
et al., 2015) serves as a general strategy to train high-quality
models with small inference cost by leveraging models with
larger encoders as teacher models. In the IR literature, most
existing distillation methods only focus on matching the
teacher’s query-document relevance score for a give query-
document pair (see, e.g., Lu et al., 2020; Hofstätter et al.,
2020; Chen et al., 2021; Ren et al., 2021; Santhanam et al.,
2021; Izacard & Grave, 2021). In this paper, we show
that along with score-matching, teacher-student embedding
alignment can further reduce the generalization gap between
the teacher and the student. Traditional CE models are un-
able to provide such embeddings for the alignment during
distillation; USTAD, in contrast, offers these embeddings,
making it a more effective teacher in IR settings.

Our key contributions are as follows:
• We propose USTAD – a novel method to train a uni-

fied model to simultaneously realize CE, DE, and late
interaction components of an IR pipeline via a single
Transformer encoder (Sec. 4).
• We show that USTAD can act as a better teacher for

distillation by going beyond standard score-matching
employed with vanilla CE teacher models. It can further
enable a novel high-performing student DE model with
asymmetric configuration where the student model in-
herits the frozen document encoder from the teacher and
only trains a small query encoder (Sec. 5).

• We provide a comprehensive empirical evaluation of
both USTAD and EmbedDistill (Sec. 6) on two standard
IR benchmarks – Natural Questions (Kwiatkowski et al.,
2019a) and MSMARCO (Nguyen et al., 2016). We
also evaluate EmbedDistill on BEIR benchmark (Thakur
et al., 2021) which is used to measure the zero-shot
performance of an IR model.

2. Related Work
Here, we compare our approach to previous efforts aimed
at simplifying and unifying IR stacks. We also discuss our
contribution in the context of IR distillation as well as distil-
lation with representation alignments in non-IR settings.

Towards the unification of IR models. Due to the com-
plex nature of the IR stack, prior work has attempt to inte-
grate the training of heterogeneously functioning CE and
DE models. One attempt is to train CE and DE models
iteratively in multi-staged fashion (Qu et al., 2021; Zhang
et al., 2022). Because each stage can leverage improved
selection of candidate documents for reranking or retrieving,
the multi-staged training provided substantial improvement
in the quality of the models albeit with a higher compu-
tational cost. On the other side, Ren et al. (2021); Lee
et al. (2022) pose joint training objective of retrieval and
reranking models, or additionally with other models depend-
ing on reranking models (e.g., answer extraction model).
These joint training approaches encourage the cooperation
of these models (albeit they are still different models), and
hence improve the overall quality. USTAD takes a differ-
ent approach since the joint training objectives are posed
on one single unified model instead of separate models.
Yadav et al. (2022) instead take a post-hoc approach, fac-
torizing representations of the reranking model to extract
partial representations that can be used for the retrieval task.
Lastly, with the advent of large-language models (LLMs),
instruction-tuned models (Asai et al., 2023; Su et al., 2022)
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can function as a retriever or a reranker, but they are usually
prohibitively expensive to deploy at scale.

Distillation for IR. Traditional distillation techniques have
been widely applied in the IR literature, often to distill a
teacher CE model to a student DE model (Reimers et al.,
2019; Li et al., 2020; Chen et al., 2021). Recently, dis-
tillation from a DE model (with complex late interaction)
to another DE model (with inner-product scoring) has also
been considered (Lin et al., 2021; Hofstätter et al., 2021). As
for distilling across different model architectures, Lu et al.
(2020); Izacard & Grave (2021) consider distillation from a
teacher CE model to a student DE model. Hofstätter et al.
(2020) conduct an extensive study of knowledge distillation
across a wide-range of model architectures. Most exist-
ing distillation schemes for IR rely on only teacher scores;
by contrast, we propose a geometric approach that also
utilizes the teacher embeddings. Many recent efforts (Qu
et al., 2021; Ren et al., 2021; Santhanam et al., 2021) show
that iterative multi-stage (self-)distillation improves upon
single-stage distillation (Qu et al., 2021; Ren et al., 2021;
Santhanam et al., 2021). These approaches use a model
from the previous stage to obtain labels (Santhanam et al.,
2021) as well as mine harder-negatives (Xiong et al., 2021).
We only focus on the single-stage distillation in this paper.

Distillation with representation alignments. Outside of
the IR context, a few prior works proposed to utilize align-
ment between hidden layers during distillation (Romero
et al., 2014; Sanh et al., 2019; Jiao et al., 2020; Aguilar
et al., 2020; Zhang & Ma, 2020). Chen et al. (2022) utilize
the representation alignment to re-use teacher’s classifica-
tion layer for image classification. Unlike these works, our
work is grounded in a rigorous theoretical understanding
of the teacher-student (generalization) gap for IR models
(cf. Sec. 5). Furthermore, our work differs from these as
it needs to address multiple challenges presented by an IR
setting: 1) cross-architecture distillation such as USTAD to
DE distillation; 2) partial representation alignment of query
or document representations as opposed to aligning for the
entire input, i.e., a query-documents pair; and 3) catering
representation alignment approach to novel IR setups such
as asymmetric DE configuration. To the best of our knowl-
edge, our work is first in the IR literature that goes beyond
simply matching scores (or its proxies) for distillation.

3. Background
Let Q and D denote the query and document spaces, re-
spectively. An IR model is equivalent to a scorer s :
Q × D → R, i.e., it assigns a (relevance) score s(q, d)
for a query-document pair (q, d) ∈ Q × D. Ideally, we
want to learn a scorer such that s(q, d) > s(q, d′) iff the
document d is more relevant to the query q than docu-
ment d′. We assume access to n labeled training examples

Sn = {(qi,di,yi)}i∈[n]. Here, di = (di,1, . . . , di,L) ∈
DL, ∀i ∈ [n], denotes a list of L documents and yi =
(yi,1, . . . , yi,L) ∈ {0, 1}L denotes the corresponding labels
such that yi,j = 1 iff the document di,j is relevant to the
query qi. Given Sn, we learn an IR model by minimizing

R(s; Sn) :=
1

n

∑
i∈[n]

`
(
sqi,di

,yi
)
, (1)

where sqi,di
:= (s(qi, d1,i), . . . , s(qi, d1,L)) and

`
(
sqi,di ,yi

)
denotes the loss s incurs on (qi,di,yi).

Due to space constraint, we defer concrete choices for the
loss function ` to Appendix A.

While this learning framework is general enough to work
with any IR models, next, we formally introduce three fam-
ilies of Transformer-based IR models that are prevalent in
the recent literature.

3.1. Transformer-based IR models

Let query q = (q1, . . . , qm1) and document d =
(d1, . . . , dm2) consist of m1 and m2 tokens, respectively.
We now discuss how Transformers-based CE, DE, and late
interaction models process the (q, d) pair.

Cross-encoder model. Let p = [q; d] be the sequence ob-
tained by concatenating q and d. Further, let p̃ be the se-
quence obtained by adding special tokens such [CLS] and
[SEP] to p. Given an encoder-only Transformer model
Enc, the relevance score for the (q, d) pair is

s(q, d) = 〈w,pool
(
Enc(p̃)

)
〉 = 〈w, embq,d〉, (2)

wherew is a d-dimensional classification vector, and pool(·)
denotes a pooling operation that transforms the contextual-
ized token embeddings Enc(p̃) to a joint embedding vector
embq,d. [CLS]-pooling is a common operation that simply
outputs the embedding of the [CLS] token as embq,d.

Dual-encoder model. Let q̃ and d̃ be the sequences ob-
tained by adding appropriate special tokens to q and
d, respectively. A DE model comprises two (encoder-
only) Transformers EncQ and EncD, which we call
query and document encoders, respectively.1 Let embq
= pool

(
EncQ(q̃)

)
and embd = pool

(
EncD(d̃)

)
denote the

query and document embeddings, respectively. Now, one
can define s(q, d) = 〈embq, embd〉 to be the relevance score
assigned to the (q, d) pair by the DE model.

Late-interaction model. Similar to DE models, such mod-
els also embed queries and documents separately; however,
they do not use pooling operations, but instead a non-linear
scoring function f to enable relatively complex interac-
tion between query and document token embeddings, i.e.

1It is common to employ dual-encoder models where query
and document encoders are shared.
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s(q, d) = f
(
EncQ(q̃),EncD(d̃)

)
. This non-linearity al-

lows to achieve better accuracy than DE, with multiple
variants proposed in the literature: ColBERT (Khattab &
Zaharia, 2020) uses sum of max interaction, MatchPyra-
mid (Pang et al., 2016) applies a convolutional network,
KNRM (Xiong et al., 2017b) performs kernel-based pool-
ing; and ConvKNRM (Dai et al., 2018) further uses a con-
volutional network on top of learned token embeddings to
produce contextual embeddings.

