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Abstract

Fine-tuning pre-trained large language models (LLMs) presents a dual challenge of
balancing parameter efficiency and model capacity. Existing methods like low-rank
adaptations (LoRA) are efficient but lack flexibility, while Mixture-of-Experts
(MoE) enhance model capacity at the cost of more & under-utilized parameters.
To address these limitations, we propose Structural Mixture of Residual Experts
(S’MoRE), a novel framework that seamlessly integrates the efficiency of LoRA with
the flexibility of MoE. Conceptually, S’MoRE employs hierarchical low-rank de-
composition of expert weights, yielding residuals of varying orders interconnected
in a multi-layer structure. By routing input tokens through sub-trees of residuals,
S’MoRE emulates the capacity of numerous experts by instantiating and assembling
just a few low-rank matrices. We craft the inter-layer propagation of S’MoRE’s
residuals as a special type of Graph Neural Network (GNN), and prove that under
similar parameter budget, S’MoRE improves structural flexibility of traditional MoE
(or Mixture-of-LoRA) by exponential order. Comprehensive theoretical analysis
and empirical results demonstrate that S’MoRE achieves superior fine-tuning per-
formance, offering a transformative approach for efficient LLM adaptation. Our
implementation is available at: https://github.com/ZimpleX/SMoRE-LLM.

1 Introduction
Large language models (LLMs) have achieved remarkable success across a wide range of tasks by
leveraging extensive pretraining on vast datasets, which equips them with general-purpose knowl-
edge [Achiam et al., 2023, Dubey et al., 2024, Team et al., 2024a, Liu et al., 2024a, Anthropic, 2024].
However, the versatility of pre-trained LLMs often falls short when applied to specialized tasks [Hadi
et al., 2023, Ling et al., 2023, Chen et al., 2024]. Fine-tuning addresses this limitation by refining
LLM’s capabilities to focus on the nuances of different domains [Zhang et al., 2023, Wang et al.,
2024a, 2025]. However, it introduces a fundamental tension between balancing parameter efficiency
and the need for expanded model capacity to capture task-specific complexity [Wang et al., 2024b].

Low-Rank Adaptations (LoRA) [Hu et al., 2021, Mao et al., 2025] are parameter efficient but lack
the capacity required by complex tasks. On the other hand, Mixture-of-Experts (MoE) [Lepikhin
et al., 2020, Fedus et al., 2022b, Cai et al., 2024, Dai et al., 2024] architectures improve model
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capacity by enabling conditional computation where different tokens activate different experts.
However, traditional MoEs are often less parameter- or data-efficient since the multiple experts need
to separately learn their own parameters. Moreover, increasing the number of experts poses the
challenge of balancing their utilization with low routing overhead.

Thus, to improve model capacity while maintaining parameter efficiency, we look into other scaling
dimensions, such as routing flexibility unveiled by recent literature. Dai et al. [2024], Ludziejewski
et al. [2024], He [2024] empirically show that under the same parameter budget, a large number of
small (i.e., fine-grained) experts is more powerful than a small number of large experts. Ludziejewski
et al. [2024] quantitatively derives the MoE scaling law with respect to experts’ granularity. DeepSeek-
MoE [Dai et al., 2024] elaborates the intuition: Consider an MoE system with 16 rank-128 experts.
Under top-2 routing, each token has

(
16
2

)
= 120 ways to select its own expert combination. If we

break down each rank-128 expert as 4 rank-32 experts (and correspondingly use top-8 routing to keep
the same activated parameters), each token now has

(
4×16

8

)
= 4.4B routing choices.

Yet, “breaking down experts into finer granularity” may not be the most effective way of increasing
routing flexibility. There are two potential limitations: 1) in the parameter-efficient fine-tuning
(PEFT) scenario, each expert is already of a low rank, making it questionable if finer granularity is
desirable; and 2) with more number of experts comes higher requirement on the router’s capability &
the learning algorithm – it may be challenging to maintain good expert utilization when the number of
experts grows. These lead to our goal: without increasing the number of experts, we aim at emulating
more routing choices by exploiting the power of structure. That is, instead of merely addressing the
problem of “which experts to activate” (like most existing literature), we further ask: “how should the
activated experts be connected”? To answer it, we first arrange experts into multiple layers. Then the
router iterates through the layers and constructs a tree of activated experts, through which the input
token propagates. The key observation is that, the same set of experts can interconnect in different
ways to form exponentially many non-isomorphic tree structures, each yielding a distinct output. We
thus formalize such intuition by extending the aforementioned routing flexibility into a new metric,
structural flexibility, and theoretically quantify its exponential growth enabled by S’MoRE’s design.

Proposed work. We propose Structural Mixture of Residual Experts ( S’MoRE), a novel PEFT
architecture that improves MoE’s model flexibility & capacity by exploiting experts’ structural
relationship, while being as parameter-efficient as LoRA. We start from hierarchical residual de-
composition of expert weights, where low-rank parameters of different orders form a multi-layer
inter-connection network. We craft the model architecture so that when residuals aggregate and
propagate across layers, they 1. remain low-rank to maintain overall efficiency, 2. can generate distinct
embeddings for all non-isomorphic router-selected sub-trees, which theoretically guarantees high
structural flexibility, and 3. are able to express the standard single-layer MoE model variants, which
makes S’MoRE a strictly more powerful upgrade. To customize the expert structure for each token,
we design a hierarchical router that efficiently and iteratively selects the children residuals when
traversing down the selected ancestors. S’MoRE can be conceptually seen as a novel Graph Neural
Network (GNN), where the “graph” emerges dynamically from the router’s selection, and the S’MoRE
layers can simulate the graph isomorphism test [Huang and Villar, 2021, Xu et al., 2019] to ensure
high structural flexibility. Overall, S’MoRE achieves the benefits of both LoRA and fine-grained MoE,
and addresses their limitations by exploiting experts’ structure – S’MoRE emulates the capacity of
exponentially more experts than physically instantiated, while keeping each residual low-rank. We
extensively evaluate S’MoRE on 3 base models (LLaMA 3.2 1B, LLaMA 3 8B and Gemma 2 9B), 7
fine-tuning benchmarks, 3 types of router gates, and across different scales. S’MoRE consistently and
significantly outperform state-of-the-art models and the 1-layer baselines in terms of both accuracy
and parameter efficiency, validating the direction towards better PEFT adapters via structural mixture.

2 Background and Related Work
Parameter efficient fine-tuning (PEFT). Given a pre-trained model, PEFT trains a light-weight
adapter whose number of trainable parameters is just a small fraction of the pre-trained weights.
LoRA [Hu et al., 2021] and its variants [Liu et al., 2024b, Kopiczko et al., 2024] achieve good
empirical performance by learning only a low-rank matrix as the adapter, where rank controls the
efficiency-accuracy tradeoff. Despite the high parameter efficiency, their model capacities are limited.

Mixture-of-Experts (MoE). Mixture-of-Experts designs have been shown to boost LLM’s model
capacity [Dai et al., 2024, Fedus et al., 2022b, Puigcerver et al., 2024] due to their flexibility in
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conditionally activating different sets of parameters for different input tokens. Recent works have
tailored MoE for PEFT. MixLoRA [Li et al., 2024a] constructs the adapter as a set of LoRA experts
where each token activates its own top-k experts. Similarly, MoLE [Wu et al., 2024b] considers
a flat layer of LoRA experts and implements a flexible branch selection scheme. To enhance the
mixing flexibility, SMoRA [Zhao et al., 2025] decomposes LoRA into single-rank fine-grained
experts, and MoSLoRA [Wu et al., 2024a] integrates a subspace fusing matrix in the low-rank space.
MoV [Zadouri et al., 2024] and MoLORA [Zadouri et al., 2024] proposes MoE variants that mix
(IA)3 vectors [Liu et al., 2022] or LoRA weights for adapting attention modules. HydraLoRA [Tian
et al., 2024] splits LoRA’s up-projection matrix into multiple heads, and then performs weighted
sum of each head’s output by the gating weights. In the existing PEFT-MoE models, the expert-
selection gates often follow classic designs, such as the noisy top-k [Shazeer et al., 2017] or the
switch-transformer [Fedus et al., 2022b] gates. With more experts, it is more challenging to ensure
all experts are well utilized [Fedus et al., 2022a]. Such limitation to model scale-up can be addressed
by experts’ structural composition in S’MoRE, as we dramatically improve the structural flexibility
(see definition in §3.5) without adding more experts. See Appendix A for other MoE variants.

2.1 Preliminaries

We consider one transformer layer and omit the layer index. Let x ∈ Rd be the d-dimensional token
embedding input to the adapter. The adapter’s output x′ is added back to the output generated by the
pre-trained weights. All adapters here can be applied to weights of both FFN and attention modules.

LoRA formulation. The adapter consists of a down-projection matrix A ∈ Rd×r and an up-
projection matrix B ∈ Rr×d, with rank r ≪ d to achieve parameter efficiency. LoRA maps the input
token embedding x to adapter’s output x′ as follows: x′ = B ·A · x.

MoE formulation. Let s be the number of experts. The router maps each input token to different
experts, where ROUTE (x)i ∈ R gives expert i’s score for token x. If the router performs top-k sparse
gating, then only top-k values of ROUTE (x)i are kept and the rest are cast to 0. Suppose each expert i
performs linear transformation via matrix W i. The MoE layer performs:

x′ =

s∑
i=1

ROUTE (x)
i ·W i · x (1)

3 S’MoRE

3.1 Low-Rank MoE Variants

Mixture of low-rank experts (MoLRE). To improve parameter efficiency of Eq. 1, we can ap-
proximate its W i by some low rank Bi ·Ai as defined in §2.1 (e.g., we can perform SVD on W i

and derive Bi ·Ai corresponding to the largest singular values). We term such a model family as
mixture of low-rank experts (MoLRE) [Wu et al., 2024b, Dou et al., 2024, Li et al., 2024a]. MoLRE’s
operation is derived by updating Eq. 1 as follows: x′ =

∑s
i=1 ROUTE (x)

i ·Bi ·Ai · x
Mixture of multi-order residues (MoMOR). We can generalize MoLRE’s low-rank approximation
into this form W i ≈

∑L−1
ℓ=0 Bi

ℓ ·Ai
ℓ, where each Bi

ℓ ·Ai
ℓ has a low rank (so MoLRE corresponds

to L = 0). We call Bi
ℓ ·Ai

ℓ as the (ℓ+ 1)th-order residual term, and denote its rank as rℓ. The sum∑L−1
ℓ=0 Bi

ℓ ·Ai
ℓ can have a rank up to

∑L−1
ℓ=0 rℓ, which is higher than the individual residuals.

We thus introduce mixture of multi-order residues (MoMOR), an extension to MoLRE. Let Rℓ =
{B1

ℓ ·A1
ℓ ,B

2
ℓ ·A2

ℓ , . . .} be the set of order-(ℓ+ 1) residues, MoMOR model performs the following:

x′ =

L−1∑
ℓ=0

sℓ∑
i=1

ROUTEℓ (x)
i ·Bi

ℓ ·Ai
ℓ · x (2)

where the model dynamically selects and combines different orders of residuals via routing. MoMOR
can adaptively distribute computation across different levels of approximation, improving efficiency
and expressivity. Notably, when we set L = 2 and ROUTE0 (x)

i as a dense gate, the order-1 experts
are activated for all tokens. MoMOR becomes a shared-expert MoE. This is a design adopted by
DeepSeek-v3 [DeepSeek-AI, 2024] and many others [Rajbhandari et al., 2022, Li et al., 2024a].
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(a) Propagation of residuals across multiple
S’MoRE layers (see Eq. 3). Here we consider 2
layers. Layer 1 has 3 activated residuals, where
the dark green residual is selected by both the
light green and the light orange parents in layer 2.

(b) Recursive routing of S’MoRE (§3.3). The router first
selects the layer 2 residuals for token x. Then it selects the
layer 1 children conditioned on the activated layer 2 parent.
We use a lightweight MLP to generate the query vector
from the token embedding and the parent’s key embedding.

Figure 1: Illustration of the layer propagation and routing process of S’MoRE.

3.2 Structural Mixture

In the following, “layer” refers to a S’MoRE layer with a collection of residual experts, rather than
a transformer layer. Based on MoMOR, we arrange all the residues R0, . . . ,RL−1 into a L-layer
structure. For each token x, we activate a sub-structure that interconnects correlated residues in
adjacent layers. The token propagates along the sub-structure layer by layer. Each layer implements
a lightweight function to aggregate previous-layer residues. Extending the standard MoE to multiple
layers improves model capacity by drastically increasing the model’s structural flexibility (§3.5).

