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Abstract

Benchmarking causal representation learning for real-world high-dimensional set-
tings where most relevant causal variables are not directly observed remains a
challenge. Notably, one promise of causal representations is their robustness to
interventions, enabling models to generalize effectively under distribution shifts—
domain generalization. Given this connection, we ask to what extent domain
generalization performance can serve as a reliable proxy task/benchmark for causal
representation learning in such complex datasets. In this work, we provide theo-
retical evidence that one condition that identifies reliable domain generalization
tasks that are reliable proxies is when non-causal correlations with labels/outcomes
In-Distribution are reversed or have sufficiently reduced signal-to-noise ratio Out-
Of-Distribution. Additionally, we demonstrate that benchmarks with this reversal
do not have strong positive correlations between in-distribution (ID) and out-of-
distribution (OOD) accuracy, commonly called "accuracy on the line." Finally,
we characterize our derived conditions on state-of-the-art domain generalization
benchmarks to identify effective proxy tasks for causal representation learning.

1 Introduction

Many of machine learning’s successes have been driven by large-scale pattern recognition on training
data assumed to be independently and identically distributed (i.i.d.) with the testing or deployment
data. However, this i.i.d. assumption is often unrealistic, as model developers typically have limited
control over the distribution of real-world data that the model will eventually encounter. For example,
in computer vision, real-world scenarios may introduce various interventions to the data, such as
camera blurring, noise, compression artifacts, or shifts in brightness, contrast, and background [23\[7]).
These interventions can be particularly problematic when they alter spurious statistical relationships
that the model has learned to exploit as shortcuts for its predictions [[16} 25} [36].

Models that incorporate or learn structural knowledge of the domains they are applied to have been
shown to be more efficient and generalize better across different settings [44} 156, [17, [18}, 8. 16} 142}
70L168]]. An example of such a structure is the principle of independent causal mechanisms [21, |3}
24,1451 1581 1261 146/ 159], which posits that the generative process of a system’s variables consists of
autonomous components, or mechanisms, that operate independently and do not inform one another.
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This implies that the conditional distribution of each variable, given its causes (mechanisms), is
independent of the other variables and mechanisms [47]. Learning causal representations is an active
area of research [59]. Datasets for causal representation learning are primarily (semi)parametric
where (some) causal variables are known and potentially intervenable [65} |31} 132, |1, [35]]. Then,
success is assessed by how well learned disentangled representations (mechanisms) explain outcome
variance, using R? or MCC (Mathew’s Correlation Coefficient) [37]. However, the task of causal
representation learning with complex datasets with limited knowledge or control over generative
mechanisms remains a challenge, especially without requiring most (or at least some) relevant causal
variables to be directly observed [38]—we identify that benchmarking causal representation learning
in this setting is also challenging.

Causal representation learning is closely tied to domain generalization, which aims to learn represen-
tations from multiple observed domains that give predictors whose performance is invariant to new
domains (new data distributions). Many works in domain generalization [4}1551541 41,133} 139} 11} [15].
have been motivated by the principle of independent causal predictors, which aims to identify causal
predictors from observational data by searching for feature sets that maintain stable (invariant) predic-
tive accuracy across interventional distributions [46l 22| 4]. Additionally, more recent work motivates
learning causal representations from multiple datasets arising from unknown interventions [66].

Thus, one may naively consider domain generalization as a proxy task to benchmark causal rep-
resentation learning in more complex settings. This work studies when performance on a domain
generalization task is informative of the causal representation learning task. Specifically, when
benchmarking a set of models, including a disentangled causal model, when does the causal model
transfer best out-of-domain, i.e., domain generalization?

1.1 Our Contributions

* We show that models without causal representations can often achieve better transfer accu-
racy than models with causal representations.

* We give conditions to reliably benchmark causal representation learning with domain
generalization as a proxy task. These conditions motivate benchmarks with adversarial shifts
in (spurious) correlations between non-causal features and labels. We also show that these
shifts result in accuracy on the inverse line.

* Finally, we empirically analyze and categorize the utility of state-of-the-art real-world
domain generalization benchmarks for causal representation learning.

* Our findings apply to benchmarking minimax formulations of domain generalization [51]].
Additionally, we find empirically that accuracy on the line for ERM models may not imply
the same for models from state-of-the-art domain generalization algorithms.

2 Motivation

The ColoredMNIST dataset [4] illustrates the challenge of inferring causal representations from
improved domain generalization. ColoredMNIST modifies the grayscale MNIST dataset by adding
color as a spurious correlation. Digits are red or green based on binary observed labels of ‘digit > 5’
with 25% label noise. Color matches observed labels with probability p., inducing a spurious
correlation or shortcut. Each domain is defined by a different p.. Additionally, the observed labels
are noisy versions of the true labels, so the color is potentially more correlated with the observed
labels than the digit itself. More on the ColoredMNIST generative mechanism is in Appendix [B]

For example, consider a training domain where p. = P(Y = 1 | color = green) = 0.9. A color-
based predictor would achieve 90% accuracy in-domain. Under a shift where ¢. = Q(Y = 1 |
color = green) > 0.75, the color-based model will still outperform the causal model in transfer
accuracy. With this example, we aim to emphasize that for a domain generalization benchmark to be
informative about causal representation learning, the non-causal correlations from training to test
domains must change enough for the causal model to achieve the highest transfer accuracy.

To demonstrate this, we test Empirical Risk Minimizers (ERM) on a ColoredMNIST training domain
where P(Y = 1 | color = green) = 0.1, across various test domains with Q(Y = 1 | color =
green) = ¢.. We train convolutional neural networks with varying hyperparameters and evaluate
them on different test domains—more in Appendix [A] Figure [[|demonstrates that causal models need
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Figure 1: Correlations between model performance In-Distristribution vs. Out-of-Distribution on
ColoredMNIST variations. m is the slope of the line, and R is the Pearson correlation coefficient.
The axis-parallel dashed lines denote the maximum within-domain accuracy of 75%, and y = «
represents invariant performance across training and test (target) domains. Models achieving above
75% accuracy use color as a predictor. Figures|TaJand [Ib]represent shifts where color-based predictors
achieve the highest transfer accuracy—above 75% accuracy. Without domain knowledge, one might
conclude that the best ERM solution is the most domain-general and, therefore, learns causal
representations. However, Figures [Ic]and[Td|show that these models are not causal; some features
that improve ID accuracy hurt OOD performance.

not transfer the best OOD. This observation underscores this work’s key question: which ID-OOD
shifts allow us to infer causal representations from domain generalizability? We formalize and
analyze this question theoretically in the next section.

3 Theoretical Analysis

Notation. Let X denote an input feature space, and let )) denotes an output space. X is composed
of the union of subspaces Z. and Z., such that X = [Z;,Z,] € X. P represents a probability
distribution over the triple Z., Z., Y, or equivalently, the pair X,Y. The function ¢(-,-) — R
denotes a loss function, and R¢(f) defines the expected loss Ep_ [¢(Y, f(X))] w.r.t. distribution P,
for function f € F, where F : X — ). Within F, F. C F comprises functions f. defined by
fe(X) = fo([Z,0]). We denote fx € F\Fe.

Definition 1 (Reliable Domain Generalization Proxy Task for Causal Representation Learning).
Consider a domain generalization task with Pjp and Ppop on which models are trained and then
tested, respectively. Given a set of trained models F = {fx : fx € F\F.} and f* € F,

I}leaf}«“( accoop(fx) < accoop(f7), M

where accoop is the accuracy achieved on Poop and f; is a causal model.

We consider the following structural equation model widely used in the distribution shift literature [67,
50,149, 143|154

1 ~ Bern(q); C' ~ Bern(p)
fC ifp=1

Y= {ﬁC ifn=20

ZCNN(C',Uch)

Ze ~ N(Y - Mpe, AS.)

X =Z. D Ze,

(M, A) @)

where 7 is a noise term, Z, € R™, Z, € R* andY € {0,1}. We also define interventions (shift-
sources), M, A that parameterize a domain, where M € Rf*k and A > 0 € RF**. We use this
model to be consistent with the literature. While the mechanism Z. — Y is not causal, it is sufficient
for our purposes and enables convenient analysis. Specifically, we want to analyze the effect of
including features whose correlations with labels shift across domains on transfer accuracy.



Remark 1 (Partially Informative Causal Features (PICF)). Z, L Y | Z.. This property describes a
setting where spurious correlations are not redundant to causal correlations, e.g., color in ColoredM-
NIST can be used to improve accuracy than just the digit. Previous work demonstrates settings where
not having this property makes causal vs. non-causal solutions indistinguishable via transfer under
some conditions [2l], i.e., the Fully Informative Causal Features (FICF) setting.

Remark 2 (Causality and Invariance). For causal features Z., E[Y | do(Z, = z.)] = E[Y | Z. =
z¢|, where do(+) is the do-operator [43)], i.e., intervention or distribution shift. Fixing P(Z.) across
domains in Equation maintains this property and avoids additional complexity related to do(Z,.).

Definition 2 (Optimal ID Causal Predictor f¥). Definition 3 (Optimal ID Predictor f%).
£ = argmin RIP(f) 3) fx = argmin R'P(f) 4)
feFe FEF\F.

By definition, f} € F. does not use spurious features, and f% € JF uses spurious features.

