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Abstract
Bayesian optimization is a widely used method
for optimizing expensive black-box functions,
with Expected Improvement being one of the
most commonly used acquisition functions. In
contrast, information-theoretic acquisition func-
tions aim to reduce uncertainty about the func-
tion’s optimum and are often considered fun-
damentally distinct from EI. In this work, we
challenge this prevailing perspective by intro-
ducing a unified theoretical framework, Varia-
tional Entropy Search, which reveals that EI and
information-theoretic acquisition functions are
more closely related than previously recognized.
We demonstrate that EI can be interpreted as a
variational inference approximation of the pop-
ular information-theoretic acquisition function,
named Max-value Entropy Search. Building on
this insight, we propose VES-Gamma, a novel
acquisition function that balances the strengths
of EI and MES. Extensive empirical evalua-
tions across both low- and high-dimensional syn-
thetic and real-world benchmarks demonstrate
that VES-Gamma is competitive with state-of-
the-art acquisition functions and in many cases
outperforms EI and MES.

1. Introduction
Bayesian optimization (BO) is a widely used technique
for maximizing black-box functions. Given a function
f : X → R, BO iteratively refines a probabilistic surro-
gate of f , typically a Gaussian process (GP), and selects
the next evaluation point accordingly. At each iteration, the
next sampling point is determined by maximizing an acqui-
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sition function (AF) α : X → R. An effective AF must bal-
ance the exploration-exploitation trade-off, where exploita-
tion prioritizes sampling points predicted by the surrogate
to yield high objective values, while exploration targets re-
gions with the potential to uncover even better values.

Expected Improvement (EI) (Mockus, 1998) is one of the
most widely used AFs, valued for its simple formula-
tion, computational efficiency, and strong empirical perfor-
mance. The core idea behind EI is to maximize the ex-
pected improvement over the current best observed value,
which typically requires a noise-free assumption. More re-
cently, (Villemonteix et al., 2009; Hennig & Schuler, 2012)
have introduced the concepts of information-theoretic AFs,
which represents a paradigm shift in Bayesian optimiza-
tion. Unlike EI, which focuses on directly maximizing po-
tential improvement, information-theoretic AFs aim to re-
duce uncertainty about the function f ’s optimal position
and/or value, often through entropy-based measures. Due
to their fundamentally different underlying philosophies
and selection criteria, EI and information-theoretic AFs are
widely regarded as distinct methodologies within the BO
community (Hennig et al., 2022).

Despite their apparent differences, we argue that EI and
information-theoretic AFs share deeper theoretical connec-
tions than previously recognized. Understanding this rela-
tionship is crucial, as it provides novel insights into design-
ing new acquisition functions. By unifying the perspectives
of both sides, we introduce VES-Gamma, a new AF that ef-
fectively balances their strengths, resulting in a robust AF
that adapts well to diverse optimization problems. VES-
Gamma inherits the performance of EI while incorporating
information-theoretic considerations.

In summary, we make the following key contributions:

1. We introduce the Variational Entropy Search (VES)
framework which shows that EI can be interpreted as
a special case of the popular information-theoretic ac-
quisition function Max-value Entropy Search (MES).
This unified theoretical perspective reveals that these
two types of AFs are more closely related than previ-
ously recognized.
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2. We propose VES-Gamma as an intermediary between
EI and MES, incorporating information-theoretic prin-
ciples while maintaining EI’s strength in performance.

3. We provide an extensive evaluation across a diverse
set of low- and high-dimensional synthetic, GP sam-
ples, and real-world benchmarks, demonstrating that
VES-Gamma consistently performs competitively and,
in many cases, outperforms both EI and MES.

2. Background and Related Work
2.1. Gaussian Processes

A Gaussian process is a stochastic process that models an
unknown function. It is characterized by the property that
any finite set of function evaluations follows a multivariate
Gaussian distribution. Assuming that f has a zero mean,
a Gaussian process is uniquely determined by the current
observations Dt := {(xi, yxi

)}ti=1 and the kernel func-
tion κ(x,x′). Given these, at stage t, the predicted mean
of yx at a new point x is µt(x) = κt(x)

T (Kt)
−1yt,

and the predicted covariance between points x and x′ is
Covt(x,x

′) = κ(x,x′) − κt(x)
T (Kt)

−1κt(x
′), where

[κt(x)]i = κ(xi,x), [yt]i = yxi
, and [Kt]i,j =

κ(xi,xj); see Rasmussen et al. (2006) for more details.

2.2. Acquisition Functions

Various acquisition functions (AFs) have been proposed to
balance exploration and exploitation in optimization tasks,
each tailored to different problem characteristics and as-
sumptions. These include Probability of Improvement (PI),
Expected Improvement (EI) (Mockus, 1998; Jones et al.,
1998), Upper Confidence Bound (UCB) (Srinivas et al.,
2010), Knowledge Gradient (KG) (Frazier et al., 2008), and
information-theoretic AFs (Villemonteix et al., 2009; Hen-
nig & Schuler, 2012; Hernández-Lobato et al., 2014; Wang
& Jegelka, 2017; Hvarfner et al., 2022; Tu et al., 2022). Be-
low, we discuss two types of acquisition functions relevant
to this study.

