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ABSTRACT

The AI model has surpassed human players in the game of Go (Granter et al.,
2017; Fang et al., 2018; Intelligence, 2016), and it is widely believed that the AI
model has encoded new knowledge about the Go game beyond human players. In
this way, explaining the knowledge encoded by the AI model and using it to teach
human players represent a promising-yet-challenging issue in explainable AI. To
this end, mathematical supports are required to ensure that human players can
learn accurate and verifiable knowledge, rather than specious intuitive analysis.
Thus, in this paper, we extract interaction primitives between stones encoded by
the value network for the Go game, so as to enable people to learn from the value
network. Experiments show the effectiveness of our method.

1 INTRODUCTION

The explanation for AI models has gained increasing attention in recent years. However, in this
paper, we consider a new problem, i.e., if an AI model has achieved superior performance in a task
to human beings, then how can we use the explanation of this AI model to provide new insights
and teach people to better conduct the task? In this study, we focus on AI models designed for
the game of Go. It is because AI models for the Go game are regarded to have surpassed human
players, and may learn the inference logic beyond current human understandings of the game of
Go (Granter et al., 2017; Fang et al., 2018; Intelligence, 2016). Therefore, we aim to explain the
complex inference logic encoded by these AI models to teach human players to play the Go game.

The current AI model usually jointly uses the value network, policy network, and Monte Carlo
tree search to play the Go game. To simplify the explanation, in this study, we only explain shape
patterns1 encoded by the value network. However, the elaborate strategies for the Go game proposes
high requirements for the trustworthiness of the explanation. In particular, the Go game is widely
considered as much more complex than most other games (Shin et al., 2021; 2020). In the Go game,
even minor alterations to 1-2 stones on the board can fundamentally change the result of the game.
Therefore, the explained insights into the value network are supposed to be proved by theories, be
verified by experiments, and be accountable for errors, instead of specious intuitive analysis.

Specifically, the explanation method needs to address following two new challenges to provide a
provable and verifiable explanation for the inference logic of the value network. (1) For models
for most other applications, we can explain the model by simply visualizing implicit appearance
patterns encoded by the model (Simonyan et al., 2014; Dosovitskiy & Brox, 2016; Yosinski et al.,
2015; Zeiler & Fergus, 2014), or estimating attributions of different input variables (Lundberg &
Lee, 2017; Selvaraju et al., 2017; Zhou et al., 2016; Zintgraf et al., 2017). However, due to the high
complexity of the Go game, we need to explain explicit primitive shape patterns1, which are used
by the neural network as primitive logic to play the game. (2) The rigor of the explanation of shape
patterns1 must be guaranteed in mathematics. It is because the superior complexity of the Go game
can easily lead to specious or groundless explanations that will misguide human players.

To this end, (Li & Zhang, 2023; Ren et al., 2023b) have attempted to define and extract interactions
encoded by a DNN. Let us consider the Go game shown in Figure 1. Given a game state x with n
stones on the board, N = {1, 2, ..., n}, we use interactions to explain the advantage score of white
stones estimated by the value network. The value network may encode the interaction between

1Shape patterns, refer to the various shapes formed by the arrangement of stones on the board.
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Figure 1: Interactions encoded by the value network. Each interaction S represents a specific shape
pattern corresponding to an AND relationship among a set of stones in S. The stones x6, x9, x10

are removed in the masked board state xmasked. Because the stone x9 is removed from the board,
the interactions S3 and S4 are deactivated in the masked board state xmasked, i.e., I(S3|xmasked) = 0,
and I(S4|xmasked) = 0. The coalition T = {1, 3, 8} participates in different interactions S1, S2, S3.

stones in S1 = {1, 3, 4, 5, 8}. Each interaction S ⊆ N represents a specific shape corresponding
to an AND relationship between stones in S. When all stones in S are present on the board, the
interaction S is activated and make an effect I(S) on the output of the value network. The removal
of any stone in S will deactivate the interaction effect from the network output.

However, we find that the previous interaction-based explanation cannot be directly used to discover
novel shapes from the value network. We overcome following three major challenges.

• Besides explaining AND relationships between stones, we need to extend the original definition of
interactions to further explain OR relationships between stones encoded by the value network. I.e.,
the presence of any stones in a set of positions S would make a certain effect Ior(S).

• We find that the advantage score estimated the value network is usually shifted/biased, when white
stones are far less or far more than black stones in the board. To this end, we develop a method to
alleviate the shifting problem to simplify the explanation.

• We need to show that given a certain state x on the Go board, the outputs of the value network can
always be mimicked by a small number of AND interactions and OR interactions, no matter how
we randomly remove stones from the board.

Furthermore, we notice that shape patterns for the Go game are usually quite complex, i.e., each
interaction often contains a large number of stones. Too complex shape patterns are usually consid-
ered as the specific shapes memorized by the value network for a specific state, instead of a common
shape patterns shared by different states. Thus, the complexity of shape patterns boosts the difficulty
of understanding the Go game. Thus, we further identify some common combinations of stones that
are shared by different interactions/shapes, namely coalitions. For example, in Figure 1, the inter-
actions S1 = {1, 3, 4, 5, 8}, S2 = {1, 3, 8}, S3 = {1, 3, 8, 9} all contain the coalition T={1, 3, 8}.
We apply (Xinhao Zheng, 2023) to estimate the attribution of each coalition to help human players
understand the DNN’s logic. We collaborate with professional human Go players to compare the
interactions or coalitions encoded by the value network with the human understanding of the Go
game, so as to discover advanced shapes beyond human understanding.