Parameters. Let x ∈ Rd be the d-dimensional token embedding. Layer ℓ+ 1 (for 0 ≤ ℓ ≤ L− 1)
consists of sℓ residual experts. Each expert i (with 1 ≤ i ≤ sℓ) consists of a down-projection matrix
Ai

ℓ ∈ Rrℓ×d and an up-projection matrix Bi
ℓ ∈ Rdℓ+1×rℓ , where rℓ is the experts’ rank and dℓ+1 is

the output dimension of layer ℓ+1. Layer ℓ+1 also has a learnable Wℓ ∈ Rdℓ+1×dℓ that projects the
layer-ℓ output to the dℓ+1-dimensional subspace. Thus, Rℓ consists of all Ai

ℓ and Bi
ℓ for 1 ≤ i ≤ sℓ.

Propagation. Token x propagates in the L-layer structure in two phases. In the routing phase, the
router activates the best-matching experts top-down (from layer L to 1). At layer L, the router selects
experts from RL−1 using standard gates (e.g., Fedus et al. [2022b]). At an intermediate layer ℓ < L,
the router computes the score to activate an expert in Rℓ−1, conditioned on the already activated
ancestors in layers ℓ′ > ℓ. This ensures the selected children are connected to their activated parents.
Different from the traditional routers, the S’MoRE router customizes a depth-L “residual tree” for
each token. See §3.3 for router architecture and §3.5 for structural flexibility of the tree-based routing.

In the aggregation phase, the token propagates along the activated residual tree bottom-up (from
layer 1 to L). Layer ℓ+ 1 aggregates the information from the activated children experts in Rℓ, and
generates output embedding for the parent expert in Rℓ+1. For each parent expert i, define N i

ℓ as the
set containing the indices of i’s children experts1. Layer ℓ+ 1 operates as follows:

xi
ℓ+1 =

∑
n∈N i

ℓ

αi,n
ℓ · σ (Bn

ℓ ·An
ℓ · x+Wℓ · xn

ℓ ) (3)

where σ (·) is a non-linear function which can be just an activation (e.g., ReLU [Agarap, 2018]). The
scalar αi,n

ℓ is the router-generated score, elaborated in §3.3. Inputs to Eq. 3 consist of two parts: 1)
Raw token embedding x, which acts as skip connection to residuals Bn

ℓ ·An
ℓ of various orders; and 2)

xn
ℓ output from the previous layer, which enables deep interaction among multi-order residuals given

non-linear σ (·) (compared to the shallow aggregation in Eq. 2). For ℓ = 0, input xn
0 does not exist.

To simplify notation, we define d0 := 0, making xi
0 ∈ R0 and W0 ∈ Rd1×0 as an empty vector /

1We abuse notation here for ease of description. The nuance is that the same expert can be activated multiple
times by different parents / ancestors. So i should refer to the index of a node in the activated tree, rather than
the index of just an expert. Similarly, superscript n of xn

ℓ should be updated to i → n as a unique identifier
(otherwise it creates ambiguity when expert n is a child of multiple parents). See Eq. 32 in Appendix §3.4.
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matrix. Then Eq. 3 applies to all layers 0 ≤ ℓ ≤ L − 1. The last layer L has a single output node
(i.e., sL = 1) generated by aggregating information from the entire residual tree. Define xL := x0

L.

Dimensionality dℓ. We should set the output dℓ to 1) avoid information loss in the aggregation
process, and 2) keep the overall L-layer propagation efficient. A naïve choice following LoRA is
dℓ+1 = d ≫ rℓ (e.g., d = 4096, rℓ = 16), which makes multiplication with Wℓ prohibitively
expensive. To reduce cost, we should find the smallest dℓ+1 that preserves the same amount of
information as the vanilla setting dℓ+1 = d. The problem is equivalent to finding the maximum
dimension of the subspace that xi

ℓ+1 (Eq. 3) can span for any N i
ℓ , Bn

ℓ , An
ℓ and activated i. To simplify

discussion, ignore activation σ (·): 1) For any x, output Bn
ℓ ·An

ℓ ·x maximally spans a d′-dimensional
subspace of the original Rd, where d′ = min{dℓ+1, rℓ}; 2) There are sℓ possible n, leading to sℓ
different d′-dimensional subspaces. When mutually orthogonal, they maximally span min{dℓ+1, sℓ ·
rℓ} dimensions; 3) Wℓ · xn

ℓ can span another subspace of dimension min{dℓ+1, dℓ} defined by Wℓ

(independent of n). So Bn
ℓ ·An

ℓ ·x+Wℓ·xn
ℓ maximally spans d′′ = min{dℓ+1, dℓ+sℓ·rℓ} dimensions;

4) Since a subspace is closed under linear combinations,
∑

n∈N i
ℓ
αi,n
ℓ (Bn

ℓ ·An
ℓ · x+Wℓ · xn

ℓ )

remains in the d′′-dimensional subspace, regardless of N i
ℓ . For the vanilla case dℓ+1 = d with large

enough d, we have d′′ = min{dℓ+1, dℓ + sℓ · rℓ} = dℓ + sℓ · rℓ. Thus, the minimum dℓ+1 is d′′:

dℓ+1 = dℓ + sℓ · rℓ ⇒ dℓ =

ℓ−1∑
i=0

si · ri, where d0 := 0 and ℓ ∈ [0, L− 1] (4)

Final projection. After the last layer L, we map the dL-dimensional output xL to the final output
dimension dout (i.e., dout is the dimensionality of x′ in Eq. 1 and Eq. 2). We thus have a projection
matrix Wproj ∈ RdL×d that simply performs x′ = Wproj · xL.

3.3 Hierarchical Routing

Fig. 1b illustrates the top-down routing. We start from layer L. The router computes p (iL−1 | x), the
probability to activate an expert iL−1 in RL−1 given token x. The top-fL−1 experts with the highest
p (iL−1 | x) are selected. Next, for each selected expert iL−1, we compute p (iL−2 | iL−1,x), which
is the conditional probability to activate iL−2 in RL−2 given its activated parent iL−1 and x. Each
activated iL−1 further activates fL−2 children with the highest p (iL−2 | iL−1,x). Generally, the
router computes the conditional probability p (iℓ−1 | iL−1, . . . iℓ,x), with iL−1, . . . iℓ being all the
activated ancestors of the candidate iℓ−1. All activated experts form a depth-L tree. Each depth-ℓ
node fans out to fL−ℓ−1 children experts (the activated layer-L experts are the depth-1 tree nodes).

Let fℓ be the fanout factor of each parent expert, Fℓ be the total number of experts selected from Rℓ

(i.e., Fℓ is the total number of depth-(L− ℓ) experts in the activated tree). The same expert can be
selected multiple times by ancestors on different paths – It is possible that Fℓ > sℓ. We derive Fℓ as:

Fℓ =

L−1∏
i=ℓ

fi (5)

Router architecture. For each expert i in Rℓ, we instantiate a learnable m-dimensional key vector
ki
ℓ ∈ Rm. For the whole candidate pool Rℓ, we instantiate a neural network, MLPℓ (·), to generate

an m-dimensional query vector based on x and the ancestors. The routing probability over Rℓ is
computed by the normalized key-query dot product. For a path of activated ancestors, “expert i′ in
Rℓ+1, ..., expert i′···′ in RL−1”, the router generates the query vector q and the router score αi

ℓ as
follows, where concat (·) performs vector concatenation and softmax (·) normalizes over Rℓ.

q = MLPℓ

(
concat

(
x,ki′

ℓ+1, · · · ,ki′···′

L−1

))
(6)

αi
ℓ = softmax

(
⟨ki

ℓ, q⟩
)

(7)

Computation optimization. Eq. 6 can be computationally expensive when all MLPℓ (·) need to
process the high-dimensional x. To reduce computation, we first project the d-dimensional x to a
ddown-dimensional xdown (e.g., d = 4096, ddown = 24), and then replace x with xdown in Eq. 6. The
dimension of the input to MLPℓ (·) then becomes ddown + (L− ℓ− 1) ·m.

Gating types. Our router and layer designs are compatible with various types of gates. In our
experiments (§4), we have evaluated: 1. Dense gate [Tian et al., 2024], which activates all children

5



experts (fℓ = sℓ); 2. Sparse noisy top-k gate [Shazeer et al., 2017]; 3. Sparse switch gate [Fedus
et al., 2022b]. The two sparse gates only activate a subset of the children experts (fℓ < sℓ) by the
top routing scores α. To avoid expert under-utilization and ensure all experts see sufficient amount
of tokens during training, we implement an auxiliary load-balance loss according to the original
papers [Shazeer et al., 2017, Fedus et al., 2022b]. See Appendix B.1 for more algorithmic details.

3.4 Parameter & Computation Efficiency

Although S’MoRE introduces structural learning modules, our design ensures similar efficiency to
the vanilla LoRA (w.r.t. both computation and trainable parameters) under the same total rank.

Parameter efficiency. Each S’MoRE layer ℓ+ 1 consists of the following trainable parameters: Bn
ℓ ,

An
ℓ and Wℓ. The total trainable parameters equals:

Pℓ+1 = sℓ · (d · rℓ + rℓ · dℓ+1)+dℓ ·dℓ+1 = sℓ ·d ·rℓ+dℓ+1 · (sℓ · rℓ + dℓ)
(a)
= sℓ ·d ·rℓ+d2ℓ+1 (8)

where the last step “(a)” is according to Eq. 4. The final projection matrix (end of §3.2) requires
Pproj = d · dL parameters. So the total number of parameters for all S’MoRE layers equals:

Pproj +

L∑
ℓ=1

Pℓ = d · dL + d ·

(
L−1∑
ℓ=0

sℓ · rℓ

)
+∆

(b)
= 2 · d · dL +∆

(c)
≈ 2 · d · dL (9)

where ∆ =
∑L

ℓ=1 d
2
ℓ . Step “(b)” is by Eq. 4; ∆ is the overhead due to multi-layer propagation. Since

d1 < . . . < dL ≪ d (e.g., dL = 64, d = 4096), we have ∆ ≪ 2 · d · dL. This justifies step “(c)”. In
Table 1, we empirically validated the small overhead ∆. With fℓ = 2, sℓ = 4, and rℓ = 8 or 16 for
all layers ℓ (consistent with the §4 experiments), ∆ is no more than 2% for 2-layer S’MoRE.

Table 1: Overhead ∆ compared with
the main computation cost 2 · d · dL
rℓ L dL 2 · d · dL ∆ Overhead ratio

8
2 64 0.5M 0.005M 1.0%
3 96 0.8M 0.014M 1.8%
4 128 1.0M 0.031M 2.9%

16
2 128 1.0M 0.020M 2.0%
3 192 1.6M 0.057M 3.6%
4 256 2.1M 0.123M 5.9%

The router’s trainable parameters come from: 1) down-
projection for xdown, which requires d · ddown parameters,
2) per-layer “query” MLP. By §3.3, the MLP’s input dimen-
sion is ddown + (L− ℓ) ·m, where m ≪ d is the dimension
of the “key” vectors. In practice, we set the MLP hidden
dimension as m. Since m and ddown are both very small, the
router’s parameter count is practically negligible.

In total, S’MoRE approximately has 2 · d · dL parameters – the same as the parameter count for a
vanilla LoRA with rank dL (the 2 factor is due to LoRA’s down- and up-project matrices A and B).

Computation cost. Following similar steps, we can derive the overhead in computation. The
computation cost of the baseline LoRA is 2 · d · dL. The overhead introduced by S’MoRE is
∆′ ≤

∑L−1
ℓ=0 Fℓ · dℓ+1 · (dℓ + rℓ), which is again neglible in practice. See Appendix C.1 for details.

3.5 Model Capacity

We theoretically show S’MoRE enhances model capacity compared with baselines (see Appendix C.2
for proofs). First, we show that the two low-rank MoE variants in §3.1 are special cases of S’MoRE.
Proposition 3.1. S’MoRE can express MoLRE, when L = 1 and σ (·) is the identity mapping.
Proposition 3.2. S’MoRE can express MoMOR, when setting σ (·) as the identity mapping.

