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Abstract

Task-oriented dialogue systems in healthcare001
are increasingly common and have been char-002
acterized by diverse architectures and objec-003
tives. Although they have been surveyed in004
the medical community from a non-technical005
perspective, a systematic review from a rigor-006
ous computational perspective remains notice-007
ably absent. This has resulted in limited knowl-008
edge of important implementation and replica-009
bility details, slowing the pace of innovation.010
To fill this gap, we investigated an initial pool011
of 4070 papers from well-known computer sci-012
ence, natural language processing, and artifi-013
cial intelligence venues, identifying 70 papers014
discussing the system-level implementation of015
task-oriented dialogue systems for healthcare016
applications. We comprehensively reviewed017
these papers, and present our key findings in-018
cluding identified gaps and corresponding rec-019
ommendations.020

1 Introduction021

Dialogue systems1 have a daily presence in many022

individuals’ lives, acting as virtual assistants (Hoy,023

2018), customer service agents (Xu et al., 2017),024

or even companions (Zhou et al., 2020). While025

some systems are designed to conduct unstructured026

conversations in open domains (chatbots), others027

(task-oriented dialogue systems) help users to com-028

plete tasks in a specific domain (Jurafsky and Mar-029

tin, 2009; Qin et al., 2019). Task-oriented dialogue030

systems can potentially play an important role in031

health and medical care (Laranjo et al., 2018), and032

they have been adopted by growing numbers of033

patients, caregivers, and clinicians (Kearns et al.,034

2019). Nonetheless, there remains a translational035

gap (Newman-Griffis et al., 2021) between cutting-036

edge, foundational work in dialogue systems and037

1We follow an inclusive definition of dialogue systems,
encompassing any intelligent systems designed to converse
with humans via natural language.

prototypical or deployed dialogue agents in health- 038

care settings. This limits the proliferation of scien- 039

tific progress to real-world systems, constraining 040

the potential benefits of fundamental research. 041

We move towards closing this gap by conducting 042

a comprehensive, scientifically rigorous analysis 043

of task-oriented healthcare dialogue systems. Our 044

underlying objectives are to (a) explore how these 045

systems have been employed to date, and (b) map 046

out their characteristics, shortcomings, and sub- 047

sequent opportunities for follow-up work. Impor- 048

tantly, we seek to address the limitations of prior 049

systematic reviews by extensively investigating the 050

included systems from a computational perspective. 051

Our primary contributions are as follows. (1) We 052

systematically search through 4070 papers from 053

well-known technical venues and identify 70 pa- 054

pers fitting our inclusion criteria.2 (2) We analyze 055

these systems based on many factors, including 056

system objective, language, architecture, modal- 057

ity, device type, and evaluation paradigm, among 058

others. (3) We identify common limitations across 059

systems, including an incomplete exploration of 060

architecture, replicability concerns, ethical and pri- 061

vacy issues, and minimal investigation of usability 062

or engagement. We offer practical suggestions for 063

addressing these as an on-ramp for future work. 064

In the long term, we hope that the gaps and op- 065

portunities identified in this survey can stimulate 066

more rapid advancements in the design of task- 067

oriented healthcare dialogue systems. We also hope 068

that the survey provides a useful starting point and 069

synthesis of prior work for NLP researchers and 070

practitioners entering this critical yet surprisingly 071

under-studied application domain. 072

2 Related Work 073

Dialogue systems in healthcare have been the focus 074

of several recent surveys conducted by the medical 075

2A full listing of these papers is provided in the appendix.
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and clinical communities (Vaidyam et al., 2019;076

Laranjo et al., 2018; Kearns et al., 2019). These077

surveys have investigated the real-world utiliza-078

tion of deployed systems, rather than examining079

their design and implementation from a technical080

perspective. In contrast, studies examining these081

systems through the lens of AI and NLP research082

and practice have been limited. Zhang et al. (2020)083

and Chen et al. (2017) presented surveys of recent084

advances in general-domain task-oriented dialogue085

systems. Although they provide an excellent holis-086

tic portrait of the subfield, they do not delve into087

aspects of particular interest in healthcare settings088

(e.g., system objectives doubling as clinical goals),089

limiting their usefulness for this audience.090

Vaidyam et al. (2019), Laranjo et al. (2018),091

and Kearns et al. (2019) conducted systematic092

reviews of dialogue systems deployed in mental093

health (Vaidyam et al., 2019) or general healthcare094

(Laranjo et al., 2018; Kearns et al., 2019) settings.095

Vaidyam et al. (2019) examined 10 articles, and096

Laranjo et al. (2018) and Kearns et al. (2019) exam-097

ined 17 and 46 articles, respectively. All surveys098

were written for a medical audience and focused on099

healthcare issues and impact, covering few articles100

from AI, NLP, or general computer science venues.101

Montenegro et al. (2019) and Tudor Car et al.102

(2020) recently reviewed 40 and 47 articles, re-103

spectively, covering conversational agents in the104

healthcare domain. These two surveys are the clos-105

est to ours, but differ in important ways. First,106

our focus is on a specific class of conversational107

agents: task-oriented dialogue systems. The sur-108

veys by Montenegro et al. (2019) and Tudor Car109

et al. (2020) used a wider search breading their abil-110

ity to provide extensive technical depth. We also111

reviewed more papers (70 articles), which were112

then screened using a more thorough taxonomy as113

part of the analysis. Some aspects that we consid-114

ered that differ from these prior surveys include the115

overall dialogue system architecture, the dialogue116

management architecture, the system evaluation117

methods, and the dataset(s) used when developing118

and/or evaluating the system.119

3 Search Criteria and Screening120

We designed search criteria in concert with our goal121

of filling a translational information gap between122

fundamental dialogue systems research and applied123

systems in the healthcare domain. To do so, we124

retrieved articles from well-respected computer sci-125

Screening
Process ACM IEEE ACL AAAI Total

Initial
Search 1050 1400 1020 600 4070

Title
Screening 151 273 106 55 585

Abstract
Screening 32 45 26 8 110

Final
Screening 21 31 16 2 70

Table 1: The number of papers included from each
database in each step of the paper screening process.