We conducted experiments to evaluate attributions of some manually-annotated coalitions, and co-
operated with professional human Go players to further explain these attributions. We found many
cases that fitted to human understandings of shape patterns, as well as a few cases that conflicted
with normal understandings of shape patterns, which provided new insights into the Go game.

2 RELATED WORK

Many methods have been proposed to visualize the feature/patterns encoded by the DNN (Simonyan
et al., 2014; Dosovitskiy & Brox, 2016; Yosinski et al., 2015; Zeiler & Fergus, 2014), or to estimate
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the attribution/importance of each input variable (Lundberg & Lee, 2017; Selvaraju et al., 2017;
Zhou et al., 2016; Zintgraf et al., 2017).

However, the demand to teach human players proposes higher requirements for the explanation
method. We need to clarify the explicit logic used by the DNN, which is supposed to be theoretically
guaranteed and experimentally verified, instead of a specious understanding. To this end, (1) Ren
et al. (2023a) and Ren et al. (2023b) have proven that a well-trained DNN usually encodes a small
number of interactions, and the output score of the DNN on a certain input sample can always be
well mimicked by numerical effects of a few salient interactions, no matter how the input sample
is randomly masked. (2) Li & Zhang (2023) have further found the considerable transferability of
interactions over different samples and over different DNNs. (3) Interaction primitives (the Harsanyi
interaction) can explain the elementary mechanism of previous explanation metrics, e.g., the Shapley
value (Shapley, 2016), the Shapley interaction index (Grabisch & Roubens, 1999), and the Shapley
Taylor interaction index (Sundararajan et al., 2020a).

Despite of above findings, explaining the DNN for the Go game still proposes new challenges. To
this end, we extend the AND interaction to the OR interaction, solve the saturation problem of the
advantage score, and compute attributions of common coalitions shared by different interactions,
thereby obtaining concise and accurate explanation for shape patterns in the value network.

3 EXPLAINING THE INFERENCE LOGIC OF THE VALUE NETWORK

3.1 PRELIMINARIES: INTERACTIONS ENCODED BY THE DNN

• Definitions of the interaction. In this paper, we use the value network v for the game of Go as
an example to introduce interactions between different stones encoded by the value network. The
value network uses the current state x on the board to estimate the probability pwhite(x) of white
stones winning. To simplify the notation, let us use x = {x1, x2, ..., xn} to denote both positions
and colors of n stones in the current state. We consider these n stones, including both white and
black stones, as input variables2 of the value network, which are indexed by N = {1, 2, ..., n}. We
set a scalar v(x) = log( pwhite(x)

1−pwhite(x)
) ∈ R as the advantage of white stones in the game.

In this way, Harsanyi (1963) has proposed a metric I(S), namely the Harsanyi dividend or the
Harsanyi interaction, to measure the interaction between each specific set S ⊆ N of input variables
(stones) encoded by the model v. Each interaction S, e.g., S2 = {1, 3, 8} in Figure 1, denotes a
certain shape of stones. If all stones in S are placed on the board, then the interaction will make
a numerical effect on the advantage score v(x). Thus, we can consider the interaction as an AND
relationship I(S2) = wS2

· [exist(x1)&exist(x3)&exist(x8)] encoded by v, where the Boolean func-
tion exist(·) = 1 when the stone is placed on the board; exist(·) = 0 when the stone is removed.
Otherwise, the removal of any stones in S will deactivate the effect, i.e., making I(S|xmasked) = 0.
Such an interaction effect can be measured from the value network based on the following definition.

I(S)
def
=

∑
T⊆S

(−1)|S|−|T | · v(xT ) (1)

where xT denotes the state when we keep stones in the set T on the board, and remove all other
stones in N \ T . Thus, v(xT ) measures the advantage score of the masked board state xT .

• Sparsity of interactions and interaction primitives. Although we can sample 2n different sub-
sets of variables from N , i.e., S1, S2, S3, ..., S2n ⊆ N , Li & Zhang (2023); Ren et al. (2023b) have
discovered and proved that a well-trained DNN usually only encodes a small number of interactions
in some common conditions3. In other words, most interactions S ⊆ N defined in Equation (1)
usually have almost zero effect, I(S) ≈ 0. Only a few interactions S ∈ Ωsalient have considerable
effects, s.t. |Ωsalient| ≪ 2n. In this paper, we set a threshold ξ = 0.15 ·maxS |I(S)| to select salient
interactions, Ωsalient = {S : |I(S)| > ξ}.

We can consider the small number of salient interactions S ∈ Ωsalient as primitive inference patterns
encoded by the value network, namely interaction primitives, because Theorem 1 shows that these

2Although the actual input of the value network is a tensor (Silver et al., 2016), in this paper, we use
x = {x1, x2, ..., xn} to denote the input of the value network for simplicity.

3Please see Appendix B for more detailed introductions of common conditions.
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interaction primitives can always well mimic the network outputs no matter how we randomly mask
the input sample x.

Theorem 1 (proved by Ren et al. (2023a)). Let us randomly mask a given input sample x to obtain
a masked sample xT . The output score of the DNN on all 2n randomly masked samples xT w.r.t.
∀T ⊆ N can all be approximated by the sum of effects of a small number of salient interactions.

v(xT ) =
∑

S⊆T
I(S) ≈

∑
S∈Ωsalient,S⊆T

I(S) (2)

Theorem 1 shows that when we remove stones in a random set N \ T from the board state x and
obtain a masked state xT , the output score v(xT ) of the value network on xT can be explained by
a small number of salient shape patterns encoded by the value network.