3.2. Score-based distillation for IR models

Most distillation schemes for IR (e.g., Lu et al., 2020;
Hofstätter et al., 2020; Chen et al., 2021) rely on teacher
relevance scores. Given a training set Sn and a teacher with
scorer st, one learns a student with scorer ss by minimizing

R(ss, st; Sn) =
1

n

∑
i∈[n]

`d
(
ss
q,di

, st
q,di

)
, (3)

where `d captures the discrepancy between ss and st. See
Appendix A for common choices for `d.

4. USTAD Architecture
Recall that the main focus of this paper is to an end-to-end
IR pipeline by designing a unified single Transformer-based
model that can simultaneously enable the functioning of
different IR models discussed in Sec. 3.1. Towards this, uni-
fying DE and late interaction models appears to be a manage-
able goal since both models rely on invoking Transformer
encoders twice to generate query and document represen-
tations, respectively. On the other hand, requiring a single
encoder to act as both CE and DE (or late-interaction) model
seems a hopeless task at first thought. Standard CE models
jointly encode query-document pairs, making it challenging
to extract individual query and document embeddings.

More precisely, since the score of a standard CE model takes
the form s(q, d) = 〈w, embt

q,d〉, during training, the joint
embeddings embt

q,d for relevant and irrelevant (q, d) pairs
are encouraged to be aligned with w and −w, respectively.
As a result, embq,d produced by the CE-model does not
encode global semantic information useful for similarity
search. This further leads a standard CE model to produce
degenerate query or document embeddings when asked to
act as a query or document encoder. In fact, we notice that
even the final query and document token representations
lack any semantic structure (see Appendix F.2 for details).

We show that this aforementioned shortcoming of standard
CE models can be easily addressed by carefully crafting the
input to the Transformer encoder and introducing a different
loss term for each functionality we want to cultivate in our
unified model. In particular, we obtain CE (reranker), DE
(retiever), and late-interaction score with the help of a single
Transformer encoder Enc as follows:

• Reranker mode: We feed the transformer encoder a con-
catenation of query and document tokens and obtain a
sequence of token embedding vectors hqd of the same
length. The final score is computed by first generating
query and document embeddings by separately pooling
the final token embeddings at query and document token
positions at input, respectively, and then employing an
inner-product (as illustrated in Fig. 1a):

hqd = Enc([q1, ..., qm1 , d1, ..., dm2 ])

embq = pool(h1
qd, ..., h

m1

qd ])

embd = pool(hm1+1
qd , ..., hm1+m2

qd ])

sCE(q, d) = 〈embq, embd〉

(4)

We refer to the above process of generating separate query
and document embeddings in CE mode as dual-pooling.

• Retriever mode: We independently feed the query and
document tokens to the same transformer encoder Enc.
The final DE score is obtained by simple inner product
between the corresponding pooled representations.

hq = Enc([q1, ..., qm1 , 0, ..., 0])

embq = pool(h1
q, ..., h

m1
q ])

hd = Enc([0, ..., 0, d1, ..., dm2 ])

embd = pool(hm1+1
d , ..., hm1+m2

d ])

sDE(q, d) = 〈embq, embd〉

(5)

• Late interaction mode: Similar to the retriever mode,
Enc independently operates on query and document to-
kens in this mode. Subsequently, the final score is ob-
tained by a more complex interaction function f operating
directly on the encoder-produced token embeddings.

hq = Enc([q1, ..., qm1 , 0, ..., 0])

hd = Enc([0, ..., 0, d1, ..., dm2 ])

sLI(q, d) = f(hq, hd)

(6)

In the work, we focus on the following interaction func-
tion introduce in ColBERT (Khattab & Zaharia, 2020):

sLI(q, d) =

m1∑
i=1

max
1≤j≤m2

〈hiq, h
j
d〉 (7)

Training We jointly train various modes of the trans-
former encoder on a training data Sn while also aligning
the scores produced in different modes via score-matching
among the modes. For example, assuming that we are train-
ing USTAD to enable CE and DE modes, the overall training
objective takes the form:

L = R(sCE; Sn) +R(sDE; Sn) + λ‖sCE − sDE‖, (8)

whereR is defined as in Eq. (1). We can naturally extend the
above objective to include the loss and the score-matching
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Objective MRR@10

CE ColBERT DE CE Colbert DE

X 40.22 13.09 01.84
X 01.54 39.46 03.94

X 03.39 32.73 37.37
X X 40.11 39.60 14.40
X X 39.86 33.25 37.44

X X 03.57 38.99 37.31
X X X 40.02 39.06 37.27

Table 1. Ablation of USTAD model for combination of training
objectives on MSMARCO dev set.

terms for late interaction modes as well. Above can be easily
generalized to handle all three modes. The losses above can
be coupled with common techniques to train IR models like
hard negative mining (Qu et al., 2021). Furthermore, instead
of one-hot data, we can also distill from a teacher model
by replace R from Eq. (3). In fact, the score-matching in
Eq. (8) can be viewed as performing self-distillation from
the stronger (say CE) mode to the weaker (say DE) mode.

Empirically, we find USTAD can learn the diverse scores
using a single model. As illustrated in Table 3-5, USTAD
matches performance of IR stack (retriever+reranker) with
>2x more parameters on NQ benchmark. Additionally, we
present ablations on combinations of various scoring modes
on MSMARCO benchmark in Table 1.

5. Improved Distillation via USTAD

High performing IR models are often utilized as teacher to
train lightweight models for applications with strict latency
requirements. Traditionally, teacher provides supervision in
terms of query-document relevance score only, but in this
section we show the benefit of having access to individual
embeddings for query and document from the teacher model.
In order to show this benefit, we begin by theoretically ana-
lyzing the teacher-student generalization gap when teacher
provides such embeddings. Subsequently, informed by our
analysis, we identify two novel ways to improve the student
model’s performance by leveraging a USTAD model.

5.1. Teacher-student generalization gap in IR models

Let R(s) = E
[
`
(
sq,d,y

)]
be the population version of

the empirical risk in Eq. (1), which measures the test time
performance of the IR model defined by the scorer s. Thus,
R(ss)−R(st) denotes the teacher-student generalization
gap. In the following result, we bound this quantity (see
Appendix B.1 for a formal statement and proof).

Theorem 5.1 (Teacher-student generalization gap (infor-
mal)). Let F and G denote the function classes for the query
and document encoders for the student model, respectively.
Suppose both the score-based distillation loss `d in Eq. (3)

and one-hot (label-dependent) loss ` in Eq. (1) is based on
binary cross entropy loss (Eq. (17) and (15) in Appendix A
respectively). Further, assume that all encoders have the
same output dimension and embeddings have their `2-norm
bounded by K. Then, we have

R(ss)−R(st) (9)

≤ R̂(st, Sn) + ∆(st; Sn) +K2
(
E
[∣∣σ(st

q,d)− y
∣∣]

+ En(F,G) + 2KREmb,Q(t, s; Sn) + 2KREmb,D(t, s; Sn)

where we define R̂(st, Sn) := 1/n
∑
i∈[n]

∣∣∣σ(st
qi,di

)− yi
∣∣∣,

En(F,G) := supss∈F×G
∣∣R(ss, st; Sn) − E`d

(
ss
q,d, s

t
q,d

)∣∣;
σ denotes the sigmoid function; and ∆(st; Sn) denotes the
deviation between the empirical risk (on Sn) and popu-
lation risk of the teacher st. Here, REmb,Q(t, s; Sn) and
REmb,D(t, s; Sn) measure misalignment between teacher
and student embeddings by focusing on queries and docu-
ments, respectively (cf. Eq. (10) & (11) below).

The first three quantities in the bound in Thm. 5.1, namely
R̂(st, Sn), ∆(st; Sn), and E[|σ(st

q,d) − y|], are indepen-
dent of the student model. These terms solely depend on
the quality of the teacher model st. That said, the teacher-
student gap can be made small by reducing the following
three terms: 1) uniform deviation of the student’s empirical
distillation risk from its population version En(F,G); 2)
misalignment between teacher student query embeddings
REmb,Q(t, s; Sn); and 3) misalignment between teacher stu-
dent document embeddings REmb,D(t, s; Sn).