Theorem 1. WLOG, let Pip = p(I, I), generated by Equation[2|and denote Poop = (M, A) as an
arbitrary target domain, parameterized by interventions M, A, where M € R¥** and A € RF*F » (

and A is symmetric. Let Eygin = {Pip} and Eiee = { Poop }- Let F be the class of linear classifiers of
the form Z. - 8. + Z, - B.. We then consider two models fx € F\F. and [ € F, Deﬁnition

< * 5
max accoon(fx) < accoon(f;) &)

if and only if

p(pe B pe) + a2 pe) " Mpse
\/(ucTEc‘luc) +p(1 = p)(PEE  pe)? + (uI S Ape) + a1 — ) (B0 pae) T Mpae)?
p(UZE:1U0)

VTS 1) +p(1 — p) (T S 1e)?
where a = pq + (1 — p)(1 — q) > 0. All variables besides M and A are fixed for a given setting.

< (6

Two conditions for Equation[I5]to hold are:

1. Spurious Correlation Reversal.
(2, )" Mpe <0 @)
2. Sufficient Decrease in Signal-to-Noise Ratio. Specifically referring to (3, 1) M pe and
(hE B Ape) + a(l = a) (B e) " Mpue)?, respectively.

The proof for Theorem I]is provided in Appendix

Remark 3. The SNR condition is more intuitive with some simplifications. Let Z. = Z, = A = I,
ltzell = 1, and p = 0.5.

fén}gi\)% accoop(fx) < accoop(fY) if and only if

Spurious Correlation Reversal: pr Mpe < 0 ®)

Sufficient decrease in signal-to-noise ratio: (uEMpe)? +2.5(u Mue) < |jpell*>  (9)

For Amax optimistically and A\, pessimistically, one needs the following for the eigenvalues of M :

1 — 2.5 nin 1 — 25 nax

If M » 0, i.e., no spurious correlation reversal, Equation does not hold if A > % for pe # 0.

1. Spurious Correlation Reversal This condition suggests that the intervention effect of M should
invert the direction of the spurious correlation, i.e., (3. ! pte, Mpe) < 0.
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Figure 2: Models are logistic regression trained/evaluated on 1000 disjoint samples. Z., Z. € R? and
are concatenated to get X. p. = p = [1, 1]. In-Distribution is defined by u(7, I'), and new domains
are defined by (M, A).

2. Sufficient decrease in signal-to-noise ratio. Alternatively, M, A should sufficiently decrease
the signal-to-noise ratio of Z.—via increased non-signal variance or change in covariance structure.

Figure[2]demonstrates the conditions in Theorem [I|empirically with simulated data of Equation 2]
Additional details on the simulation can be found in Appendi Figure 2a]illustrates the alignment
effect of M. Recall that u”v = ||ul|||v|| cos(). For (3; pe)? M p., we fix the magnitudes || M p.||
and ||X; ! p.|| to have unit norm. We then vary 6, the angle between the training ;% 4, and test M p...
We select 50 0’s split between [0, 27]. Figure 2b|shows the magnitude effect of M. We fix 6 with (i)
positive M and (ii) negative signal contribution M_. We vary M’s scaling by sampling a € [—1, 1]
where M = aM,. When M’s scaling inverts the spurious correlation, the causal model transfers
better than the non-causal model. Also, when the scaling reduces the spurious signal-to-noise ratio in
the target domain (|| M || < 1), condition 2 of Theorem|I|holds, and the causal model still outperforms
non-causal models.

3.1 Accuracy on the Inverse Line

From our discussion, suppose one includes non-causal features with an independent view of the
label, e.g., anticausal features [S8]. One would expect that the non-causal features can be used to
increase ID accuracy but at the cost of a decrease in OOD accuracy. However, [43}161] show that for
many distribution shift benchmarks, an increase in ID accuracy strongly implies an increase in OOD
accuracy, i.e., a (log)linear relationship between ID and OOD accuracy, accuracy on the line. This is
particularly true for benchmarks they refer to as natural, i.e., non-(semi)synthetic,

Our following results suggest that this observation may be a sign of benchmarks where causal
models do not outperform non-causal models in transfer accuracy, i.e., one cannot benchmark causal
representation learning with the domain generalization task. We examine this relationship below.

Definition 4 (Correlation Property [43]]; Accuracy on the Line).

’(I)_l (accpy,(f)) —c- @7 (aCCPOOD(f))’ savf (11)
where c € R, a > 0 and P is the Gaussian CDF.
Theorem 2 (Accuracy on the line). Let Pp = u(Mp, Arp) and Poop = u(Moon, MNoon)-

The correlation property, Deﬁnition holds if and only if for any arbitrary classifiers, [we, w,|,
pW?ﬂc + aWeTMlD,Ue
VOTSTw) + p(1 = p) (e we)? + (47 Ao we) + (L — a)(wF Mipi, )2

c- chTuc + aWZMooDNe <e (12)

\/(WCTZleC) +p(1 = p)(uTw.)? + (weTAOODZ;lwe) + a1 — @) (W Mooppic)?
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Figure 3: ID vs. OOD accuracy on probit scale. When M’s are arbitrary and satisfy the SNR
condition in Theorem 1} the accuracy on the line phenomenon does not occur. For Mp = I and
Moop = al, where a is allowed to vary, we observe accuracy on the line for |a| =~ 1. When a < 0,
we have the spurious correlation reversal condition and have accuracy on the inverse line.

where ¢ € R, € > 0. Proof in Appendix|C.2}

Theorem [2] builds on Theorem [T} allowing us to examine the link between accuracy on the line
and the utility of domain generalization benchmarks for causal representation learning. It shows
that accuracy on the line generally does not occur for Equation [2] or under strong distribution shifts.
Specifically, Equation [I2|holds only holds for € ~ 0 when My, ~ Mqop and Ay & Agop. In this
case, datasets with accuracy on the line would not realistically meet the conditions of Theorem [I]
Similarly, [43]] show that accuracy on the line can be achieved asymptotically w.r.t. feature size, i.e.,
m + k — oco. However, the setting where this holds also does not satisfy Theorem s conditions,
making it unsuitable for benchmarking causal representation learning—Appendix

On the other hand, if one observes accuracy on the inverse line, where WLOG sign(w® Mippie) #
sign(w®Moopte ), then the spurious correlation reversal condition from Theoremis satisfied. This
allows such a domain generalization task to be a reliable proxy benchmark for causal representation
learning. We discuss accuracy on the inverse line more in Appendix [C.2]

Finally, we extensively evaluate accuracy on the line on popular real-world domain generalization
datasets. We also evaluate accuracy on the line for state-of-the-art domain generalization algorithms
on these datasets [20, [27]]. Many state-of-the-art domain generalization datasets exhibit properties
that our results suggest would make them ineffective for benchmarking causal representation learning
under current domain generalization benchmarking practices—Table [I|and Appendix

Table 1: ID acc vs. OOD acc. We train on a set of ID distributions and test on a left-out OOD
distribution. Accuracies are probit transformed before comparison. We find that only one dataset
configuration gives accuracy on the inverse line—ColoredMNIST with Env 2 (-90) as OOD. However,
there is notable variance in the strength of correlations across datasets and their configurations.
Additional datasets and analysis are provided in Appendix

ColoredMNIST [4] Camelyon [5}127]
OOD | slope | intercept | Pearson R OOD | slope | intercept | Pearson R
EnvO | 0.55 0.11 0.40 EnvO | 0.61 0.39 0.56
Env1 | 0.92 0.02 0.98 Env1 | 047 0.35 0.78
Env2 | -0.69 -0.38 -0.59 Env2 | 042 0.60 0.46
Env3 | 043 0.81 0.63
Env4 | 0.75 -0.04 0.67
Terralncognita [27]] PACS [29]
OOD | slope | intercept | Pearson R OOD | slope | intercept | Pearson R
EnvO | 0.55 -0.64 0.69 EnvO | 0.73 -0.38 0.92
Env1 | 047 -0.73 0.62 Env1 | 0.57 -0.19 0.89
Env2 | 047 -0.45 0.79 Env2 | 1.04 0.00 0.91
Env3 | 0.23 -0.59 0.59 Env3 | 0.64 -0.41 0.88




4 Empirical Results and Discussion

Table [T)illustrates ambiguity about the ability of many distribution shift datasets to serve as proxy
benchmarks for causal representation learning. Some datasets, however, clearly do not satisfy the
criteria our results suggest, i.e., there is a strong ID-OOD accuracy correlation, e.g., PACS. We further
discuss our findings in Appendix [B|and provide an empirical evaluation of additional datasets, where
we also find that accuracy on the line for ERM models does not imply accuracy on the line for models
generated by state-of-the-art domain generalization algorithms.

Our findings also highlight potential incompatibilities of common machine learning practices with
the goal of causal representation learning—particularly, model selection and averaging bench-
marking results across dataset configurations and different datasets. Our results suggest that
model selection based on ID or held-out-domain validation accuracy may be biased towards non-
causal models with higher domain-specific accuracies. Furthermore, when averaging over multiple
datasets/configurations to evaluate domain generalization, including some datasets/configurations
that do not satisfy our conditions may result in misleading results—more in Appendix

4.1 Related Work

Previous work has studied the accuracy of the line phenomenon. Some study theoretical conditions
for the phenomenon to occur [57], and some identify real-world datasets with weak or negative linear
correlations [34, [62]]. Our work uniquely connects this phenomenon to the utility of the domain
generalization task in benchmarking causal representation learning. Additionally, we empirically
examine this property for new state-of-the-art domain generalization benchmarks.