Expected Improvement. Expected Improvement (EI) is
one of the most commonly used acquisition functions and
is formulated as follows:

αEI(x) = Ep(yx|Dt)

[
max{yx, y∗t }

]
− y∗t , (1)

where y∗t is the maximum observed value in Dt, and Ep(·)
denotes the expectation with respect to the predictive den-
sity p(·). The −y∗t term at the end can be dropped since it
is constant with respect to x.

Information-Theoretic AFs. Information-theoretic AFs
form a family of methods designed to select x such

that its evaluation reduces uncertainty regarding the opti-
mal points of the objective function. This uncertainty is
quantified using differential entropy, defined as H[y] :=
Ep(y)[− log p(y)]. Similarly, the conditional entropy is ex-
pressed as H[y|x] := H[x, y]−H[x].

The first information-theoretic AF for BO is Entropy
Search (ES) (Hennig & Schuler, 2012), which is formu-
lated as:

αES(x) = H[x∗ | Dt]− Ep(yx|Dt) [H[x∗ | Dt, yx]] . (2)

Here, the random variable x∗ represents the location of the
maximum.

Predictive Entropy Search (PES) (Hernández-Lobato et al.,
2014) offers a reformulation of ES that is computationally
more efficient:

αPES(x) = H[yx | Dt]− Ep(x∗|Dt) [H[yx | Dt,x
∗]] . (3)

Since directly estimating the entropy with x∗ is expen-
sive, following the PES format, Max-value Entropy Search
(MES) (Wang & Jegelka, 2017) introduced an alternative
approach that focuses on reducing the differential entropy
of the 1D maximum value y∗:

αMES(x) = H[y∗ | Dt]− Ep(yx|Dt) [H[y∗ | Dt, yx]]

= H[yx | Dt]︸ ︷︷ ︸
closed-form

−Ep(y∗|Dt) [H[yx | Dt, y
∗]]︸ ︷︷ ︸

non-closed-form

. (4)

Unlike MES and its subsequent extensions (Hvarfner et al.,
2022; Takeno et al., 2022) which approximate p(yx |
Dt, y

∗) using a truncated Gaussian, we focus on directly
estimating p(y∗ | Dt, yx) via variational inference.

2.3. Related Work

Variational Inference and Evidence Lower Bound.
Variational Inference (VI) is a widely used technique in
Bayesian modeling to approximate intractable posterior
distributions (Paisley et al., 2012; Hoffman et al., 2013;
Kingma & Welling, 2014). It relies on maximizing the
Evidence Lower Bound (ELBO) to approximate the log-
likelihood log p(x̃) in the presence of latent variables z.
The log-likelihood can be decomposed as follows:

log p(x̃) ≥ Eq(z)

[
log

(
p(x̃ | z)p(z)

q(z)

)]
, (5)

where p(z) is a fixed prior distribution, and q(z) is a vari-
ational approximation to the true posterior p(z | x̃). The
ELBO is formally defined as:

ELBO(p(x̃ | z); q(z)) := Eq(z)

[
log

(
p(x̃ | z)p(z)

q(z)

)]
.

(6)
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Figure 1. MES aims to optimize x such that the entropy (averaged over all yx) of the maximum values p(y∗ | Dt, yx) is reduced. The
left figure illustrates a noiseless Gaussian process conditioned on the observations Dt with three points (black crosses) and a sample
yx at x = 1 drawn from p(yx | Dt) (red star). The mid and right panels illustrate the density p(y∗ | Dt, yx) (blue curves). When
p(y∗ | Dt, yx) is approximated using an exponential distribution (green dashed curve), this leads to the VES-Exp AF that is equivalent
to EI. Furthermore, VES-Gamma, which approximates p(y∗ | Dt, yx) using a Gamma distribution (red dash-dot curve), leads to a more
accurate approximation and a generalized version of EI.

By maximizing the ELBO, VI indirectly maximizes the
log-likelihood log p(x̃), thereby improving the quality of
the posterior approximation. In many applications, such
as variational autoencoders (VAEs) (Kingma & Welling,
2014) and variational diffusion (Kingma et al., 2021), both
the conditional likelihood p(x̃ | z) and the variational
distribution q(z) are parameterized using neural networks.
Since both the expectation reference probability and the
term inside the ELBO are parameterized, one common
strategy is to estimate the gradient using finite Monte Carlo
samples and the reparameterization trick to optimize the
parameters. We adopt this approach, which enables effi-
cient gradient-based optimization and has been widely ap-
plied in the BO community (Wilson et al., 2017).

Improving the Expected Improvement. It is widely
recognized that EI can be prone to over-exploitation (Qin
et al., 2017; Berk et al., 2019; De Ath et al., 2021).
To mitigate this issue, Hoffman et al. (2011) and Kan-
dasamy et al. (2020) propose to use a portfolio of AFs,
which assigns probabilities to different AFs at each step.
Snoek et al. (2012) proposed a fully-Bayesian treatment
on EI to improve empirical performance. Another ap-
proach is Weighted EI (WEI), which adaptively adjusts the
weights of the components within the EI acquisition func-
tion (Sóbester et al., 2005; Benjamins et al., 2023). Simi-
larly, Qin et al. (2017) suggest “weakening” EI using sub-
optimal points suggested by the AF to mitigate its over-
exploitative behavior. However, these methods are primar-
ily based on heuristics. Furthermore, information-theoretic
acquisition functions are often excluded from these design
enhancements, as they are generally considered distinct
from heuristic AFs such as PI, EI, UCB, or KG.