ence, AI, and NLP databases and screened them for 126

focus on task-oriented dialogue systems designed 127

for healthcare settings. Our target databases were: 128

(1) ACM,3 (2) IEEE,4 (3) the ACL Anthology,5 and 129

(4) the AAAI Digital Library.6 ACM and IEEE are 130

large databases of papers from prestigious confer- 131

ences and journals across many CS fields, including 132

but not limited to robotics, human-computer inter- 133

action, data mining, and multimedia systems. The 134

ACL Anthology is the premier database of publica- 135

tions within NLP, hosting papers from major con- 136

ferences and topic-specific venues (e.g., SIGDIAL, 137

organized by the Special Interest Group on Dis- 138

course and Dialogue). The AAAI Digital Library 139

hosts papers not only from the AAAI Conference on 140

Artificial Intelligence, but also from other AI con- 141

ferences, AI Magazine, and the Journal of Artificial 142

Intelligence Research. We applied the following 143

inclusion criteria when identifying papers: 144

• The main focus must be on the technical de- 145

sign or implementation of a task-oriented dia- 146

logue system. 147

• The system must be designed for health- 148

related applications. 149

• The article must not be dedicated to one spe- 150

cific module of the system’s architecture (e.g., 151

the natural language understanding compo- 152

nent of a health-related dialogue system). 153

Although a narrower scope—e.g., developing im- 154

proved methods for slot-filling—is common when 155

publishing in the dialogue systems community, 156

3https://dl.acm.org/
4https://ieeexplore.ieee.org/
5https://www.aclweb.org/anthology/
6https://aaai.org/Library/library.php
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these papers tend to place more emphasis on tech-157

nical design irrespective of application context, of-158

fering less coverage of the system-level charac-159

teristics that are the target of this survey. We fol-160

lowed four steps in our screening process. First (Ini-161

tial Search), we applied a predefined search query162

to the databases to populate our initial list of pa-163

pers. To generate the query, we used the keywords164

“task-oriented,” “dialogue system,” “conversational165

agent,” “health,” and “healthcare,” and synonyms166

and abbreviations of these keywords. We short-167

listed papers using these keywords individually as168

well as in combination with one another.169

Next (Title Screening), we performed a prelimi-170

nary screening through the initial list of papers by171

reading the titles, keeping those that satisfied the172

inclusion criteria. Then (Abstract Screening), we173

went through the list of papers remaining after the174

title screening and read the abstracts, keeping those175

that satisfied the inclusion criteria. Lastly (Final176

Screening), we read the body of the papers remain-177

ing after the abstract screening and kept those that178

satisfied the inclusion criteria.179

These funnel filtering processes were conducted180

by a computer science graduate student (a fluent181

L2 English speaker) using predefined search and182

screening guidelines. Questions or uncertainties183

regarding a paper’s compliance with inclusion cri-184

teria were forwarded along to the senior project185

lead (a computer science professor and fluent L1186

English speaker with expertise in NLP) and final187

consensus was reached via discussion among the188

two parties. We detail the number of papers remain-189

ing after each screening step in Table 1.190

In total, 70 papers (21 from ACM, 31 from IEEE,191

16 from ACL, and 2 from AAAI7) satisfied the in-192

clusion criteria. We survey papers meeting our193

inclusion criteria according to a wide range of pa-194

rameters, and present our findings in the following195

subsections, grouped into thematic categories: on-196

tology (§4), system architecture (§5), system de-197

sign (§6), dataset (§7), and system evaluation (§8).198

4 Ontology199

We map each paper to its domain of research (§4.1),200

system objective (§4.2), target audience (§4.3), and201

language (§4.4), and present our findings.202

7Papers about task-oriented dialogue systems published at
AAAI often focus on one specific component of the system
from a technical perspective, rather than proposing a conver-
sational agent as a whole. Therefore, only two papers from
the AAAI Digital Library satisfied the inclusion criteria.

Figure 1: Research domains and corresponding subcat-
egories for the included papers. Parentheses indicate
the number of papers belonging to the (sub)category.

4.1 Domain of Research 203

Task-oriented dialogue systems can potentially im- 204

pact many facets of healthcare in society (Bick- 205

more and Giorgino, 2004). We define a domain of 206

research as the healthcare area in which the sys- 207

tem operates. We identify both broad domains 208

and more specific subcategories thereof based on 209

the systems surveyed, outlined in Figure 1. Broad 210

domain categories include mental health, physi- 211

cal health, health information, patient assistance, 212

physician assistance, cognitive or developmental 213

health, and other (comprising subcategories not 214

easily classifiable to one of the broader domains). 215

Systems in the mental health domain supported 216

individuals with mental or psychological health 217

conditions, and systems in the cognitive or devel- 218

opmental health domain were a close analogue 219

for individuals with conditions impacting memory, 220

executive, or other cognitive function. Systems 221

in the physical health domain were targeted to- 222

wards individuals with specific physical health con- 223

cerns, including infectious (e.g., Covid-19), non- 224

infectious (e.g., cancer), and temporary (e.g., preg- 225

nancy) conditions. Systems providing health in- 226

formation performed general-purpose actions such 227

as offering advice or suggesting disease diagnoses. 228

Finally, systems performing patient assistance or 229

physician assistance supported specific patient- or 230

physician-focused healthcare tasks. Dialogue sys- 231

tems designed for mental health, physical health, 232

and health information were the most prevalent, 233

covering 51 of the 70 included papers. 234
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System Objective # Papers

Diagnosis 7

Monitoring 8

Intervention 13

Counseling 5

Assistance 12

Multi-Objective 25

Table 2: Distribution of system objectives across the
surveyed papers. Additional details regarding multi-
objective papers are provided in the appendix.

4.2 System Objective235

Task-oriented dialogue systems define value rela-236

tive to the goals of a target task. We define the237

system objective as the healthcare task for which a238

system is designed. Some system objectives may239

be closely aligned with a single domain, whereas240

others may occur in many different domains (e.g.,241

monitoring mental, physical, or cognitive condi-242

tions). Thus, although the domain of research and243

system objective may frequently correlate, there is244

not by necessity a direct association.245

Included systems were categorized as being de-246

signed to: diagnose a health condition (e.g., by pre-247

dicting whether the user suffers from cognitive de-248

cline); monitor user states (e.g., by tracking their di-249

ets or periodically checking their mood); intervene250

by addressing users’ health concerns or improv-251

ing their states (e.g., by teaching children how to252

map facial expressions to emotions); counsel users253

without providing any direct intervention (e.g., by254

listening to users’ concerns and empathizing with255

them); or assist users by providing information or256

guidance (e.g., by answering questions from users257

who are filling out forms). Many systems were also258

categorized as multi-objective, meaning that they259

were designed for more than one of those goals.260

Table 2 shows the number of systems having261

each objective. Many systems (25/70) were de-262

signed for more than one target objective. Among263

multi-objective systems, those that were designed264

for both diagnosis and assistance had the highest265

frequency (7/25); we provide additional details re-266

garding these systems in Table 8 of the appendix.267

Separately, we also considered the role of en-268

gagement as an objective of each system. We de-269

fine this as a goal of engaging target users in in-270

teraction, irrespective of underlying health goals.271

Engagement may be of particular interest in health-272

Target Audience # Papers

Patients 59

Caregivers 3

Patients & Caregivers 2

Clinicians 11

Table 3: Distribution of the target audiences of the sys-
tems described in the surveyed papers.