5.2. Two proposed solutions

Embedding matching during distillation. The last two
terms in the RHS of Eq. (9) motivate us to propose an em-
bedding matching-based distillation, namely EmbedDistill,
that explicitly aims to minimize these terms during stu-
dent training: Given a (q, d) pair, let embt

q and embt
d be the

query and document embeddings produced by the query en-
coder Enct

Q and document encoder Enct
D of the teacher DE

model, respectively.2 Similarly, let embs
q and embs

d denote
the query and document embeddings produced by a student
DE model with (Encs

Q,Encs
D) as its query and document

encoders. Now, EmbedDistill optimizes the following em-
bedding alignment losses in addition to the score-matching
loss from Sec. 3.2 to align query and document embeddings
of the teacher and student:

REmb,Q(t, s; Sn) =
1

n

∑
q∈Sn

‖embt
q − proj

(
embs

q

)
‖ (10)

REmb,D(t, s; Sn) =
1

n

∑
d∈Sn

‖embt
d − proj

(
embs

d

)
‖ (11)

2It possible to have a single encoder, i.e., EnctQ = EnctD .
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where proj is a projection layer to match student and teacher
embedding dimensions. To further help align the em-
beddings spaces of the teacher and student, we propose
to generate similar queries or documents that can natu-
rally help enforce such an alignment globally on the task-
specific manifold: Given a set of unlabeled (generated)
task-specific query and document pairs Um, we can further
add the embedding matching losses REmb,Q(t, s;Um) or
REmb,D(t, s;Um) to our training objective. Please refer to
Appendix C for details about task-specific data generation.

Asymmetric DE student. To reduce the En(F,G) term,
we also propose a novel student DE configuration where
the student employs the teacher’s document encoder (i.e.,
Encs

D = Enct
D) and only train its query encoder, which

is much smaller compared to the teacher’s query encoder.
This not only reduces trainable parameters in the student
model, which leads to reduction in En(F,G) as formalized
below, but also immediately makes the REmb,D(t, s; Sn)
term go to 0. For such a setting, it is natural to only employ
the embedding matching loss in Eq. (10) as the document
embeddings are aligned by design (cf. Fig. 1b).
Proposition 5.2. Let `d be a distillation loss which is L`d-
Lipschitz in its first argument. Let F and G denote the
function classes for the query and document encoders, re-
spectively. Further assume that, for each query and docu-
ment encoder in our function class, the query and document
embeddings have their `2-norm bounded by K. Then,

En(F,G) ≤ ESn

48KL`d√
n

∫ ∞
0

√
log
(
N(u,F)N(u,G)

)
du.

(12)
Furthermore, with a fixed document encoder, i.e., G = {g∗},

En(F, {g∗}) ≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) du.

(13)
Here, N(u, ·) is the u-covering number of a function class.

Note that Eq. (12) and Eq. (13) correspond to uniform de-
viation when we train without and with a frozen document
encoder, respectively. It is clear that the bound in Eq. (13) is
less than or equal to that in Eq. (12) (because N(u,G) ≥ 1
for any u), which alludes to desirable impact of employing
a frozen document encoder.

Note that this asymmetric student DE does not incur an
increase in latency despite the use of a large teacher docu-
ment encoder. This is because the large document encoder
from USTAD is only needed to create a good quality docu-
ment index offline, and only the query encoder is evaluated
at inference time. Also, the similarity search cost is not
increased as the projection layer ensures the same small em-
bedding dimension as in the symmetric DE student. Thus,
backed by theoretical reasoning as well as empirical result,
we prescribe the asymmetric DE configuration universally.

6. Experiments
We already showcased the efficacy of USTAD framework
for producing a unified IR model in Sec. 4. Here, besides
providing additional details regarding the empirical results
in Sec. 4, we demonstrate the utility EmbedDistill (cf. Sec. 5)
in isolation as well as in tandem with USTAD. We also
showcase the benefits of combining our distillation approach
with query generation methods.

6.1. Setup

Benchmarks and evaluation metrics. We consider
two popular IR benchmarks — Natural Questions
(NQ) (Kwiatkowski et al., 2019b) and MSMARCO (Nguyen
et al., 2016), which focus on finding the most relevant pas-
sage/document given a question and a search query, respec-
tively. NQ provides both standard test and dev sets, whereas
MSMARCO provides only the dev set that are widely used
for common benchmarks. In what follows, we use the terms
query (document) and question (passages) interchangeably.

For NQ, we use the strict recall as well as the relaxed recall
metric (Karpukhin et al., 2020a) to evaluate both reranking
and retrieval performance. For the reranking, we utilize
the top 100 candidates retrieved from AR2-g (Zhang et al.,
2022), one of the state-of-the-art (SOTA) models, and also
utilize them to construct the reranking training set.

For MSMARCO, we focus on the standard metrics Mean
Reciprocal Rank (MRR)@10, and normalized Discounted
Cumulative Gain (nDCG)@10 to evaluate both reranking
and retrieval performance. For reranking evaluations, we
restrict to reranking only the top 1000 candidate document
provided as part of the dataset to be fair, while some works
use stronger methods to find better top 1000 candidates for
reranking (resulting in higher evaluation numbers).

See Appendix D for details on these evaluation metrics.

Model architectures. USTAD model is based on the pre-
trained BERT-base model (Devlin et al., 2019) (12-layer,
768 dim, 110M parameters) and additionally trained for 20k
steps with the USTAD training objectives in Eq. (8). We
utilized various sizes of DE models as students, based on
DistilBERT (Sanh et al., 2019) (6-layer, 768 dim, 67.5M
parameters – ∼ 2/3 of BERT-base) or BERT-mini (Turc
et al., 2019) (4-layer, 256 dim, 11.3M parameters – ∼ 1/10
of BERT-base).

For query generation (Appendix C), we employ BART-
base (Lewis et al., 2020), an encoder-decoder model, to
generate similar questions from each training example’s in-
put question (query). During generation, we randomly mask
10% of tokens and inject zero mean Gaussian noise with
σ = {0.1, 0.2} between the encoder and decoder. As for
other training-related hyperparameters, see Appendix E.1.
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Dataset Natural Questions (Dev) MSMARCO (Dev)

Method 67.5M 11.3M 67.5M 11.3M

R@1 R@5 R@10 R@1 R@5 R@10 MRR@10 nDCG@10 MRR@10 nDCG@10

Train student directly 39.5 66.4 74.7 34.1 59.8 68.6 27.0 32.2 23.0 29.7
+ Distill from teacher 42.4 70.4 78.1 36.4 62.3 71.5 33.2 38.7 28.6 33.6
+ Inherit doc embeddings 42.8 70.3 78.7 35.4 61.6 71.3 35.4 41.0 30.2 35.6
+ Query embedding matching 43.4 71.3 79.5 37.9 64.8 73.6 36.1 41.7 31.7 37.1
+ Query generation 43.8 71.5 80.1 37.5 64.0 73.3 36.3 42.0 32.1 37.6

Train student using only
embedding matching and
inherit doc embeddings 43.3 71.3 79.7 36.8 63.8 73.3 36.9 42.6 34.7 40.4

+ Query generation 43.4 71.5 79.9 38.1 65.2 74.7 36.8 42.5 35.1 40.8

Table 2. Reranking performance of various student DE models on NQ and MSMARCO dev set, including symmetric DE model (67.5M
or 11.3M transformer as both encoders) and asymmetric DE student model (67.5M or 11.3M transformer as query encoder and document
embeddings inherited from USTAD teacher). The USTAD teacher achieves R@1 = 47.4, R@5 = 77.2, R@10 = 83.7, on NQ and
MRR@10 = 40.0, nDCG@10 = 45.8 on MSMARCO.

Method #Params R@5 R@20

GAR+-BART (Mao et al., 2021) 406M 73.5 82.2
GAR+-RIDER (Mao et al., 2021) 110M 75.2 83.2
R2-D2 (Fajcik et al., 2021) 110M 76.8 84.5
YONO (Lee et al., 2022) 220M 79.1 86.7
AR2-d (Zhang et al., 2022) 330M 81.5 -

USTAD CE mode 110M 79.9 87.3
EmbedDistill trained DistillBERT 68M 75.0 85.7
EmbedDistill trained BERT-mini 11M 70.8 84.1

Table 3. Reranking performance of our models and other contem-
porary reranking models on NQ test set. Per standard procedure,
the performance is measured by relaxed recall metric.

6.2. USTAD to DE distillation

As discussed in Sec. 4 and 5, USTAD provides two benefits:
1) simplified IR setup with a single retrieval and reranking
model; and 2) improved distillation via embedding match-
ing. Here, we focus on demonstrating the latter benefit on
NQ and MSMARCO benchmarks.