For any MoLRE (or MoMOR) model, we can find a corresponding S’MoRE that generates identical
output as MoLRE (or MoMOR) for any input x. Without σ, we can collapse a multi-layer S’MoRE
into a single layer equivalent, where the dimensionality set by Eq. 4 ensures the same rank as MoMOR.
Can S’MoRE be theoretically better than MoLRE and MoMOR, if we go beyond the constraints of
Propositions 3.1 and 3.2 by setting L > 1 and σ as non-linear mapping? To answer it, we analyze an
MoE model’s expressive power by quantifying the structural flexibility.

Structural flexibility. Let Θ be the collection of all experts’ parameters (Bi
ℓ, A

i
ℓ and Wℓ for

0 ≤ ℓ ≤ L− 1 and all i). Given Θ, when a token x comes, different routers may activate different
residual experts, and thus generate different output embedding xL. Therefore, we define dist (x; Θ)
as the number of distinct xL. The larger dist (x; Θ) can be, the more “structurally flexible” the
model architecture is. Our focus here is on the multi-layer structure formed by the residual experts,
rather than the router network (thus, we assume an ideal router for the following Theorems).

Next we prove S’MoRE’s higher model capacity by quantifying structural flexibility. In the following,
we treat αn

ℓ as binary mask (1 for selected experts, and 0 otherwise) when generating xL.
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Theorem 3.3. The structural flexibility of MoMOR is upper-bounded by ΓMoMOR =

maxx,Θ dist (x; Θ) ≤
(
sL−1

fL−1

)
·
∏L−2

ℓ=0

(∑min{Fℓ,sℓ}
i=fℓ

(
sℓ
i

))
.

Theorem 3.4. Setting σ (·) as an MLP, there exists some Θ′ such that the structural flexibility of
S’MoRE is: ΓS’MoRE = minx dist (x; Θ′) =

∏L−1
ℓ=0

(
sℓ
fℓ

)Fℓ+1 , where we define FL := 1.
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Figure 2: ΓS’MoRE and ΓMoMOR
w.r.t. L (with sℓ = 4, fℓ = 2).

Above,
(
s
k

)
= s!

k!(s−k)! is the binomial coefficient that quantifies the
number of ways to choose k out of s items, ignoring order. Fℓ is
defined in Eq. 5. When increasing the number of layers, ΓS’MoRE
exceeds the upper bound ΓMoMOR by orders of magnitude. The
reason is that for MoMOR, the

(
sℓ
i

)
terms are summed over Fℓ,

while for S’MoRE, Fℓ becomes the exponent of
(
sℓ
fℓ

)
. In Fig. 2,

we calculate the theoretical ΓMoMOR and ΓS’MoRE under depth L.
Consistent with our experimental setup (§4.1), we set sℓ = 4 and
fℓ = 2 for all ℓ. Clearly, ΓS’MoRE is substantially higher than ΓMoMOR
even for shallow models (L = 2), and ΓS’MoRE grows exponentially
faster than ΓMoMOR when increasing L.

2

1,1 1,2

(a)

0,1 0,2 0,3 0,4

2

1,1 1,2

(b)

0,1 0,2 0,3 0,4

2

1,2 1,1

(c)

0,1 0,2 0,3 0,4

Figure 3: Examples where the same set of acti-
vated experts interconnect differently. MoMOR al-
ways generates the same output for (a), (b) and (c),
while S’MoRE can distinguish all the three cases.
A variant of S’MoRE that performs activation σ dif-
ferently (§3.6) can differentiate (a) from (b) or (c),
but cannot differentiate (b) from (c). Note that (b)
and (c) differ by swapped “1,1” and “1,2”.

We explain the intuition of the proof, and de-
fer the details to Appendix C.2. First, ΓS’MoRE
quantifies the number of non-isomorphic depth-
L trees that can be formed by any router. Each
node at tree-level ℓ (i.e., an expert in RL−ℓ;
the same expert may appear multiple times at
tree-level ℓ under different ancestor paths) has
ω =

(
sL−ℓ−1

fL−ℓ−1

)
ways of selecting its children set.

All nodes at tree-level ℓ jointly contribute to a
ωFL−ℓ factor. Secondly, S’MoRE can generate
distinct outputs for all non-isomorphic sub-trees.
We borrow conclusions from the Graph Neural
Network literature. We view Eq. 3 as defining
a variant of Graph Isomorphism Network (GIN)
[Xu et al., 2019]. S’MoRE’s L-layer propagation
simulates the L-iteration Weisfeiler-Lehman (WL) test [Huang and Villar, 2021], where including
non-linearly activated σ is the key to ensure an injective “color refinement” process in WL. It then
follows that the L layer S’MoRE can distinguish non-isomorphic trees of depth L. Third, without acti-
vation σ, S’MoRE degrades to MoMOR, and is unable to distinguish many non-isomorphic depth-L
trees. Fig. 3 shows 3 examples with L = 2. Node 2 is the final output node (tree root). When we
activate the same set of experts (“0,1”, “0,2”, “0,3”, “0,4”, “1,1”, “1,2”) but connect them differently
(non-isomorphic), MoMOR always generates the same output while S’MoRE can produce different
ones. This shows ΓMoMOR < ΓS’MoRE and S’MoRE’s higher expressivity.

3.6 Model Variants

How activation σ affects structural learning. Theorem 3.4 concretely shows the benefit of including
activation σ in Eq. 3. What if we tweak Eq. 3 to let σ operate on xn

ℓ rather than Bn
ℓ ·An

ℓ ·x+Wℓ ·xn
ℓ ?

xi
ℓ+1 =

∑
n∈N i

ℓ

αi,n
ℓ · (Bn

ℓ ·An
ℓ · x+Wℓ · σ (xn

ℓ )) (10)

We can then decompose Eq. 38 as
∑

n∈N i
ℓ
Bn

ℓ ·An
ℓ · x +

∑
n∈N i

ℓ
Wℓ · σ (xn

ℓ ) (ignoring αi,n
ℓ for

simplicity), and use Fig. 3 as an example to understand its expressive power. Trees (a) and (b) have
the same layer-2 experts, “1,1” and “1,2”, making their gray terms equivalent. Yet, their different
layer-1 children combinations (tree (a) has “0,1” + “0,3” and “0,2” + “0,4”, while tree (b) has “0,1” +
“0,2” and “0,3” + “0,4”) make their green terms different. This enables Eq. 38 to differentiate (a)
from (b). Following this reasoning, for (b) and (c), their gray and green terms are both equal. Thus,
Eq. 38 yields identical outputs for the two trees, even though they are non-isomorphic.
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Corollary 3.5. Let Γℓ
S’MoRE * be the structural flexibility of ℓ-layer S’MoRE variant under Eq. 38. It

satisfies the following recursion: Γℓ
S’MoRE * =

(
sℓ−1

fℓ−1

)
·
(Γℓ−1

S’MoRE *+fℓ−1−1
fℓ−1

)
, where Γ0

S’MoRE * := 1.

It is easy to see that S’MoRE under Eq. 3 is more expressive than S’MoRE * under Eq. 38. Further,
both S’MoRE variants are stronger than the baseline 1-layer MoEs. This is also illustrated by Fig. 3.

S’MoRE with cross-layer parameter sharing. We introduce S’MoRE #, another useful variant which
lets the experts of different layers share the same parameters. i.e., s := sℓ and r := rℓ are the same
for all layers ℓ. And Ai := Ai

ℓ and Bi := Bi
ℓ for all ℓ and 1 ≤ i ≤ s. This means experts in different

layers now operate in the same embedding subspace, and hence the intermediate hidden dimension
d := dℓ is the same for all ℓ – we update Eq. 4 as d = s · r. The layers still propagate by Eq. 3.

We summarize the properties of S’MoRE #. Following similar derivation2 in §3.4 (plugging in d
above), we conclude S’MoRE # has comparable parameter & computation efficiency as the vanilla
LoRA. The structural flexibility below also has a similar form as Theorem 3.4 – S’MoRE and S’MoRE #

exponentially boost structural flexibility of the 1-layer baselines, MoMOR and MoLRE, respectively.

Corollary 3.6. The structural flexibility of S’MoRE # equals
∏L−1

ℓ=0

(
s
f

)Fℓ+1 where FL := 1.

Alternative router design (bottom-up version). In addition to the top-down router in §3.3, we
can also perform bottom-up routing, making the routing and layer propagation flow along the same
direction. The bottom-up router still aims at customizing different children experts for different
parents. Yet, when routing bottom-up, the parent index is unknown when we select the children. So
now the key vector k (see Eq. 6) is not directly associated with any specific parent expert. It instead
represents a node position in the routing tree. See Appendix B.2 for details and tradeoff discussion.

4 Experiments
4.1 Experimental Setup

Datasets. We fine-tune on a diverse set of benchmarks, including ARC-c/e [Clark et al., 2018],
Commonsense QA (CSQA) [Talmor et al., 2018], OpenBook QA (OBQA) [Mihaylov et al., 2018],
Winogrande [Sakaguchi et al., 2021], GSM8K [Cobbe et al., 2021], and HumanEval [Chen et al.,
2021]. For HumanEval, we follow Tian et al. [2024] to train the base LLM on CodeAlpaca [Chaud-
hary, 2023], and evaluate “Pass@1” on HumanEval. For all other datasets, we fine-tune on the
training split and evaluate “Accuracy” on the test split. See Appendix §D.1 for more details.

Base models & baselines. We use LLaMA 3.2-1B, LLaMA 3-8B [Dubey et al., 2024] and Gemma
2-9B [Team et al., 2024b] as the base models. We insert adapters of different kinds: 1. LoRA [Hu
et al., 2021]; 2. mixture of LoRA experts (MixLoRA [Li et al., 2024a]): the state-of-the art parameter
efficient MoE adapter, which is essentially the single-layer version of S’MoRE; 3. HydraLoRA [Tian
et al., 2024]: another state-of-the-art PEFT adapter implementing a MoE variant of LoRA by splitting
LoRA’s up-projection B into multiple heads, and combining the multi-head outputs via scores
from a dense gate; and 4. S’MoRE: the multi-layer extension of the above. To further evaluate the
generalizability, we implement 3 variants of MixLoRA and S’MoRE using different gates (see §3.3
and Appendix B.1): 2 sparse gates (noisy top-k [Shazeer et al., 2017] and switch-transformer [Fedus
et al., 2022b] gates), and 1 dense gate (same as HydraLoRA [Tian et al., 2024]). See Appendix D.2.

Training & evaluation methodology. For hyperparameter tuning, we train all models using the
same number of epochs, learning rate schedule, gradient accumulation steps and machine type. All
models are trained under the LLaMA-Factory [Zheng et al., 2024] framework and evaluated with
OpenCompass [Contributors, 2023b]. For hyperparameter search, we set an equal budget of trainable
parameters, and vary the expert rank, the number of experts, the number of activated experts, etc. See
Appendix D.2 for details of the hyperparameter range, and the hardware / software configuration.

4.2 Main Results

Table 2 presents the comprehensive comparison on accuracy and parameter efficiency. For all the
base model and the gate type, we consistently observe that S’MoRE achieves significant accuracy
improvement without sacrificing parameter efficiency. Specifically, 1. Among all the methods,
while LoRA’s parameter counts are low, its average accuracy is also the lowest. This implies the

2In S’MoRE #, the same expert may be activated in multiple layers. To avoid redundancy, we first collect the
set of activated experts across all layers, and then compute Bi ·Ai · x only once for each activated expert i.
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Table 2: Comparison under two base models & three gate types. The hyperparameter search sets the
same parameter budget for all models. The “Param.” column denotes the trainable parameters (B) for
the highest-accuracy model. In the “Method” column, number in parentheses denote the number of
experts / heads (“4-4” denotes a 2-layer S’MoRE, each with 4 experts). Highest accuracy under the
same gate is highlighted in bold, and highest accuracy across all gates is highlighted in red.

Gate Method ARC-c ARC-e CSQA OBQA Winogrande Avg
Acc.

Avg
Param.Acc. Param. Acc. Param. Acc. Param. Acc. Param. Acc. Param.