care settings since it can be critical in encouraging 273

adoption or adherence with respect to healthcare 274

outcomes (Montenegro et al., 2019). Surprisingly, 275

almost 60% of the papers (41 of the 70 surveyed) 276

did not mention any goals pertaining to engaging 277

users in more interactions. 278

4.3 Target Audience 279

The final consumers of healthcare systems often 280

fall into three groups: patients, caregivers, and 281

clinicians. Table 3 shows the number of systems 282

surveyed that focus on each category. We find that 283

out of 70 task-oriented dialogue systems, 59 are 284

designed specifically for patients. 285

4.4 Language 286

Most general-domain dialogue systems research 287

has been conducted in English and other high- 288

resource languages (Artetxe et al., 2020). Ex- 289

panding language diversity may extend the ben- 290

efits of health-related dialogue systems more glob- 291

ally. As shown in Figure 2, among the systems 292

included in our review a majority (56%) are de- 293

signed for English speakers. Encouragingly, sev- 294

eral of the included systems did focus on lower- 295

resource languages, including Telugu (Duggenpudi 296

et al., 2019), Bengali (Rahman et al., 2019), and 297

Setswana (Grover et al., 2009). 298

5 System Architecture 299

We investigate both the general architecture of the 300

system (§5.1), and if applicable, the dialogue man- 301

agement architecture specifically (§5.2). 302

5.1 General Architecture 303

Task-oriented dialogue systems are generally de- 304

signed using pipeline or end-to-end architectures. 305

Pipeline architectures typically consist of separate 306

components for natural language understanding, di- 307

alogue state tracking, dialogue policy, and natural 308

language generation. The ensemble of the dialogue 309

state tracker and dialogue policy is the dialogue 310
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Figure 2: Language diversity across the surveyed sys-
tems. A small percentage (10%) of papers do not spec-
ify the system’s language.

System Architecture # Papers

Pipeline 58

End-to-End 2

Not Specified 10

Table 4: Distribution of papers describing systems with
pipeline or end-to-end architectures, or that do not spec-
ify the architecture.

manager (Chen et al., 2017). End-to-end architec-311

tures train a single model to produce output for a312

given input, often interacting with structured ex-313

ternal databases and requiring extensive training314

data (Chen et al., 2017). As shown in Table 4,315

only 2.85% of papers (2 of the 70 surveyed) imple-316

mented an end-to-end system; this is unsurprising317

given the limited training data available in most318

healthcare domains. We also found that 14% (10319

papers) did not directly specify the architecture of320

their developed system.321

5.2 Dialogue Management Architecture322

Unlike other pipeline components that impact user323

experience and engagement but not fundamental324

decision-making, the dialogue manager is central325

to overall functionality (Zhao et al., 2019); thus,326

we afford it special attention. In rule-based ap-327

proaches, the system interacts with users based on328

a predefined set of rules, with success conditioned329

upon coverage of all relevant cases (Siangchin and330

Samanchuen, 2019). Intent-based approaches seek331

to extract the user’s intention from the dialogue,332

and then perform the relevant action (Jurafsky and333

Martin, 2009). In hybrid dialogue management334

architectures, the system leverages a combination335

of rule-based and intent-based approaches, and fi-336

Dialogue Management Architecture # Papers

Rule-based 17

Intent-based 20

Hybrid Architecture 21

Corpus-based 0

Table 5: Distribution of dialogue management archi-
tectures across the surveyed papers. This table does
not include papers describing end-to-end architectures
(n = 2) or for which system architecture was not spec-
ified (n = 10).

nally corpus-based approaches mine the dialogues 337

of human-human conversations and produce re- 338

sponses using retrieval methods or generative meth- 339

ods (Jurafsky and Martin, 2009). As shown in Ta- 340

ble 5, among papers reporting on dialogue manage- 341

ment architecture, we observe a fairly even mix of 342

rule-based, intent-based, and hybrid architectures. 343

6 System Design 344

6.1 Modality 345

Modality, the channel through which information 346

is exchanged between a computer and a human 347

(Karray et al., 2008), can play an important role in 348

dialogue quality and user satisfaction (Bilici et al., 349

2000). Unimodal systems use a single modality 350

for information exchange, whereas multimodal sys- 351

tems use multiple modalities (Karray et al., 2008). 352

Systems reviewed in this survey operated using one 353

or more of several modalities. In text-based or spo- 354

ken interaction, users interact with the system by 355

typing or speaking, respectively. In interaction via 356

graphical user interface (GUI), users interact with 357

the system through the use of visual elements. 358

In general, multimodal dialogue systems can be 359

flexible and robust, but especially challenging to 360

implement in the medical domain (Sonntag et al., 361

2009). We find that 49 papers describe unimodal 362

systems and 21 describe multimodal systems. Ta- 363

ble 6 provides more details regarding their distribu- 364

tion across modalities. 365

6.2 Device 366

Dialogue systems may facilitate interaction using a 367

variety of devices (Arora et al., 2013), ranging from 368

telephones (Garvey and Sankaranarayanan, 2012) 369

to computers (McTear, 2010) to any other technol- 370

ogy that allows interaction (e.g., VR-based avatars 371

(Brinkman et al., 2012b; McTear, 2010)). We cate- 372

gorized the included systems as mobile, telephone, 373
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Unimodal Multimodal

Category # Papers Category # Papers

Text 23 Spoken + Text 14

Spoken 25 Spoken + GUI 4

GUI 1 Text + GUI 3

Table 6: Distribution of modality type across the uni-
modal (49 total, left) and multimodal (21 total, right)
systems surveyed.

Figure 3: Distribution of device type across the sur-
veyed papers.

desktop/laptop, in-car, PDA, robot, virtual environ-374

ment, or virtual reality (including virtual agents375

and avatars) systems, considering systems as multi-376

device if they leveraged multiple devices for inter-377

action. As shown in Figure 3, we found that multi-378

device and mobile-based dialogue systems were379

most popular. Table 9 in the appendix provides380

additional details regarding multi-device systems.381

7 Dataset382

Data is crucial for effective system development383

(Serban et al., 2015), but many datasets for training384

dialogue systems are smaller than those used for385

other NLP tasks (Lowe et al., 2017). This is even386

more pronounced in the healthcare domain, in part387

due to the risk of data misuse by others or the lack388

of data sharing incentives (Lee and Yoon, 2017).389

We reviewed each paper for information regard-390

ing the data used during system development, fo-391

cusing on dataset size, availability, and privacy-392

preserving measures. Only 20 papers provide de-393

tails about the data used (two papers provided a link394

to the dataset, and the remaining 18 discussed the395

dataset size). Unfortunately, the remaining papers396

did not provide rationale for their lack of data or397

other replicability information. Our assumption is398

that often the data contained sensitive information,399

Evaluation Type # Papers

Human Evaluation 28

Automated Evaluation 7

Human & Automated Evaluation 9

Not Specified 26

Table 7: Distribution of evaluation methods across the
surveyed papers.