Entropy Approximation in Information-theoretic AFs.
Estimating entropy in information-theoretic acquisition
functions is computationally expensive and typically re-
quires approximation techniques. Methods such as ES
and PES employ sampling-based approaches, including
Markov chain Monte Carlo and expectation propagation. In

contrast, MES derives an explicit approximation (Wang &
Jegelka, 2017, Eq. 6), which was later interpreted as a vari-
ational inference formulation by Takeno et al. (2020). This
variational perspective has since been extended to multi-
objective optimization (Qing et al., 2023). However, this
approximation scheme lacks flexibility in tuning the varia-
tional distributions. Furthermore, to the best of our knowl-
edge, most MES-based methods focus on approximating
p(yx | y∗,Dt). An exception is Ma et al. (2023), which
approximates p(y∗ | Dt, yx) using a Gaussian distribu-
tion. While this approach provides computational advan-
tages, the inherent symmetry of the Gaussian distribution
does not align with the properties of y∗.

3. Variational Entropy Search
3.1. Entropy Search Lower Bound

The idea behind our Variational Entropy Search (VES)
framework is to maximize a variational lower bound of
MES with a predetermined family of densities to approx-
imate p(y∗ | Dt, yx). Since we assume noiseless obser-
vations, the support is [max{yx, y∗t },+∞). VES is illus-
trated in Figure 1. The lower bound is formalized in Theo-
rem 3.1 and proven in Appendix A.1.

Theorem 3.1. The MES acquisition function in Eq. (4) ad-
heres to the Barber-Agakov (BA) bound (Barber & Agakov,
2004; Poole et al., 2019) and can be bounded from below
as follows:

αMES(x) = H[y∗ | Dt]− Ep(yx|Dt)

[
H[y∗ | Dt, yx]

]
≥ H[y∗ | Dt] + Ep(y∗,yx|Dt)

[
log q(y∗ | Dt, yx)

]
,

(7)
where q(y∗ | Dt, yx) is any chosen density function that is
absolutely continuous with respect to p(y∗ | Dt, yx).

Since the first term on the right-hand side of Eq. (7), H[y∗ |
Dt], is independent of both q and x, we can omit it. This
leads us to define the remaining term as the Entropy Search
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Lower Bound (ESLBO):

ESLBO(x; q) := Ep(y∗,yx|Dt)

[
log q(y∗ | Dt, yx)

]
,

(8)
where p(y∗, yx | Dt) represents a joint density, which
can be sampled using Gaussian process path sam-
pling (Hernández-Lobato et al., 2014; Wang & Jegelka,
2017).

To optimize αMES(x), we adopt the VI approach (Paisley
et al., 2012), indirectly maximizing αMES(x) by instead
maximizing ESLBO. To ensure computational feasibility,
the VI method constrains the density q to a predefined fam-
ily Q. When parameterizing q within Q, the problem be-
comes tractable by solving for q and x iteratively, as de-
tailed in Algorithm 1.

Notably, this procedure, known as expectation maximiza-
tion (EM), is analogous to maximizing the ELBO in
Eq. (5). We conclude our discussion by summarizing the
correspondence between ESLBO and ELBO in Table 1.

Algorithm 1 VES Framework
Input: Observations Dt, variational family Q, number of

inner iteration N
Output: Next sampling location xt+1

1: initialize x
(0)
t+1

2: for n = 1 : N do
3: q(n)(y∗)← argmaxq∈Q ESLBO(x

(n−1)
t+1 ; q)

4: x
(n)
t+1 ← argmaxxt+1

ESLBO(xt+1; q
(n))

5: end for
6: return x

(N)
t+1

3.2. EI Through the Lens of the VES Framework

In this section, we aim to establish an explicit connection
between the VES and EI acquisition functions, allowing us
to see EI through the lens of a VI approximation of the
information-theoretical MES AF. We define Q as the set
of all exponential density functions, Qexp, parameterized
by the λ > 0 exponential density parameter and with sup-
port bounded from below by max{yx, y∗t }. The variational
density function q is given by

q(y∗|Dt, yx;λ) = λe−λ(y∗−max{yx,y
∗
t })1y∗≥max{yx,y∗

t }.
(9)

For noiseless observations, the indicator function
1y∗≥max{yx,y∗

t } always equals one and can be omit-
ted. Plugging in q from Eq. (9) into the ESLBO (Eq. (8))
yields a new λ-parameterized AF. Since this AF stems
from the exponential distribution, we name it VES-Exp.
Theorem 3.2 shows that the next sampling point generated
from VES-Exp within Algorithm 1 will be the same as for
the EI AF; the theorem is proven in Appendix A.2.