• Complexity of the interaction primitive. The complexity of an interaction primitive S is defined
as the order of the interaction, i.e., the number of stones in S, order(S) = |S|. An interaction
primitive of a higher order represents a more complex interaction with more stones.

3.2 EXTRACTING SPARSE AND SIMPLE INTERACTION PRIMITIVES

To teach people about new patterns to play the game of Go, we first extract interaction primitives
encoded by the value network. We consider them as shape patterns used by the value network to
estimate the winning probability. To this end, we need to address the following three challenges.

• Challenge 1. Extending AND interactions to OR interactions. The original Harsanyi interac-
tion just represents the AND relationship between a set of stones encoded by the network. How-
ever, compared to most other applications, the game of Go usually applies much more complex
logic (Shin et al., 2021; 2020), so we extend AND interactions in Equation (1) to OR interactions.
We simultaneously use these two types of interactions to explain the Go game.

Logically, an OR relationship can be represented as the combination of binary logical operations
“AND” and “NOT.” For example, we represent the effect of an AND interaction S = {1, 2, 3} as
Iand(S) = wand

S · [exist(x1)&exist(x2)&exist(x3)], where & represents the binary logical operation
“AND.” In comparison, the effect of an OR interaction S = {1, 2, 3} is represented as Ior(S) =
wor

S · [exist(x1)|exist(x2)|exist(x3)] = wor
S · {¬[(¬exist(x1))&(¬exist(x2))&(¬exist(x3))]}, where

| represents the binary logical operation “OR,” and the Boolean function ¬exist(·) = 1 when the
stone is removed, ¬exist(·) = 0 when the stone is placed on the board.

Therefore, we consider the advantage score of the value network v(xT ) w.r.t. any masked sample,
∀T ⊆ N , intrinsically contains the following two terms.

∀T ⊆ N, v(xT ) = vand(xT ) + vor(xT ) (3)

where the advantage term vand(xT ) is exclusively determined by AND interactions, and the advan-
tage term vor(xT ) is exclusively determined by OR interactions. Later, in Equation (6), we will
introduce how to automatically learn/disentangle vand(xT ) and vor(xT ) from v(xT ).

Just like in Equation (1), the AND interaction is redefined on the advantage term vand(xT ), and is
given as Iand(S) =

∑
T⊆S(−1)|S|−|T | · vand(xT ). Similarly, an OR interaction S is measured to

reflect the strength of an OR relationship between stones in the set S encoded by the model vor. If
any stone in S appears on the board, then the OR interaction S makes an effect Ior(S) on the score
vor(x). Only all stones in S are removed from the board, the effect Ior(S) is removed. Thus, we can
define the effect Ior(S) of an OR interaction S on the model output vor(x), as follows.4.

Ior(S) = −
∑

T⊆S
(−1)|S|−|T |vor(xN\T ), S ̸= ∅ (4)

Theorem 2 (proved in Appendix C). The OR interaction effect between a set S of stones, Ior(S)
based on v(xT ), can be computed as a specific AND interaction effect I ′and(S) based on the dual
function v′(xT ). For v′(xT ), original present stones in T (based on v(xT )) are considered as being
removed, and original removed stones in N \ T (based on v(xT )) are considered as being present.

4Please see Appendix D for the proof.
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Figure 2: Strength of effects of all AND interactions and OR interactions in descending order. Only
a small number of interactions have salient effects on the output of the value network.

Theorem 3 (proved in Appendix E). Let the input sample x be randomly masked. There are 2n

possible masked samples {xT } w.r.t. 2n subsets T ⊆ N . The output score on any masked sample
xT can be represented as the sum of effects of both AND interactions and OR interactions.

v(xT ) = v(x∅)+vand(xT )+vor(xT ) = v(x∅)+
∑

S⊆T,S ̸=∅
Iand(S)+

∑
S∩T ̸=∅,S ̸=∅

Ior(S) (5)

To automatically learn the disentanglement of AND interactions and OR interactions, we set ∀T ⊆
N, vand(xT ) = 1

2v(xT ) + pT and vor(xT ) = 1
2v(xT ) − pT , which satisfies ∀T ⊆ N, v(xT ) =

vand(xT )+vor(xT ), so that the learning of the disentanglement of vand(xT ) and vor(xT ) is equivalent
to the learning of {pT }T⊆N . pT ∈ R denotes a learnable bias term. Furthermore, we notice that
small unexplainable noises in the network output can be enlarged in interactions5. To overcome
this problem, we slightly revise the original network output v(xT ) as v(xT ) + qT , where qT ∈
R is a small scalar contained within a small range, |qT | < τ 6. The parameter qT is learned to
represent the unavoidable noises in the network output, which cannot be reasonably explained by
AND interactions or OR interactions. According to the Occam’s Razor, we use the following loss
function to learn the sparse decomposition of AND interactions and OR interactions.

min
p,q∈R2n

∥Iand∥1 + ∥Ior∥1 s.t. ∀S ⊆ N, |qS | < τ (6)

where ∥ · ∥1 represents L-1 norm function, p = [pS1
, pS2

, ..., pS2n
]⊤ denotes the bias terms for all

masked boards. q = [qS1
, qS2

, ..., qS2n
]⊤. Iand = [Iand(S1), Iand(S2), ..., Iand(S2n)]

⊤ and Ior =
[Ior(S1), Ior(S2), ..., Ior(S2n)]

⊤ denote AND interactions and OR interactions, respectively. AND
interactions {Iand(S)}S⊆N are computed by setting vand(xT ) = 1

2 · [v(xT ) + qT ] + pT , and OR
interactions {Ior(S)}S⊆N are computed by setting vor(xT ) =

1
2 · [v(xT )+qT ]−pT in Equation (4).