preventing authors from releasing specific details, 400

but only 19 of the 70 included papers provided in- 401

formation about data-related privacy or ethical con- 402

siderations. Only 10 mentioned Institutional Re- 403

view Board (IRB) approval for their dataset and/or 404

task, despite IRB (or equivalent) review being a 405

crucial step towards ensuring that research is con- 406

ducted ethically and in such a way that protects 407

human subjects to the extent possible (Amdur and 408

Biddle, 1997). 409

8 System Evaluation 410

We examined the means through which systems 411

were evaluated both qualitatively and quantitatively 412

(Deriu et al., 2019; Hastie, 2012). We defined hu- 413

man evaluation, often implemented in prior work 414

through questionnaires (Wang et al., 2020; Grover 415

et al., 2009; Holmes et al., 2019) or direct feed- 416

back from real-world users (Deriu et al., 2019), as 417

an evaluation that relies on subjective, first-hand, 418

human user experience. In contrast, automated 419

evaluation provides an objective, quantitative mea- 420

surement of one or more dimensions of the system 421

from a mathematical perspective (Finch and Choi, 422

2020). Some metrics used for automated evalua- 423

tion of the reviewed systems include measures of 424

task performance (Ali et al., 2020) and completion 425

rates (Holmes et al., 2019), response correctness 426

(Rosruen and Samanchuen, 2018), and response 427

time (Grover et al., 2009). 428

In Table 7, we observe that nearly half of the 429

papers conducted human evaluations; however, a 430

large percentage (37%) also did not discuss evalua- 431

tion at all. We further analyzed papers conducting 432

human evaluations and found that they included 433

an average of 26 (mode = 12) participants. More 434

details regarding the human and automated evalua- 435

tions are provided in Tables 10, 11, and 12 of the 436

appendix. In a follow-up analysis of system usabil- 437

ity, defined as the degree to which users are able to 438

engage with a system safely, effectively, efficiently, 439
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and enjoyably (Lee et al., 2019), we observed that440

33 papers explicitly evaluated the usability of their441

system.442

9 Discussion443

We identify common limitations across many sur-444

veyed systems, accompanied by recommendations445

for addressing them in future work.446

9.1 Incomplete Exploration of System Design447

We observed little system-level architectural di-448

versity across the surveyed systems, with most449

(83%) having a pipeline architecture. This architec-450

tural homogeneity limits our understanding of good451

design practice within this domain. Recent stud-452

ies demonstrate that end-to-end architectures for453

task-oriented dialogue systems could compete with454

pipeline architectures given sufficient high-quality455

data (Hosseini-Asl et al., 2020; Ham et al., 2020;456

Bordes et al., 2017; Wen et al., 2016). However, the457

external knowledge sources often leveraged in end-458

to-end systems are notoriously complex in many459

healthcare sub-domains (Campillos-Llanos et al.,460

2020). Additionally, for healthcare applications461

interpretability is highly desired (Ham et al., 2020),462

but explanations are often obfuscated in end-to-end463

systems (Ham et al., 2020; Wen et al., 2016). Fi-464

nally, users of these systems may seek guidance on465

sensitive topics, which can exacerbate privacy con-466

cerns (Xu et al., 2021). Any system trained on large,467

weakly curated datasets may also learn unpleasant468

behaviors and amplify biases in the training data, in469

turn producing harmful consequences (Dinan et al.,470

2021; Bender et al., 2021). We recommend fur-471

ther experimentation with architectural design, in472

parallel with work towards developing high-quality473

healthcare dialogue datasets, which to date remain474

scarce (Farzana et al., 2020).475

We noticed that a considerable number of the476

systems (33%) allowed only text-based interac-477

tion. However, it is well-established that individ-478

uals from certain demographic groups are more479

comfortable conversing with dialogue systems via480

speech (Tudor Car et al., 2020). Text-based sys-481

tems may also be more likely to violate privacy482

considerations (Tudor Car et al., 2020). Thus, we483

recommend that researchers engage in further ex-484

ploration of multimodal or spoken dialogue sys-485

tems when applicable and appropriate.486

Many of the surveyed systems were also imple-487

mented on mobile phones. Although an advantage488

of mobile-based systems is that they are readily 489

available using a technology familiar to most users, 490

Lee et al. (2018) found that users significantly re- 491

duced their usage over time when engaging long- 492

term with mobile health applications. Tudor Car 493

et al. (2020) suggest that one way to overcome this 494

limitation in mobile-based systems is by directly 495

embedding them in applications or platforms with 496

which users already engage habitually (e.g., Face- 497

book Messenger). This more ambient dissemina- 498

tion approach may facilitate easier and more lasting 499

integration of system use in individuals’ daily lives. 500

Finally, we identified that most systems (84%) 501

target only patients, with research on systems tar- 502

geted towards clinicians and caregivers remaining 503

limited. We recommend further exploration of sys- 504

tems targeted towards these critical audiences. This 505

may offer broad, high-impact support in under- 506

standing, diagnosing, and treating patients’ health 507

issues (Valizadeh et al., 2021; Kaelin et al., 2021). 508

9.2 Replicability Concerns 509

Data accessibility restrictions reduce the capacity 510

of public health research (Strongman et al., 2019), 511

and these limitations may be partially responsible 512

for the imbalance of pipeline versus end-to-end 513

architectures (§9.1). Only a small percentage of pa- 514

pers surveyed (29%) ventured to discuss the quan- 515

tity or characteristics of the data used during sys- 516

tem development in any way. A lack of data trans- 517

parency hinders scientific progress and severely 518

impedes replicability. We call upon researchers to 519

publish data when permissible by governing pro- 520

tocol, and descriptive statistics to the extent allow- 521

able when circumstances prevent data release. We 522

also view the development of high-quality, pub- 523

licly available datasets as an important frontier in 524

translational dialogue systems research (§9.1). 525

Many of the surveyed papers also lack important 526

implementation details, such as evaluation meth- 527

ods (34%). This prevents the research community 528

from replicating developed systems and general- 529

izing study findings more broadly (Walker et al., 530

2018). Well-established guidelines exist and are 531

being increasingly enforced within the NLP com- 532

munity to prevent reproducibility issues (Dodge 533

et al., 2019). The disregard of reproducibility best 534

practices observed with many healthcare dialogue 535

systems may be partially attributed to the most com- 536

mon target venues for this work, which may place 537

less emphasis on replication. This validates a cen- 538
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tral motivator for publishing this survey—without539