Theorem 3.2. When the family Qexp is selected as in
Eq. (9) and the function is noiseless, ESLBO in Eq. (8)
turns into

ESLBO(x;λ) = log λ− λEp(y∗|Dt)[y
∗]︸ ︷︷ ︸

constant

+ λEp(yx|Dt) [max{yx, y∗t }]︸ ︷︷ ︸
EI

.
(10)

Maximizing ESLBO(x;λ) in Eq. (10) with respect to x and
λ yields the same x solution as the maximization of EI in
Eq. (1).

The key idea behind the proof is that, following Algo-
rithm 1, the ESLBO in Eq. (10) always converges within
two iterations. Regardless of the positive value of λ, the
value of x that maximizes ESLBO(x;λ) remains the same.
Consequently, starting from an arbitrary initial point x(0),
a positive λ(1) is derived, ensuring that ESLBO reaches its
maximum value in the next iteration.

Theorem 3.2 reveals that EI can be viewed as a special
case of MES, giving a new information-theoretic interpre-
tation of the most popular acquisition function in use to-
day. However, the exponential distribution has a fairly rigid
parametric form that does not capture the characteristics of
p(y∗ | Dt, yx). Figure 1 (right) shows an example of the
structural limitations of the exponential density in green.
We generate 1000 samples from an example distribution
p(y∗ | Dt, yx), and observe that it significantly deviates
from an exponential distribution. Specifically, the density
of p(y∗ | Dt, yx) is non-monotonic, exhibiting a peak be-
fore decreasing near max{yx, y∗t } (approximately 1.55),
while exponential distributions are necessarily monotonic.

This observation motivates the need to enrich the varia-
tional distributions Q to allow more flexibility. A natu-
ral extension is to use a Gamma distribution, which is a
generalization of the exponential distribution. The Gamma
density approximation in the previous example is shown in
red in Figure 1 (right). The next section introduces VES-
Gamma, which is a more general AF that extends VES-Exp
and its equivalent EI acquisition function.

3.3. VES-Gamma: A Generalization of EI

VES-Gamma defines Q as the Gamma distribution param-
eterized by k, β > 0 with its support bounded from below
by max{yx, y∗t }. The variational density is

q(y∗ | Dt, yx; k, β) =
βk

Γ(k)
(y∗ −max{yx, y∗t })

k−1

× e−β(y∗−max{yx,y
∗
t })1y∗≥max{yx,y∗

t },
(11)

where Γ(·) denotes the Gamma function. The noise-free
assumption allows us to omit the indicator function, and
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Table 1. Comparison of key aspects between the ELBO and ESLBO approaches.

Property ELBO Approach ESLBO Approach

Primary Variable p(x̃ | z) x
Variational Variable q(z) q(y∗ | yx,Dt)
Lower Bound Formulation ELBO(q(z); p(x̃ | z)) ESLBO(q;x)

the ESLBO is reformulated as

ESLBO(x; k, β) = k log β − log Γ(k)

+ (k − 1)Ep(y∗,yx|Dt) [log (y
∗ −max{yx, y∗t })]

− βEp(y∗|Dt)[y
∗] + β Ep(yx|Dt)[max{yx, y∗t }]︸ ︷︷ ︸

EI

.
(12)

The ESLBO in Eq. (12) serves as the primary objective in
the VES-Gamma algorithm. Eq. (12) consists of five terms,
with the last term being the EI AF in Eq. (1) scaled by
a multiplicative factor. The two hyperparameters, k and
β, originally part of the Gamma distribution, dynamically
balance different components of the objective. In partic-
ular, when k = 1, the Gamma distribution reduces to an
exponential distribution, making the ESLBO in Eq. (12)
equivalent to Eq. (10). In the following section, we discuss
the approach for determining values for k and β.

Auto-determination of Tradeoff Hyperparameters.
For any fixed x, the global maximum of the ESLBO in
Eq. (12) with respect to k and β uniquely exists, as can be
demonstrated through derivative analysis. Taking the par-
tial derivatives of ESLBO in Eq. (12) and setting them to
zero, we obtain:

log β − ∂ log Γ(k)

∂k
+ E [log z∗x] = 0,

k

β
− E [z∗x] = 0,

where the random variable z∗x := y∗ −max{yx, y∗t }.

Substituting the second equation into the first yields:

log k − ψ(k) = logE[z∗x]− E[log z∗x], (13)

where ψ(k) := ∂ log Γ(k)/∂k is the digamma func-
tion (Abramowitz et al., 1988), which can be efficiently ap-
proximated as a series. By Jensen’s inequality, logE[z∗x]−
E[log z∗x] ≥ 0. Since log k − ψ(k) is strictly decreas-
ing and approaches zero asymptotically (see Figure 2), the
root of Eq. (13), k∗x, exists uniquely—except in the de-
generate case where z∗x is deterministic. In the practical
implementation, we apply a clamping function to ensure
that the term log k − ψ(k) does not become zero, and we
employ a regularization mechanism to keep the resulting
root k∗x close to 1. Specifically, we use L2 regulariza-
tion when solving log k − ψ(k) = logE[z∗x] − E[log z∗x]
since the unregularized version is unstable, presumably
due to a widely flat landscape. In particular, for ξ(k) :=

0 100 200 300 400 500
k

10 3

10 2

10 1

100

101

lo
g(

k)
(k

)

Plot of log(k) (k)

Figure 2. Plot of log k − ψ(k) for k ∈ [0, 500]. The function is
strictly decreasing and asymptotically approaches zero.

log k−ψ(k)− logE[z∗x] +E[log z∗x], we solve the follow-
ing optimization problem:

min
k
ξ(k)2 + λ (k − 1)

2
, (14)

where λ is a regularization parameter which is set to 1 in
our experiments.