Conditions for domain generalization benchmarks to be reliable proxies for the causal representation
learning task are largely missing in the literature, despite the close tie between these two areas
in previous work [46| 22| [4]. While using domain generalization as a proxy task is not currently
commonplace in causal representation learning, it offers one potential solution to benchmarking
challenges in high-dimensional and observational real-world data [38], 166]. This work uniquely
characterizes prescriptive conditions for identifying datasets that are appropriate proxy benchmarks
for causal representation learning. Like ImageNet [[13] for object recognition, a well-specified real-
world benchmark has the potential to yield remarkably rapid and externally valid progress [63} 53 [14]].
This work applies to the principles and practices of identifying and constructing such benchmarks.

5 Conclusion

To evaluate causal representation learning in natural datasets, it is crucial to identify metrics that
can identify models with causal representations in an arbitrary set of models. In this work, we
provide evidence that to use domain generalization as a proxy task to evaluate causal representations,
out-of-domain samples should either (i) have a reversal of spurious (non-causal) correlations or
(ii) spurious features should have a sufficient decrease in signal-to-noise ratio. Furthermore, we
identify a lack of accuracy on the line as a signature of datasets with these desired properties. Future
work includes extending our theoretical analysis beyond our assumed model of distribution shifts,
characterizing the implications of this extension on benchmarking, and curating a reliable set of
benchmarks for benchmarking causal representation learning via domain generalization. Finally,
insofar as the goals of causal representation learning and domain generalization are aligned, the
same questions and concerns about benchmarking causal representation learning equally apply to
benchmarking domain generalization directly.
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A Semi-Synthetic Experiments

1 ~ Bern(q); C ~ Bern(p)
C ifnp=1
Y =
{—C ifn=20
Ze ~ N(C : Hcvzc)
Ze ~ N(Y - My, AS,)
X=2.® Zev

(M, A) = (13)

where 7 is a noise term, Z, € R™, Z, € R¥ andY € {0, 1}. Furthermore, we define interventions
(shifts), or context variables, M, A that parameterize a domain, where M € R¥>*¥ and A = 0 € RF*F,

Parameters. We use the following parameters across our experiments: p = 0.5, ¢ =, u = [1,1],
Y. = diag([1, 1]), ne = [1, 1]. We expect our results to hold independent of these parameters. We
chose these parameters for the ease of intuition of the results on the simulated dataset. We use a
samples size of 1000 for each domain.

Accuracy on the line models. We use Logistic Regression classifiers to evaluate our accuracy on the
line results. To generate arbitrary classifiers, we randomly sample all parameters of Equation [I3]50
times, independent and identically distributed (iid), and evaluate classifiers learned from samples
generated by these random parameters on Pip and Poop.

B Real-World Datasets

We evaluated benchmarks in DomainBed, which features object recognition benchmarks for domain
generalization [20]]. We also evaluated benchmarks in Wilds, which aims to be more representative of
real-world shifts, showcasing a variety of real-world applications.

We find that in addition to the dataset sets already shown to have accuracy on the line by previous
works [43]|61]], many of the benchmarks we evaluated also exhibit a strong correlation between ID
and OOD accuracy. These findings highlight a gap in desired domain generalization datasets as proxy
benchmarks for causal representation learning.

We provide two figures for each domain generalization benchmark: (i) ERM accuracy on the line-
we evaluate the correlation between the ID and OOD accuracy of naive ERM models under the
aforementioned varying conditions. Given the multisource settings of this work, we evaluate each
training sub-ID-domain against the corresponding OOD domain. (ii) Model-specific accuracy on the
line — we evaluate a set of domain generalization algorithms, enumerated below and including ERM,
on the domain generalization task. We treat the training domains as one concatenated ID distribution
against the corresponding OOD domain. Each of these figures is also accompanied by a table of the
slope and intercept of a regression of OOD accuracy on ID accuracy and the corresponding Pearson
R, p-value, and standard error.

B.1 Discussion.

A few important points can be gleaned from our empirical analysis of naive ERM:
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1. We only observe accuracy on the inverse line for one configuration of ColoredMNIST out of
all benchmarks and their configuration.

2. For some benchmarks, e.g., Spawrious-O20-Easy, some configurations exhibit a low Pearson
R, so the ID-OOD correlation is not strong, relatively. However, for other configurations of
the same datasets, there is a high Pearson R. Thus, some configurations of a dataset may be
more reliable than others. The average over configurations of a dataset is often reported [20].
However, when only one configuration satisfies the properties for the causal model to transfer
best, averaging over these configurations also yields an ineffective benchmark.

Moreover, averages over many datasets are also often used to demonstrate superior methods
for domain generalization — this suffers from the same limitation at a grander scale [20].

In the subpopulation shift literature, where the distribution shift is w.r.t the mixture of
samples from a fixed set of groups (subpopulations), worst-group transfer accuracy is the
standard evaluation metric [27]. A similar norm for the broader domain generalization task
evaluation is beneficial.

3. A similar concern exists for the practice of cross-validation, where models are selected
based on accuracy on some held-out test set. This could be a standard IID hold-out test
set or a held-out domain as in Gulrajani and Lopez-Paz [20]. As demonstrated in this
work, selecting models based on highest accuracy on a held-out set, IID or a fixed OOD
set, may lead to selecting models that are overfit to the additionally informative spurious
correlations in the held-out set. Previous work has proposed alternative criteria for model
selection such as implied conditional independencies [54]], cross-risk minimization [48]],
early stopping [[19], and confidence-based aggregation with ensembles of models [10].

4. Benchmarks with arbitrarily selected natural datasets 61]], e.g., tumor films from different
hospitals, are not guaranteed to illuminate causal properties or robustness to interven-
tions/distribution shifts from OOD accuracy.

B.2 Architectures

Models We use the experimental setup of DomainBed for the following results [20] —
https://github.com/facebookresearch/DomainBed.

Table 2: MNIST ConvNet architecture.

# Layer

1 Conv2D (in=d, out=64)
2 ReLU

3 GroupNorm (groups=8)
4 | Conv2D (in=64, out=128, stride=2)
5 ReLU

6 GroupNorm (groups=8)
7 Conv2D (in=128, out=128)
8 ReLU

9 GroupNorm (groups=8)
10 Conv2D (in=128, out=128)
11 ReLU

12 GroupNorm (8 groups)
13 Global average-pooling

We leverage a ConvNet architecture for the ColoredMNIST dataset (Table [2); we vary hyperpa-
rameters enumerated in [20] in addition to randomly varying the number of convolutional layers
between 3 and 4. For other methods, we use the following architectures as featurizers with varying
hyperparameters and seeds: ResNet (18, 50). We also vary the number of hidden layers with ReLU
activations on top of these featurizers — we vary between 0-3 layers. We also randomly either fine-tune
ImageNet weights or train from randomly initialized weights. We also randomly select whether or
not there is data augmentation. We included models trained with different epochs as in previous
accuracy on the line work [62]].
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Like in previous work, we evaluate the accuracy of the line phenomenon in the state-of-the-art
distribution shift benchmarks. We focus on benchmarks not sufficiently characterized in previous
work [49] 43 |61 162} 34]. Like in previous work, we evaluate accuracy on the line with models
trained on naive ERM. In later sections, we will discuss our findings for models trained with other
algorithms, i.e., not naive ERM. Furthermore, unlike some previous work, we perform our analysis in
each setting of the common leave-one-domain-out configurations common in the literature [20], i.e.,
each domain/distribution is evaluated as OOD w.r.t to the other domain/distributions in the dataset as
ID - (T) evaluations where n is the number of domain/distributions in the dataset.

B.3 Domain Generalization Algorithms.

Adaptive Risk Minimization (ARM) [69]. trains models to adapt at test time using
unlabeled data from shifted domains. It directly optimizes for effective adaptation by
learning to adjust during training across multiple domains, rather than focusing on invariant
features or robustness.

Empirical Quantile Risk Minimization (EQRM) [15]. minimizes the a-quantile of risk
across domains, linking training and test domains via a shared meta-distribution to adapt to
likely shifts.

Invariant Risk Minimization (IRM) [4] aims to learn predictors that generalize across
different training environments by finding invariant representations. IRM encourages models
to learn features that have a consistent causal relationship with the target variable, regardless
of domain-specific spurious correlations. This is achieved by seeking a predictor that remains
optimal across all training environments.

Correlation Alignment (CORAL) [60] aims to minimize the discrepancy between the
feature distributions of different domains by aligning second-order statistics (covariances);
this is achieved by reducing the distance between the covariance matrices of the source and
target domains.

Empirical Risk Minimization (ERM) [64] is a foundational approach in machine learning
that focuses on minimizing the average loss (risk) over the training data. ERM assumes
that the training and test data are drawn from the same distribution, and it aims to find
a predictor that performs well by directly optimizing the empirical loss on the observed
training examples.

Maximum Mean Discrepancy (MMD) [30] aims to minimize this discrepancy, ensuring
that the feature distributions across domains are aligned, facilitating better generalization
to unseen domains. This is achieved by comparing the feature distributions of source and
target domains by mapping data points into a reproducing kernel Hilbert space (RKHS) and
calculating the distance between their means.