• Challenge 2. Verifying that the inference logic of the value network can be explained as
sparse interaction primitives. Although Ren et al. (2023b) have proved that a well-trained DNN
usually just encodes a small number of AND interactions between input variables for inference
under some common conditions3, it is still a challenge to strictly examine whether the value network
fully satisfies these conditions. Although according to Theorem 2, the above OR interaction can be
considered as a specific AND interaction, in real applications, we still need to verify the sparsity of
interactions encoded by the value network for the Go game.

Therefore, we experimentally examine the sparsity of interactions on the KataGo (Wu, 2019), which
is a free open-source neural network for the game of Go and has defeated top-level human players.
We extract interactions encoded by the value network of the KataGo. Specifically, we use KataGo
to generate a board state by letting KataGo take turns to play the moves of black stones and those
of white stones. Let there be m stones on the board. Considering the exponentially large cost of
computing interactions, we just select and explain n = 10 stones (n ≤ m), including n

2 white
stones and n

2 black stones, and limit our attention to interactions between these n stones. All other
stones on the board can be considered as constant background, whose interactions are not computed.
Figure 2 shows the strength |I(S)| of effects of different AND interactions and OR interactions in a
descending order. It shows that only a few interactions have salient effects, 80%-85% interactions
have negligible effects. It verifies that interactions encoded by the value network are sparse.

• Challenge 3. How to ensure that the inference logic of the value network can be explained
as simple interaction primitives? We find a problem that most interaction primitives extracted

5Please see Appendix F for the proof.
6Please see Appendix I.2 for more details about setting the small threshold τ .
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Figure 3: (a) The average advantage score Ak = ExET⊆N :∆n(T )=k log(
pwhite(xT )

1−pwhite(xT ) ) over all
masked states xT with the same unbalance level k. The average advantage score is saturated when
|k| is large. (b) Compared to high-order interactions S4, low-order interactions S1, S2, S3 extracted
from the board state x(1) are usually easier to be transferred to another board state x(2).

from the KataGo are high-order interaction primitives (see Figure 4). The high order of interaction
primitives significantly boosts the difficulty of extracting common shape patterns widely used in
different games. It is because high-order interactions are usually considered to be “special shapes”
in a specific game, instead of simple (low-order) shape patterns frequently used in different games.
For example, as Figure 3 (b) shows, 3-order interaction primitives S1, S2, S3 extracted from the
board state x(1) can be transferred to another board state x(2). However, the 8-order interaction
primitive S4 extracted from x(1) cannot be transferred to another board state x(2).

The reason for the emergence of high-order interactions is that most training samples for the value
network are usually biased to states with similar numbers of white stones and black stones, be-
cause in real games, the board always contains similar numbers of white stones and black stones.
Such a bias leads to the following saturation problem, which makes most interaction primitives be
high-order primitives7. We use ∆n(T ) = nwhite(T ) − nblack(T ) ∈ {−n/2,−n/2 + 1, ..., n/2}
to measure the unbalance level of the masked state xT , where nwhite(T ) and nblack(T ) denote the
number of white stones and that of black stones on xT , respectively. As Figure 3 (a) shows, we
compute the average advantage score over all masked states xT with the same unbalance level
k ∈ {−n/2,−n/2 + 1, ..., n/2}, Ak = ExET⊆N :∆n(T )=k log(

pwhite(xT )
1−pwhite(xT ) ). We find that this av-

erage advantage score Ak = ExET⊆N :∆n(T )=k log(
pwhite(xT )

1−pwhite(xT ) ) is not roughly linear with the k

value, but is saturated when |k| is large. This is the main reason for high-order interactions7.

In order to alleviate the above saturation problem, we revise the advantage score v(xT ) in Equa-
tion (1) to remove the value shift caused by the saturation problem, i.e., u(xT ) = v(xT ) − ak.
Given a masked state xT , we compute its unbalance level k = ∆n(T ) = nwhite(T ) − nblack(T ) ∈
{−n/2,−n/2+1, ..., n/2}. ak is initialized as the average advantage score Ak. We extend the loss
function in Equation (6) as follows to learn the parameters a = [a−n

2
, a−n

2 +1, ..., an
2
]⊤ ∈ Rn+1.

min
p,q∈R2n ,a∈Rn+1

∥Iand∥1 + ∥Ior∥1 s.t. ∀S ⊆ N, |qS | < τ (7)

We learn parameters p, q, and a to obtain the sparse decomposition of AND interactions Iand =
[Iand(S1), Iand(S2), ..., Iand(S2n)]

⊤ and OR interactions Ior = [Ior(S1), Ior(S2), ..., Ior(S2n)]
⊤.

AND interactions {Iand(S)}S⊆N are computed by setting vand(xT ) = 1
2 · [u(xT ) + qT ] + pT ,

and OR interactions {Ior(S)}S⊆N are computed by setting vor(xT ) = 1
2 · [u(xT ) + qT ] − pT in

Equation (4). The small threshold τ = 0.38 is set to be the same as in Equation (6)

Penalizing high-order interactions. Besides, we can further add another loss to Equation 7 to pe-
nalize high-order interactions, i.e., Loss = ∥Iand∥1 + ∥Ior∥1 + r · ∥Ihigh

and ∥1 + ∥Ihigh
or ∥1, where Ihigh

and
denotes a 386-dimension vector that corresponds to 386 interactions of the 6-th-10-th orders in the
vector Iand. In this loss, we set r = 5.0 to boost the penalty of high-order interactions.