With this analysis, the value k∗x is determined by minimiz-
ing Eq. (14) using Brent’s method (Brent, 2013), where ex-
pectations of z∗x are estimated via Monte Carlo sampling
from p(y∗, yx | Dt). Once k∗x is obtained, the correspond-
ing β∗

x follows as:

β∗
x ←

k∗x
E [z∗x]

. (15)

Notably, the weighting parameters k∗x and β∗
x are location-

dependent, as z∗x itself varies with x. The VES-Gamma
algorithm, which incorporates these principles, is detailed
in Algorithm 2.

Although we provide both a theoretical justification and a
practical implementation for the VES-Gamma AF, a deeper
interpretation of the ESLBO in Eq. (12) remains an open
research question. Due to the complex non-linear structure
of Eq. (12), it is currently uncertain if there is a clear and
straightforward interpretation of the various terms and the
overall expression. As an example, we hypothesize that
the third term acts as an “anti-EI” component, steering the
VES-Gamma solution away from the EI recommendation
to promote diversity, with the values of β∗

x and k∗x dynam-
ically balancing its influence. Investigating this hypothesis
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Algorithm 2 VES-Gamma
Input: Sample set Dt, number of inner iterations N
Output: Next sampling location xt+1

1: initialize x
(0)
t+1

2: for n = 1 : N do
3: Evaluate values of E [z∗x] and E [log (z∗x)] by sam-

pling p(y∗, yx | Dt) given x = x
(n−1)
t+1

4: Solve k(n) from Eq. (13)
5: Solve β(n) from Eq. (15)
6: Update x

(n)
t+1 ← argmaxx ESLBO(x; k(n), β(n))

defined in Eq. (12)
7: end for
8: return x

(N)
t+1

Table 2. Average duration of a BO loop for each AF. We mea-
sure the runtime on the Branin, Levy, and Hartmann bench-
marks and average over benchmarks, BO iterations, and 10 ran-
dom restarts. For N = 5 outer repetitions, VES has a higher
runtime than the other acquisition functions.

AF average time per BO iteration

EI 1.627s (±0.916s)
MES 1.120s (±0.472s)
VES 10.910s (±12.323)

and further elucidating the role of each term within ESLBO
will be the focus of future research.

Computational Cost of VES-Gamma. Implementing
VES-Gamma in Algorithm 2 is computationally intensive.
The number of inner iterations, N , must be sufficiently
large for convergence, and each inner iteration requires es-
timating E[z∗x] by sampling a large number of y∗. Conse-
quently, the overall BO loop takes significantly more time
than EI and MES, as shown in Table 2 for N = 5. How-
ever, since black-box function evaluations are often expen-
sive, the additional computational cost of VES-Gamma is
not a major bottleneck in many real-world applications.

4. Results
4.1. Experimental Setup

We employ a consistent Gaussian Process (GP) hyper-
parameter and prior setting across all benchmarks and
acquisition functions, evaluating Bayesian optimization
(BO) performance using the simple regret r(t) := f∗ −
max(xi,yxi

)∈Dt
yxi

, where f∗ := maxx∈X f(x). When
f∗ is unknown, we instead report the negative best func-
tion value, −max(xi,yxi

)∈Dt
yxi

.

To warm-start the optimization process, we initialize with
20 random samples drawn uniformly from X and model

the GP using a 5/2-Matérn kernel with automatic relevance
determination (ARD) and a dimensionality-scaled length-
scale prior (Hvarfner et al., 2024). Following the theo-
retical assumption in the VES framework, we only focus
on experiments with noise-free observations. Although all
benchmarks are noiseless, we allow the GP to accommo-
date potential non-stationarity or discontinuities in the un-
derlying function.

Each experiment is repeated 10 times to estimate average
performance, with results reported as mean ± one stan-
dard deviation. For problems with dimension less than
50, we run 100 iterations, otherwise 1000 iterations are
computed. For numerical stability in VES-Gamma, we
apply clamping: z∗x = max{10−10, y∗ − max {yx, y∗t }}.
The expectation in Eq. (12) is estimated via pathwise con-
ditioning (Wilson et al., 2021) using 128 posterior sam-
ples. Additionally, the number of inner iterations N in
Algorithm 2 is set to 5, with early stopping applied if
∥x(n−1) − x(n)∥ < d · 10−5, where d denotes the prob-
lem dimension. We implement VES-Gamma and our other
experiments using BoTorch (Balandat et al., 2020). We
always compare against LogEI (Ament et al., 2023) and
use EI and LogEI interchangeably. The code is available
in https://github.com/NUOJIN/variational-entropy-search.

Benchmarks. To evaluate VES, we consider three dis-
tinct categories of benchmark problems: synthetic bench-
marks, GP samples, and real-world optimization tasks.