Teacher USTAD model training. For NQ, we utilize AR2-
g (Zhang et al., 2022) to collect negatives and provides
scores to form a reranking dataset similar to Fajcik et al.
(2021): Each question is associated with a single ground
truth passage provided in the original dataset and extra
99 negative candidates supplied by retrieval using AR2-g.
Given such a dataset, we trained USTAD model from BERT-
base initialization, with ListMLE loss (Xia et al., 2008) de-
fined over one positive and 19 randomly sampled negatives
from 99 candidates. For MSMARCO, we similarly col-
lected negatives and distilled from SimLM [CLS]-pooled
CE model3.

Student DE model training. We consider two kinds of

3
https://github.com/microsoft/unilm/tree/master/simlm

to USTAD model via standard score-based distillation (cf. Sec. 3.2)

configurations for the student DE model: (1) Symmetric: We
use identical question and document encoders. We evaluate
both DistilBERT and BERT-mini as encoders in the stu-
dent. (2) Asymmetric: The student simply inherits document
embeddings from the teacher USTAD model which are not
updated during the distillation. For trainable query encoder,
we use DistilBERT or BERT-mini which are smaller than
document encoder.

We evaluate student DE models on various training com-
binations (i) one-hot loss (cf. Eq. (14) in Appendix A) on
training data; (ii) standard distillation loss in (cf. Eq. (16) in
Appendix A); and (iii) embedding matching loss in Eq. (10).
We used [CLS]-pooling for all student encoders. Unlike
DPR (Karpukhin et al., 2020a) or AR2, we do not use hard
negatives from BM25 or other models, which greatly sim-
plifies our distillation procedure.

Results and discussion. To understand the impact of vari-
ous proposed configurations and losses, we train models by
sequentially adding components and evaluate their rerank-
ing performance on NQ and MSMARCO dev set as shown
in Table 2, and NQ test set as shown in Table 3.

We begin by directly training a symmetric DE from the
dataset without distillation. As expected, moving to dis-
tillation brings in considerable gains. Next, we swap the
student document encoder with non-trainable document em-
beddings from the teacher (“Inherit doc embeddings”). This
leads to considerable gain in the performance, as per our
discussion in Sec. 5.1 on significantly decreasing teacher-
student gap via inheriting teacher document embeddings.
Now we can introduce EmbedDistill with Eq. (10) for align-
ing query representations between student and teacher. This
improves performance significantly, e.g., it provides ∼1-2
points increase in recall@1, 5, 10 on NQ with students based
on DistilBERT and BERT-mini, respectively (Table 2). The
excellent performance of distillation to an asymmetric DE
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Dataset Natural Questions (Dev) MSMARCO (Dev)

Method 67.5M 11.3M 67.5M 11.3M

R@5 R@20 R@100 R@5 R@20 R@100 MRR@10 nDCG@10 MRR@10 nDCG@10

Train student directly 36.2 59.7 80.0 24.8 44.7 67.5 22.6 27.2 18.6 22.5
+ Distill from teacher 65.3 81.6 91.2 44.3 64.9 81.0 35.0 41.3 28.6 34.1
+ Inherit doc embeddings 69.9 83.9 92.3 56.3 70.9 82.5 35.7 42.2 30.3 36.2
+ Query embedding matching 72.7 86.5 93.9 61.2 75.2 85.1 37.1 43.8 35.4 41.9
+ Query generation 73.4 86.3 93.8 64.3 77.8 87.9 37.2 43.8 34.8 41.2

Train student using only
embedding matching and
inherit doc embeddings 71.4 84.9 92.6 50.2 64.6 76.8 36.6 43.3 31.4 37.6

+ Query generation 71.8 85.0 93.0 54.2 68.9 80.8 36.7 43.4 32.8 39.2

Table 4. Retrieval performance (full recall against all documents in the corpus) of various student DE models on NQ and MSMARCO
dev set, including symmetric DE model (67.5M or 11.3M transformer as both encoders) and asymmetric DE student model. Teacher
achieved R@5 = 72.3, R@20 = 86.1, and R@100 = 93.6 on NQ and MRR@10 = 37.2 and nDCG@10 = 44.2 on MSMARCO.

Method #Params R@20 R@100

DPR (Karpukhin et al., 2020a) 220M 78.4 85.4
R2D2 (Fajcik et al., 2021) 220M 80.6 86.7
ACNE (Xiong et al., 2021) 220M 81.9 87.5
RocketQA (Qu et al., 2021) 220M 82.7 88.5
DPR + PAQ (Oğuz et al., 2021) 220M 84.0 89.2
DPR + PAQ (Oğuz et al., 2021) 660M 84.7 89.2
YONO (Lee et al., 2022) 165M 85.2 90.2
AR2-g (Zhang et al., 2022) 220M 85.4 90.0

USTAD DE mode 110M 85.3 89.9
EmbedDistill trained DistilBERT 68M 85.1 89.8
EmbedDistill trained BERT-mini 11M 81.2 87.4

Table 5. Retrieval performance of the proposed method for DE
to DE distillation on NQ test set. Per standard procedure, the
performance is measured by relaxed recall metric.

model not only showcases the power of embedding align-
ment but also highlights the effectiveness of USTAD teacher
providing transferable representations.

On top of the two losses (standard distillation and embed-
ding matching), we also use REmb,Q(t, s;Q′) on additional
questions or queries generated from BART (cf. Appendix C).
This leads to additional gains in most cases. Furthermore,
query generation also proves valuable in another variant of
distillation where we eliminate the standard distillation loss
and only employ the embedding matching loss in Eq. (10)
along with inheriting teacher’s document embeddings.

In Table 3, we select the best model (based on the NQ dev
set performance) and evaluate it on NQ test set using the
standard relaxed recall metric. We find that our smaller
models (67.5M or 11.3M parameters) are competitive to
10x or 40x larger SOTA models.

6.3. DE to DE distillation

Next, to establish the value of EmbedDistill as a standalone
contribution (independent of USTAD), we explore distilling

Method #Layers nDCG@10 R@100

SentenceBERT (Reimers et al., 2019) 12 45.7 65.1
DPR (Karpukhin et al., 2020b) 12 22.5 47.7
ANCE (Xiong et al., 2021) 12 40.5 60.0
Contriever (Izacard et al., 2021) 12 46.6 67.0
Jina (Günther et al., 2023) 12 44.5 –
TAS-B (Hofstätter et al., 2021) 6 42.8 64.8
GenQ (Thakur et al., 2021) 6 42.5 64.2
(Wang & Lyu, 2023) 6 40.6 –

EmbedDistill trained DistilBERT 6 44.0 63.5

Table 6. Average BEIR performance of our 6-layer student model
trained with EmbedDistill and other competitive baselines and
their numbers of trainable parameters. Models are trained on
MSMARCO and evaluated on 14 other datasets (the average does
not include MSMARCO). – means that paper does not report the
number. The full table is at Appendix E.2.

SOTA DE models to smaller DE models via EmbedDistill.

Teacher DE models. We employ AR2 (Zhang et al., 2022)4

and SentenceBERT-v5 (Reimers et al., 2019)5 as teacher
DE models for NQ and MSMARCO, respectively. Note that
both models are based on BERT-base.

Student DE model training. Simliar to Sec. 6.2, we ex-
plore two models sizes: DistilBERT and BERT-mini and
also consider both symmetric and asymmetric setups.

Results and discussion. Similar to Sec. 6.2, we sequen-
tially add training methods one by one to understand the
impact of each method in Table 4. Compared to the initial di-
rect training, standard distillation provides substantial gains.
When we inherit the document encoder from the teacher,
followed with the EmbedDistill and query generation, we
can observe considerable gain similar to what we observed

4
https://github.com/microsoft/AR2/tree/main/AR2

5
https://huggingface.co/sentence-transformers/

msmarco-bert-base-dot-v5
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for USTAD to DE distillation in Sec. 6.2.

Finally, we take our best student models, i.e., ones trained
using with additional embedding matching loss and using
data augmentation from query generation, and evaluate on
test sets.

We compare with various prior work and note that most
prior work used considerably bigger models in terms of
parameters, with larger depth (12 or 24 layers) and width
(up to 1024 dims). For NQ, test set results are reported
in Table 5. Since MSMARCO does not have any public
test set, we instead present results for the BEIR benchmark
in Table 6. Please see Table 7 (nDCG@10) and Table 8
(Recall@100) in Appendix E.2 for the detailed results.
For both NQ and BEIR, our approach obtains competitive
student models as even with 50% fewer parameters (i.e.,
with 6 layers) our student models can attain ∼ 98-99% of
teacher’s performance. Furthermore, even with 1/10th size
of the query encoder, our proposal can achieve 95-97% of
teacher’s performance.