Causal Invariant Representation Learning (CausIRL_(CORAL/MMD)) [12] is de-
signed to improve domain generalization by combining causal invariant representation
learning with established distribution alignment techniques like CORAL and MMD. In
CausIRL, the aim is to learn representations invariant to domain-specific features (spurious
correlations) by focusing on causal mechanisms.

Group Distributionally Robust Optimization (GroupDRO) [S2]. is a method that fo-
cuses on improving robustness to distribution shifts by ensuring good performance across
all groups within the data. Instead of optimizing for average performance, GroupDRO
minimizes the worst-case loss over predefined groups. This approach assigns higher weights
to underperforming groups during training, allowing the model to improve its worst-case
accuracy and generalize better across unseen domains.

Variance Risk Extrapolation (VREX) [28]. aims to improve robustness by minimizing the
variance of risks across different training domains. Instead of just focusing on minimizing
the average loss, VREX ensures that the model’s risk is evenly distributed across domains
by reducing the variability in risk.

Information Bottleneck Invariant Risk Minimization (IB_IRM) [2]. combines the
principles of the Information Bottleneck (IB) and Invariant Risk Minimization (IRM). IB-
IRM aims to balance predictive performance and robustness by learning representations that
capture the essential, invariant causal features while ignoring spurious correlations.
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B.3.1 Discussion

We find substantial variance in the correlation between ID and OOD accuracy for models given by
state-of-the-art domain generalization algorithms.

For the ColoredMNIST configuration that has accuracy on the inverse line for ERM, we observe that
state-of-the-art domain generalization algorithms also exhibit accuracy on the inverse line. In other
configurations, some algorithms, like IRM, IB_IRM, CausIRL_CORAL, and MMD, do not give
models that have significant linear correlations ID-OOD, i.e., their p-values are far from significant.

B.4 DomainBed Results

ColoredMNIST [4]. The ColoredMNIST dataset is a variation of the MNIST dataset where the
primary goal is still to predict a binary label assigned to each image based on the digit. Whereas the
MNIST images are grayscale, the ColoredMNIST digits are colored either red or green to spuriously
correlate with the binary label. Additionally, the observed label associated with each image is a noisy
version of the true binary label, making the true label more correlated with the color than the digit.
The ColoredMNIST generative mechanism proposed by [4] is described as follows: (1) a preliminary
binary label y is assigned to each image according to the digit (digit > 5), (2) the observed label is
obtained by flipping y with probability 0.25, (3) the color of the digit is sampled by flipping y with
probability p.. For the results presented in Figure we consider p, € {0.10,0.15,0.25,0.75,0.90}
to define five distinct domains, using p. = 0.10 as the training domain and evaluating trained models
on the remaining test domains.
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Figure 4: ColoredMNIST correlations between in-distribution vs. out-of-distribution model accuracy
for different training domains.
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Table 3: ColoredMNIST ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1acc | EnvOacc | 1.24 -0.11 1.00 0.00 0.01
Env 2 acc | Env0acc | -0.88 0.95 -0.43 0.00 0.09
EnvOacc | Env1acc | 0.94 0.02 1.00 0.00 0.00
Env 2 acc | Env1acc | 091 0.03 0.96 0.00 0.01
Env 0acc | Env2acc | -1.10 0.22 -0.84 0.00 0.03
Env 1acc | Env2acc | -141 0.09 -0.74 0.00 0.06
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Figure 5: ColoredMNIST correlations between in-distribution vs. out-of-distribution model accuracy
for different domain generalization algorithms.
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Table 4: ColoredMNIST ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env O acc | 0.64 0.19 0.47 0.00 0.04
CORAL Env 0 acc | 0.55 0.09 0.40 0.00 0.05
CausIRL_CORAL | EnvOacc | -0.11 -0.55 -0.14 0.42 0.13
CausIRL_MMD Env 0 acc | -0.24 -0.00 -0.39 0.00 0.03
EQRM Env Oacc | 0.58 0.07 0.42 0.00 0.06
ERM Env 0 acc | 0.55 0.11 0.40 0.00 0.04
GroupDRO Env Oacc | 0.62 0.16 0.44 0.00 0.04
IB_IRM Env 0 acc | -0.10 -0.71 -0.14 0.30 0.09
IRM Env 0 acc | -0.03 0.05 -0.03 0.42 0.04
MMD Env 0 acc | -0.28 -0.05 -0.44 0.00 0.07
VREx Env 0 acc | -0.13 -0.44 -0.14 0.36 0.14
ARM Env 1 acc | 0.50 0.15 0.77 0.00 0.01
CORAL Env 1 acc | 0.96 0.01 0.98 0.00 0.01
CausIRL_CORAL | Env 1 acc | 0.69 0.01 0.91 0.00 0.04
CausIRL_MMD Env 1 acc | 0.95 -0.00 0.92 0.00 0.03
EQRM Env 1 acc | 0.95 0.02 0.99 0.00 0.00
ERM Env 1 acc | 0.92 0.02 0.98 0.00 0.01
GroupDRO Env 1 acc | 0.91 0.04 0.98 0.00 0.01
IB_IRM Env 1 acc | 0.17 -0.00 0.40 0.00 0.06
IRM Env 1 acc | 0.98 -0.01 0.90 0.00 0.02
MMD Env 1 acc | -0.00 -0.01 -0.00 1.00 0.00
VREx Env 1 acc | 1.23 -0.01 0.99 0.00 0.03
ARM Env 2 acc | -0.58 -0.62 -0.64 0.00 0.02
CORAL Env 2 acc | -0.68 -0.39 -0.60 0.00 0.03
CausIRL_CORAL | Env2acc | -1.11 -0.10 -0.96 0.00 0.04
CausIRL_MMD Env 2 acc | -0.79 -0.45 -0.80 0.00 0.03
EQRM Env 2 acc | -0.88 -0.23 -0.83 0.00 0.04
ERM Env 2 acc | -0.69 -0.38 -0.59 0.00 0.03
GroupDRO Env 2 acc | -0.81 0.00 -0.55 0.00 0.04
IB_IRM Env 2 acc | -1.12 -0.09 -0.96 0.00 0.06
IRM Env 2 acc | -1.20 0.01 -0.98 0.00 0.01
MMD Env 2 acc | -1.11 -0.10 -0.96 0.00 0.05
VREx Env 2 acc | -1.12 -0.09 -0.96 0.00 0.04
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Spawrious [40]. The Spawrious image classification benchmark suite consists of six different
datasets, including one-to-one (O20) spurious correlations, where a single spurious attribute corre-
lates with a binary label, and many-to-many (M2M) spurious correlations across multiple classes and
spurious attributes. Each benchmark task is proposed with three difficulty levels: Easy, Medium, and
Hard. The dataset contains images of four dog breeds ¢ € {bulldog, dachshund, labrador, corgi}
found in six backgrounds b € {beach, desert, dirt, jungle, mountain, sand}. Images are gener-
ated using text-to-image models and filtered using an image-to-text model for quality control. This
benchmark suite consists of 152,064 images of dimensions (3, 224, 224).

For the 020 task, the class (dog breed) and background combinations are sampled such that ;% of
the images per class contain a spurious background b°? and (100 — 11)% contain a generic background
b9¢. While the generic background is held constant for each class, each spurious background is
observed in only one class (Drqin (b, | ¢j) = 1ifi = jand 0 if i # j). Two separate training
domains are defined by varying the value of u. These induced spurious correlations are reverted to
yield a test domain with a single background for each class (psest (b; | ¢;) = 1).

For the M2M task, disjoint class and background groups are constructed 31, B2, C1, Ca, each with
two elements. To introduce the training domains, class-background combinations (c, b) are selected
with ¢ € C; and b € B;. Each training domain consists of a single background per class such that
DSain bk | ci) = e, with domain index e € {0, 1}, by, € B;, ¢x, € C;. In contrast, the test domain is
generated by selecting combinations from ¢ € C; and b € B; with ¢ # j and sampling backgrounds
such that pyes: (b1 | c) = Prest(b2 | cx) = 0.5 for ¢, € Cy, {b1, b2} = B;.