adequate inclusion of target domain and techni-540

cal stakeholders in interdisciplinary, translational541

research, progress will remain constrained. We542

strongly urge researchers in this domain to provide543

implementation details in their publications.544

9.3 Potential Ethical and Privacy Issues545

Real-world medical data facilitates the devel-546

opment of high-quality healthcare applications547

(Bertino et al., 2005), but protecting the rights548

and privacy of contributors to the data is critical549

for ensuring ethical research conduct (Institute of550

Medicine, 2009), as is proper treatment of copy-551

right protections. We screened all included papers552

for coverage of privacy and ethical concerns, and553

observed that only 27% of the surveyed papers con-554

sidered participant or patient privacy in the design555

of their system. Moreover, only 14% of the sur-556

veyed papers documented any evidence of Institu-557

tional Review Board (or IRB-equivalent) approval.558

Research involving healthcare dialogue systems559

is unquestionably human-centered, and as such the560

absence of ethical oversight in the design of such561

systems is a grave concern. Although technical562

researchers entering this space may be unfamiliar563

with human subjects research and protocol, we urge564

all dialogue systems researchers to submit their565

experimental design and protocol for review by an566

appropriate external review board. We also ask that567

researchers consider the potential harms from use568

or misuse of their systems, following guidelines569

established by the ACM Code of Ethics.8570

9.4 Room for Increased Language Diversity571

We observed that most systems (56%) targeted En-572

glish speakers. Developing multilingual dialogue573

systems or systems for speakers of low-resource574

languages brings up various challenges (López-575

Cózar Delgado and Araki, 2005), but solving this576

problem could have have tremendous benefit for577

individuals in non-English speaking communities578

with minimal or unreliable healthcare access. The579

systems developed by Duggenpudi et al. (2019),580

Rahman et al. (2019), and Grover et al. (2009) pro-581

vide case examples for how such systems may be582

implemented. We also note that while troubling,583

a 56% share of systems targeted towards English584

speakers is consistent with linguistic homogeneity585

in the field in general, and actually slightly low586
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relative to many other NLP tasks (Mielke, 2016; 587

Bender, 2009). Healthcare dialogue systems may 588

on some level offer a case example for how appli- 589

cations originally designed for high-resource (i.e., 590

English-language) settings can be adapted and re- 591

engineered to provide better coverage of the di- 592

verse, real-world potential user base. 593

9.5 Minimal Investigation of Usability or 594

User Engagement 595

Finally, more than 50% (37/70) of the included 596

papers did not evaluate system usability or gen- 597

eral user experience. Usability testing can improve 598

productivity and safeguard against errors (Rogers 599

et al., 2005), both of which are critical in healthcare 600

tasks. Therefore, we urge the research community 601

to consider and assess usability when designing for 602

this domain. The systems among those surveyed 603

that do this already (e.g., those developed by Wang 604

et al. (2020), Lee et al. (2020b), Wei et al. (2018), 605

or Demasi et al. (2020)) provide case examples for 606

how it might be done. 607

Almost 60% of the surveyed systems were not 608

explicitly designed to engage users, despite this 609

being a common objective in the general domain 610

(Ghazarian et al., 2019). Healthcare dialogue sys- 611

tems may stand to benefit particularly well from 612

such measures, since patient engagement is predic- 613

tive of adoption and adherence to healthcare out- 614

comes (Montenegro et al., 2019). To increase user 615

satisfaction and system performance, we recom- 616

mend that the research community more purpose- 617

fully consider engagement when designing their 618

healthcare-oriented dialogue systems. 619

10 Conclusion 620

In this work, we conducted a systematic techni- 621

cal survey of task-oriented dialogue systems in 622

the healthcare domain, narrowing the translational 623

gap between basic and applied dialogue systems 624

research. We comprehensively searched through 625

4070 papers in computer science, NLP, and AI 626

databases, finding 70 papers that satisfied our inclu- 627

sion criteria. We analyzed these papers based on 628

numerous technical factors, and present evidence- 629

based recommendations stemming from our find- 630

ings. It is our hope that interested researchers find 631

the information provided to be a unique and help- 632

ful resource for developing task-oriented dialogue 633

systems for healthcare applications. 634
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11 Ethical Considerations635

Beyond the concrete changes suggested during the636

discussion, it is important to consider the broader637

ethical implications of task-oriented dialogue sys-638

tems in healthcare settings. Although the goal of639

such systems may not be to replace human health-640

care providers, it is likely that deployed systems641

would support clinicians, defraying workload for642

overburdened individuals. In doing so, these sys-643

tems may have significant impact on healthcare644

decision-making. Machines are imperfect, and thus645

a possible harm is that these systems may misin-646

terpret user input or make incorrect predictions—647

a mistake that in high-stakes healthcare settings648

could prove detrimental or even dangerous. Re-649

searchers and developers should be cognizant of650

possible harms stemming from the use and misuse651

of task-oriented dialogue systems for healthcare652

settings, and should implement both automated653

(e.g., strict thresholds for diagnostic suggestions)654

and human (e.g., training to ensure staff awareness655

of potential system fallibilities) safeguards.656

Moreover, a potential benefit of these systems657

is their potential to meaningfully and beneficially658

extend healthcare access to underserved popula-659

tions. As such, it is important to ensure that auto-660

mated systems do not fall prey to the same biases661

often observed among human healthcare providers662

(FitzGerald and Hurst, 2017). Systems trained to663

perform healthcare tasks using datasets that are not664

representative of the target population may exhibit665

poorer performance with users who already experi-666

ence marginalization or are otherwise vulnerable,667

impeding or even reversing benefits. We call upon668

researchers to examine, debias, and curate their669

training data such that task-oriented dialogue sys-670

tems for healthcare applications elevate, rather than671

diminish, outcomes for the historically underserved672

users which they are best poised to benefit.673
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A Multi-Objective Systems 1374

Multi-Objective System # Papers

Diagnosis + Assistance 7

Diagnosis + Intervention 2

Diagnosis + Monitoring 1

Diagnosis + Counseling 1

Intervention + Monitoring 2

Intervention + Assistance 1

Assistance + Counseling 2

Intervention + Monitoring + Diagnosis 2

Intervention + Monitoring + Assistance 2

Intervention + Monitoring + Counseling 1

Diagnosis + Monitoring + Counseling 1

Diagnosis + Assistance + Intervention 2

Diagnosis + Intervention + Monitoring +
Assistance 1

Table 8: Distribution of varying combinations of multi-
ple system objectives across the surveyed papers.