Experiments. We conduct experiments to check whether above methods can reduce the complexity
(order) of the extracted interactions, compared with the original interactions extracted by methods in
Equation (6). Specifically, we follow experimental settings in Challenge 2 to generate a board, and

7Please see Appendix G for the reason why the saturation problem causes high-order interactions.
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compute AND-OR interactions between selected n stones. Then, we compute the average strength
of AND-OR interactions of different orders, ES:|S|=m[|Iand(S)|] and ES:|S|=m[|Ior(S)|], respec-
tively. Figure 4 shows the average strength of interaction effects. For both AND interactions and
OR interactions, we observe that the revised method generates much weaker high-order interactions
than the original method in Equation (6). This verifies the effectiveness of the revised method to
reduce the complexity of the extracted interactions.

Sparsity of interactions extracted by the revised method. We follow experimental settings in Chal-
lenge 2 to generate 50 game states, and visualize the strength of all AND interactions and all OR
interactions of all these 50 game states in a descending order. Figure 5 shows that only a few interac-
tions have salient effects, more than 90% interactions have small effects, which verifies the sparsity
of interactions extracted by the revised method.

Still satisfying the universal matching property in Theorem 3. Theoretically, the AND-OR interac-
tions extracted by our revised method can still satisfy the universal matching property in Theorem 3.
Furthermore, given a board state x, we conduct experiments to examine whether we can use the
extracted AND-OR interactions to approximate the network outputs v(xT ) on all different ran-
domly masked board states {xT }T⊆N . To this end, for each arbitrarily masked board states xT , we
measure the approximation error ∆vT = |vreal(xT ) − vapprox(xT )| of using AND-OR interactions
to mimic the real network output vreal(xT ), where vapprox(xT ) = v(x∅) +

∑
S⊆T,S ̸=∅ Iand(S) +∑

S∩T ̸=∅,S ̸=∅ Ior(S) represents the score approximated by AND-OR interactions according to The-
orem 3. In Figure 6, the solid curve shows the real network outputs on all 2n randomly masked
board states when we sort all 2n network outputs in an ascending order. The shade area shows the
smoothed approximation error, which is computed by averaging approximation errors of neighbor-
ing 50 masked board states. Figure 6 shows that the approximated outputs vapprox(xT ) can well
match with the real outputs vreal(xT ) over different randomly masked states, which indicates that
the output of the value network can be explained as AND-OR interactions.

3.3 DISCOVERING NOVEL SHAPES FROM THE VALUE NETWORK

In the above section, we have extracted sparse and simple interaction primitives from the value
network. In this section, we aim to discover novel shapes from these interaction primitives, and use
the discovered novel shapes to teach people about the game of Go.

We have examined the sparsity of interaction primitives in experiments. We can usually extract
about 100–250 interaction primitives to explain the output score of a single board state. However, the
number of primitives is still too large to teach people, and we need a more efficient way to discover
novel shapes encoded by the value network. Therefore, we visualize all interaction primitives, and
then identify some specific combinations of stones that frequently appear in different interaction
primitives. We refer to these combinations as “common coalitions.” For example, given a board state
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Figure 6: Outputs of the value network on all 2n masked board states v(xT ) (the red full line), which
are arranged in ascending order. The height of the blue shade represents the smoothed approximation
error, which is computed by averaging the approximation errors ∆vT = |vreal(xT ) − vapprox(xT )|
of neighboring 50 masked states.

x with n stones, indexed by N = {1, 2, ..., n} in Figure 1, we can extract some salient interactions
from the board state x, such as S1 = {1, 3, 4, 5, 8}, S2 = {1, 3, 8}, S3 = {1, 3, 8, 9}, etc. The
coalition T = S1 ∩ S2 ∩ S3 = {1, 3, 8} participates in different interactions T ⊆ S1, S2, S3. We
can consider this coalition T as a classical shape pattern encoded by the value network.

Therefore, we further compute the attribution φ(T ) of each coalition T to the advantage score v(x)
estimated by the value network. In this way, a positive attribution φ(T ) > 0 means that the shape
pattern of the coalition T tends to enhance the advantage of white stones. In comparison, a negative
attribution φ(T ) < 0 means that the shape pattern of the coalition T tends to decrease the advantage
score. φ(T ) ≈ 0 means that although the coalition T is well modeled by the value network, the
coalition T has contradictory effects when it appears in different interactions, thereby not making a
significant effect on the advantage score.

There are a lot of attribution methods (Lundberg & Lee, 2017; Selvaraju et al., 2017; Zhou et al.,
2016; Zintgraf et al., 2017) to estimate the attribution/importance score of different input variables
of an AI model, e.g., estimating the attributions of different image patches to the image-classification
score, or the attributions of different tokens in natural language processing. However, there is no a
widely accepted method to estimate the attribution of a coalition of input variables, because most
attribution methods cannot generate self-consistent attribution values8. Therefore, we apply the
method (Xinhao Zheng, 2023) to define the attribution of a coalition T . This method extends the
theory of the Shapley value and well explains the above inconsistency problem. Specifically, the
attribution score φ(T ) of the coalition T is formulated as the weighted sum of effects of AND-OR
interactions, as follows.