Base 32.54 0 66.31 0 23.67 0 43.80 0 50.75 0 43.41 0
LoRA 36.27 0.004 74.78 0.002 63.80 0.063 71.20 0.031 50.59 0.008 59.15 0.022

HydraLoRA (4) 35.93 0.006 73.54 0.023 66.34 0.002 71.60 0.023 50.75 0.012 59.63 0.013
HydraLoRA (8) 35.93 0.012 72.31 0.007 62.08 0.042 71.60 0.012 50.99 0.012 58.58 0.017
MixLoRA (4) 39.66 0.021 72.84 0.134 65.44 0.134 70.40 0.134 51.30 0.007 59.93 0.086
MixLoRA (8) 39.32 0.021 74.78 0.270 66.42 0.069 69.60 0.134 51.14 0.037 60.25 0.106
S’MoRE (2-2) 40.00 0.017 75.31 0.085 66.99 0.037 72.20 0.085 52.01 0.015 61.30 0.048

D
en

se

S’MoRE (4-4) 39.66 0.017 74.43 0.085 67.32 0.045 72.80 0.202 52.01 0.168 61.24 0.103

MixLoRA (4) 39.32 0.037 71.96 0.069 64.70 0.134 70.00 0.134 51.46 0.069 59.49 0.089
MixLoRA (8) 37.97 0.069 72.84 0.270 65.03 0.134 70.80 0.270 51.46 0.069 59.62 0.162
S’MoRE (2-2) 39.66 0.029 73.19 0.135 64.95 0.135 70.00 0.102 51.54 0.029 59.87 0.086N

oi
sy

to
p-
k

S’MoRE (4-4) 39.66 0.037 74.96 0.135 66.26 0.102 71.40 0.135 52.17 0.273 60.89 0.136

MixLoRA (4) 38.98 0.021 73.37 0.134 66.42 0.069 72.00 0.134 51.22 0.009 60.40 0.073
MixLoRA (8) 39.32 0.021 73.72 0.069 65.85 0.134 71.80 0.134 51.30 0.021 60.40 0.076
S’MoRE (2-2) 39.66 0.029 74.78 0.135 66.75 0.069 71.40 0.102 52.25 0.045 60.97 0.076

L
L

aM
A

3.
2

1B

Sw
itc

h

S’MoRE (4-4) 40.34 0.021 74.78 0.168 67.16 0.202 72.40 0.085 52.09 0.021 61.35 0.099

Base 80.34 0 89.77 0 70.35 0 73.80 0 59.91 0 74.83 0
LoRA 81.69 0.028 91.36 0.028 81.00 0.028 87.00 0.028 81.77 0.028 84.56 0.028

HydraLoRA (4) 83.39 0.013 91.53 0.160 81.82 0.013 88.20 0.082 83.82 0.160 85.75 0.086
HydraLoRA (8) 81.69 0.079 91.53 0.015 81.49 0.024 86.60 0.015 84.14 0.297 85.09 0.086
MixLoRA (4) 81.69 0.026 92.24 0.247 81.24 0.033 89.40 0.478 84.06 0.247 85.73 0.206
MixLoRA (8) 82.37 0.132 91.71 0.247 81.00 0.033 88.60 0.075 85.40 0.478 85.82 0.193
S’MoRE (2-2) 82.37 0.090 92.24 0.190 81.90 0.037 89.40 0.054 88.24 0.480 86.83 0.170

D
en

se

S’MoRE (4-4) 82.71 0.190 91.89 0.247 81.90 0.033 90.00 0.076 85.48 0.247 86.40 0.157

MixLoRA (4) 82.37 0.075 91.53 0.247 80.75 0.075 87.80 0.075 82.00 0.478 84.89 0.190
MixLoRA (8) 83.39 0.950 91.53 0.247 80.67 0.075 88.40 0.247 83.19 0.478 85.44 0.399
S’MoRE (2-2) 82.37 0.305 91.36 0.090 81.82 0.104 88.20 0.047 83.27 0.190 85.40 0.147N

oi
sy

to
p-
k

S’MoRE (4-4) 82.37 0.104 91.71 0.305 82.06 0.047 90.00 0.480 85.48 0.714 86.32 0.330

MixLoRA (4) 82.37 0.132 92.95 0.478 81.08 0.047 88.80 0.478 84.53 0.247 85.95 0.276
MixLoRA (8) 82.03 0.033 91.71 0.132 81.24 0.047 88.60 0.247 85.95 0.950 85.91 0.282
S’MoRE (2-2) 83.05 0.133 92.24 0.061 81.82 0.029 89.80 0.076 86.42 0.247 86.67 0.109

L
L

aM
A

3
8B

Sw
itc

h

S’MoRE (4-4) 83.39 0.076 92.42 0.305 82.15 0.047 89.80 0.305 85.87 0.305 86.73 0.208

necessity of more advanced PEFT adapters of higher model capacity. 2. For models using dense
gates, HydraLoRA achieves the lowest parameter count. However, its average accuracy is notably
lower than both the 1-layer MoE model MixLoRA and the 2-layer S’MoRE. Since for all models,
we set the same parameter budget for hyperparameter tuning, this means that HydraLoRA cannot
effectively utilize more parameters to boost its accuracy (see also Fig. 4). 3. On all gate types, S’MoRE
achieves significantly higher average accuracy than all baselines. In particular, MixLoRA belongs
to the MoLRE family (§3.1) whose layer operation can be categorized by Eq. 1. Thus, it can be
seen as a single-layer S’MoRE. Clearly, building a two-layer structure (“2-2” or “4-4”) from a flat
layer of experts (“4” or “8”) boosts the accuracy without requiring additional trainable parameters.
4. Finally, the comparable parameter counts of MixLoRA and S’MoRE implies that our multi-layer
design introduces low parameter overhead, which is consistent with our analysis in §3.4.

Table 3: LLaMA 3-8B: model Accuracy /
Pass@1, and the best-performing models’ train-
able parameters (B).

Gate Method GSM8K HumanEval
Accuracy Param. (B) Pass@1 Param. (B)

Base model 55.95 0 26.22 0
LoRA 59.97 0.014 43.29 0.014

HydraLoRA (4) 62.47 0.317 40.85 0.082
HydraLoRA (8) 62.24 0.297 44.51 0.079

MixLoRA (4) 61.11 0.132 39.02 0.026
MixLoRA (8) 59.36 0.132 40.85 0.033
S’MoRE (2-2) 62.40 0.104 42.07 0.090

D
en

se

S’MoRE (4-4) 65.20 0.957 43.90 0.104

MixLoRA (4) 59.67 0.047 42.68 0.075
MixLoRA (8) 61.56 0.247 39.63 0.247
S’MoRE (2-2) 62.47 0.133 45.73 0.190Sw

itc
h

S’MoRE (4-4) 63.91 0.957 42.07 0.090

Figure 4: Change of accuracy w.r.t. trainable
parameters, corresponding to models in Table 3.
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Table 4: Results on Gemma 2-9B. We evaluate on representative benchmarks due to limited resources.

Method ARC-e CSQA Winogrande HumanEval Avg
Acc. / Pass@1

Avg
Param. (B)Accuracy Param. (B) Accuracy Param. (B) Accuracy Param. (B) Pass@1 Param. (B)

LoRA 79.72 0.289 85.91 0.145 87.06 0.145 43.29 0.072 74.00 0.163
MixLoRA (4) 85.54 0.059 85.83 0.096 88.79 0.169 43.29 0.096 75.86 0.105
MixLoRA (8) 83.07 0.168 85.83 0.096 89.19 0.315 44.51 0.168 75.65 0.187
S’MoRE (2-2) 86.24 0.042 86.40 0.169 90.13 0.169 44.51 0.096 76.82 0.119
S’MoRE (4-4) 86.60 0.169 86.32 0.060 90.13 0.315 46.34 0.060 77.35 0.151

Table 5: S’MoRE on LLaMA 3.2-1B with more layers. We follow a simple hyperparameter tuning
strategy, ensuring the same design space sizes and parameter budgets for the 2- and 3-layer variants.

Layer sizes ARC-c ARC-e Commonsense QA OpenBook QA Winogrande
Accuracy Param. (B) Accuracy Param. (B) Accuracy Param. (B) Accuracy Param. (B) Accuracy Param. (B)

2-2 40.00 0.017 75.31 0.085 66.99 0.037 72.20 0.085 52.01 0.011
2-2-2 39.32 0.017 74.25 0.102 67.40 0.053 72.60 0.205 52.88 0.011

4-4 39.66 0.017 74.43 0.085 67.32 0.045 72.80 0.202 52.01 0.168
4-4-4 40.34 0.029 73.90 0.205 67.32 0.053 73.60 0.202 52.09 0.013

4.3 Results on GSM8K & HumanEval

We evaluate on GSM8K and HumanEval using LLaMA 3-8B. The observations on accuracy / Pass@1
and parameter efficiency from Table 3 is consistent with those from Table 2: S’MoRE achieves
significant accuracy improvement while maintaining parameter efficiency. Fig. 4 helps us better
understand how the model accuracy scales with the amount of trainable parameters. 1) For S’MoRE,
the accuracy consistently increases with parameters in the low-parameter region (less then 0.2B). Then
the accuracy drops when we keep increasing the parameters. Interestingly, in the region from 0.4B to
1B, we see an almost linear increase of accuracy w.r.t. parameters – the accuracy eventually surpasses
that of all other models with a large margin at around 1B. 2) For HydraLoRA, its accuracy peaks at
around 0.3B. Unlike S’MoRE, keeping increasing the parameters does not help with HydraLoRA’s
accuracy improvement. This observation is consistent with Table 2. 3) Similar to HydraLoRA, the
1-layer MixLoRA does not show good scaling of accuracy w.r.t. parameters. S’MoRE may discover
good structures among experts, which in turn helps experts better utilize their parameters.

4.4 Evaluation on Gemma

We extend our evaluation to the Gemma model family. Table 4 shows the comparison with represen-
tative baselines. Consistent with the observations on the LLaMA family, S’MoRE achieves significant
boost in accuracy / Pass@1 with comparable or fewer parameters (see “MixLoRA (4) vs. S’MoRE
(2-2)” and “MixLoRA (8) vs. S’MoRE (4-4)”). The performance gains across multiple model scales
(1B, 7B, 9B) and model families (LLaMA, Gemma) reaffirm the benefits from structural mixture.

4.5 Scaling up with Layers

We evaluate if increasing the number of S’MoRE layers can further improve accuracy. We follow a
simple hyperparameter tuning strategy: for all the 2-layer S’MoRE under consideration, we add a
3rd layer with identical configuration (w.r.t. number of experts s, fanout f , expert dimension r, etc.)
as the 2nd layer. Thus, the sizes of the design spaces for the 3-layer and 2-layer S’MoRE are equal.
We also enforce the same parameter budget for the 2- and 3-layer models. Table 5 summarizes the
comparison. Adding one more layer improves accuracy significantly in many cases. The accuracy
improvements do not necessarily come at the cost of more parameters. For example, for Winogrande,
“2-2-2” structure improves the accuracy of “2-2” by 0.87 with the same parameter count.

5 Conclusion
We introduced S’MoRE, a novel Structural Mixture of Residual Experts framework that jointly
achieves the efficiency of low-rank adaptation (LoRA) with the flexibility of Mixture-of-Experts
(MoE), and further boosts MoE’s model capacity by exploiting experts’ inherent structure. By
applying hierarchical residual decomposition and tree-based routing, S’MoRE effectively emulates
exponentially more experts without instantiating additional expert instances, and achieves similar
computation and parameter efficiency as the vanilla LoRA. We further propose a structural flexibility
metric to quantify the model capacity, and theoretically show that S’MoRE’s unique model architecture
design is the key to boost structural flexibility compared with various LoRA-MoE hybrids. On
extensive experiments, we confirm S’MoRE’s state-of-the-art fine-tuning performance.
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Justification: The abstract and introduction clearly state the claims made.
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made in the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix E.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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Answer: [Yes]
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Justification: The full set of assumptions and a complete proof are provided in either the
main paper or its appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is released at: https://github.com/ZimpleX/SMoRE-LLM.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We release all the training and test details in our experiment section and
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and other statistical significance tests are conducted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computational resources we used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


Table of Contents (Appendix)

A More Related Works 23

B Details of Model Design 24

B.1 Three types of gates implemented in practice . . . . . . . . . . . . . . . . . . . . 24

B.2 Alternative design: bottom-up routing . . . . . . . . . . . . . . . . . . . . . . . . 24

C Details of Theoretical Analysis 25

C.1 Derivation of parameter & computation costs . . . . . . . . . . . . . . . . . . . . 25

C.2 Proof of model capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2.1 Proof for two special S’MoRE configurations . . . . . . . . . . . . . . . . 26

C.2.2 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.2.3 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.2.4 Proof of Corollary 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

C.2.5 Proof of Corollary 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D Additional Experimental Results 36

D.1 Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.2 More details on experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D.3 Wall-clock time & potential system optimizations . . . . . . . . . . . . . . . . . . 37

D.4 Routing cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E Limitations and Broader Impact 38

A More Related Works
More related works on MoE. In addition to the works mentioned in §2, we list a few additional
works that explore MoE designs in LLM. LLaMA-MoE [Zhu et al., 2024] applies Mixture-of-Experts
under the Continual Pre-training (CPT) setting. It breaks down LLaMA’s pre-trained weight matrices
into sub-matrices and use them to initialize the experts’ parameters. MC-SMoE [Li et al., 2024b]
discovers that there exists high redundancy among experts, and correspondingly proposes algorithms
to cluster, merge and then compress a model with many experts. MoA [Feng et al., 2024] explores
Mixture-of-LoRAs for the multi-task tuning scenarios, where it trains a LoRA for each task separately,
and then assembles the multiple LoRAs into an MoE where a learnable router selects the most suitable
expert based on the task category.