Conversational agents seek to generate dialogues 1375

that have value to their end-users. We categorized 1376

included articles as having one or more of the fol- 1377

lowing objectives: diagnosis, monitoring, interven- 1378

tion, counseling, or assistance. We found that 25 1379
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out of 70 surveyed systems were designed for more1380

than one target objective, and provide additional1381

details describing these multi-objective systems in1382

Table 8.1383

B Multi-Device Systems1384

Multi-Device Category # Papers

Desktop/Laptop + Mobile-based 8

Desktop/Laptop + VE 5

Desktop/Laptop + Robot 2

Mobile-based + PDA systems 2

Desktop/Laptop + GUI 1

Desktop/Laptop + PDA systems 1

Mobile-based + VE 1

Table 9: Details regarding the distribution of multi-
device systems across the surveyed papers (20 total).

User Population # Papers

Lab Experiments 15

Field Experiments 17

Crowdsourcing 1

Not Specified 4

Table 10: Distribution of user populations across the
surveyed papers that conducted a human evaluation.

Human Evaluation Type # Papers

Interact with the System 8

Rate a Dialogue 1

Both 28

Table 11: Distribution of evaluation types across the
surveyed papers that conducted a human evaluation.

Many of the surveyed systems functioned using1385

multiple device types. Table 9 shows the distri-1386

bution of included devices across all multi-device1387

systems. We found that the most common multi-1388

device pairing was systems operating using com-1389

puters and mobile devices.1390

C Additional Evaluation Details1391

From among the surveyed systems that conducted1392

system and/or human evaluations, we further ex-1393

amined the types of evaluations conducted. Table1394

10 describes the populations leveraged for human1395

evaluation across the surveyed systems, and Table1396

Type of System Evaluation # Papers

Task Completion 4

Task Performance 9

Response Correctness 5

Naturalness 2

Response Time 3

Routing Time 1

Table 12: Type of system evaluation across the sur-
veyed papers.

11 presents broad categories of the types of human 1397

evaluations conducted. We found that most human 1398

evaluations were conducted in a laboratory or field 1399

setting, and often included opportunities for partic- 1400

ipants to both interact with the system directly, and 1401

rate the quality of the dialogue. Table 12 details 1402

the various types of system evaluations conducted 1403

across the surveyed systems. We found that the 1404

most common assessment item in system evalua- 1405

tions was the system’s overall task performance. 1406

D Included Papers 1407

In this systematic review, we investigated 4070 1408

papers involving dialogue systems for healthcare 1409

applications, identifying 70 papers that satisfied 1410

our defined inclusion criteria. We comprehensively 1411

analyzed these papers on the basis of numerous 1412

technical factors. We provide aggregated statistics 1413

for each of these categories in the main body of the 1414

paper. In Table 13 beginning on the following page, 1415

we provide a listing of each included paper and 1416

its categorization across all included classes. Full 1417

references for each included paper can be found in 1418

the bibliography. 1419
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Paper DS
Arch.

DM
Arch. Mod. Device Sys.

Obj.

Eng-
age-
ment

Dom.
of Re-
search

Target
Aud. Lang. Eval.

Method
Dataset
Size

Papangelis
et al.
(2013)

Pipeline Intent-
based

Multi-
Modal

Desk
/Lap

Mon-
itor-
ing,
Inter-
ven-
tion,
Diag-
no-sis

Yes PTSD Patients English
Not
Speci-
fied

Not
Speci-
fied

Brinkman
et al.
(2012a)

Pipeline Rule-
based Speech

Virtual
Envi-
ron-
ment

Mon-
itor-
ing,
Diag-
no-sis

No
Social
Pho-
bia

Clinic-
ians English

Human
Evalu-
ation

Not
Speci-
fied

Ali
et al.
(2020)

Pipeline Intent-
based Speech Desk

/Lap

Mon-
itor-
ing,
Assis-
tance,
Inter-
ven-
tion

Yes

Autism
Spec-
trum
Disor-
der

Patients English
Human
Evalu-
ation

46
videos

Tsiakas
et al.
(2015)

Pipeline Intent-
based

Multi-
Modal

Desk
/Lap,
Vir-
tual
Envi-
ron-
ment

Diag-
no-sis,
Assis-
tance

Yes

Anxiety
Disor-
ders,
Depress-
ion,
PTSD

Patients English
Human
Evalu-
ation

90
speech
seg-
ments

Wang
et al.
(2020)

Pipeline Hybrid Speech PDA
Inter-
ven-
tion

Yes
Social
Pho-
bia

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Balasuriya
et al.
(2018)

Pipeline Hybrid Speech,
GUI PDA

Mon-
itor-
ing

Yes

Intellectual
Dis-
abil-
ity

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Chuan
and
Mor-
gan
(2021)

Pipeline Intent-
based Speech Desk

/Lap
Assis-
tance No

Clinical
Appli-
cation

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Grover
et al.
(2009)

Pipeline Rule-
based Speech TelephoneAssis-

tance No HIV Clinic-
ians Setswana

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied

Petric
et al.
(2017)

Pipeline Intent-
based Speech Robot Diag-

no-sis No

Autism
Spec-
trum
Disor-
der

Clinic-
ians English

Human
Evalu-
ation

Not
Speci-
fied

Javed
et al.
(2018)

Not
Speci-
fied

Not
Speci-
fied

Speech,
GUI Robot

Mon-
itor-
ing

Yes

Autism
Spec-
trum
Disor-
der

Patients English
Human
Evalu-
ation

Not
Speci-
fied
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Di Nuovo
et al.
(2020)

Not
Speci-
fied

Not
Speci-
fied

Speech Robot
Mon-
itor-
ing

Yes

Autism
Spec-
trum
Disor-
der

Patients,
Care-
givers

English
Human
Evalu-
ation

Not
Speci-
fied

Quiroz
et al.
(2020)

Pipeline Hybrid Speech
PDA,
Mo-
bile

Diag-
no-sis,
Inter-
ven-
tion

Yes

Depress-
ion,
Anxi-
ety

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Maharjan
et al.
(2019)

Pipeline Hybrid Speech
PDA,
Mo-
bile

Mon-
itor-
ing

No Mental
Health Patients English

Not
Speci-
fied

Not
Speci-
fied

Ahn
et al.
(2020)

Not
Speci-
fied

Not
Speci-
fied

Text Mobile

Inter-
ven-
tion,
Assis-
tance

Yes

Online
sex-
ual
ex-
ploita-
tion,
PTSD

Patients Korean
Not
Speci-
fied

Not
Speci-
fied

Kamita
et al.
(2020)

Not
Speci-
fied

Not
Speci-
fied

Text Mobile
Inter-
ven-
tion

Yes

Cognitive
Be-
hav-
ioral
Ther-
apy,
stress
reduc-
tion

Patients Japanese
Human
Evalu-
ation

Not
Speci-
fied

Lee
et al.
(2020b)

Pipeline Hybrid Speech Mobile
Mon-
itor-
ing

Yes

Health-
related
Self-
disclosure

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Moghadasi
et al.
(2020)