The difficulty level (Easy, Medium, Hard) differs due to the splits in the available class-background
combinations. These splits were empirically determined, and the full details of the final data
combinations are found in Table 2 of Lynch et al. [40].
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Figure 6: Spawrious-O20-Easy correlations between in-distribution vs. out-of-distribution model
accuracy for different training domains.
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Table 5: SpawriousO20_easy ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.50 -0.33 0.75 0.00 0.04
Env 2 acc | Env0Oacc | 0.47 -0.23 0.72 0.00 0.04
EnvOacc | Env1acc | 1.09 -0.33 0.93 0.00 0.04
Env 2 acc | Env1acc | 1.01 0.11 0.98 0.00 0.02
Env0Oacc | Env2acc | 093 -0.12 0.94 0.00 0.03
Env 1acc | Env2acc | 0.94 -0.02 0.98 0.00 0.01
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Figure 7: Spawrious-O20-Easy correlations between in-distribution vs. out-of-distribution model
accuracy for different domain generalization algorithms.
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Table 6: SpawriousO20_easy ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env O acc | 0.38 -0.08 0.57 0.00 0.03
CORAL Env 0 acc | 0.51 -0.19 0.74 0.00 0.03
CausIRL_CORAL | Env Oacc | 0.55 -0.28 0.70 0.00 0.03
CausIRL_MMD | Env0Oacc | 0.70 -0.30 0.87 0.00 0.02
EQRM Env O acc | 0.49 -0.32 0.66 0.00 0.03
ERM Env0acc | 0.48 -0.26 0.73 0.00 0.03
GroupDRO Env Oacc | 0.37 -0.06 0.49 0.00 0.04
IB_IRM Env 0 acc | 0.53 -0.38 0.89 0.00 0.02
IRM Env 0 acc | 0.62 -0.39 0.86 0.00 0.02
MMD Env 0 acc | 0.60 -0.11 0.76 0.00 0.03
VREx Env 0 acc | 0.44 -0.26 0.65 0.00 0.03
ARM Env 1 acc | 0.77 0.37 0.86 0.00 0.03
CORAL Env 1 acc | 0.92 0.19 0.93 0.00 0.02
CausIRL_CORAL | Env 1 acc | 0.93 0.15 0.92 0.00 0.02
CausIRL_MMD | Env 1acc | 0.87 0.26 0.89 0.00 0.03
EQRM Env 1 acc | 0.95 0.12 0.92 0.00 0.02
ERM Env 1 acc | 0.92 0.18 0.89 0.00 0.03
GroupDRO Env 1 acc | 0.92 0.19 0.91 0.00 0.02
IB_IRM Env 1 acc | 0.96 -0.02 0.99 0.00 0.01
IRM Env 1 acc | 0.94 -0.03 0.98 0.00 0.01
MMD Env 1 acc | 0.90 0.20 0.91 0.00 0.02
VREx Env 1 acc | 0.95 0.13 0.93 0.00 0.02
ARM Env2acc | 0.82 0.09 0.92 0.00 0.02
CORAL Env 2 acc | 0.95 -0.07 0.95 0.00 0.02
CausIRL_CORAL | Env2acc | 091 0.02 0.94 0.00 0.02
CausIRL_MMD | Env2acc | 0.87 0.08 0.94 0.00 0.02
EQRM Env 2 acc | 1.01 -0.16 0.94 0.00 0.02
ERM Env 2 acc | 0.92 -0.03 0.95 0.00 0.02
GroupDRO Env 2 acc | 0.92 -0.01 0.95 0.00 0.02
IB_IRM Env 2 acc | 0.90 -0.06 0.99 0.00 0.01
IRM Env 2 acc | 0.91 -0.07 0.99 0.00 0.01
MMD Env 2 acc | 0.90 0.02 0.95 0.00 0.02
VREx Env 2 acc | 0.91 0.02 0.95 0.00 0.02
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Figure 8: Spawrious-O20-Hard correlations between in-distribution vs. out-of-distribution model
accuracy for different training domains.

Table 7: SpawriousO20_hard ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.32 -0.23 0.49 0.00 0.05
Env 2 acc | EnvOacc | 0.32 -0.19 0.50 0.00 0.04
EnvOacc | Env1acc | 0.90 0.14 0.89 0.00 0.04
Env 2 acc | Env1acc | 1.01 0.12 0.97 0.00 0.02
Env Oacc | Env2acc | 0.92 -0.05 0.93 0.00 0.03
Env 1 acc | Env2acc | 0.92 0.01 0.97 0.00 0.02
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Figure 9: Spawrious-O20-Hard correlations between in-distribution vs. out-of-distribution model
accuracy for different domain generalization algorithms.
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Table 8: SpawriousO20_hard ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM EnvOacc | 0.22 -0.13 0.39 0.00 0.03
CORAL Env 0 acc | 0.38 -0.23 0.57 0.00 0.03
CausIRL_CORAL | EnvO0acc | 0.37 -0.22 0.62 0.00 0.03
CausIRL_MMD Env 0 acc | 0.50 -0.34 0.76 0.00 0.02
EQRM Env O acc | 0.45 -0.44 0.63 0.00 0.03
ERM Env O acc | 0.31 -0.19 0.49 0.00 0.03
GroupDRO Env 0 acc | 0.39 -0.35 0.59 0.00 0.03
IB_IRM Env 0 acc | 0.43 -0.44 0.87 0.00 0.01
IRM Env Qacc | 0.40 -0.54 0.65 0.00 0.03
MMD Env 0 acc | 0.41 -0.15 0.64 0.00 0.03
VREx Env Qacc | 0.47 -0.55 0.74 0.00 0.02
ARM Env 1 acc | 0.76 0.41 0.83 0.00 0.03
CORAL Env 1 acc | 0.93 0.19 0.91 0.00 0.02
CausIRL_CORAL | Env 1 acc | 091 0.24 0.92 0.00 0.02
CausIRL_MMD Env 1 acc | 0.85 0.30 0.87 0.00 0.03
EQRM Env 1 acc | 0.94 0.14 0.93 0.00 0.02
ERM Env 1 acc | 0.85 0.34 0.88 0.00 0.03
GroupDRO Env 1 acc | 0.94 0.19 0.92 0.00 0.02
IB_IRM Env 1 acc | 0.95 -0.00 0.98 0.00 0.01
IRM Env 1 acc | 0.99 -0.05 0.98 0.00 0.01
MMD Env 1 acc | 0.88 0.28 091 0.00 0.02
VREx Env 1 acc | 0.97 0.11 0.92 0.00 0.02
ARM Env 2 acc | 0.75 0.28 0.88 0.00 0.02
CORAL Env 2 acc | 0.90 0.03 0.95 0.00 0.02
CausIRL_CORAL | Env2acc | 091 0.00 0.95 0.00 0.02
CausIRL_MMD Env 2 acc | 0.84 0.13 0.94 0.00 0.02
EQRM Env 2 acc | 0.98 -0.09 0.94 0.00 0.02
ERM Env 2 acc | 0.91 -0.00 0.95 0.00 0.02
GroupDRO Env 2 acc | 0.88 0.08 0.91 0.00 0.02
IB_IRM Env 2 acc | 0.90 -0.06 0.99 0.00 0.01
IRM Env 2 acc | 0.89 -0.08 0.98 0.00 0.01
MMD Env 2 acc | 0.85 0.13 0.94 0.00 0.02
VREx Env2acc | 091 0.01 0.93 0.00 0.02
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Figure 10: Spawrious-M2M-Easy correlations between in-distribution vs. out-of-distribution model
accuracy for different training domains.

Table 9: SpawriousM2M_easy ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 043 -0.24 0.69 0.00 0.04
Env2acc | EnvOacc | 0.44 -0.26 0.71 0.00 0.04
EnvOacc | Env1acc | 0.76 -0.29 0.89 0.00 0.03
Env 2 acc | Env1acc | 0.68 -0.12 0.85 0.00 0.03
Env O acc | Env2acc | 0.67 -0.09 0.86 0.00 0.03
Env 1 acc | Env2acc | 0.62 0.00 0.83 0.00 0.03
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Figure 11: Spawrious-M2M-Easy correlations between in-distribution vs. out-of-distribution model
accuracy for different domain generalization algorithms.
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Table 10: SpawriousM2M_easy ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env O acc | 0.40 -0.14 0.61 0.00 0.03
CORAL Env 0 acc | 0.44 -0.14 0.72 0.00 0.02
CausIRL_CORAL | EnvOacc | 0.41 -0.07 0.69 0.00 0.02
CausIRL_MMD | EnvOacc | 0.56 -0.14 0.85 0.00 0.02
EQRM Env O acc | 0.39 -0.12 0.72 0.00 0.02
ERM Env Qacc | 0.43 -0.25 0.70 0.00 0.03
GroupDRO Env 0 acc | 0.40 -0.15 0.62 0.00 0.03
IB_IRM Env 0 acc | 0.55 -0.44 0.87 0.00 0.02
IRM Env 0 acc | 0.62 -0.46 0.88 0.00 0.02
MMD Env 0 acc | 0.58 -0.22 0.90 0.00 0.02
VREx Env 0 acc | 0.38 -0.16 0.66 0.00 0.03
ARM Env 1 acc | 0.68 -0.06 0.89 0.00 0.02
CORAL Env 1 acc | 0.74 -0.11 0.94 0.00 0.02
CausIRL_CORAL | Env 1 acc | 0.70 -0.05 0.92 0.00 0.02
CausIRL_MMD | Env 1acc | 0.78 -0.02 0.95 0.00 0.01
EQRM Env 1 acc | 0.66 -0.04 0.92 0.00 0.02
ERM Env 1 acc | 0.72 -0.20 0.87 0.00 0.02
GroupDRO Env I acc | 0.68 -0.13 0.88 0.00 0.02
IB_IRM Env 1 acc | 0.73 -0.24 0.97 0.00 0.01
IRM Env 1 acc | 0.79 -0.19 0.97 0.00 0.01
MMD Env I acc | 0.81 -0.05 0.96 0.00 0.01
VREx Env 1 acc | 0.66 -0.05 0.86 0.00 0.02
ARM Env 2 acc | 0.65 0.05 0.89 0.00 0.02
CORAL Env 2 acc | 0.67 0.01 0.90 0.00 0.02
CausIRL_CORAL | Env2acc | 0.73 -0.11 091 0.00 0.02
CausIRL_MMD | Env2acc | 0.78 -0.02 0.93 0.00 0.02
EQRM Env2acc | 0.70 -0.15 0.90 0.00 0.02
ERM Env 2 acc | 0.64 -0.04 0.84 0.00 0.02
GroupDRO Env 2 acc | 0.66 -0.10 0.82 0.00 0.03
IB_IRM Env 2 acc | 0.75 -0.25 0.97 0.00 0.01
IRM Env 2 acc | 0.75 -0.22 0.97 0.00 0.01
MMD Env 2 acc | 0.84 -0.14 0.95 0.00 0.02
VREx Env 2 acc | 0.66 -0.07 0.86 0.00 0.02
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Figure 12: Spawrious-M2M-Hard correlations between in-distribution vs. out-of-distribution model
accuracy for different training domains.