φ(T ) =
∑

S⊇T

|T |
|S|

[Iand(S) + Ior(S)] (8)

φ(T )−
∑

i∈T
ϕ(i) =

∑
S⊆N,S∩T ̸=∅,S∩T ̸=T

|S ∩ T |
|S|

[Iand(S) + Ior(S)] (9)

Let there be some AND interactions and OR interactions containing the coalition T . Then, Equa-
tion (8) shows that for each interaction S ⊇ T containing the coalition T , we must allocate a ratio
|T |
|S| of its interaction effect as a numerical component of φ(T ). In addition, Appendix H shows a list
of theorems and properties of the attribution of the coalition defined in Equation (8), which theoret-
ically guarantee the faithfulness of the attribution metric φ(T ). For example, Equation (9) explains
the difference φ(T ) −

∑
i∈T ϕ(i) between the coalition’s attribution φ(T ) and the sum of Shapley

values ϕ(i) for all input variables i in T . The difference comes from those interactions that only
contain partial variables in T , not all variables in T . Please see Appendix H for more theorems.

Experiments. Given a board state, we extract interaction primitives encoded by the value network,
i.e., {S : |I(S)| > ξ}, where ξ = 0.15 · maxS |I(S)|. Then, we manually annotate 50 coalitions
based on the guidance from professional human Go players. Figure 7 visualizes sixteen coalitions
selected from four game states. Figure 5 (b) shows the interaction context of the coalition. Please
see Appendix I.3 for more details about the computation of the attribution of the interaction context.

8We use the following example to introduce the inconsistency problem. We can simply consider a coalition
T (e.g., T = {1, 2, 3}) of input variables as a singleton variable [T ], then we have a total of n − 2 input
variables in N ′ = {[T ], 4, 5, ..., n}. Let φ([T ]) denote the attribution of [T ] computed on the new partition N ′

of the n−2 variables. Alternatively, we can also consider x1, x2, x3 as three individual variables, and compute
their attributions φ(1), φ(2), φ(3) given the original partition of input variables N = {1, 2, ..., n}. However,
for most attribution methods, φ([T ]) ̸= φ(1)+φ(2)+φ(3). This is the inconsistency problem of attributions.
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Game 1 Game 2

Game 3
Game 4

(1.a) (1.b) (1.c) (1.d)

(2.a) (2.b) (2.c) (2.d)

(3.a) (3.b) (3.c) (3.d) (3.e)

𝜑 1,2,3,8 = 0.63 𝜑 2,3,8 = 0.88 𝜑 1,2,3,7 = 0.52 𝜑 2,3,7 = 1.11

𝜑 1,5,8 = 1.27 𝜑 1,7,8 = −1.03 𝜑 2,8,9,10 = −0.62 𝜑 2,8,10 = −0.80

𝜑 2,3,8 = 2.18 𝜑 1,3,8 = 1.81 𝜑 1,2,3,8 = 1.63 𝜑 6,7,8 = 1.00 𝜑 3,6,7 = −1.15

𝜑 1,2,3,9 = −1.71 𝜑 1,2,3,4 = 1.34 𝜑 1,4,10 = −1.40 𝜑 3,4,10 = −1.26

(4.a) (4.b) (4.c) (4.d)

Figure 7: Estimated attributions of different coalitions (shape patterns). Stones in the coalition are
high-lighted by red circles.

3.4 HUMAN PLAYERS’ INTERPRETATION OF THE CLASSIC SHAPES/COALITIONS

In order to interpret shape patterns (coalitions) encoded by the value network, we collaborate with
the professional human Go player9. Based on Figure 7, they find both shape patterns that fit common
understandings of human players and shape patterns that conflict with human understandings.

Cases that fit human understandings. For the Game 1 in Figure 7 (1.a - 1.d), φ({1, 2, 3, 8}) <
φ({2, 3, 8}) and φ({1, 2, 3, 7}) < φ({2, 3, 7}). It means that when the white stone x1 participates
in the combination of white stones x2, x3, the advantage of white stones become lower, i.e., the
stone x1 is a low-value move. Go players consider that the effect of the combination of white stones
x1, x2, x3 is low. For the Game 2 in Figure 7 (2.a, 2.b), φ({1, 5, 8}) > φ({1, 2, 8}) means that
the value network considers that the white stone x5 has higher value than x2. Go players consider
that in this game state, the white stone x5 protects the white stones x1, x2, x3, x4, and the white
stones x1, x3 attack the black stones x6, x7, but the white stone x2 has much less value than other
stones. For the Game 3 in Figure 7 (3.a - 3.c), φ(S1 = {1, 3, 8}) > φ(S3 = {1, 2, 3, 8}) and
φ(S2 = {2, 3, 8}) > φ(S3 = {1, 2, 3, 8}), subject to S3 = S1 ∪ S2. Go players consider that the
existence of the local shape S1 = {1, 3, 8} makes the move of the stone x2 have a low value, i.e.,
given the context S1, the stone x2 wastes a move, thereby losing some advantages. Figure 7 shows
some strange shape patterns that go beyond the understandings of human Go players.

Cases that conflict with human understandings. For Game 3 in Figure 7 (3.d, 3.e), φ({6, 7, 8}) =
1.00 and φ({3, 6, 7}) = −1.15, Go players are confused that the coalition {6, 7, 8} is advantageous
for white stones, and the coalition {3, 6, 7} is advantageous for black stones. For Game 4 in Figure 7
(4.a, 4.b), φ({1, 2, 3, 4}) = 1.34 and φ({1, 2, 3, 9}) = −1.71. It means that the coalition {1, 2, 3, 4}
is advantageous for white stones, and the coalition {1, 2, 3, 9} is advantageous for black stones.