7. Conclusion
This work presents USTAD, a novel approach that unifies the
traditionally separate tasks of retrieval and reranking within
a single Transformer model. USTAD offers two significant
advantages: (i) a unified architecture for both retrieval and
reranking, and (ii) a highly effective distillation technique,
EmbedDistill, with asymmetric dual-encoder configuration,
achieving competitive performance with a 10x smaller query
encoder.

For future work, we plan to extend USTAD to incorporate
late interaction scoring (e.g. ColBERT (Khattab & Zaharia,
2020)), which could further enhance its capabilities and
versatility in information retrieval tasks. This direction has
been partially evaluated in Section 4. Additionally, we
aim to explore the integration of this unified formulation
in decoder-based retrieval models such as DSI (Tay et al.,
2022).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Figure 2. Illustration of traditional score-based distillation for IR (cf. Section 3.2). Fig. 2a describes distillation from a teacher [CLS]-
pooled CE model to a student DE model. Fig. 2b depicts distillation from a teacher DE model to a student DE model. Here, both
distillation setups employ symmetric DE configurations where query and document encoders of the student model are of the same size.

A. Loss functions
Here, we state various (per-example) loss functions that most commonly define training objectives for IR models. Typically,
one hot training with original label is performed using softmax-based cross-entropy loss functions:

`
(
sq,di ,yi

)
= −

∑
j∈[L]

yi,j · log
( exp(s(qi, di,j))∑
j′∈[L]

exp(s(qi, di,j′))

)
. (14)

Alternatively, it is also common to employ a one-vs-all loss function based on binary cross-entropy loss as follows:

`
(
sq,di ,yi

)
= −

∑
j∈[L]

(
yi,j · log

( 1

1 + exp(−s(qi, di,j))

)
+ (1− yi,j) · log

( 1

1 + exp(s(qi, di,j))

))
. (15)

Note that di = {di,j}j∈[L] can be expanded to include various forms of negatives such as in-batch negatives (Karpukhin
et al., 2020b) and sampled negatives (Bengio & Senecal, 2008).

As for distillation (cf. Fig. 2), one can define a distillation objective based on the softmax-based cross-entropy loss as:6

`d
(
ss
q,di

, st
q,di

)
= −

∑
j∈[L]

(
exp(st

i,j)∑
j′∈[L] exp(st

i,j′)
· log

( exp(ss
i,j)∑

j′∈[L] exp(ss
i,j′)

))
, (16)

where st
i,j := st(qi, di,j) and ss

i,j := ss(qi, di,j) denote the teacher and student scores, respectively. On the other hand, the
distillation objective with the binary cross-entropy takes the form:

`d
(
ss
q,di

, st
q,di

)
= −

∑
j∈[L]

(
1

1 + exp(−st
i,j)
· log

( 1

1 + exp(−ss
i,j)

)
+

1

1 + exp(st
i,j)
· log

( 1

1 + exp(ss
i,j)

))
. (17)

Finally, distillation based on the meas square error (MSE) loss (aka. logit matching) employs the following loss function:

`d
(
ss
q,di

, st
q,di

)
=
∑
j∈[L]

(
st(qi, di,j)− ss(qi, di,j)

)2
. (18)

6It is common to employ temperature scaling with softmax operation. We do not explicitly show the temperature parameter for ease of
exposition.
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B. Deferred details and proofs from Section 5.1
In this section we present more precise statements and proofs of Theorem 5.1 and Proposition 5.2 (stated informally in
Section 5.1 of the main text) along with the necessary background. First, for the ease of exposition, we define new notation
which will facilitate theoretical analysis in this section.

Notation. Denote the query and document encoders as f : Q → Rk and g : D → Rk for the student, and F : Q →
Rk, G : D→ Rk for the teacher (in the dual-encoder setting). With q denoting a query and d denoting a document, f(q)
and g(d) then denote query and document embeddings, respectively, generated by the student. We define F (q) and G(d)
similarly for embeddings by the teacher.7

Theorem B.1 (Formal statement of Theorem 5.1). Let F and G denote the function classes for the query and document
encoders for the student model, respectively. Given n examples Sn = {(qi, di, yi)}i∈[n] ⊂ Q×D× {0, 1}, let ss(q, d) :=

sf,g(qi, di) = f(qi)
T g(di) be the scores assigned to the (qi, di) pair by a dual-encoder model with f ∈ F and g ∈ G as

query and document encoders, respectively. Let ` and `d be the binary cross-entropy loss (cf. Eq. (15) with L = 1) and the
distillation-specific loss based on it (cf. Eq. (17) with L = 1), respectively. In particular,

`(sF,G(qi, di), yi) := −yi log σ
(
F (qi)

>G(di)
)
− (1− yi) log

[
1− σ

(
F (qi)

>G(di)
)]

`d(sf,g(qi, di), s
F,G(qi, di)) := −σ

(
F (qi)

>G(di)
)
· log σ

(
f(qi)

>g(di)
)
−

[1− σ
(
F (qi)

>G(di)
)
] · log

[
1− σ

(
f(qi)

>g(di)
)]
,

where σ is the sigmoid function and st := sF,G denotes the teacher dual-encoder model with F and Q as its query and
document encoders, respectively. Assume that

1. All encoders f, g, F, and G have the same output dimension.

2. ∃K ∈ (0,∞) such that supq∈Qmax {‖f(q)‖2, ‖F (q)‖2} ≤ K and supd∈Dmax {‖g(d)‖2, ‖G(d)‖2} ≤ K.

Then, we have

E
[
sf,g(q, d)

]︸ ︷︷ ︸
:=R(ss)=R(sf,g)

− E
[
sF,G(q, d)

]︸ ︷︷ ︸
:=R(st)=R(sF,G)

≤ sup
(f,g)∈F×G

∣∣R(sf,g, sF,G; Sn)− E
[
`d
(
sf,g(q, d), sF,G(q, d)

)]∣∣︸ ︷︷ ︸
:=En(F,G)

+ 2K
( 1

n

∑
i∈[n]

‖g(di)−G(di)‖2︸ ︷︷ ︸
:=REmb,D(t,s;Sn)

+
1

n

∑
i∈[n]

‖f(qi)− F (qi)‖2
)

︸ ︷︷ ︸
:=REmb,Q(t,s;Sn)

+R(sF,G; Sn)−R(sF,G)︸ ︷︷ ︸
:=∆(st;Sn)

+K2
(
E
[∣∣σ(F (q)>G(d))− y

∣∣]+
1

n

∑
i∈[n]

∣∣σ (F (qi)
>G(di)

)
− yi

∣∣ ). (19)

Proof. Note that

R(sf,g)−R(sF,G) = R(sf,g)−R(sf,g, sF,G) +R(sf,g, sF,G)−R(sF,G)

(a)

≤ K2E
[∣∣σ(F (q)>G(d))− y

∣∣]+R(sf,g, sF,G)−R(sF,G)

= K2E
[∣∣σ(F (q)>G(d))− y

∣∣]+R(sf,g, sF,G)−R(sf,g, sF,G; Sn) +

R(sf,g, sF,G; Sn)−R(sF,G)

(b)

≤ K2E
[∣∣σ(F (q)>G(d))− y

∣∣]+ En(F,G) +R(sf,g, sF,G; Sn)−R(sF,G)

= K2E
[∣∣σ(F (q)>G(d))− y

∣∣]+ En(F,G) +R(sf,g, sF,G; Sn)−R(sF,G; Sn) +

R(sF,G; Sn)−R(sF,G)

7Note that, as per the notations in the main text, we have (f, g) = (EncsQ,Enc
s
D) and (F,G) = (EnctQ,Enc

t
D). Similarly, we have

(embtq, emb
t
d) = (f(q), g(d)) and (embtq, emb

t
d) = (F (q), G(d)).
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(c)

≤ K2E
[∣∣σ(F (q)>G(d))− y

∣∣]+ En(F,G) +R(sF,G; Sn)−R(sF,G)︸ ︷︷ ︸
:=∆(st;Sn)

+

2K

n

∑
i∈[n]

‖g(di)−G(di)‖2 +
2K

n

∑
i∈[n]

‖f(qi)− F (qi)‖2 +

K2

n

∑
i∈[n]

∣∣σ (F (qi)
>G(di)

)
− yi

∣∣ (20)

where (a) follows from Lemma B.3, (b) follows from the definition of En(F,G), and (c) follows from Proposition B.2.