Table 11: SpawriousM2M_hard ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.16 -0.32 0.24 0.00 0.05
Env 2 acc | Env0Oacc | 0.15 -0.31 0.24 0.00 0.05
EnvOacc | Env1acc | 0.64 -0.03 0.80 0.00 0.04
Env 2 acc | Env 1acc | 0.60 -0.02 0.78 0.00 0.04
Env O acc | Env2acc | 0.65 -0.06 0.83 0.00 0.04
Env 1 acc | Env2acc | 0.65 -0.12 0.85 0.00 0.03
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Figure 13: Spawrious-M2M-Hard correlations between in-distribution vs. out-of-distribution model
accuracy for different domain generalization algorithms.
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Table 12: SpawriousM2M_hard ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env Oacc | 0.18 -0.48 0.27 0.00 0.04
CORAL Env 0 acc | 0.23 -0.37 0.43 0.00 0.03
CausIRL_CORAL | EnvOacc | 0.17 -0.19 0.26 0.00 0.04
CausIRL_MMD | EnvOacc | 0.29 -0.27 0.59 0.00 0.02
EQRM Env Oacc | 0.25 -0.39 0.46 0.00 0.03
ERM Env 0 acc | 0.16 -0.31 0.24 0.00 0.04
GroupDRO Env 0 acc | 0.21 -0.40 0.29 0.00 0.04
IB_IRM Env 0 acc | 0.22 -0.64 0.56 0.00 0.02
IRM Env 0 acc | 0.30 -0.82 0.48 0.00 0.03
MMD Env 0 acc | 0.28 -0.28 0.52 0.00 0.03
VREx Env0acc | 0.14 -0.26 0.26 0.00 0.03
ARM Env 1 acc | 0.66 -0.08 0.84 0.00 0.02
CORAL Env 1 acc | 0.69 -0.02 0.88 0.00 0.02
CausIRL_CORAL | Env 1 acc | 0.67 -0.02 0.85 0.00 0.02
CausIRL_MMD | Env 1acc | 0.78 -0.05 0.91 0.00 0.02
EQRM Env 1 acc | 0.74 -0.32 0.90 0.00 0.02
ERM Env 1 acc | 0.61 0.00 0.78 0.00 0.03
GroupDRO Env 1 acc | 0.57 0.06 0.78 0.00 0.03
IB_IRM Env 1 acc | 0.77 -0.24 0.95 0.00 0.01
IRM Env 1 acc | 0.74 -0.18 0.97 0.00 0.01
MMD Env I acc | 0.85 -0.17 0.90 0.00 0.02
VREx Env 1 acc | 0.64 -0.08 0.85 0.00 0.02
ARM Env 2 acc | 0.66 -0.04 0.82 0.00 0.03
CORAL Env 2 acc | 0.71 -0.07 0.87 0.00 0.02
CausIRL_CORAL | Env2acc | 0.66 -0.03 0.81 0.00 0.03
CausIRL_MMD | Env2acc | 0.80 -0.10 0.89 0.00 0.02
EQRM Env 2 acc | 0.66 -0.14 0.88 0.00 0.02
ERM Env 2 acc | 0.64 -0.06 0.83 0.00 0.02
GroupDRO Env 2 acc | 0.63 -0.07 0.81 0.00 0.03
IB_IRM Env 2 acc | 0.74 -0.26 0.95 0.00 0.01
IRM Env 2 acc | 0.80 -0.25 0.93 0.00 0.02
MMD Env 2 acc | 0.84 -0.15 0.90 0.00 0.02
VREx Env 2 acc | 0.64 -0.04 0.81 0.00 0.03
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PACS [29]. The PACS domain generalization benchmark consists of 9,991 images of dimensions
(3, 224, 224) and seven classes ¢ € {dog, elephant, giraf fe, guitar, horse, house, person}. This
dataset is comprised of four domains d € {art, cartoons, photos, sketches} and is evaluated in a
leave-one-domain-out fashion.
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Figure 14: PACS correlations between in-distribution vs. out-of-distribution model accuracy for
different training domains.

Table 13: PACS ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.77 -0.36 0.94 0.00 0.02
Env 2 acc | EnvOacc | 0.71 -0.47 0.95 0.00 0.01
Env 3 acc | EnvOacc | 0.82 -0.42 0.92 0.00 0.02
Env O acc | Env 1acc | 0.67 -0.19 0.95 0.00 0.01
Env2acc | Env1acc | 0.56 -0.34 0.92 0.00 0.01
Env 3 acc | Env1acc | 0.69 -0.29 0.96 0.00 0.01
EnvOacc | Env2acc | 1.11 0.05 0.94 0.00 0.02
Env 1 acc | Env2acc | 1.03 -0.06 091 0.00 0.02
Env 3 acc | Env2acc | 1.05 -0.07 0.89 0.00 0.03
Env O acc | Env3acc | 0.72 -0.37 0.91 0.00 0.02
Env 1 acc | Env3acc | 0.71 -0.48 0.93 0.00 0.01
Env 2 acc | Env3acc | 0.64 -0.57 0.90 0.00 0.02
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Figure 15: PACS correlations between in-distribution vs. out-of-distribution model accuracy for
different domain generalization algorithms.
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Table 14: PACS ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env O acc | 0.75 -0.38 0.90 0.00 0.01
CORAL Env 0 acc | 0.70 -0.30 0.90 0.00 0.01
CausIRL_CORAL | EnvOacc | 0.71 -0.32 0.92 0.00 0.01
CausIRL_MMD | EnvO0acc | 0.69 -0.31 0.96 0.00 0.01
EQRM Env Oacc | 0.73 -0.34 0.94 0.00 0.01
ERM Env 0 acc | 0.73 -0.38 0.92 0.00 0.01
GroupDRO Env Oacc | 0.70 -0.33 0.90 0.00 0.01
IB_IRM Env 0 acc | 0.61 -0.31 0.93 0.00 0.01
IRM Env 0 acc | 0.71 -0.33 0.97 0.00 0.01
MMD Env 0 acc | 0.60 -0.14 0.93 0.00 0.01
VREx Env 0 acc | 0.75 -0.43 0.96 0.00 0.01
ARM Env 1 acc | 0.60 -0.22 0.90 0.00 0.01
CORAL Env 1 acc | 0.60 -0.22 0.90 0.00 0.01
CausIRL_CORAL | Env 1 acc | 0.56 -0.15 0.86 0.00 0.02
CausIRL_MMD Env 1 acc | 0.62 -0.23 0.94 0.00 0.01
EQRM Env 1 acc | 0.61 -0.25 0.92 0.00 0.01
ERM Env 1 acc | 0.57 -0.19 0.89 0.00 0.01
GroupDRO Env 1 acc | 0.65 -0.25 0.91 0.00 0.01
IB_IRM Env 1 acc | 0.58 -0.37 0.95 0.00 0.01
IRM Env 1 acc | 0.63 -0.37 0.94 0.00 0.01
MMD Env 1 acc | 0.64 -0.26 0.95 0.00 0.01
VREx Env 1 acc | 0.62 -0.26 0.95 0.00 0.01
ARM Env 2 acc | 1.06 -0.02 0.93 0.00 0.01
CORAL Env 2 acc | 1.05 0.03 0.93 0.00 0.01
CausIRL_CORAL | Env2acc | 1.07 -0.03 0.91 0.00 0.02
CausIRL_MMD | Env2acc | 1.09 -0.09 0.97 0.00 0.01
EQRM Env2acc | 1.05 0.01 0.94 0.00 0.02
ERM Env 2 acc | 1.04 0.00 0.91 0.00 0.02
GroupDRO Env 2 acc | 1.12 -0.08 0.93 0.00 0.01
IB_IRM Env 2 acc | 1.12 -0.02 0.96 0.00 0.02
IRM Env 2 acc | 1.05 -0.01 0.95 0.00 0.01
MMD Env 2 acc | 1.09 -0.12 0.97 0.00 0.01
VREx Env 2 acc | 0.97 0.10 0.96 0.00 0.01
ARM Env 3 acc | 0.62 -0.38 0.87 0.00 0.01
CORAL Env 3 acc | 0.60 -0.35 0.89 0.00 0.01
CausIRL_CORAL | Env 3 acc | 0.66 -0.45 0.90 0.00 0.01
CausIRL_MMD | Env3acc | 091 -0.82 0.94 0.00 0.01
EQRM Env 3 acc | 0.65 -0.46 0.89 0.00 0.02
ERM Env 3 acc | 0.64 -0.41 0.88 0.00 0.01
GroupDRO Env 3 acc | 0.66 -0.42 0.88 0.00 0.01
IB_IRM Env 3 acc | 0.77 -0.83 0.85 0.00 0.02
IRM Env 3 acc | 0.74 -0.65 0.88 0.00 0.01
MMD Env3acc | 0.84 -0.72 0.93 0.00 0.01
VREx Env 3 acc | 0.66 -0.48 0.93 0.00 0.01
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B.5 WILDS Results

Terra Incognita [9}27].