Pipeline Hybrid Text

Desk
/Lap,
Mo-
bile

Assis-
tance,
Counsel-
ing

No

Opioid
Ad-
dic-
tion

Patients English
Not
Speci-
fied

20,494
records

De Nieva
et al.
(2020)

Pipeline Hybrid Text Mobile

Mon-
itor-
ing,
Inter-
ven-
tion,
Counsel-
ing

Yes
Anxiety,
Depress-
ion

Patients English

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied

Lee
et al.
(2020a)

Pipeline Hybrid Text Mobile
Mon-
itor-
ing

Yes

Health-
related
Self-
disclosure

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Daher
et al.
(2020)

Pipeline Rule-
based GUI

Not
Speci-
fied

Mon-
itor-
ing

No

Empathy
for
med-
ical
Assis-
tance

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Holmes
et al.
(2019)

Pipeline Hybrid Multi-
Modal Mobile Assis-

tance Yes Weight
Loss Patients English

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied
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Oh
et al.
(2017)

Pipeline Intent-
based

Multi-
Modal Mobile

Diag-
no-sis,
Mon-
itor-
ing,
Inter-
ven-
tion

Yes
Psychiatric
Counsel-
ing

Patients Korean
Not
Speci-
fied

49,846,477
records

Dino
et al.
(2019)

Pipeline Rule-
based Speech Robot

Inter-
ven-
tion

Yes Depress-
ion Patients English

Human
Evalu-
ation

Not
Speci-
fied

Patel
et al.
(2019)

Not
Speci-
fied

Not
Speci-
fied

Text
Not
Speci-
fied

Diag-
no-sis No

Stress,
Depress-
ion

Patients English
Not
Speci-
fied

7,652
records,
ISEAR
dataset

Sharma
et al.
(2018)

Not
Speci-
fied

Not
Speci-
fied

Text Mobile

Diag-
no-sis,
Inter-
ven-
tion,
Assis-
tance

No Depress-
ion Patients

Not
Speci-
fied

Not
Speci-
fied

Not
Speci-
fied

Belfin
et al.
(2019)

Pipeline Intent-
based

Multi-
Modal

Desk
/Lap,
Mo-
bile

Assis-
tance No Cancer Patients English

Not
Speci-
fied

Not
Speci-
fied

Yorita
et al.
(2020)

Pipeline Rule-
based

Multi-
Modal Mobile

Diag-
no-sis,
Counsel-
ing

No

Stress
Man-
age-
ment

Clinic-
ians English

Not
Speci-
fied

Not
Speci-
fied

Kargar
and
Ma-
hoor
(2017)

Pipeline Rule-
based Speech Robot

Inter-
ven-
tion

Yes Depress-
ion Patients English

Human
Evalu-
ation

Not
Speci-
fied

Hwang
et al.
(2020)

Pipeline Rule-
based Text

Not
Speci-
fied

Diag-
no-sis,
Inter-
ven-
tion

No
Medical
Assis-
tance

Patients Korean
Not
Speci-
fied

Not
Speci-
fied

Srivastava
and
Singh
(2020)

Pipeline Rule-
based Text

Not
Speci-
fied

Diag-
no-sis,
Assis-
tance

Yes
Disease
Diag-
no-sis

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Mathew
et al.
(2019)

Pipeline Rule-
based Text Mobile

Diag-
no-sis,
Assis-
tance

Yes
Disease
Diag-
no-sis

Patients English
Human
Evalu-
ation

Not
Speci-
fied

Athota
et al.
(2020)

Pipeline Rule-
based

Multi-
Modal Mobile

Diag-
no-sis,
Assis-
tance

No
Disease
Diag-
no-sis

Patients English
Not
Speci-
fied

Not
Speci-
fied

Sadavarte
and
Bo-
danese
(2019)

Pipeline Hybrid Multi-
Modal PDA Assis-

tance No Pregnan-
cy Patients English

Human
Evalu-
ation

Not
Speci-
fied

Lee
et al.
(2017)

Pipeline Hybrid Text Mobile Counsel-
ing Yes

Psychiatric
Counsel-
ing

Patients Korean
Not
Speci-
fied

Not
Speci-
fied

19



Rahman
et al.
(2019)

Pipeline Hybrid Text
Not
Speci-
fied

Diag-
no-sis,
Mon-
itor-
ing,
Counsel-
ing

No
Medical
Assis-
tance

Patients Bengali

Auto-
mated
Evalu-
ation

4,961
records

Yabuki
and
Sumi
(2018)

Not
Speci-
fied

Not
Speci-
fied

Speech Robot
Inter-
ven-
tion

No

Autism
Spec-
trum
Disor-
der

Care-
givers English

Not
Speci-
fied

Not
Speci-
fied

Su
et al.
(2018)

Pipeline Intent-
based Speech

Not
Speci-
fied

Diag-
no-sis,
Assis-
tance

No
Disease
Diag-
no-sis

Patients Chinese

Auto-
mated
Evalu-
ation

Not
Speci-
fied

Shoji
et al.
(2020)

Not
Speci-
fied

Not
Speci-
fied

Speech
Desk
/Lap,
PDA

Diag-
no-sis No PneumoniaPatients

Not
Speci-
fied

Auto-
mated
Evalu-
ation

Not
Speci-
fied

Polignano
et al.
(2020)

Pipeline Hybrid Multi-
Modal Mobile

Diag-
no-sis,
Inter-
ven-
tion,
Assis-
tance,
Mon-
itor-
ing

No
Medical
Assis-
tance

Patients Italian

Human
&
Auto-
mated
Evalu-
ation

1,865,700
records

Ali
et al.
(2021)

Pipeline Hybrid Speech

Desk
/Lap,
Vir-
tual
Envi-
ron-
ment

Inter-
ven-
tion

No Cancer Clinic-
ians English

Auto-
mated
Evalu-
ation

382
tran-
scripts
of
con-
versa-
tions

Aarabi
(2013) Pipeline Intent-

based Text
Not
Speci-
fied

Diag-
no-sis No CardiologyPatients English

Not
Speci-
fied

Not
Speci-
fied

Loisel
et al.
(2007)

Pipeline Hybrid Text
Not
Speci-
fied

Assis-
tance No

Medical
Assis-
tance

Patients French
Not
Speci-
fied

Not
Speci-
fied

Rosruen
and
Samanchuen
(2018)

Pipeline Hybrid Multi-
Modal

Desk
/Lap,
Mo-
bile

Assis-
tance No

Medical
Assis-
tance

Patients Chinese

Auto-
mated
Evalu-
ation

Not
Speci-
fied

Sonntag
and
Moller
(2010)

Pipeline Intent-
based

Multi-
Modal

Desk
/Lap

Assis-
tance Yes RadiologyClinic-

ians

Not
Speci-
fied

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied

Kadariya
et al.
(2019)