B.1. Bounding the difference between student’s empirical distillation risk and teacher’s empirical risk

Lemma B.2. Given n examples Sn = {(qi, di, yi)}i∈[n] ⊂ Q ×D × {0, 1}, let sf,g(qi, di) = f(qi)
T g(di) be the scores

assigned to the (qi, di) pair by a dual-encoder model with f and g as query and document encoders, respectively. Let ` and
`d be the binary cross-entropy loss (cf. Eq. (15) with L = 1) and the distillation-specific loss based on it (cf. Eq. (17) with
L = 1), respectively. In particular,

`(sF,G(qi, di), yi) := −yi log σ
(
F (qi)

>G(di)
)
− (1− yi) log

[
1− σ

(
F (qi)

>G(di)
)]

`d(sf,g(qi, di), s
F,G(qi, di)) := −σ

(
F (qi)

>G(di)
)
· log σ

(
f(qi)

>g(di)
)
−

[1− σ
(
F (qi)

>G(di)
)
] · log

[
1− σ

(
f(qi)

>g(di)
)]
,

where σ is the sigmoid function and sF,G denotes the teacher dual-encoder model with F and Q as its query and document
encoders, respectively. Assume that

1. All encoders f, g, F, and G have the same output dimension k ≥ 1.

2. ∃K ∈ (0,∞) such that supq∈Qmax {‖f(q)‖2, ‖F (q)‖2} ≤ K and supd∈Dmax {‖g(d)‖2, ‖G(d)‖2} ≤ K.

Then, we have

1

n

∑
i∈[n]

`d
(
sf,g(qi, di), s

F,G(qi, di)
)
− 1

n

∑
i∈[n]

`
(
sF,G(qi, di), yi

)
≤

2K

n

∑
i∈[n]

‖g(di)−G(di)‖2 +
2K

n

∑
i∈[n]

‖f(qi)− F (qi)‖2 +

K2

n

∑
i∈[n]

∣∣σ (F (qi)
>G(di)

)
− yi

∣∣ . (21)

Proof. We first note that the distillation loss can be rewritten as

`d
(
sf,g(q, d), sF,G(q, d)

)
=
(
1− σ(F (q)>G(d)

)
f(q)>g(d) + γ(−f(q)>g(d)),

where γ(v) := log[1 + ev] is the softplus function. Similarly, the one-hot (label-dependent) loss can be rewritten as

`
(
sF,G(q, d), y

)
= (1− y)F (q)>G(d) + γ(−F (q)>G(d)).

Recall from our notation in Section 3 that

R(sf,g, sF,G; Sn) :=
1

n

∑
i∈[n]

`d
(
sf,g(qi, di), s

F,G(qi, di)
)
, (22)

R(sF,G; Sn) :=
1

n

∑
i∈[n]

`
(
sF,G(qi, di), yi

)
, (23)
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as the empirical risk based on the distillation loss, and the empirical risk based on the label-dependent loss, respectively.
With this notation, the quantity to upper bound can be rewritten as

R(sf,g, sF,G; Sn)−R(sF,G; Sn) = R(sf,g, , sF,G; Sn)−R(sf,G, sF,G; Sn)︸ ︷︷ ︸
:=�1

+

R(sf,G, sF,G; Sn)−R(sF,G, sF,G; Sn)︸ ︷︷ ︸
:=�2

+R(sF,G, sF,G; Sn)−R(sF,G; Sn)︸ ︷︷ ︸
:=�3

. (24)

We start by bounding �1 as

�1 =
1

n

∑
i∈[n]

(
`d
(
sf,g(qi, di), s

F,G(qi, di)
)
− `d

(
sf,G(qi, di), s

F,G(qi, di)
))

=
1

n

∑
i∈[n]

( (
1− σ(F (qi)

>G(di))
)
f(qi)

>g(di) + γ(−f(qi)
>g(di))

−
(
1− σ(F (qi)

>G(di))
)
f(qi)

>G(di)− γ(−f(qi)
>G(di))

)
=

1

n

∑
i∈[n]

(
f(qi)

>(g(di)−G(di)
) (

1− σ(F (qi)
>G(di))

)
+ γ(−f(qi)

>g(di))− γ(−f(qi)
>G(di))

)
(a)

≤ 1

n

∑
i∈[n]

(
f(qi)

>(g(di)−G(di)
) (

1− σ(F (qi)
>G(di))

)
+
∣∣f(qi)

>g(di)− f(qi)
>G(di)

∣∣ )
(b)

≤ 1

n

∑
i∈[n]

(
‖f(qi)‖‖g(di)−G(di)‖

(
1− σ(F (qi)

>G(di))
)

+ ‖f(qi)‖‖g(di)−G(di)‖
)

≤ K

n

∑
i∈[n]

‖g(di)−G(di)‖2
(
2− σ(F (qi)

>G(di))
) )

≤ 2K

n

∑
i∈[n]

‖g(di)−G(di)‖2, (25)

where at (a) we use the fact that γ is a Lipschitz continuous function with Lipschitz constant 1, and at (b) we use
Cauchy-Schwarz inequality.

Similarly for �2, we proceed as

�2 =
1

n

∑
i∈[n]

(
`d
(
sf,G(qi, di), s

F,G(qi, di)
)
− `d

(
sF,G(qi, di), s

F,G(qi, di)
))

=
1

n

∑
i∈[n]

( (
1− σ(F (qi)

>G(di))
)
f(qi)

>G(di) + γ(−f(qi)
>G(di))

−
(
1− σ(F (qi)

>G(di))
)
F (qi)

>G(di)− γ(−F (qi)
>G(di))

)
=

1

n

∑
i∈[n]

(
G(di)

>(f(qi)− F (qi))
(
1− σ(F (qi)

>G(di))
)

+ γ(−f(qi)
>G(di))− γ(−F (qi)

>G(di))
)

≤ 1

n

∑
i∈[n]

(
‖G(di)‖‖f(qi)− F (qi)‖+

∣∣f(qi)
>G(di)− F (qi)

>G(di)
∣∣ )

≤ 2K

n

∑
i∈[n]

‖f(qi)− F (qi)‖2. (26)
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�3 can be bounded as

�3 = R(sF,G, sF,G; Sn)−R(sF,G; Sn)

=
1

n

∑
i∈[n]

(
`d
(
sF,G(qi, di), s

F,G(qi, di)
)
− `
(
sF,G(qi, di), yi

))
=

1

n

∑
i∈[n]

( (
1− σ(F (qi)

>G(di))
)
F (qi)

>G(di) + γ(−F (qi)
>G(di))

− (1− yi)F (qi)
>G(di)− γ(−F (qi)

>G(di))
)

=
1

n

∑
i∈[n]

((
1− σ(F (qi)

>G(di))− (1− yi)
)
F (qi)

>G(di)
)

≤ K2

n

∑
i∈[n]

∣∣σ(F (qi)
>G(di))− yi

∣∣ . (27)

Combining Eq. 24, 25, 26, and 27 establishes the bound in Eq. 21.

Lemma B.3. Given an example (q, d, y) ∈ Q × D × {0, 1}, let sf,g(q, d) = f(q)T g(d) be the scores assigned to the
(q, d) pair by a dual-encoder model with f and g as query and document encoders, respectively. Let ` and `d be the
binary cross-entropy loss (cf. Eq. (15) with L = 1) and the distillation-specific loss based on it (cf. Eq. (17) with L = 1),
respectively. In particular,

`(sf,g(q, d), y) := −y log σ
(
f(q)>g(d)

)
− (1− y) log

[
1− σ

(
f(q)>g(d)

)]
`d(sf,g(q, d), sF,G(q, d)) := −σ

(
F (q)>G(d)

)
· log σ

(
f(q)>g(d)

)
−

[1− σ
(
F (q)>G(d)

)
] · log

[
1− σ

(
f(q)>g(d)

)]
,

where σ is the sigmoid function and sF,G denotes the teacher dual-encoder model with F and Q as its query and document
encoders, respectively. Assume that

1. All encoders f, g, F, and G have the same output dimension k ≥ 1.

2. ∃K ∈ (0,∞) such that supq∈Qmax {‖f(q)‖2, ‖F (q)‖2} ≤ K and supd∈Dmax {‖g(d)‖2, ‖G(d)‖2} ≤ K.