4 CONCLUSION

In this paper, we extract sparse interactions between stones memorized by the value network for
the game of Go. We regard common coalitions shared by different interactions as shape patterns,
and estimate attribution values of these common coalitions. Then, we examine the fitness and con-
flicts between the automatically extracted shape patterns and conventional human understanding of
the game of Go, so as to help human players learn novel shapes from the value network. We col-
laborate with professional human Go players to provide deep insights into shape patterns that are
automatically extracted from the value network.

9During the review phase, the Go players are anonymous, because they are also authors.
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ETHIC STATEMENT

This paper aims to extract sparse and simple interaction primitives between stones encoded by the
value network for the game of Go, thereby teaching people to learn from the value network. Previous
methods usually extract AND-OR interactions to represent the primitives encoded by the AI model.
However, we discover that although AND-OR interactions have some good mathematical properties,
the interaction primitives (shape patterns) extracted by this method are usually extremely complex,
i.e., the shape patterns usually contain many stones. Such complexity of the extracted shape patterns
makes it difficult for people to learn from the value network. Thus, we propose a method to extract
sparse and simple interactions encoded by the value network. There are no ethic issues with this
paper.

REPRODUCIBILITY STATEMENT

We have provided proofs for the theoretical results of this study in Appendix A, B, C, D, E, F, G, H.
We have also provided experimental details in Appendix I and more experimental results in Ap-
pendix J. Furthermore, we will release the code when the paper is accepted.
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A PROPERTIES FOR THE HARSANYI DIVIDEND

In this paper, we follow Ren et al. (2023a) to use the Harsanyi dividend (or Harsanyi interaction) to
measure the numerical effect I(S) of the interaction primitive S. Ren et al. (2023a) have proved that
the Harsanyi dividend satisfied the following properties, including the efficiency, linearity, dummy,
symmetry, anonymity, recursive, interaction distribution properties.

(1) Efficiency property: The inference score of a well-trained model v(x) can be disentangled into
the numerical effects of different interaction primitives I(S), S ⊆ N , i.e., v(x) =

∑
S⊆N I(S).

(2) Linearity property: If the inference score of the model w is computed as the sum of the inference
score of the model u and the inference score of the model v, i.e., ∀S ⊆ N,w(xS) = u(xS)+v(xS),
then the interactive effect of S on the model w can be computed as the sum of the interaction effect
of S on the model u and that on the model v, i.e., ∀S ⊆ N, Iw(S) = Iu(S) + Iv(S).

(3) Dummy property: If the input variable i is a dummy variable, i.e., ∀S ⊆ N \ {i}, v(xS∪{i}) =
v(xS) + v(x{i}), then the input variable i has no interaction with other input variables, i.e., ∀∅ ̸=
S ⊆ N \ {i}, I(S ∪ {i}) = 0.

(4) Symmetry property: If the input variable i ∈ N and the input variable j ∈ N cooperate with
other input variables in S ⊆ N \ {i, j} in the same way, i.e., ∀S ⊆ N \ {i, j}, v(xS∪{i}) =
v(xS∪{j}), then the input variable i and the input variable j have the same interactive effect, i.e.,
∀S ⊆ N \ {i, j}, I(S ∪ {i}) = I(S ∪ {j}).
(5) Anonymity property: If a random permutation π is added to N , then ∀S ⊆ N, Iv(S) = Iπv(πS)
is always guaranteed, where the new set of input variables πS is defined as πS = {π(i), i ∈ S}, the
new model πv is defined as (πv)(xπS) = v(xS). This suggests that permutation does not change
the interactive effects.

(6) Recursive property: The interactive effects can be calculated in a recursive manner. For ∀i ∈
N,S ⊆ N\{i}, the interactive effect of S ∪ {i} can be computed as the difference between the
interactive effect of S with the presence of the variable i and the interactive effect of S with the
absence of the variable i. I.e., ∀i ∈ N,S ⊆ N\{i}, I(S ∪ {i}) = I(S|i is consistently present) −
I(S), where I(S|i is consistently present) =

∑
L⊆S(−1)|S|−|L|v(xL∪{i}).

(7) Interaction distribution property: This property describes how an interaction function Sundarara-
jan et al. (2020b) distributes interactions. An interaction function vT parameterized by a context T is
defined as follows. ∀S ⊆ N , if T ⊆ S, then vT (xS) = c; if not, vT (xS) = 0. Then, the interactive
effects for an interaction function vT can be computed as, I(T ) = c, and ∀S ̸= T, I(S) = 0.

B COMMON CONDITIONS FOR THE SPARSITY OF INTERACTIONS ENCODED
BY A DNN

Ren et al. (2023b) presented the sufficient conditions for the sparsity of interaction primitives en-
coded by the DNN, i.e., (1) the DNN does not encode interaction primitives of extremely high order,
i.e., the DNN does not encode too complex interaction primitives, such as encoding complex in-
teractions between over 70 stones; (2) When the input samples are partially occluded or masked,
the output of the DNN should monotonically decrease as the number of masked input variables in-
creases; (3) The inference score of the masked input sample should not be too low, and the inference
score of the normal input sample should not be too high.

C PROVING THAT THE OR INTERACTIONS CAN BE CONSIDERED AS A
SPECIFIC AND INTERACTION

The effect Ior(S) of an OR interaction S is defined as follows.

Ior(S) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T ), S ̸= ∅ (10)

Here, xN\T denotes the masked board state where stones in the set N \ T are placed on the board,
and stones in the set T are removed. We reconsider the definition of the masked board state x as the
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definition of x′. In comparison, x′
T denotes the masked board state where stones in the set T are

removed (based on the definition of xT , stones in the set T are placed on the board), and stones in
the set N \ T are placed on the board (based on xT , stones in the set N \ T are removed).