The Terra Incognita dataset contains photographs of wild animals taken
by camera traps at locations d € {L100, L38, L43, L46}. This dataset contains 24,788 examples of

dimensions (3, 224, 224) and 10 classes for the image classification task.
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Figure 16: Terra Incognita correlations between in-distribution vs. out-of-distribution model accuracy
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for different training domains.

Table 15: Terralncognita ID vs. OOD properties.

ID (010))] slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.61 -0.79 0.72 0.00 0.05
Env 2 acc | EnvOacc | 0.56 -0.62 0.71 0.00 0.04
Env 3 acc | EnvOacc | 0.60 -0.61 0.71 0.00 0.05
Env 0 acc | Env1acc | 0.55 -0.99 0.61 0.00 0.06
Env 2 acc | Env1acc | 0.58 -0.74 0.75 0.00 0.04
Env 3 acc | Env 1acc | 0.65 -0.75 0.73 0.00 0.05
Env O acc | Env2acc | 0.59 -0.73 0.85 0.00 0.03
Env 1 acc | Env2acc | 0.55 -0.53 0.88 0.00 0.02
Env 3 acc | Env2acc | 0.63 -0.41 0.92 0.00 0.02
Env 0 acc | Env3acc | 0.27 -0.70 0.64 0.00 0.03
Env 1 acc | Env3acc | 0.30 -0.66 0.66 0.00 0.03
Env 2 acc | Env3acc | 0.25 -0.56 0.63 0.00 0.02
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Figure 17: Terra Incognita correlations between in-distribution vs. out-of-distribution model accuracy
for different domain generalization algorithms.

34



Table 16: Terralncognita ID vs. OOD properties.

Algorithm (010))] slope | intercept | Pearson R | p-value | standard error
ARM Env O acc | 0.68 -0.66 0.74 0.00 0.03
CORAL Env 0 acc | 0.56 -0.63 0.73 0.00 0.02
CausIRL_CORAL | EnvOacc | 0.59 -0.60 0.73 0.00 0.03
CausIRL_MMD | EnvOacc | 0.62 -0.67 0.83 0.00 0.02
EQRM Env O acc | 0.49 -0.57 0.68 0.00 0.02
ERM Env O acc | 0.55 -0.64 0.69 0.00 0.03
GroupDRO Env Oacc | 0.51 -0.53 0.67 0.00 0.03
IB_IRM Env 0 acc | 0.50 -0.69 0.63 0.00 0.03
IRM Env 0 acc | 0.48 -0.79 0.70 0.00 0.02
MMD Env 0 acc | 0.30 -0.43 0.51 0.00 0.02
VREx Env 0 acc | 0.79 -0.77 0.85 0.00 0.02
ARM Env 1 acc | 0.59 -0.93 0.62 0.00 0.03
CORAL Env 1 acc | 0.52 -0.85 0.68 0.00 0.03
CausIRL_CORAL | Env 1 acc | 0.68 -0.98 0.76 0.00 0.03
CausIRL_MMD | Env1acc | 0.63 -0.95 0.78 0.00 0.02
EQRM Env 1 acc | 0.65 -0.92 0.70 0.00 0.03
ERM Env 1 acc | 0.47 -0.73 0.62 0.00 0.03
GroupDRO Env 1 acc | 0.61 -0.89 0.70 0.00 0.03
IB_IRM Env 1 acc | 0.40 -1.27 0.42 0.00 0.04
IRM Env 1 acc | 0.53 -0.97 0.52 0.00 0.04
MMD Env 1 acc | 0.34 -0.61 0.49 0.00 0.03
VREx Env 1 acc | 0.70 -0.87 0.72 0.00 0.03
ARM Env 2 acc | 0.46 -0.47 0.79 0.00 0.02
CORAL Env 2 acc | 0.52 -0.51 0.84 0.00 0.01
CausIRL_CORAL | Env2acc | 0.44 -0.44 0.78 0.00 0.02
CausIRL_MMD | Env2acc | 0.49 -0.50 0.88 0.00 0.01
EQRM Env 2 acc | 0.51 -0.44 0.88 0.00 0.01
ERM Env 2 acc | 0.47 -0.45 0.79 0.00 0.02
GroupDRO Env 2 acc | 0.63 -0.51 0.86 0.00 0.02
IB_IRM Env 2 acc | 043 -0.65 0.75 0.00 0.02
IRM Env 2 acc | 0.56 -0.56 0.85 0.00 0.02
MMD Env 2 acc | 048 -0.48 0.87 0.00 0.01
VREx Env 2 acc | 0.69 -0.58 0.89 0.00 0.02
ARM Env 3 acc | 0.32 -0.67 0.66 0.00 0.02
CORAL Env 3 acc | 0.22 -0.59 0.69 0.00 0.01
CausIRL_CORAL | Env3acc | 0.26 -0.63 0.69 0.00 0.01
CausIRL_MMD | Env3acc | 0.17 -0.55 0.76 0.00 0.01
EQRM Env 3 acc | 0.28 -0.63 0.78 0.00 0.01
ERM Env 3 acc | 0.23 -0.59 0.59 0.00 0.01
GroupDRO Env 3 acc | 0.21 -0.58 0.56 0.00 0.01
IB_IRM Env 3 acc | 0.38 -0.72 0.69 0.00 0.02
IRM Env 3 acc | 0.40 -0.72 0.74 0.00 0.02
MMD Env 3 acc | 0.28 -0.64 0.74 0.00 0.01
VREx Env 3 acc | 0.30 -0.66 0.77 0.00 0.01
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Camyleon [5,27]. The Camelyon17-wilds dataset contains histopathological images of lymph
node tissue collected from two hospitals, denoted as Hospital A, Hospital B. This dataset contains
327,680 examples of dimensions (3, 96, 96) and 2 classes (tumor, non-tumor).
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Figure 18: Camelyon correlations between in-distribution vs.

different training domains.
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Table 17: WILDSCamelyon ID vs. OOD properties.

ID 00D slope | intercept | Pearson R | p-value | standard error
Env 1 acc | EnvOacc | 0.59 0.51 0.49 0.00 0.07
Env 2 acc | Env0Oacc | 0.78 0.06 0.64 0.00 0.06
Env 3 acc | EnvOacc | 0.73 0.14 0.58 0.00 0.06
Env 4 acc | EnvOacc | 0.61 0.37 0.61 0.00 0.05
EnvOacc | Env1acc | 0.49 0.32 0.79 0.00 0.02
Env 2 acc | Env1acc | 0.47 0.38 0.76 0.00 0.03
Env 3 acc | Env1acc | 049 0.32 0.79 0.00 0.02
Env4 acc | Env1acc | 0.46 0.35 0.76 0.00 0.02
Env O acc | Env2acc | 0.49 0.45 0.53 0.00 0.05
Env 1 acc | Env2acc | 0.39 0.72 0.37 0.00 0.06
Env 3 acc | Env2acc | 0.39 0.66 0.42 0.00 0.05
Env 4 acc | Env2acc | 0.48 0.45 0.52 0.00 0.05
Env Oacc | Env3acc | 0.62 0.41 0.77 0.00 0.03
Env 1 acc | Env 3 acc | 0.39 0.94 0.65 0.00 0.03
Env 2 acc | Env3acc | 0.49 0.69 0.64 0.00 0.04
Env 4 acc | Env 3 acc | 0.52 0.57 0.61 0.00 0.04
Env O acc | Env4acc | 0.73 -0.03 0.71 0.00 0.05
Env 1 acc | Env4 acc | 0.74 0.05 0.62 0.00 0.06
Env 2 acc | Env4acc | 0.88 -0.32 0.70 0.00 0.06
Env 3 acc | Env4 acc | 0.86 -0.30 0.74 0.00 0.05
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Figure 19: Camelyon correlations between in-distribution vs. out-of-distribution model accuracy for

different domain generalization algorithms.
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Table 18: WILDSCamelyon ID vs. OOD properties.