Then, we have

E
[
`
(
sf,g(q, d), y

)]︸ ︷︷ ︸
:=R(sf,g)

−E
[
`d
(
sf,g(q, d), sF,G(q, d)

)]︸ ︷︷ ︸
:=R(sf,g,sF,G)

≤ KQKDE
[∣∣σ(F (q)>G(d))− y

∣∣] (28)

where expectation are defined by a joint distribution P(q, d, y) over Q×D× {0, 1}

Proof. Similar to the proof of Proposition B.2, we utilize the fact that

`
(
sF,G(q, d), y

)
= (1− y)F (q)>G(d) + γ(−F (q)>G(d)),

`d
(
sf,g(q, d), sF,G(q, d)

)
=
(
1− σ(F (q)>G(d)

)
f(q)>g(d) + γ(−f(q)>g(d)),

where γ(v) := log[1 + ev] is the softplus function. Now,

E
[
`
(
sf,g(q, d), y

)
− `d

(
sf,g(q, d), sF,G(q, d)

)]
(29)

=E
[
(1− y)f(q)>g(d) + γ(−f(q)>g(d))

]
− E

[(
1− σ(F (q)>G(d))

)
f(q)>g(d) + γ(−f(q)>g(d))

]
= E

[(
1− y −

(
1− σ(F (q)>G(d))

))
F (q)>G(d)

]
≤ K2E

[∣∣σ(F (q)>G(d))− y
∣∣] , (30)

which completes the proof.
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B.2. Uniform deviation bound

Let F denote the class of functions that map queries in Q to their embeddings in Rk via the query encoder. Define G

analogously for the doc encoder, which consists of functions that map documents in D to their embeddings in Rk. To
simplify exposition, we assume that each training example consists of a single relevant or irrelevant document for each
query, i.e., L = 1 in Section 3. Let

FG = {(q, d) 7→ f(q)>g(d) | f ∈ F, g ∈ G}

Given Sn = {(qi, di, yi) : i ∈ [n]}, let N(ε,H) denote the ε-covering number of a function class H with respect to L2(Pn)
norm, where ‖h‖2L2(Pn) := ‖h‖2n := 1

n

∑n
i=1 ‖h(qi, di)‖22. Depending on the context, the functions in H may map to R or

Rd.

Proposition B.4. Let st be scorer of a teacher model and `d be a distillation loss function which is L`d -Lipschitz in its first
argument. Let the embedding functions in F and G output vectors with `2 norms at most K. Define the uniform deviation

En(F,G) = sup
f∈F,g∈G

∣∣∣∣ 1n∑i∈[n]
`d
(
f(qi)

>g(di), s
t
qi,di

)
− Eq,d`d

(
f(q)>g(d), st

q,d

)∣∣∣∣ .
For any g∗ ∈ G, we have

ESn
En(F,G) ≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) + logN(u,G) du,

ESn
En(F, {g∗}) ≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) du.

Proof of Proposition B.4. We first symmetrize excess risk to get Rademacher complexity, then bound the Rademacher
complexity with Dudley’s entropy integral.

For a training set Sn, the empirical Rademacher complexity of a class of functions H that maps Q×D to R is defined by

Radn(H) = Eσ sup
h∈H

1

n

n∑
i=1

εih(qi, di),

where {εi} denote i.i.d. Rademacher random variables taking the value in {+1,−1} with equal probability. By symmetriza-
tion (Bousquet et al., 2004) and the fact that `d is L`d -Lipschitz in its first argument, we get

ESnEn(F,G) ≤ 2L`dESnRadn(FG).

Then, Dudley’s entropy integral (see, e.g., Ledoux & Talagrand, 1991) gives

Radn(FG) ≤ 12√
n

∫ ∞
0

√
logN(u,FG) du.

From Lemma B.5 with KQ = KD = K, for any u > 0,

N(u,FG) ≤ N
( u

2K
,F
)
N
( u

2K
,G
)
.

Putting these together,

ESn
En(F,G) ≤ 24L`d√

n

∫ ∞
0

√
logN(u/2K,F) + logN(u/2K,G) du. (31)

Following the same steps with G replaced by {g∗}, we get

ESn
En(F, {g∗}) ≤ 24L`d√

n

∫ ∞
0

√
logN(u/2K,F) du (32)

By changing variable in Eq. (31) and Eq. (32), we get the stated bounds.
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For f : Q→ Rk, g : D→ Rk, define fg : Q×D→ R by fg(q, d) = f(q)>g(d).

Lemma B.5. Let f1, . . . , fN be an ε-cover of F and g1, . . . , gM be an ε-cover of G in L2(Pn) norm. Let
supf∈F supq∈Q ‖f(q)‖2 ≤ KQ and supg∈G supd∈D ‖g(d)‖2 ≤ KD. Then,

{figj | i ∈ [N ], j ∈ [M ]}

is a (KQ +KD)ε-cover of FG.

Proof of Lemma B.5. For arbitrary f ∈ F, g ∈ G, there exist f̃ ∈ {f1, . . . , fN}, g̃ ∈ {g1, . . . , gM} such that ‖f − f̃‖n ≤
ε, ‖g − g̃‖n ≤ ε. It is sufficient to show that ‖fg − f̃ g̃‖n ≤ (KQ +KD)ε. Decomposing using triangle inequality,

‖fg − f̃ g̃‖n = ‖fg − fg̃ + fg̃ − f̃ g̃‖n
≤ ‖fg − fg̃‖n + ‖fg̃ − f̃ g̃‖n. (33)

To bound the first term, using Cauchy-Schwartz inequality, we can write

1

n

n∑
i=1

(
f(qi)

>g(di)− f̃(qi)
>g̃(di)

)2

≤ sup
q∈Q
‖f(q)‖22 ·

1

n

n∑
i=1

‖(g − g̃)(di)‖22.

Therefore
‖fg − fg̃‖n ≤ KQ‖g − g̃‖n ≤ KQε.

Similarly
‖fg̃ − f̃ g̃‖n ≤ KD‖f − f̃‖n ≤ KDε

Plugging these in Eq. (33), we get
‖fg − f̃ g̃‖n ≤ (KQ +KD)ε.

This completes the proof.

20



Unified Single-model Training Achieving Diverse Scores for Information Retrieval

C. Task-specific data generation (query generation)
Data augmentation as a general technique has been previously considered in the IR literature (see, e.g., Nogueira et al., 2019;
Oğuz et al., 2021; Izacard et al., 2021), especially in data-limited, out-of-domain, or zero-shot settings. As EmbedDistill (Sec-
tion 5) aims to align the embeddings spaces of the teacher and student, the ability to generate similar queries or documents
can naturally help enforce such an alignment globally on the task-specific manifold. Given a set of unlabeled task-specific
query and document pairs Um, we can further add the embedding matching losses REmb,Q(t, s;Um) or REmb,D(t, s;Um)
to our training objective.

In other words, we introduced task-specific data generation to encourage geometric matching in local regions, which can aid
in transferring more knowledge in confusing neighborhoods. As expected, this further improves the distillation effectiveness
on top of the embedding matching in most cases.

In the case of inheriting the document encoder, we generate queries from the observed examples by adding local perturbation
in the data manifold (embedding space). Specifically, we employ an off-the-shelf encoder-decoder model – BART-
base (Lewis et al., 2020). First, we embed an observed query in the corresponding dataset. Second, we add a small
perturbation to the query embedding. Finally, we decode the perturbed embedding to generate a new query in the input
space. Formally, the generated query x′ given an original query x takes the form x′ = Dec(Enc(x) + ε), where Enc() and
Dec() correspond to the encoder and the decoder from the off-the-shelf model, respectively, and ε is an isotropic Gaussian
noise. Furthermore, we also randomly mask the original query tokens with a small probability. We generate two new queries
from an observed query and use them as additional data points during our distillation procedure.

As a comparison, we tried adding the same size of random sampled queries instead of the ones generated via the method
described above. That did not show any benefit, which justifies the use of our query/question generation method.

D. Evaluation metric details
For NQ, we evaluate models with full strict recall metric, meaning that the model is required to find a golden passage
from the whole set of candidates (21M). Specifically, for k ≥ 1, recall@k or R@k denotes the percentage of questions for
which the associated golden passage is among the k passages that receive the highest relevance scores by the model. In
addition, we also present results for relaxed recall metric considered by Karpukhin et al. (2020a), where R@k denotes the
percentage of questions where the corresponding answer string is present in at least one of the k passages with the highest
model (relevance) scores.

For both MSMARCO retrieval and re-ranking tasks, we follow the standard evaluation metrics Mean Reciprocal
Rank(MRR)@10 and normalized Discounted Cumulative Gain (nDCG)@10. For retrieval tasks, these metrics are computed
with respect to the whole set of candidates passages (8.8M). On the other hand, for re-ranking task, the metrics are computed
with respect to BM25 generated 1000 candidate passages –the originally provided– for each query. Please note that some
papers use more powerful models (e.g., DE models) to generate the top 1000 candidate passages, which is not a standard
re-ranking evaluation and should not be compared directly. We report 100 ×MRR@10 and 100 × nDCG@10, as per the
convention followed in the prior works.