Heterogeneous experts. In most MoE models, experts are homogeneous and may have an identical
model architecture. Heterogeneous experts have been recently explored in language modeling [Raposo
et al., 2024, Ainslie et al., 2023] and graph learning [Zeng et al., 2024]. MoD [Raposo et al., 2024]
and CoLT5 [Ainslie et al., 2023] consider the combination of light and heavy experts so that tokens
through the light path can be processed faster and more cheaply. Mowst [Zeng et al., 2024] further
discovers that mixture of weak and strong experts can enhance MoE’s capacity beyond that of a
strong expert alone. However, existing heterogeneous MoE designs consider a horizontal stacking of
different types of experts, where the weak/light branch operates in parallel to the strong/heavy one.
However, in S’MoRE, the residuals of different orders can also be interpreted as experts of different
strength, with the 1st-order residuals being the strongest. And we explore a vertical stacking design
where the higher-order residuals transform and propagate to the lower-order ones. The heterogeneous
expert design in S’MoRE encodes additional structural information than existing models.
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Scaling behavior. There is an emerging trend to research the unique scaling behaviors of MoE
systems compared with dense models. Ludziejewski et al. [2024] summarizes a scaling law indicating
that finer expert granularity may improve model capacity, and He [2024] provides a practical
implementation for very large number of experts. Zhao et al. [2025] applies such fine-grained experts
in the fine-tuning tasks. Through analysis and experiments, we hypothesize that “structural flexibility”
may be a neglected yet critical factor impacting MoE scaling. S’MoRE has the potential to scale better
than regular MoEs, for fine-tuning tasks and beyond. We leave the application of S’MoRE on other
types of tasks as future work.

B Details of Model Design
B.1 Three types of gates implemented in practice

In our experiments, we implement S’MoRE and the baselines with various types of dense and sparse
gates, which we describe in more details here:

• Dense gate: Here we activate all children experts, meaning that fℓ = sℓ. For each children, the
expert score α is still generated by the gating neural net. So the dense gate can be understood as
a soft version of the sparse gates below. Now since all experts are activated, we do not include
additional auxiliary loss for load-balance of all the experts. The same dense gate design is also
used by HydraLoRA [Tian et al., 2024] which we include as one of the experimental baselines
(see §4).

• Sparse noisy top-k gate [Shazeer et al., 2017]: For each layer ℓ, the router selects the top k = fℓ
children residuals with the highest gating scores (generated by Eq. 6). However, a common issue
with sparse expert selection is expert under-utilization, where certain experts are overused while
others remain idle, resulting in inefficient training dynamics. To address this, following [Shazeer
et al., 2017], we first add a learnable noise term on top of gating score α, to encourage exploration
of different expert choices. Then we implement a layer-wise importance loss plus balance loss,
computed separately for each set of experts Rℓ based on gating score distribution and activation
frequency. We sum up the two auxiliary losses of each S’MoRE layer and each transformer layer,
and add it to the model prediction cross-entropy (CE) loss, i.e.,

Ltotal = LCE + γ ·
Ltrans∑

ℓtrans=1

L∑
ℓ=1

(
Limportance
ℓtrans,ℓ

+ Lbalance
ℓtrans,ℓ

)
, (11)

where Ltrans denotes the total number of transformer layers and γ is a coefficient (≪ 1) controlling
the strength of the load-balance constraint. The importance and balance loss computation exactly
follows the original paper (see Section 4 and Appendix A of Shazeer et al. [2017]).

• Sparse switch-transformer gate [Fedus et al., 2022b]: This is another popular sparse gate design.
There are two main differences from the noisy top-k gate above. First, the switch gate implements
an optional jitter noise that is applied to the gate’s input embedding rather than the final gating
score. In addition, the switch gate integrates a different way to compute the load-balance auxiliary
loss. The auxiliary losses of all transformer and S’MoRE layers are still added back to the CE loss
of the main task, just like Eq. 11. To ensure fair comparison in experiments, we exactly follow
the balance loss implementation in the MixLoRA codebase3.

B.2 Alternative design: bottom-up routing

We propose the following bottom-up router fully compatible with S’MoRE’s structural mixing design.

In bottom-up routing, our goal remains the same as the top-down router of §3.3: to customize different
children experts for different parents. Yet, under bottom-up routing, the parent index is unknown
when we decide the children. So in our design, we will still include a key vector k (see Eq. 6). Yet
this k is not directly associated with any specific parent expert. It represents a node position in the
routing tree.

To avoid the discussion being overwhelmed by notations, we use the following example to illustrate
the core idea. Consider a 3-layer S’MoRE, where each layer has a fanout of f = 2, and has s = 6
experts. Like our original design, the router still has the following:

3https://github.com/TUDB-Labs/MixLoRA
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• a down-projection matrix that projects the original token x to ddown-dimensional xdown (e.g.,
ddown = 16);

• a small MLP in each layer (except layer 1).

In addition, we instantiate a learnable “key” tensor K in each layer. K’s last dimension is ddown = 16,
and K’s leading dimensions depend on the fanout in parent layers (except that for layer 1, K’s
dimension additionally depends on the number of experts). For example, in layer 1, K has shape
(2, 2, 6, 16). In layer 2 and 3, K’s shapes are (2, 2, 16) and (2, 16).

The routing proceeds as follows:

1. At layer 1, we compute dot product between K and xdown along the last dimension, generat-
ing a score tensor of shape (2, 2, 6). Taking the top-2 along the last dimension, we determine
the 2× 2× 2 children experts for all the 2× 2 parents.

2. Then we follow Eq. 3 to aggregate the children experts’ outputs, generating 2× 2 different
output embeddings.

3. In layer 2, we concatenate the 2× 2 layer-1 output embeddings and the (2, 2, 16)-shaped K,
along the last dimension. Then we feed the concatenated tensor into layer 2’s router MLP to
generate the score distribution over all 6 candidate experts. Taking the top-2 along the last
dimension of the MLP output, we now select the 2× 2 layer-2 experts, conditioned on the
layer-1 children.

4. Layer 3 operates similarly.

Comparison. From the above, it is clear that the bottom-up router is still computationally efficient
(similar to the original top-down router). Both the bottom-up and top-down designs can model the
interaction between parent and children experts. The main difference is that the bottom-up router
makes routing decisions based on the children’s aggregated embedding, while the top-down router
directly consumes the token embedding. So in the bottom-up design, the gradient can flow back to
the lower-layer experts from the router. This may lead to interesting training behaviors that differ
from the top-down case.

Due to limited GPUs resources, we are unable to run ablation with the bottom-up router. We leave
such evaluation as an important future work.

C Details of Theoretical Analysis
C.1 Derivation of parameter & computation costs

Here we provide additional algorithmic details for the parameter and computation efficiency calcula-
tion in §3.4.

Parameter efficiency. From Eq. 8, we have

Pℓ+1 = sℓ · d · rℓ + d2ℓ+1 (12)

Then Eq. 9 is derived as
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Pproj +

L∑
ℓ=1

Pℓ = d · dL +

L−1∑
ℓ=0

Pℓ+1

= d · dL +

L−1∑
ℓ=0

sℓ · d · rℓ +
L−1∑
ℓ=0

d2ℓ+1

= d · dL + d ·

(
L−1∑
ℓ=0

sℓ · rℓ

)
+

L−1∑
ℓ=0

d2ℓ+1

= d · dL + d · dL +

L−1∑
ℓ=0

d2ℓ+1

= 2 · d · dL +∆ (13)

where ∆ =

L−1∑
ℓ=0

d2ℓ+1 ≪ 2 · d · dL

Computation cost. In Eq. 3, each Bn
ℓ ·An

ℓ · x requires C ′ = d · rℓ + rℓ · dℓ+1 operations. Each
Wℓ · xn

ℓ requires C ′′ = dℓ · dℓ+1. Consider all activated experts i in layer ℓ+ 1, there can be at most
N ′ = min{sℓ, Fℓ} distinct Bn

ℓ ·An
ℓ terms, incurring C ′ cost N ′ times. There are Fℓ different xn

ℓ
inputs, each incurring C ′′ cost. Ignoring the element-wise addition “

∑
n∈N i

ℓ
” and multiplication

αi,n
ℓ , the total cost of layer ℓ+ 1 equals (where dℓ and Fℓ follow Eq. 4 and Eq. 5):

Cℓ+1 ≤ min{sℓ, Fℓ} · rℓ · (d+ dℓ+1) + Fℓ · dℓ · dℓ+1

= min{sℓ, Fℓ} · rℓ · d+min{sℓ, Fℓ} · rℓ · dℓ+1 + Fℓ · dℓ · dℓ+1

≤ sℓ · rℓ · d+ Fℓ · rℓ · dℓ+1 + Fℓ · dℓ · dℓ+1

= sℓ · rℓ · d+ Fℓ · dℓ+1 · (dℓ + rℓ) (14)

The cost of the final projection equals Cproj = d · dL. So the overall computation cost is:

Cproj +

L∑
ℓ=1

Cℓ = d · dL + d ·

(
L−1∑
ℓ=0

sℓ · rℓ

)
+∆′ (b)

= 2 · d · dL +∆′ (c)
≈ 2 · d · dL (15)

where ∆′ ≤
∑L−1

ℓ=0 Fℓ · dℓ+1 · (dℓ + rℓ). Steps “(b)” and “(c)” follow similar reasoning to Eq. 9.

Under practical values of dℓ + rℓ ≤ dℓ+1 ≪ d, the overhead term ∆′ is small or negli-
gible compared to the main cost 2 · d · dL. In Table 6, we empirically calculate the value
of 2 · d · dL, the overhead ∆′, and their ratio. We take a representative configuration with
fℓ = 2, sℓ = 4, and rℓ = 8 or 16 for all layers ℓ (consistent with the experiments in §4).

Table 6: Overhead ∆′ compared with
the main computation cost 2 · d · dL
rℓ L dL 2 · d · dL ∆′ Overhead ratio

8
2 64 0.5M 0.006M 1.2%
3 96 0.8M 0.026M 3.3%
4 128 1.0M 0.079M 7.5%

16
2 128 1.0M 0.025M 2.3%
3 192 1.6M 0.104M 6.6%
4 256 2.1M 0.315M 15.0%

For 2 layers, the overhead ∆′ is just 1.2% (or 2.3%) of the
cost of vanilla LoRA with rank dL = 64 (or dL = 128).

Similar to the analysis in the “Parameter efficiency” para-
graph, the gating MLPs are lightweight compared to the
main cost 2 · d · dL, due to the small dimensionalities.

Thus, the total computation cost of S’MoRE is approximately
2 · d · dL, which is the same as the cost of a vanilla LoRA
with rank dL. This proves the both parameter and the computation efficiency of S’MoRE.

C.2 Proof of model capacity

C.2.1 Proof for two special S’MoRE configurations

Proposition C.1. (Proposition 3.1) S’MoRE can express MoLRE, when L = 1 and σ (·) is the identity
mapping.

Proof. When L = 1, there is only a single layer propagation. When we set σ as the identity mapping,
Eq. 3 becomes
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x1 =
∑
n∈N0

αn
ℓ ·Bn

0 ·An
0 · x (16)

where we omit the superscript i since there is just one parent node (the root of all all experts in a flat
layer).