For synthetic benchmarks, we examine commonly used
functions that are diverse in dimensionality and landscape
complexity. Specifically, we evaluate the 2-dimensional
Branin, the 4-dimensional Levy, the 6-dimensional
Hartmann, and the 8-dimensional Griewank functions.
These benchmarks are widely utilized in optimization stud-
ies and provide controlled testbeds for algorithmic compar-
isons (Surjanovic & Bingham).

For GP sample benchmarks, we draw from a GP prior with
a ν = 5/2 Matérn kernel. These experiments examine the
impact of varying length scales (ℓ = {0.5, 1, 2}) and di-
mensionalities (d = {2, 50, 100}) on algorithmic perfor-
mance.

For real-world scenarios, we utilize a set of bench-
marks reflecting practical high-dimensional problems.
These include the 60-dimensional Rover problem (Wang
et al., 2018), the 124-dimensional soft-constrained
Mopta08 (Jones, 2008) benchmark introduced in Eriksson
& Jankowiak (2021), the 180-dimensional Lasso-DNA
problem from LassoBench (Šehić et al., 2022), and the
388-dimensional SVM benchmark, also introduced in Eriks-
son & Jankowiak (2021). These tasks represent optimiza-
tion challenges in engineering design, machine learning,
and computational biology.

6

https://github.com/NUOJIN/variational-entropy-search


A Unified Framework for Entropy Search and Expected Improvement

Due to space constraints, additional experiments are pro-
vided in Appendix B.

4.2. Comparing VES-Exp and EI

Kolmogorov-Smirnov Test. After establishing the theo-
retical equivalence of VES-Exp and EI in Section 3.2, we
aim to validate this equivalence in our practical implemen-
tation. To this end, we employ the Kolmogorov-Smirnov
(KS) two-sample test with a significance level of α = 5%
to assess statistical similarity. The two samples consist of
function values evaluated by each acquisition function (AF)
across 10 repeated trials, i.e., YEI(t) := {yi

t}10i=1, where yi
t

denotes the function evaluation at step t in the i-th trial. The
null hypothesis states that the function evaluations from
VES-Exp and EI originate from the same distribution.

We collect function values for all 500 iterations and con-
sider a test successful (pass) for each iteration t if the
null hypothesis is not rejected. We include six differ-
ent benchmarks spanning low-dimensional synthetic prob-
lems to high-dimensional real-world scenarios. Additional
implementation details on KS test are presented in Ap-
pendix C.

Empirical Equivalence Results Figure 3 illustrates the
function values obtained by VES-Exp and EI, while Table 3
reports the passing rates of the KS test across six bench-
marks. The results show that all passing rates exceed 90%,
with the Hartmann benchmark achieving the highest pro-
portion of accepted tests.

Several factors explain the remaining discrepancies be-
tween VES-Exp and EI. First, since both acquisition func-
tions are non-convex, their optimization may yield different
next sampling points xt+1 due to variations in initializa-
tion. Second, VES methods employ a clamping mechanism
to ensure that z∗x remains numerically positive, which in-
troduces a dependency between y∗ and x. In practice, this
violates the assumptions used in the proof in Appendix A.2.
We also employed Log-EI (Ament et al., 2023) instead of
EI in our experiment, which may also explain the differ-
ence. Finally, while EI has a closed-form expression, VES-
Exp relies on Monte Carlo estimation, introducing numeri-
cal inexactness and potential discrepancies.

4.3. Performance of VES-Gamma

Synthetic Test Functions. Figure 4 illustrates the per-
formance of various methods, including MES, EI, and
VES-Gamma, across four synthetic benchmark functions:
Branin (d = 2), Levy (d = 4), Hartmann (d = 6),
and Griewank (d = 8). The metric shown is the loga-
rithm of the best value (or simple regret), averaged over 10
independent runs.

Table 3. Kolmogorov-Smirnov two-sample test passing rate be-
tween VES-Exp and EI for various benchmarks. More details
about p-values are available in Figure 8 in the appendix.

Passing Rate (%)

Branin (d = 2) 94.00
Hartmann (d = 6) 99.80
Rover (d = 60) 92.60
Mopta08 (d = 124) 93.20
Prior (d = 2) 93.60
Prior (d = 50) 94.60

On Branin, VES-Gamma achieves the best performance,
with MES and EI lagging behind. For Levy, VES-Gamma
and EI are effectively tied for the best results, with MES
showing slightly worse performance. On the Hartmann
function, VES-Gamma outperforms all other methods. Fi-
nally, for the Griewank function, VES-Gamma and EI
once again demonstrate similar performance, significantly
outperforming MES.

Overall, these results highlight the robustness of VES-
Gamma across diverse synthetic benchmarks, consistently
ranking among the top-performing methods.

GP Samples. Here, we study problem instances where
the GP can be fitted without model mismatch. To this end,
we sample realizations from an isotropic 100-dimensional
GP prior with varying length scale ℓ = 0.05, 0.1, 0.25, 0.5,
using the same 5/2-Matérn covariance function for the GP
prior and the GP we fit to the observations.