E. Experimental details and additional results
E.1. Hyperparameters

Optimization. For all of our experiments, we use ADAM weight decay optimizer with a short warm up period (5000 steps)
and a linear decay schedule. We use the initial learning rate of 2.8× 10−5 for training the teacher model, 1× 10−4 for DE
student models from USTAD, and 2.8× 10−5 for DE to DE experiments. We chose batch sizes to be 128.

Loss weighting. We used 1.0 for the main scoring-based loss and tried 0.02 and 0.005 for embedding matching loss and
picked the best performing one.
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E.2. Additional results on BEIR benchmark

See Table 7 (NDCG@10) and Table 8 (Recall@100) for BEIR benchmark results. All numbers are from BEIR benchmark
paper (Thakur et al., 2021). As common practice, non-public benchmark sets8, {BioASQ, Signal-1M(RT), TREC-NEWS,
Robust04}, are removed from the table. Following the original BEIR paper (Thakur et al., 2021) (Table 9 and Appendix G
from the original paper), we utilized Capped Recall@100 for TREC-COVID dataset.

Table 7. In-domain and zero-shot retrieval performance on BEIR benchmark (Thakur et al., 2021), as measured by nDCG@10. All the
baseline number in the table are taken from (Thakur et al., 2021). We exclude (in-domain) MSMARCO from average computation as per
common practice.

Lexical Sparse Dense

Model and size (→) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ SentenceBERT
(our teacher)

EmbedDistill
(ours)

Dataset (↓) 12-layer 12-layer 12-layer 6-layer 12-layer 12-layer 6-layer

MS MARCO 22.8 29.6‡ 35.1‡ 33.8‡ 17.7 38.8‡ 40.8‡ 40.8‡ 47.1‡ 46.6‡

TREC-COVID 65.6 40.6 53.8 71.3 33.2 65.4 48.1 61.9 75.4 72.3
NFCorpus 32.5 28.3 30.1 32.8 18.9 23.7 31.9 31.9 31.0 30.7
NQ 32.9 18.8 39.8 39.9 47.4‡ 44.6 46.3 35.8 51.5 50.8
HotpotQA 60.3 50.3 49.2 58.0 39.1 45.6 58.4 53.4 58.0 56.0
FiQA-2018 23.6 19.1 19.8 29.1 11.2 29.5 30.0 30.8 31.8 29.5
ArguAna 31.5 30.9 27.9 34.9 17.5 41.5 42.9 49.3 38.5 34.9
Touché-2020 36.7 15.6 17.5 34.7 13.1 24.0 16.2 18.2 22.9 24.7
CQADupStack 29.9 26.8 25.7 32.5 15.3 29.6 31.4 34.7 33.5 30.6
Quora 78.9 69.1 63.0 80.2 24.8 85.2 83.5 83.0 84.2 81.4
DBPedia 31.3 17.7 31.4 33.1 26.3 28.1 38.4 32.8 37.7 35.9
SCIDOCS 15.8 12.4 12.6 16.2 07.7 12.2 14.9 14.3 14.8 14.4
FEVER 75.3 35.3 59.6 71.4 56.2 66.9 70.0 66.9 76.7 76.9
Climate-FEVER 21.3 06.6 08.2 20.1 14.8 19.8 22.8 17.5 23.5 22.5
SciFact 66.5 63.0 58.2 67.5 31.8 50.7 64.3 64.4 59.8 55.5

AVG (w/o MSMARCO) 43.0 31.0 35.5 44.4 25.5 40.5 42.8 42.5 45.7 44.0

Table 8. In-domain and zero-shot retrieval performance on BEIR benchmark (Thakur et al., 2021), as measured by Recall@100. All the
baseline number in the table are taken from (Thakur et al., 2021). ‡ indicates in-domain retrieval performance. ∗ indicates capped recall
following original benchmark setup. We exclude (in-domain) MSMARCO from average computation as per common practice.

Lexical Sparse Dense

Model and size (→) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ SentenceBERT
(our teacher)

EmbedDistill
(ours)

Dataset (↓) 12-layer 12-layer 12-layer 6-layer 12-layer 12-layer 6-layer

MS MARCO 65.8 75.2‡ 79.3‡ 81.9‡ 55.2 85.2‡ 88.4‡ 88.4‡ 91.7‡ 90.6‡

TREC-COVID 49.8∗ 34.7∗ 40.9∗ 54.1∗ 21.2∗ 45.7∗ 38.7∗ 45.6∗ 54.1∗ 48.8∗

NFCorpus 25.0 23.5 24.3 25.3 20.8 23.2 28.0 28.0 27.7 26.7
NQ 76.0 63.6 78.7 83.2 88.0‡ 83.6 90.3 86.2 91.1 89.9
HotpotQA 74.0 73.1 65.1 70.9 59.1 57.8 72.8 67.3 69.7 68.3
FiQA-2018 53.9 48.9 44.6 59.8 34.2 58.1 59.3 61.8 62.0 60.1
ArguAna 94.2 93.2 89.3 97.2 75.1 93.7 94.2 97.8 89.2 87.8
Touché-2020 53.8 40.6 38.1 55.7 30.1 45.8 43.1 45.1 45.3 45.5
CQADupStack 60.6 54.5 52.1 63.8 40.3 57.9 62.2 65.4 63.9 61.3
Quora 97.3 95.4 89.6 98.2 47.0 98.7 98.6 98.8 98.5 98.1
DBPedia 39.8 37.2 41.1 36.5 34.9 31.9 49.9 43.1 46.0 42.6
SCIDOCS 35.6 31.4 29.7 36.0 21.9 26.9 33.5 33.2 32.5 31.5
FEVER 93.1 73.5 84.3 91.6 84.0 90.0 93.7 92.8 93.9 93.8
Climate-FEVER 43.6 23.2 22.7 42.7 39.0 44.5 53.4 45.0 49.3 47.6
SciFact 90.8 89.3 86.3 91.4 72.7 81.6 89.1 89.3 88.9 87.2

AVG (w/o MSMARCO) 63.4 55.9 56.2 64.7 47.7 60.0 64.8 64.2 65.1 63.5

8https://github.com/beir-cellar/beir
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F. Embedding analysis
F.1. DE to DE distillation

Traditional score matching-based distillation might not result in transfer of relative geometry from teacher to student. To
assess this, we look at the discrepancy between the teacher and student query embeddings for all q, q′ pairs: ‖embt

q −
embt

q′‖− ‖embs
q − embs

q′‖. Note that the analysis is based on NQ, and we focus on the teacher and student DE models based
on BERT-base and DistilBERT, respectively. As evident from Fig. 3, embedding matching loss significantly reduces this
discrepancy.

F.2. USTAD to DE distillation

1.0 0.5 0.0 0.5 1.0
Discrepancy in distance from teacher

0
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ity

Standard
distillation
Embedding
matching

Figure 3. Histogram of teacher-student distance discrep-
ancy in queries.

We qualitatively look at embeddings from a traditional CE model
(“[CLS]-pooled”) or USTAD CE model (“Dual-pooled”) in Fig. 4.
The embedding embt

q,d from [CLS]-pooled CE model does not cap-
ture semantic similarity between query and document as it is solely
trained to classify whether the query-document pair is relevant or
not. In contrast, the query embeddings embt

q←(q,d) from our USTAD
(“Dual-pooled”) model do not degenerate and its embeddings groups
same query whether conditioned on positive or negative document
together. Furthermore, other related queries are closer than unrelated
queries. Such informative embedding space would aid distillation to
a DE model via embedding matching.

q1: macy credit card 
      phone number
q2: phone number to 
     experian credit bureau

q4: is phosphorus diatomic

q5: what is a cancer 
     doctor called 

q3: colloids chemistry 
     definition

q6: physiological disease 
     examples 

  All positive
            pairs

All negative
            pairs

[CLS]-pooled CE model

Dual pooled 
CE model

Pairwise distance matrix
Dual pooled [CLS]-pooled

Figure 4. Illustration of geometry expressed by [CLS]-pooled CE and our USTAD CE (“Dual-pooled”) on 6 queries from MSMARCO
and 12 passages based on pairwise distance matrix across these 72 pairs. [CLS]-pooled CE embeddings degenerates as all positive and
negative query-document pairs almost collapse to two points and fail to capture semantic information. In contrast, our USTAD model
leads to much richer representation that can express semantic information.

23