Combined with the final projection (see end of §3.2), the final output is computed by

x′ = Wproj ·
∑
n∈N0

αn
ℓ ·Bn

0 ·An
0 · x

=
∑
n∈N0

αn
ℓ · (Wproj ·Bn

0 ) ·An
0 · x (17)

where An
0 ∈ Rr0×d, Bn

0 ∈ R(s0·r0)×r0 and Wproj ∈ Rd×(s0·r0).

For MoLRE with s0 rank-r0 experts, according to the definition in §3.1, we can express its layer
operation as

x̄′ =
∑
n∈N̄

ROUTE (x)
n · B̄n · Ān · x (18)

where we use overhead “bar” to distinguish variables of MoLRE from those of 1-layer S’MoRE. Here
Ān ∈ Rr0×d and B̄n ∈ Rd×r0 .

To make Eq. 17 and Eq. 18 equivalent, we can have

• S’MoRE’s router implementing as ROUTE (x)n

• An
0 = Ān (by definition, both matrices have the same shape)

• Bn
0 =



0r0
...

0r0
Ir0
0r0

...
0r0


, which is a binary matrix by vertically stacking s0 square blocks of r0 × r0

sub-matrices. The n-th block is a r0 × r0 identity matrix, Ir0 , while all the other blocks are
0 (denoted as 0r0 ).

• Wproj =
[
B̄1, . . . , B̄s0

]
.

Then Wproj ·Bn
0 = B̄n

0 . And Eq. 17 becomes identical to Eq. 18, completing the proof.

Proposition C.2. (Proposition 3.2) S’MoRE can express MoMOR, when setting σ (·) as the identity
mapping.

Proof. Without σ, we can collapse a multi-layer S’MoRE into a single-layer equivalent. For L = 2,
following Eq. 3, we have
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x2 =
∑
n∈N1

αn
1 · (Bn

1 ·An
1 · x+W1 · xn

1 )

=
∑
n∈N1

αn
1 ·Bn

1 ·An
1 · x+W1

∑
n∈N1

αn
1 ·

 ∑
m∈Nn

0

αn,m
0 ·Bm

0 ·Am
0 · x


=
∑
n∈N1

α̂n
1 ·Bn

1 ·An
1 · x+

∑
m∈N0

α̂m
0 · (W1 ·Bm

0 ·Am
0 ) · x (19)

where we define α̂n
1 = αn

1 and α̂m
0 =

∑
n∈N1 and m∈Nn

0
(αn

1 · αn,m
0 ).

In general, for L layers and with the final projection step Wproj, we can summarize the propagation
equation as

x′ =

L−1∑
ℓ=0

sℓ∑
i=1

α̂i
ℓ ·

(
L∏

k=ℓ+1

Wk

)
·Bi

ℓ ·Ai
ℓ · x (20)

where we define WL = Wproj ∈ Rd×dL and α̂i
ℓ is a scalar coefficient by aggregating the router

weights along all paths that end at the layer-(ℓ+ 1) expert i4. In other words, α̂i
ℓ generalizes the

definition of α̂m
0 above. The “path” here refers to the “ancestral path” (Definition C.5) ending at i.

See more discussion on the routing tree in Appendix C.2.3. Also, if an expert is never selected, we
let its α̂i

ℓ = 0. This way, we can replace the summation over Nℓ in Eq. 19 with the summation over
1 ≤ i ≤ sℓ in Eq. 20.

For MoMOR model, following Eq. 2, we write its layer propagation as

x′ =

L−1∑
ℓ=1

sℓ∑
i=1

ROUTEℓ (x)
i · B̄i

ℓ · Āi
ℓ · x (21)

We can make Eq. 20 and Eq. 21 equivalent by a similar construction as the proof for Proposition 3.1.
First, define a special binary projection matrix Pa×b ∈ {0, 1}a×b (where a > b) as

Pa×b =

[
0(a−b)×b

Ib×b

]
(22)

meaning that the first a− b rows of Pa×b are all 0, and the bottom b rows are an identity matrix. It is
easy to verify that for a > b > c:

Pa×b · Pb×c = Pa×c (23)

Then we can set all parameters of S’MoRE as follows:

• Let the S’MoRE router implement ROUTEℓ (x)
i.

• Let Ai
ℓ = Āi

ℓ.

• Let Bi
ℓ be a dℓ+1 × rℓ binary matrix, where its row (i− 1) · rℓ + 1 to row i · rℓ is a rℓ × rℓ

identity matrix, and its all other rows are all 0. Here we let both i and the row index start
from 1.

• Let WL = Wproj =
[
B̄1

0 , . . . , B̄
s0
0 , . . . , B̄1

L−1, . . . , B̄
sL−1

L−1

]
as the horizontal concatena-

tion of all MoMOR’s up-projection matrices B̄i
ℓ.

4The same expert i of layer ℓ + 1 may be selected multiple times, corresponding to different parents or
ancestors. Thus, there can be multiple paths ending at the layer-(ℓ+ 1) expert i.
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• Each Wk has shape dk+1 × dk where dk+1 = dk + sk · rk. We set it as Wk = Pdk+1×dk
.

Then it follows that
L−1∏

k=ℓ+1

Wk = PdL×dL−1
· PdL−1×dL−2

. . .Pdℓ+2×dℓ+1
= PdL×dℓ+1

(24)

⇒

(
L∏

k=ℓ+1

Wk

)
·Bi

ℓ = Wproj ·

(
L−1∏

k=ℓ+1

Wk

)
·Bi

ℓ

= Wproj · PdL×dℓ+1
·Bi

ℓ

= B̄i
ℓ (25)

Under the above construction, it is clear that Eq. 21 and Eq. 20 are exactly the same. Thus, S’MoRE
can express MoMOR, concluding the proof.

Remark. Note that the equivalence between S’MoRE and MoMOR can only be established when we
set the layer dimension dℓ according to Eq. 4. This can be seen from the “minimum dimensionality”
discussion in §3.2.

C.2.2 Proof of Theorem 3.3

Theorem C.3. (Theorem 3.3) The structural flexibility of MoMOR is upper-bounded by ΓMoMOR =

maxx,Θ dist (x; Θ) ≤
(
sL−1

fL−1

)
·
∏L−2

ℓ=0

(∑min{Fℓ,sℓ}
i=fℓ

(
sℓ
i

))
.

Proof. The upper bound of ΓMoMOR basically quantifies the total number of combinations to select
experts from each residual pool.

Assumption. We first simplify Eq. 2 that the router-generated coefficient ROUTEℓ (x)
i is just a binary

mask. i.e., for a selected expert i, we have ROUTEℓ (x)
i
= 1. Otherwise, ROUTEℓ (x)

i
= 0. Such an

assumption is just to ease the calculation of ΓMoMOR and ΓS’MoRE. It does not affect our fundamental
conclusion that S’MoRE yields exponentially higher structural flexibility than MoMOR.

Based on Eq. 2, the MoMOR output is generated by a flat summation of different-order residues.
Given any input x, the number of distinct outputs cannot exceed the number of distinct ways to select
residues from the pools R0, · · · ,RL−1. Here we show some examples to illustrate the meaning of
“distinct expert selection”.

• “Selecting experts 1,2,3 from R0” and “selecting experts 1,3,4 from R0” correspond to 2
distinct ways.

• “Selecting experts 1,2,3 from R0” and “selecting experts 3,2,1 from R0” correspond to the
same way, because there is no ordering among the selected experts5.

• “Selecting experts 1,1,3 from R0” and “selecting experts 1,3,3 from R0”6 correspond to the
same way due to our assumption of making ROUTEℓ (x)

i a binary mask. Basically we only
care about whether an expert is selected or not. It does not matter how many times an expert
is selected.

Remark. Distinct expert selections do not guarantee distinct outputs. For example, consider “select-
ing 1,2,3 from R0” and “selecting 1,3,4” from R0. Following the notation of Eq. 2, if the experts’
weights satisfy ∆W 1

0 +∆W 2
0 +∆W 3

0 = ∆W 1
0 +∆W 3

0 +∆W 4
0 , then the two case generates

the same output for all input x:

5The order among selected experts does not matter because the sum aggregation of Eq. 2 is permutation
invariant

6If we follow S’MoRE’s recursive expert selection process described in §3.3, the same expert of higher-order
may be selected multiple times, from different lower-order parents.
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∑
i∈{1,2,3}

∆W i
0 · x =

∑
j∈{1,3,4}

∆W j
0 · x (26)

Hence, counting the number of distinct ways of expert selection just gives an upper bound of ΓMoMOR,
because ΓMoMOR is defined on the number of distinct outputs.

Counting the combinations. For the RL−1 pool with size sL−1, there are
(
sL−1

fL−1

)
ways to pick

fL−1 residues. For RL−2 with ℓ ≤ L − 2, there are Fℓ+1 parents, each picking fℓ children in the
pool. Different parents can pick the same children. The number of distinct children selected by all
parents ranges from fℓ to min{Fℓ, sℓ}. This makes the total count

∑min{Fℓ,sℓ}
i=fℓ

(
sℓ
i

)
. From basic

Combinatorics, each layer ℓ contributes to a multiplicative factor in the total count. Thus, the final
upper bound is:

ΓMoMOR ≤
(
sL−1

fL−1

)
·
L−2∏
ℓ=0

min{Fℓ,sℓ}∑
i=fℓ

(
sℓ
i

) (27)

C.2.3 Proof of Theorem 3.4

Theorem C.4. (Theorem 3.4) Setting σ (·) as an MLP, there exists some Θ′ such that the structural
flexibility of S’MoRE is ΓS’MoRE = minx dist (x; Θ′) =

∏L−1
ℓ=0

(
sℓ
fℓ

)Fℓ+1 , where FL := 1.

Proof. We prove in two stages:

1. We show that following the routing process of S’MoRE, there can be ΓS’MoRE non-isomorphic
depth-L trees, where each tree node is an expert residue.

2. We construct a S’MoRE instance where its L-layer propagation (Eq. 3) generates distinct
outputs for all non-isomorphic trees above, regardless of input token embedding x.

Both can be proven by induction.

Assumption. Similar to Theorem 3.3, we make simplification to the layer propagation Eq. 3, that the
coefficient αi,n

ℓ is just a binary mask. i.e., for a selected children n, we have αi,n
ℓ = 1. Otherwise,

αi,n
ℓ = 0.

Stage 1: Number of non-isomorphic trees. Recall the expert selection / tree construction process in
§3.3: each active parent expert of layer ℓ+ 1 (in Rℓ) selects fℓ−1 children out of all the sℓ−1 experts
of layer ℓ. So by traversing all the L layers, the router builds a depth-L balanced tree (which has∏L−1

ℓ=0 fℓ leaf nodes in total). Note that

1. For each parent, its fℓ selected children are distinct (i.e., the same parent cannot select the
same child twice).

2. However, the same expert may appear in the same tree-level multiple times, corresponding
to different parents or ancestors.

3. There is no ordering among the selected children, since Eq. 3 performs “sum” aggregation
which is permutation invariant. e.g., it is equivalent to say that a parent of layer ℓ selects
“children 1,3,4” and “children 4,3,1”.

Due to Point 2 above, we cannot uniquely identify a tree node by the its corresponding expert’s layer
index and expert index. Yet, Points 1 and 3 ensure that any tree node n is uniquely identifiable by n’s
ancestral path Pn.
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Definition C.5. (Ancestral path Pn) Let (ℓ, i) denote expert i of layer ℓ. Suppose a tree-
node n at tree-level t corresponds to expert (L− t+ 1, i). Then n’s ancestral path, Pn =
((L− t+ 1, i) , (L− t+ 2, i′) , . . . , (L, i′···′)), defines the unique path to traverse from n up to
the tree root (where we treat the root as a virtual node that is the parent of all (L, i′···′), and we omit
the root in the path).

Definition C.6. (Leaves’ ancestral paths T ) Given a tree, define T = {Pn | n is a leaf node} as the
set of ancestral paths of all leaf nodes, where there are

∏L−1
ℓ=0 fℓ leaves, all at tree-level L.