Figure 5 shows the optimization performance on the 100-
dimensional GP prior samples. For ℓ = 0.05, 0.1, 0.25,
VES-Gamma outperforms EI and MES by a wide margin.
EI and MES converge to a suboptimal solution. Only for
ℓ = 0.5 does EI reach the same quality as VES-Gamma,
outperforming MES.

Real-World Benchmarks. Figure 6 presents the perfor-
mance of VES-Gamma, EI, and MES across four real-
world optimization problems: the 60-dimensional Rover
trajectory optimization, the 124-dimensional Mopta08
vehicle optimization, the 180-dimensional weighted
Lasso-DNA regression, and the 388-dimensional SVM hy-
perparameter tuning benchmarks.

Consistent with previous observations, VES-Gamma de-
livers strong performance, significantly outperforming all
other acquisition functions on the SVM benchmark. It also
ranks among the top-performing methods, alongside EI,
on the Mopta08 and Lasso-DNA benchmarks. On the
Rover problem, VES-Gamma performs comparably to
EI, while MES achieves the best results in this scenario.
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Figure 3. Function values observed at each BO iteration for the EI
and VES-Exp acquisition functions.

MES exhibits mixed performance across the benchmarks,
achieving the best results on Rover but falling behind on
the Mopta08 and SVM problems.

Overall, VES-Gamma demonstrates robust and consis-
tent performance across all benchmarks, establishing itself
as a versatile and reliable acquisition function for high-
dimensional real-world optimization problems.

5. Conclusion
In this work, we introduce Variational Entropy Search
(VES), a unified framework that bridges Expected Im-
provement (EI) and information-theoretic acquisition func-
tions through a variational inference approach. We demon-
strate that EI can be interpreted as a special case of Max-
value Entropy Search (MES), revealing a deeper theoretical
connection between these two widely used methodologies
in Bayesian optimization. Building on this insight, we pro-
pose VES-Gamma, a novel acquisition function that dy-
namically balances the strengths of EI and MES. Compre-
hensive benchmark evaluations across a diverse set of low-
and high-dimensional optimization problems highlight the
robust and consistently high performance of VES-Gamma.
These results underscore the potential of the VES frame-
work as a promising foundation for developing more adap-
tive and efficient acquisition functions in Bayesian opti-
mization.
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Figure 4. VES-Gamma, EI, and MES on the synthetic Branin
(d = 2), Levy (d = 4), Hartmann (d = 6), and Griewank
(d = 8) benchmark functions. Average log simple regret: VES-
Gamma performs best on Branin and Hartmann, and it is
competitive on Levy and Griewank.

Limitations and future work. While the Gamma distri-
bution offers flexibility, future work will explore alterna-
tive variational distributions to enhance the adaptability of
VES-Gamma. Another key direction is improving compu-
tational efficiency. Additionally, extending the theoretical
framework to noisy settings remains an open challenge, re-
quiring adaptations in variational inference to account for
stochastic density supports.
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A. Proofs
A.1. ESLB Proof

The MES acquisition function in Eq. (4) can be lower bounded as follows,

Proof.

αMES(x) = H[y∗ | Dt]− Ep(yx|Dt)H[y∗ | Dt, yx]

= H[y∗ | Dt] + Ep(y∗,yx|Dt)[log(p(y
∗ | Dt, yx))]

= H[y∗ | Dt] + Ep(y∗,yx|Dt)

[
log

(
p(y∗ | Dt, yx)q(y

∗ | Dt, yx)

q(y∗ | Dt, yx)

)]
= H[y∗ | Dt] + Ep(y∗,yx|Dt)[log(q(y

∗ | Dt, yx))] + Ep(yx|Dt)[DKL

(
p(y∗ | Dt, yx)∥q(y∗ | Dt, yx)

)
]

≥ H[y∗ | Dt] + Ep(y∗,yx|Dt)[log(q(y
∗ | Dt, yx))],

where the KL divergence DKL(p(x)∥q(x)) := Ep(x) [log(p(x)/q(x))]. The inequality is tight if and only if
Ep(yx|Dt)[DKL

(
p(y∗ | Dt, yx)∥q(y∗ | Dt, yx)

)
] = 0, which implies p(y∗ | Dt, yx) = q(y∗ | Dt, yx) for all yx | Dt.

A.2. VES-Exp and EI Algorithmic Equivalence

Theorem 3.2 is proved as follows:

Proof. By restricting the variational distributions to exponential distributions, we slightly abuse the input notations of
ESLBO in (8) and define:

ESLBO(λ,x) = Ep(y∗,yx|Dt) [log (λ exp (−λ(y
∗ −max{yx, y∗t })))]

= log λ− λEp(y∗,yx|Dt) [(y
∗ −max{yx, y∗t })]

= log λ− λEp(y∗|Dt)[y
∗]︸ ︷︷ ︸

constant

+λEp(yx|Dt) [max{yx, y∗t }]︸ ︷︷ ︸
EI AF

.
(16)

Beginning with an arbitrary initial value x(0), we determine the corresponding parameter

λ(1) =
1

Ep(y∗,y
x(0) |Dt) [(y

∗ −max{yx(0) , y∗t })]
, (17)

which is derived by taking the derivative of (16) and letting it equal zero. With λ fixed, ESLBO(λ(1),x) produces the
same result as the EI acquisition function in (1). We then compute λ(2) based on x(1) following (17). Regardless of
the specific value of λ(2), the ESLBO function consistently yields the same result, x(1). This consistency ensures that
the VES iteration process converges in a single step. The final outcome, represented as (x(1), λ(2)), indicates that the
corresponding q(y∗ | yx,Dt) is the closest approximation to p(y∗ | yx,Dt) within Qexp (in the sense that minimizes their
KL divergence).