Algorithm OO0D slope | intercept | Pearson R | p-value | standard error
CORAL Env Qacc | 0.54 0.45 0.49 0.00 0.03
CausIRL_CORAL | Env 0 acc | 0.54 0.48 0.49 0.00 0.03
CausIRL_MMD Env 0 acc | 0.39 0.76 0.30 0.00 0.04
EQRM Env 0 acc | 0.51 0.48 0.57 0.00 0.02
ERM Env O acc | 0.61 0.39 0.56 0.00 0.03
GroupDRO Env 0 acc | 0.68 0.22 0.57 0.00 0.03
IB_IRM Env O acc | 0.86 -0.00 0.96 0.00 0.01
IRM Env 0 acc | 0.87 -0.01 0.97 0.00 0.01
MMD EnvQacc | 0.92 0.00 0.99 0.00 0.00
VREx Env 0 acc | 0.81 0.01 0.78 0.00 0.02
CORAL Env 1 acc | 0.50 0.28 0.77 0.00 0.01
CausIRL_CORAL | Env 1 acc | 0.48 0.32 0.76 0.00 0.01
CausIRL_MMD Env 1 acc | 0.35 0.62 0.58 0.00 0.02
EQRM Env 1 acc | 0.45 0.42 0.84 0.00 0.01
ERM Env 1 acc | 047 0.35 0.78 0.00 0.01
GroupDRO Env I acc | 0.43 0.46 0.70 0.00 0.01
IB_IRM Env 1 acc | 0.66 0.07 0.90 0.00 0.01
IRM Env 1 acc | 0.67 0.07 0.89 0.00 0.01
MMD Env 1 acc | 0.77 0.01 0.99 0.00 0.00
VREx Env 1 acc | 0.50 0.32 0.72 0.00 0.01
CORAL Env 2 acc | 0.45 0.57 0.50 0.00 0.02
CausIRL_CORAL | Env 2 acc | 0.46 0.53 0.56 0.00 0.02
CausIRL_MMD Env 2 acc | 0.66 0.28 0.73 0.00 0.02
EQRM Env 2 acc | 0.46 0.62 0.63 0.00 0.02
ERM Env2acc | 0.42 0.60 0.46 0.00 0.03
GroupDRO Env 2 acc | 0.57 0.38 0.65 0.00 0.02
IB_IRM Env 2 acc | 0.80 -0.03 0.95 0.00 0.01
IRM Env 2 acc | 0.77 0.02 0.93 0.00 0.01
MMD Env 2 acc | 0.84 -0.00 0.98 0.00 0.00
VREX Env 2 acc | 0.63 0.29 0.64 0.00 0.02
CORAL Env3acc | 041 0.83 0.69 0.00 0.01
CausIRL_CORAL | Env3acc | 043 0.78 0.67 0.00 0.01
CausIRL_MMD Env 3 acc | 0.50 0.65 0.65 0.00 0.02
EQRM Env 3 acc | 0.50 0.66 0.83 0.00 0.01
ERM Env 3 acc | 043 0.81 0.63 0.00 0.02
GroupDRO Env 3 acc | 042 0.79 0.63 0.00 0.02
IB_IRM Env 3 acc | 092 0.06 0.96 0.00 0.01
IRM Env 3 acc | 0.84 0.03 0.94 0.00 0.01
MMD Env 3 acc | 0.89 0.01 0.99 0.00 0.00
VREx Env 3 acc | 0.49 0.65 0.62 0.00 0.02
CORAL Env 4 acc | 0.64 0.18 0.74 0.00 0.02
CausIRL_CORAL | Env4 acc | 0.75 -0.01 0.81 0.00 0.02
CausIRL_MMD Env 4 acc | 0.67 0.01 0.94 0.00 0.01
EQRM Env 4 acc | 0.89 -0.26 0.82 0.00 0.02
ERM Env 4 acc | 0.75 -0.04 0.67 0.00 0.03
GroupDRO Env 4 acc | 0.80 -0.11 0.80 0.00 0.02
IB_IRM Env 4 acc | 0.63 -0.02 0.90 0.00 0.01
IRM Env 4 acc | 0.68 -0.00 0.92 0.00 0.01
MMD Env 4 acc | 0.63 0.00 0.94 0.00 0.01
VREXx Env 4 acc | 0.73 0.04 0.82 0.00 0.02
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C Theoretical Results

C.1 Proof of Theorem

Theorem 3. WLOG, let P = p(I, 1), generated by Equation[2|and denote Poop = p(M, A) as an
arbitrary target domain, parameterized by interventions M, A, where M € R¥*F and A € RF** = 0
and A is symmetric. Let Eygin = { Pip} and Eiee = { Poop }- Let F be the class of linear classifiers of
the form Z; - . + Z, - B,. We then consider two models fx € F\F. and f* € F, Deﬁnition

- - 14
(ax _acc()oo(fx) accoop(f) (14)

if and only if

p(pe 3 pe) + oS pe) " Mpse
VS 1)+ p(1— p) (TS 10)? + (TS Ae) + a1 — @) (S o) T M )?

< (15)

ppte B )
VTS o) +p(1— p) (uT e o)
where o = pq + (1 — p)(1 — q) > 0. All variables besides M and A are fixed for a given setting.
Two conditions for Equation[I5]to hold are:

1. Spurious Correlation Reversal.

(2 pe) " Mpe <0 (16)

2. Sufficient Decrease in Signal-to-Noise Ratio. Specifically referring to (3, i)™ M e and
(uE BT Ape) + a(l — @) (37! pe) " Mpue)?, respectively.

Proof. Let
a=pq+(1-p)(1—-q),

The distribution of Z. is:
Ze ~p - N(pie, %) + (1= p) - N(0, %)
The distribution of Z. is:
Ze~ (2pq+1—p—q) - N(Mpe, AZe) + (p + g — 2pg) - N (0, AZ)

Letw, =X Yt and w, = 37 1 . For the linear combinations, we have:

Wl Ze = (57 o) Ze

We Ze = (X7 )" Ze
The distribution of w! Z, is:

We Zo ~ N (ppg B3 e, (e B ) +p(1 = p) (e B pie)?)
The distribution of w! Z, is:
We Ze ~ N (a(S¢ o) " Mpe, (g M Apre) + a1 = a) (3¢ pe) " Mpae)?)

Combining the two linear combinations, we get:

(Egll‘C)TZc + (Eglﬂe)TZe
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The mean and variance are:

E(S: o) Ze + (55 1e) T Ze]) = p(pl S pe) + (B0 pe) " M pse

Var[(S: o) T Ze + (30 e) T Ze] = (B ) + p(1 — p) (d B5 pe)*+ (17)
(ud S Ape) + a(l — a) (S pe) "™ Mpe)*  (18)

Let
Ne=p(ulS pe),

N, = a(ze_llf"e)TMMea
De = ('S pe) + p(1 — p)(ul S pe)?
De = (ufS A pe) + (1 = ) (87 pe) " Mpe)®

The expected accuracies are:

and

N.+ N,
Y= [ ==& 19
aCCPID(fX) <\/m) ( )
To compare the accuracies, we have:
N.+ N.) < N,
VD.+D. D,
which, when written out, is:
Plpg 35 pe) + (B pe) " Mpse _

VTS 1) +p(1 — p) (TS 10)? + (TS Ape) + a1 — @) (S )T M pe)?

p(pd B pe)
VTS ) + (1~ p) (TS e)?

b

where o = pg + (1 — p)(1 — ¢q) > 0. All variables besides M and A are fixed for a given setting.

Final Conditions

1. Effective Signal Contribution.
(Se pe)" Mpe <0
or

2. Sufficient Decrease in Signal-to-Noise Ratio. Specifically referring to a(3;  pue)? My and
(WIS Ape) + a1 — a) (B pe) T M pe)?, respectively.
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C.2 Proof of Theorem2]

Theorem 4 (Accuracy on the line). Let Pip = u(Mp, Arp) and Poop = i(Moop, Moon)-
The correlation property, Deﬁnition holds if and only if for any arbitrary classifiers, [w¢, w),

‘ prTuc + QWZMIDNe
\/(WCTEC_le) +p(1 = p)(uIwe)? + WE AR twe) + a(l — a)(w] Mippc)?

T T
N pw, e + aw, Mooplie <e (20)

\/(W?Ec_lwc) +p(1 = p)(uEwe)? + (W NoonZe 'we) + a1 — ) (W] Moojie)?

where c € R, € > 0.

Proof. Define arbitrary w. and we.

Let
Ne = pw{ e @D
NP = aw! Mipp. (22)
N2 = aw! Moopte 23)
De = (w¢ ¢ twe) + p(1 = p) (e we) (24)
DY = (w¢ MYy we) + a(l — a)(wg Mippe)® (25)
DgP = (W;FAOODEe_IWe) +a(l - O‘)(WZMOODlue)Q (26)

N, + NP N, + NQ°P
el = <m> el ) =0 (W

\@1 (acC o (f)) — ¢ - @ (accrpy (fx)) | <e Vfx o

N.+ NP N, + N2°P

Do+ Db /D, + Doov

<e VYwe, We

Thus, we have

‘ chTNc + anglDlie
\/(WZZC_1WC) +p(1 = p)(pIwe)? + (Wl ApEetwe) + a1 — a)(wd Mippe )

T T AT
N PW; e + awg Moopfie <e (27)

\/(WCTEc_ch) +p(1 = p)(uTwe)? + (W AoonTe ' We) + a1 — @) (W Moopjte)?

where c € R, ¢ > 0. O

C.2.1 [43]’s model

[43] consider a binary classification problem where the label y is distributed uniformly on {—1,1}
both in the original distribution D and shifted distribution D;. Conditional on ¥y, we assume D such
that z € R? is an isotropic Gaussian, i.e.,

Ty NN(H'yaUZIdxd)y

42



where ;1 € R is the mean vector and o2 > 0 is the variance. The distribution shift is modeled as a
change in p and o, such that the shifted distribution D; corresponds to shifted parameters

pr=a-p+pB-n and o3 =7-o0,
where o, 3,7 > 0 are fixed scalars and 7 is uniformly distributed on the sphere in R<.

Theorem 5 ([43]] Theorem 1). In the setting described above where 1 is independent of 0, let
0 € (0,1). With probability at least 1 — 6, we have

q)il(aCCDl (0)) - (;(I)l(aCCD(Q))' S ’y% . \/@’

where ® is the standard normal cumulative distribution function and ® 1 is its inverse (the probit
transform), accp(0) is the accuracy on the original distribution, and accp, () is the accuracy on the

shifted distribution. The deviation from linearity is of order d='/? and vanishes in high dimensions.
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