Two trees are isomorphic if their structures are equivalent. That means, we can permute or swap
the children (together with their corresponding descendant sub-tree) of some parent nodes to make
the two trees look exactly the same. T enables us to define isomorphism. In our construction, the
children are not ordered (Point 3 above), and so permuting or swapping children does not change T .
Thus, isomorphic trees have the same T . On the other hand, we can show trees of the same T can be
made equivalent by permutation or swapping, and thus are isomorphic. In sum, we can define tree
isomorphism by T as follows:

Definition C.7. (Isomorphism) Given two trees, let their leaves’ ancestral paths be T and T ′. The
two trees are isomorphic if and only if T = T ′.

We next derive the number of depth-L non-isomorphic trees by induction.

Imagine that we apply the top-down expert selection from layer ℓ down to layer 1 (with ℓ ≥ 1): at
layer ℓ, we select fℓ−1 experts from sℓ−1 experts; at layer ℓ− 1, for each of the selected parent of
layer ℓ, we select fℓ−2 from sℓ−2 experts, and so on.

Induction hypothesis: the number of non-isomorphic trees yielded by such an expert-selection process
equals:

Γℓ
S’MoRE =

ℓ−1∏
k=0

(
sk
fk

)Fk+1/Fℓ

(28)

for some 1 ≤ ℓ < L.

Base case ℓ = 1: we are just sampling a single level. So the number of non-isomorphic trees equals
the number of total ways to select f0 experts from s0, which is

(
s0
f0

)
.

And

Γ1
S’MoRE =

1−1∏
k=0

(
sk
fk

)Fk+1/F1

=

(
s0
f0

)
(29)

So the base case holds.

Induction from ℓ to ℓ+ 1: To construct a tree by selecting experts from layer ℓ+ 1 to 1, we follow
two steps:

1. We select fℓ out of sℓ experts. Denote them as Eℓ = {(ℓ+ 1, i1) , . . . , (ℓ+ 1, ifℓ)}, where
ia ̸= ib for all a ̸= b.

2. We start from each (ℓ+ 1, im) and recursively activate experts from layer ℓ down to 1
(where 1 ≤ m ≤ fℓ), following the procedure described above. Denote each such tree by its
leaves’ ancestral paths, Tℓ,im .

Let Tℓ be the set of all possible Tℓ,im — note that Tℓ does not have subscript im, since an ancestral
path ends at a virtual root node independent of im (see Definition C.5), and thus Tℓ is the same for
all im. Based on the induction hypothesis, |Tℓ| = Γℓ

S’MoRE.
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For such a tree constructed by the two steps above, let Tℓ+1 be its leaves’ ancestral paths:

Tℓ+1 =

fℓ⋃
k=1

{p⊕ (ℓ+ 1, ik) | p ∈ Tℓ,ik} (30)

where “⊕” means appending (ℓ+ 1, ik) to the end of the path p. By Definition C.7, the total
number of non-isomorphic trees equals the number of distinct Tℓ+1, which can be calculated with the
following reasoning:

• There are
(
sℓ
fℓ

)
distinct ways to choose Eℓ of Step 1.

• For each choice of Eℓ, there are |Tℓ| choices of Tℓ,ik for each ik of Eℓ, leading to |Tℓ|fℓ
distinct combinations.

So the number of distinct Tℓ+1 equals:

|Tℓ+1| =
(
sℓ
fℓ

)
· |Tℓ|fℓ

=

(
sℓ
fℓ

)
·
(
Γℓ

S’MoRE

)fℓ
=

(
sℓ
fℓ

)
·

(
ℓ−1∏
k=0

(
sk
fk

)Fk+1/Fℓ
)fℓ

=

(
sℓ
fℓ

)
·
ℓ−1∏
k=0

(
sk
fk

)Fk+1·
fℓ
Fℓ

=

(
sℓ
fℓ

)Fℓ+1/Fℓ+1

·
ℓ−1∏
k=0

(
sk
fk

)Fk+1/Fℓ+1

=

ℓ∏
k=0

(
sk
fk

)Fk+1/Fℓ+1

= Γℓ+1
S’MoRE (31)

This completes the induction step. Thus, the total number of non-isomorphic trees for all L layers
equals ΓL

S’MoRE =
∏L−1

ℓ=0

(
sℓ
fℓ

)Fℓ+1/FL
=
∏L−1

ℓ=0

(
sℓ
fℓ

)Fℓ+1 where FL := 1.

Stage 2: Distinguishing non-isomorphic trees. We next show that there exists some parameters Θ′

such that the layer propagation following Eq. 3 generates distinct output for non-isomorphic trees.

Notational correction to Eq. 3: In §3.2, we use xi
ℓ to denote the output embedding where i is the

expert index. This notation is not precise since the same expert can appear as multiple tree nodes, as
discussed in the Stage 1 proof above. To make the correction, we instead let xi

ℓ denote the embedding
of node index i7 for tree-level L− ℓ, meaning that there can be xi

ℓ and xi′

ℓ mapped to the same expert,
where i ̸= i′.

Including the bias term: Our proof requires a minor modification of Eq. 3 to add a bias term bnk ∈
Rdk+1 associated with each expert n. So the updated layer propagation equation, adapted from Eq. 3
now becomes:

xi
ℓ+1 =

∑
n∈N i

ℓ

σ
(
Bn

ℓ ·An
ℓ · x+Wℓ · xi→n

ℓ + bnℓ
)

(32)

7In our terminology above, this means that each (ℓ, i) now corresponds to a distinct ancestral path.
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where ℓ is the layer index; i is the index of a tree node, while n is still the index of an expert. N i
ℓ

denotes the set of indices of the children experts selected by node i. Note, “i → n” means that a
tree node i picks a previous-layer expert n as its child. So with a slight abuse of notation, we use
superscript “i → n” to index such a child tree node. αi,n

ℓ of Eq. 3 is omitted since we simplify the
expert weight as binary mask, as stated above.

We are now ready for the proof.

First, note that since the operations by Eq. 3 are permutation invariant, S’MoRE will generate the
same output for all isomorphic trees.

Next, we consider non-isomorphic trees. Again we prove by induction.

Similar to the Stage 1 setting, we consider an expert-selection process from layer ℓ down to layer 1.
After building such an ℓ-level tree, the model propagates the input token x from layer 1 up to layer ℓ
to generate the output xℓ. Note, since in the induction step, the propagation terminates at xℓ, we do
not need to superscript xℓ with an additional node index i. In other words, xℓ here is analogous to
the final embedding xL described in §3.2.

Induction hypothesis: For any ℓ-level non-isomorphic trees Tℓ ̸= T ′
ℓ , we can set the layer 1 to ℓ

parameters of S’MoRE such that xℓ ̸= x′
ℓ.

Base case ℓ = 1: For a single layer, the propagation simplifies to

x1 =
∑
n∈N0

σ (Bn
0 ·An

0 · x+ bn0 ) (33)

where non-isomorphic trees under ℓ = 0 degrades to distinct neighbor sets N0.

We want distinct outputs xℓ ̸= x′
ℓ for all inputs x. So we have the following simple way to construct

the parameters:

• Bn
0 = 0 and An

0 = 0, which leads to Bn
0 ·An

0 · x+ bn0 = bn0 for all input x;

• Let the first element of bn0 store the expert index (an integer from 1 to s0), and the rest of
the elements be 0.

We reuse the following lemma from Xu et al. [2019]:

Lemma C.8. (see Lemma 5 of Xu et al. [2019]) Assume a countable input feature space X . There
exists a function f : X → Rd so that h (X) =

∑
x∈X f (x) is unique for each set X ⊂ X of

bounded size.

In our case, σ of Eq. 32 corresponds to function f of Lemma C.8, and we treat bn0 as the function’s
input features. The “feature space” consisting of all possible bn0 is clearly countable (since each
element of bn0 is either 0 or a bounded integer). The neighbor set N0 corresponds to X of Lemma
C.8, which can be an arbitrary combination of the children experts.

Thus, due to the universal approximation theorem [Hornik et al., 1989], we can instantiate σ as an
MLP to implement such a function f , to guarantee that all non-isomorphic trees get a unique output
x1. This proves the base case.

Induction from ℓ to ℓ+ 1: Consider two trees constructed by recursive expert selection from layer
ℓ + 1 to 1. We use “prime” to denote quantities of the second tree. For example, their leaves’
ancestral paths are Tℓ+1 and T ′

ℓ+1. According to the analysis in the Stage 1 proof above, there are
two possibilities to make the two trees non-isomorphic. i.e., Tℓ+1 ̸= T ′

ℓ+1:

1. The sets of level-1 nodes are different: Eℓ ̸= E ′
ℓ;

2. Otherwise, let Eℓ = E ′
ℓ = {(ℓ+ 1, i1) , . . . , (ℓ+ 1, ifℓ)}. There exists im such that Tℓ,im ̸=

T ′
ℓ,im

for some 1 ≤ m ≤ fℓ.

Our goal is to show that for each of the above cases, Eq. 32 can generate distinct outputs for Tℓ+1

and T ′
ℓ+1.
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Similar to the construction in the ℓ = 1 case, we set Bn
ℓ = 0 and An

ℓ = 0. And bnℓ is a one-hot vector
with the first element being the expert index (ranging from 1 to sℓ). Recall that Wℓ ∈ Rdℓ+1×dℓ

where dℓ+1 = sℓ · rℓ + dℓ (see Eq. 4). We set

Wℓ =

[
0(sℓ·rℓ)×dℓ

Idℓ×dℓ

]
(34)

where 0(sℓ·rℓ)×dℓ
is a (sℓ · rℓ)× dℓ all-0 matrix and Idℓ×dℓ

is a dℓ × dℓ identity matrix.

So Eq. 32 now becomes

xi
ℓ+1 =

∑
n∈N i

ℓ

σ

([
b̂nℓ

xi→n
ℓ

])
(35)

where b̂nℓ is a length-(sℓ · rℓ) vector by discarding the trailing 0s of bnℓ .

Since the layer-(ℓ+ 1) output corresponds to the tree root, we can ignore the index i. Also note that
i → n is essentially im of Eℓ above.

So we have

xℓ+1 =
∑
n∈Nℓ

σ

([
b̂nℓ
xim
ℓ

])
(36)

Finally, we go back to the two cases above that makes two trees non-isomorphic. Clearly, for either

case, the two non-isomorphic trees will have different sets of
[
b̂nℓ
xim
ℓ

]
. This allows us to apply Lemma

C.8, and conclude that the outputs xℓ+1 will also be different for the two non-isomorphic trees.

Note that 1. we are still dealing with a countable feature space, since there are finite number (i.e.,

Γℓ
S’MoRE) of distinct xim

ℓ ; 2. Different sets of
[
b̂nℓ
xim
ℓ

]
means different input “X” to function f in

Lemma C.8.

This completes the induction step from ℓ to ℓ+ 1.

In sum, our layer propagation function in Eq. 32 ensures that we can find some S’MoRE parameters
Θ′ such that all depth-L non-isomorphic trees will lead to distinct outputs xL.

Combining the proof for the two stages, we have shown that the “structural flexibility” of S’MoRE
equals

ΓS’MoRE =

L−1∏
ℓ=0

(
sℓ
fℓ

)Fℓ+1

. (37)

Final remark. In the proof, we require σ to be an MLP. In practice, we can implement σ simply as
non-linear activation (e.g., ReLU). It is easy to see that setting σ as “an MLP with a single hidden
layer of dimension dℓ+1” is equivalent to setting σ simply as an activation function — For the
single-layer MLP, the transformation matrix before the activation can be merged with Bn

ℓ ·An
ℓ and

Wℓ of the S’MoRE layer. The transformation matrix after the activation can be merged with the next
layer Wℓ+1.

Even if we implement σ as an MLP of at least 2 layers, it is still computation and parameter efficient.
The input dimension to the MLP is dℓ, which is small (compared with the dimension of the token
embeddings). Thus, it is reasonable to set the hidden dimension of the MLP layers also small. This
makes the overall MLP very compact. We can follow similar reasoning as §3.4.
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C.2.4 Proof of Corollary 3.5

Corollary C.9. (Corollary 3.5) Let Γℓ
S’MoRE * be the structural flexibility of ℓ-layer S’MoRE variant

under Eq. 38. It satisfies the following recursion: Γℓ
S’MoRE * =

(
sℓ−1

fℓ−1

)
·
(Γℓ−1

S’MoRE *+fℓ−1−1
fℓ−1

)
, where

Γ0
S’MoRE * := 1.

Proof. This proof utilizes the construction in proving Theorem 3.4.