B. Additional Experimental Results
In this section, we evaluate VES-Gamma (Algorithm 2) on additional benchmarks.

12



A Unified Framework for Entropy Search and Expected Improvement

B.1. Synthetic Test Functions
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Figure 7. Performance plots for EI, MES, and VES-Gamma on additional synthetic benchmark functions. VES-Gamma shows robust
performance throughout the bank.

Figure 7 shows the performance of the different acquisition functions, EI, MES, and VES-Gamma, on additional synthetic
benchmark functions: the Ackley and Michalewicz test functions1 and the Lasso-High and Lasso-Hard bench-
marks (Šehić et al., 2022). On the 1000-dimensional Lasso-Hard problem, VES-Gamma ran into a timeout after 48
hours. Therefore, we plot the mean up to the minimum number of iterations performed across all repetitions. VES-Gamma
demonstrates robust performance across the benchmarks, outperforming all other acquisition functions on Ackley, MES
on Michalewicz, and performing similarly to the other acquisition functions on the Lasso benchmarks. VES-Gamma
and MES perform considerably worse than VES-Gamma, especially on the more high-dimensional problems.

C. Kolmogorov-Smirnov Test Statistic
The Kolmogorov-Smirnov (KS) two-sample test is a non-parametric statistical method used to determine whether two
samples are drawn from the same continuous distribution. It compares their empirical cumulative distribution functions
(ECDFs) and calculates a test statistic that quantifies their maximum difference. Given two independent samples as function
evaluations from VES-Exp {X1, X2, . . . , Xn1} and from EI {Y1, Y2, . . . , Yn2}, their ECDFs are defined as:

FX(x) =
1

n1

n1∑
i=1

I(Xi ≤ x), FY (x) =
1

n2

n2∑
j=1

I(Yj ≤ x),

where I(·) is the indicator function, equal to 1 if the condition is true and 0 otherwise. The KS test statistic is given by:

D = sup
x
|FX(x)− FY (x)| ,

where supx denotes the supremum over all possible values of x. This statistic measures the maximum absolute difference
between the ECDFs of the two samples.

Statistical Hypotheses. The hypotheses for the KS test are defined as:

• Null hypothesis (H0): FX(x) = FY (x) for all x (the two samples come from the same distribution).

• Alternative hypothesis (Ha): FX(x) ̸= FY (x) for at least one x (the two samples come from different distributions).

To test these hypotheses, the test p-value is solved using the Kolmogorov-Smirnov survival function:

ptest = QKS

(√
n1n2
n1 + n2

D

)
,

1https://www.sfu.ca/˜ssurjano/optimization.html
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where QKS(·) represents the survival function of the Kolmogorov distribution:

QKS(z) = 2

∞∑
k=1

(−1)k−1e−2k2z2

.

Alternatively, the significance level α = 0.05 can be tested using the critical value:

D0.05 ≈
√
−1

2
ln (0.025) ·

√
n1 + n2
n1n2

.

If D > D0.05, we reject the null hypothesis and consider it as failure (not pass).

Detailed p-values for VES-Exp and EI Comparison. We present the p-values obtained from the experiments detailed
in Section 4.2. These results are illustrated in Figure 8. It is observed that for the majority of the sample pairs, the calculated
p-values are substantially above the 5% significance level.

Figure 8. Distribution of p-values for 500 sample pairs generated using the EI and VES-Exp acquisition functions.

D. VES-Gamma Computational Acceleration
Table 2 highlights the higher computational cost of VES methods compared to EI and MES. However, we observe that
a technique known as Variable Projection (VarPro) (Golub & Pereyra, 1973; Poon & Peyré, 2023) can be leveraged to
accelerate the computation of VES under certain conditions, which VES-Gamma satisfies.

The key idea behind VarPro is that when the function ESLBO has a specific structure,

max
x;k,β

ESLBO(x; k, β) = max
x

max
k,β

ESLBO(x; k, β)︸ ︷︷ ︸
φ(x)

 , (18)

and the solution to maxk,β ESLBO(x; k, β) is unique, then φ(x) is differentiable, with

d

dx
φ(x) =

∂

∂x
ESLBO(x, k∗x, β

∗
x), (19)

14



A Unified Framework for Entropy Search and Expected Improvement

where k∗ and β∗ are the unique values that maximize ESLBO.

Following the proof in Eq. (13), we establish that the solutions k∗x and β∗
x are unique. This confirms that it is feasible to

implement the VarPro strategy to accelerate the computation of VES-Gamma, eliminating the need for the iterative scheme
in Algorithm 1. This ongoing work aims to reduce the computational cost of VES-Gamma to a level comparable to EI and
MES.
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