Pipeline Hybrid Multi-
Modal Mobile

Mon-
itor-
ing,
Inter-
ven-
tion

Yes Asthma Patients English

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied
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Siangchin
and
Samanchuen
(2019)

Pipeline Hybrid Text Mobile Assis-
tance No

Medical
Assis-
tance

Clinic-
ians Chinese

Human
&
Auto-
mated
Evalu-
ation

Not
Speci-
fied

Erazo
et al.
(2020)

Pipeline Rule-
based Text

Desk
/Lap,
Mo-
bile

Diag-
no-sis,
Assis-
tance

No COVID-
19 Patients

Not
Speci-
fied

Human
Evalu-
ation

Not
Speci-
fied

Huang
et al.
(2018)

Pipeline Hybrid Multi-
Modal Mobile

Mon-
itor-
ing,
Inter-
ven-
tion

Yes Weight
Loss Patients

English,
Chi-
nese

Not
Speci-
fied

Not
Speci-
fied

Chen
et al.
(2013)

Pipeline Rule-
based Speech

Desk
/Lap,
Mo-
bile

Assis-
tance No

Medical
Assis-
tance

Patients,
Care-
givers

Chinese
Human
Evalu-
ation

MAT
400
dataset

Araki
et al.
(2011)

Pipeline Intent-
based

Multi-
Modal

Desk
/Lap

Inter-
ven-
tion

No
Visually
Im-
paired

Patients Japanese
Human
Evalu-
ation

Not
Speci-
fied

She
et al.
(2018)

End-
to-
End

Not
Appli-
cable

Speech Robot
Inter-
ven-
tion

Yes

Autism
Spec-
trum
Disor-
der

Patients English

Auto-
mated
Evalu-
ation

Tager-
Flusberg
,Nadig
ASD
En-
glish,
and
Rollins
Cor-
pus

Yabuki
and
Sumi
(2018)

Not
Speci-
fied

Not
Speci-
fied

Speech Robot
Inter-
ven-
tion

Yes

Autism
Spec-
trum
Disor-
der

Care-
givers Japanese

Not
Speci-
fied

Self-
Const-
ructed
dataset

Wei
et al.
(2018)

Pipeline Intent-
based Text

Not
Speci-
fied

Diag-
no-sis No

Medical
Assis-
tance

Clinic-
ians Chinese

Auto-
mated
Evalu-
ation

Self-
Const-
ructed
dataset

Fadhil
and
AbuRa’ed
(2019)

Pipeline Intent-
based

Multi-
Modal Mobile

Mon-
itor-
ing,
Assis-
tance,
Inter-
ven-
tion

No
Medical
Assis-
tance

Patients Arabic
Human
Evalu-
ation

Not
Speci-
fied

Demasi
et al.
(2020)

Pipeline Intent-
based Text

Not
Speci-
fied

Counsel-
ing No Mental

Health Patients English
Human
Evalu-
ation

Self-
Const-
ructed
dataset

Waterschoot
et al.
(2020)

Pipeline Intent-
based Speech

Not
Speci-
fied

Mon-
itor-
ing

No Mental
Health Patients Dutch

Not
Speci-
fied

Self-
Const-
ructed
dataset
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Danda
et al.
(2016)

Pipeline Hybrid Speech

Desk
/Lap,
Mo-
bile

Diagnosing,
Inter-
ven-
tion,
Assis-
tance

No
Medical
Assis-
tance

Patients Indian

Human
&
Auto-
mated
Evalu-
ation

CMU
arctic
dataset

Duggenpudi
et al.
(2019)

Pipeline Rule-
based Text

Not
Speci-
fied

Assis-
tance No

Medical
Assis-
tance

Patients Telugu
Human
Evalu-
ation

Self-
Const-
ructed
dataset

Prange
et al.
(2017)

Pipeline Rule-
based

Multi-
Modal Mobile Assis-

tance No
Medical
Assis-
tance

Clinic-
ians

Not
Speci-
fied

Not
Speci-
fied

475
records

Campillos Llanos
et al.
(2015)

Pipeline Intent-
based

Multi-
Modal

Not
Speci-
fied

Inter-
ven-
tion

No
Medical
Assis-
tance

Clinic-
ians French

Not
Speci-
fied

Not
Speci-
fied

Welch
et al.
(2020)

Pipeline Intent-
based Text

Not
Speci-
fied

Counsel-
ing,
Assis-
tance

Yes Mental
Health Patients

Not
Speci-
fied

Human
Evalu-
ation

Not
Speci-
fied

Ljunglöf
et al.
(2009)

Pipeline Intent-
based Speech

Desk
/Lap,
Robot

Inter-
ven-
tion

No
Communication
Disor-
ders

Patients Swedish
Human
Evalu-
ation

Not
Speci-
fied

Ljunglöf
et al.
(2011)

Pipeline Intent-
based Speech

Desk
/Lap,
Robot

Inter-
ven-
tion

Yes
Communication
Disor-
ders

Patients Swedish
Human
Evalu-
ation

Not
Speci-
fied

Brixey
et al.
(2017)

Pipeline Hybrid Text

Desk
/Lap,
Mo-
bile

Assis-
tance No HIV Patients English

Human
Evalu-
ation

Self-
Const-
ructed
dataset

Morbini
et al.
(2014)

Pipeline Rule-
based Speech

Desk
/Lap,
Vir-
tual
Envi-
ron-
ment

Counsel-
ing Yes Mental

Health Patients English
Not
Speci-
fied

Not
Speci-
fied

DeVault
et al.
(2013)

Not
Speci-
fied

Not
Speci-
fied

Speech

Desk
/Lap,
Vir-
tual
Envi-
ron-
ment

Diag-
no-sis No Mental

Health
Clinic-
ians English

Not
Speci-
fied

Not
Speci-
fied

Inoue
et al.
(2016)

Pipeline Rule-
based

Multi-
Modal

Mobile,
Vir-
tual
Envi-
ron-
ment

Counsel-
ing Yes Mental

Health Patients
Not
Speci-
fied

Not
Speci-
fied

Not
Speci-
fied

Morbini
et al.
(2012)

Pipeline Intent-
based Text

Desk
/Lap,
Mo-
bile

Counsel-
ing Yes PTSD Patients English

Not
Speci-
fied

Not
Speci-
fied

Xu
et al.
(2019)

End-
to-
End

Not
Appli-
cable

Text
Not
Speci-
fied

Diag-
no-sis No

Disease
Diag-
no-sis

Patients Chinese

Human
&
Auto-
mated
Evalu-
ation

Self-
Const-
ructed
dataset
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Green
et al.
(2004)

Pipeline Rule-
based Speech Desk

/Lap

Inter-
ven-
tion

No DementiaCare-
givers English

Human
Evalu-
ation

Not
Spec-
ified
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