First, we decompose Eq. 38 as (like before, we ignore router weight α for brevity):

xi
ℓ+1 =

∑
n∈N i

ℓ

(Bn
ℓ ·An

ℓ · x+Wℓ · σ (xn
ℓ )) (38)

=

∑
n∈N i

ℓ

Bn
ℓ ·An

ℓ · x


︸ ︷︷ ︸

(a)

+Wℓ ·

∑
n∈N i

ℓ

σ (xn
ℓ )


︸ ︷︷ ︸

(b)

(39)

We consider how many distinct values (a) and (b) can take.

Term (b). Suppose an ℓ-layer S’MoRE * can generate Γℓ
S’MoRE * distinct outputs, meaning that xn

ℓ can
take Γℓ

S’MoRE * different values – This is as if we have a pool of Γℓ
S’MoRE * distinct elements.

The first question is, if we take fℓ =
∣∣N i

ℓ

∣∣ elements from this pool (where the same element can be
taken multiple time, since different children n can have the same descendant sub-tree), how many
unique multisets8 can we obtain. This is a classic “combination with replacement” problem, and the
solution is

(
Γℓ

S’MoRE *+fℓ−1
fℓ

)
.

The second question is, can we encode each distinct multiset into distinct outputs via the form of∑
σ(·). Reusing Lemma C.89, the answer is affirmative.

So term (b) can take Γℓ
S’MoRE * distinct values.

Term (a). Since the router takes top-fℓ experts, there are in total
(
sℓ
fℓ

)
distinct N i

ℓ . The key problem
is if we perform the simple summation

∑
n∈N i

ℓ
without the mapping σ, can we ensure distinct output

for each distinct N i
ℓ (we cannot apply Lemma C.8 without σ)? i.e., for any N i

ℓ ̸= N i
ℓ
′, how can

we ensure
∑

n∈N i
ℓ
Bn

ℓ ·An
ℓ · x ̸=

∑
n′∈N i

ℓ
′ Bn′

ℓ ·An′

ℓ · x. Setting a bias term encoding the expert
index i, following Appendix C.2.3, does not work. A failure case is that N i

ℓ contains experts 1, 4
and N i

ℓ
′ contains experts 2, 3: 1 + 4 = 2 + 3 even through {1, 4} ≠ {2, 3}. Fortunately, there are

existing encoding schemes that satisfies our requirement. For example, we can encode the sℓ experts
into a “superincreasing sequence” where expert i is encoded into 2i. In this case, it is guaranteed that∑

n∈N i
ℓ
2n ̸=

∑
n′∈N i

ℓ
′ 2n

′
for any N i

ℓ ̸= N i
ℓ
′.

Combining (a) and (b). Finally, when we set Wℓ according to Eq. 34, we are guaranteed that any
two different pairs of (a) and (b) will have different values of “(a) + (b)”. This means the total number
of distinct xi

ℓ+1 we can obtain from Eq. 38 equals:

Γℓ+1
S’MoRE * =

(
sℓ
fℓ

)
·
(
Γℓ

S’MoRE * + fℓ − 1

fℓ

)
(40)

Lastly, when ℓ = 1, it is obvious that Γ1
S’MoRE * should be

(
s0
f0

)
. If we define Γ0

S’MoRE * := 1 and let

ℓ = 0, Eq. 40 becomes Γ1
S’MoRE * =

(
s0
f0

)
·
(
1+f0−1

f0

)
=
(
s0
f0

)
, which satisfies the initial condition.

This completes the proof.
8A multiset is a set where an element can appear multiple times.
9The original Lemma in Xu et al. [2019] is indeed derived on multisets.
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C.2.5 Proof of Corollary 3.6

Corollary C.10. (Corollary 3.6) The structural flexibility of S’MoRE # equals
∏L−1

ℓ=0

(
s
f

)Fℓ+1 where
FL := 1.

Proof. This proof follows almost exactly as the the proof of Theorem 3.4 in Appendix C.2.3. The
only difference is that now every layer has the same dimension d, rather than d being increased with
larger layer index ℓ.

This just requires the following minor modification to the proof in Appendix C.2.3:

• When applying Lemma C.8, instead of constructing the mapping X → Rd, we instead do
the mapping X → Rd′

, with any d′ < d (Note that the Lemma does not have constraint on
the output dimension d). So the output of

∑
σ (·) is in a d′-dimensional subspace of Rd.

• Updating Eq. 34, we set Wℓ to be a projection matrix with the first d− d′ rows being 0, and
the rest d′ rows being a projection from Rd to the Rd′

that
∑

σ (·) spans.

D Additional Experimental Results
D.1 Dataset details

We evaluate on a diverse set of benchmark consisting of 7 popular fine-tuning datasets. Specifically,
ARC-c and ARC-e [Clark et al., 2018] evaluate logical reasoning and world knowledge through
challenging multiple-choice questions. Commonsense QA [Talmor et al., 2018] assesses a model’s
grasp of everyday knowledge and implicit relationships. OpenBook QA [Mihaylov et al., 2018] re-
quires multi-step reasoning over scientific facts, while Winogrande [Sakaguchi et al., 2021] measures
commonsense pronoun resolution. Accuracy is used as the evaluation metric for all above datasets.
In addition, we evaluate the models on 2 more challenging datasets. GSM8K [Cobbe et al., 2021]
contains 8.5k high-quality linguistically diverse grade school math word problems. Deriving the
correct solution requires multi-step reasoning (2 to 8 steps) by the LLM model. CodeAlpaca [Chaud-
hary, 2023] contains 20k instruction-following data for fine-tuning LLM’s code generation capability.
HumanEval [Chen et al., 2021] consists of 164 hand-written programming problems, to access the
LLM’s capabilities in language comprehension, reasoning, algorithms, and simple mathematics. We
train the LLM on CodeAlpaca and then evaluate the checkpoint on HumanEval. We measure the
“Pass@1” metric, where we let the fine-tuned model to generate k = 1 solution for each problem, and
evaluate whether it can pass the unit tests.

D.2 More details on experimental setup

For all models, we insert the adapters to the feed forward networks (FFN) of all transformer layers of
the base models. Specifically, each FFN consists of an “up-projection” matrix, a “gate-projection”
matrix and a “down-projection” matrix. We insert the adapter to each of the three matrices.

To ensure a fair comparison, we set an equal budget for trainable adapter parameters and compare
different model architecture within this constraint. For LoRA [Hu et al., 2021], we vary the rank
r in {2k | 0 ≤ k ≤ 10}, and set the lora_alpha parameter as 2 · r following standard practice.
For MixLoRA [Li et al., 2024a], we adjust the number of experts within {4, 8}, keep the number
of active experts within {1, 2, 4}10 (while ensuring that it does not exceed half of the total experts),
and the expert dimension within {2k | 0 ≤ k ≤ 6}. For HydraLoRA [Tian et al., 2024], we vary the
number of heads in {4, 8}, and the rank r in {2k | 0 ≤ k ≤ 8}. For S’MoRE, in most experiments
(except the “scaling-up” study in Table 5), we limit S’MoRE to two layers due to resource constraints.
We vary the number of experts (s0, s1) within {(2, 2) , (4, 4)}: the fanout (f0, f1) is (1, 1) when

10“Number of active experts” is only set for the sparse gates (“noisy top-k” and “switch”). For dense gates,
the number of active experts equals total number of experts.
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Table 7: Wall-clock time (second) comparison

Method ARC-c ARC-e CSQA OBQA Winogrande Average

MixLoRA 426 794 3343 3539 3007 2222
S’MoRE 489 (1.15×) 957 (1.21×) 4289 (1.28×) 4406 (1.24×) 4014 (1.33×) 2831 (1.24×)

(s0, s1) = (2, 2) and is (2, 2) when (s0, s1) = (4, 4)11. We vary the expert dimension (r0, r1) within
{
(
2k, 2k

)
| 0 ≤ k ≤ 6} ∪ {

(
2k, 2k+1

)
| 0 ≤ k ≤ 5} ∪ {

(
2k, 2k+2

)
| 0 ≤ k ≤ 4}. All baselines

and S’MoRE are trained with 2 epochs, with learning rate 1e− 4. The learning rate follows a cosine
schedule.

Software & hardware. We implement S’MoRE by adding a customized adapter to the Hugging
Face PEFT library [Mangrulkar et al., 2022]. All models are trained via the LLaMA-Factory [Zheng
et al., 2024] SFT pipeline, ensuring a consistent execution environment. Similarly, all the evaluations
are conducted through OpenCompass [Contributors, 2023b], which is a unified evaluation frame-
work providing a standard API for all considered benchmarks. For the computation hardware, all
experiments are run on a single node with 4 NVIDIA A100 80GB GPUs.

D.3 Wall-clock time & potential system optimizations

While §3.4 ensures that S’MoRE theoretically incurs negligible computation overhead, it is true that
without system-level optimization, the multi-layer structure may increase the wall-clock time. Yet,
such overhead is small.

Measurement. Table 7 shows the wall-clock time to finish training of MixLoRA and S’MoRE,
measured on the same machine (with 4 NVIDIA A100 GPUs) and same software environment (based
on LLaMA-Factory). The backbone model is LLaMA 3-8B. Trainable parameters of MixLoRA (8
rank-64 experts) and S’MoRE (2 layers, each with 4 rank-64 experts) are comparable.

On average, S’MoRE incurs 24% wall-clock time overhead, which is relatively small. The above
measurement is based on S’MoRE under native PyTorch implementation, without any system op-
timization. It is reasonable to expect that the wall-clock time overhead can be further reduced by
applying standard techniques, such as

• CUDA kernel fusion, which combines the operation of multiple S’MoRE layers into a single
CUDA kernel. This can effectively reduce the “kernel launch” overhead associated with
deeper S’MoRE (in native PyTorch, each layer may require its own “kernel launch”).

• Token-level parallelism, which interleaves the processing of different layers across different
tokens. This is achievable by custom Triton kernels or torch.compile(..) optimization.
Such parallelism addresses the load-balance between the router and expert layers (since the
router is more lightweight than the expert propagation), which improves GPU utilization.
Such parallelism can also break the dependency between the top-down routing and bottom-
up propagation, as these two stages can be interleaved across tokens.

D.4 Routing cost

In Fig. 5, we visualize the router computation cost (Eq. 6) relative to that of the experts’ layer
propagation (Eq. 3), corresponding to the best-performing models in Table 2. The x-axis denotes
the different S’MoRE structures (in Table 2, we do not include the results corresponding to the
“4-2” and “8-8” S’MoRE architectures, due to space limit). The costs are measured by the total
number of arithmetic operations performed by the routers versus by the experts. In general, when the
residual rank rℓ is lower, the cost of routing becomes relatively higher (since the router operation is
independent of the ranks). However, in all cases, the routing cost is insignificant compared to the cost
of expert propagation (at most 26%). This is consistent with our theoretical complexity analysis in
§3.4.

11Same as above, the fanouts are only set for sparse gates. For dense gates, the fanout of layer ℓ equals the
total number of experts in layer ℓ
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Figure 5: Cost of router (Eq. 6) relative to expert propagation (Eq. 3), measured by their number of
arithmetic operations. Here we consider S’MoRE with noisy top-k gate on LLaMA 3.2-1B

E Limitations and Broader Impact
Limitations. This paper focuses on a novel model architecture design for parameter-efficient MoE,
whose computation graph differs from those of standard LoRA and single-layer MoE. We do not focus
on the corresponding system-level optimization, and thus our implementation of the S’MoRE layers is
written in native PyTorch. To optimally utilize the GPU resources and further accelerate the model
execution on commercial hardware, dedicated CUDA kernels may be developed and different levels
of execution parallelism (e.g., data-, model- and pipeline-parallelism) may be explored. In addition,
we may integrate S’MoRE into state-of-the-art LLM acceleration frameworks such as vLLM [Kwon
et al., 2023] or LMDeploy [Contributors, 2023a] to boost the practical execution speed. We treat such
system-level optimization as meaningful future work.

Broader impact. This work focuses on developing a new PEFT model for the general LLM fine-
tuning tasks. It does not have any direct negative societal impact. In the future, S’MoRE may be
extended to other tasks or models, to broaden its impact on the enhanced model capacity. For
example, we may apply the hierarchical residual design to foundation models under pre-training. The
dramatically improved “structural flexibility” under the same parameter and computation budget has
the potential to break the ceiling of the current scaling law for both the dense and MoE LLMs.
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