In this way, xN\T denotes the same board state as x′
T . The effect Ior(S|x) of an OR interaction

based on the definition of x can be reformulated as the effect I ′and(S|x′) of an AND interaction
based on the definition of x′ as follows.

Ior(S|x) = −
∑

T⊆S
(−1)|S|−|T |v(xN\T ), S ̸= ∅

= −
∑

T⊆S
(−1)|S|−|T |v(x′

T ), S ̸= ∅

= −I ′and(S|x′), S ̸= ∅

(11)

Therefore, we consider the OR interaction as a specific AND interaction.

D PROVING THAT THE MODEL OUTPUT CAN BE REPRESENTED AS OR
INTERACTIONS

According to Appendix C, we reconsider the definition of the masked board state xT as x′
T . xT

denotes the masked board state where stones in the set T are placed on the board, and stones in the
set N \ T are removed. In comparison, x′

T denotes the masked board state where stones in the set
T are removed, and stones in the set N \ T are placed on the board.

In this way, the effect of an OR interaction based on the definition of x can be represented as the
effect I ′and(S|x′) of an AND interaction based on the definition of x′.

Ior(S|x) = wor
S · [−

∏
i∈S

¬exist(xi)]

= −wor
S ·

∏
i∈S

¬exist(xi)

= − wor
S

wand
S

· I ′and(S|x′)

(12)

where the function exist(xi) represents that the stone xi is placed on the board, the function
¬exist(xi) represents that the stone xi is removed from the board.

E PROVING THAT THE NETWORK OUTPUT CAN BE REPRESENTED AS
AND-OR INTERACTIONS

We derive that for all 2n randomly masked sample xT , the output score v(xT ) of the DNN on
xT can be approximated by the sum of effects of AND-OR interactions, i.e., v(xT ) = v(x∅) +∑

S⊆T,S ̸=∅ Iand(S) +
∑

S∩T ̸=∅,S ̸=∅ Ior(S)

∑
S⊆T

Iand(S) =
∑

S⊆T

∑
L⊆S

(−1)|S|−|L|vand(xL)

=
∑

L⊆T

∑
S:L⊆S⊆T

(−1)|S|−|L|vand(xL)

= vand(xT )︸ ︷︷ ︸
L=T

+
∑

L⊆T,L ̸=T
vand(xL) ·

∑|T |−|L|

m=0
(−1)m︸ ︷︷ ︸

=0

= vand(xT )

(13)
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∑
S∩T ̸=∅,S ̸=∅

Ior(S) = −
∑

S∩T ̸=∅,S ̸=∅

∑
L⊆S

(−1)|S|−|L|vor(xN\L)

= −
∑

L⊆N

∑
S:S∩T ̸=∅,S⊇L

(−1)|S|−|L|vor(xN\L)

= − vor(x∅)︸ ︷︷ ︸
L=N

− vor(xT )︸ ︷︷ ︸
L=N\T

·
|T |∑

|S2|=1

C
|S2|
|T | (−1)|S2|

︸ ︷︷ ︸
=−1

−
∑

L∩T ̸=∅,L̸=N

vor(xN\L) ·
∑

S1⊆N\T\L

|T |∑
|S2|=|T∩L|

C
|S2|−|T∩L|
|T |−|T∩L| (−1)|S1|+|S2|

︸ ︷︷ ︸
=0

−
∑

L∩T=∅,L̸=N\T

vor(xN\L) ·
∑
S2⫋T

∑
S1⊆N\T\L

(−1)|S1|+|S2|

︸ ︷︷ ︸
=0

= vor(xT )− vor(x∅)
(14)

Therefore, vor(xT ) =
∑

S∩T ̸=∅,S ̸=∅ Ior(S) + vor(x∅). In this way, we can derive that the output
score v(xT ) of the DNN on xT can be approximated by the sum of effects of AND-OR interactions.

v(xT ) = vand(xT ) + vor(xT )

=
∑

S⊆T
Iand(S) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + vor(x∅)

=
∑

S⊆T,S ̸=∅
Iand(S) + vand(x∅) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + vor(x∅)

=
∑

S⊆T,S ̸=∅
Iand(S) +

∑
S∩T ̸=∅,S ̸=∅

Ior(S) + v(x∅)

(15)

F PROVING THAT UNAVOIDABLE NOISES IN NETWORK OUTPUT WILL
ENLARGED IN INTERACTIONS

Actually, the real data inevitably contains some small noises/variations, such as texture variations
and the shape deformation in object classification. Therefore, the network output v(xT ) also con-
tains some unavoidable noises. Let Var[v(xT )] denote the variance of the network output v(xT ), we
assume that different masked input samples are independent of each other and have no correlation,
then we can derive the variance of the AND interaction as follows.

Var[Iand(S)] = Var[
∑

T⊆S
(−1)|S|−|T |v(xT )]

=
∑

T⊆S
Var[v(xT )]

(16)

Therefore, we prove that unavoidable noises in network output will enlarged in interactions.

G THE REASON WHY THE SATURATION PROBLEM CAUSES HIGH-ORDER
INTERACTIONS

Let ek
def
= ExET⊆N :∆n=k log(

pwhite(xT )
1−pwhite(xT ) ) denote the average advantage score over all masked

states xT with the same unbalance level k. Let g ∈ R and h ∈ R denote the first derivative
and second derivative of the curve of ek

def
= ExET⊆N :∆n=k log(

pwhite(xT )
1−pwhite(xT ) ) w.r.t. the k value

(k ∈ {−n
2 ,−

n
2 + 1, ..., n

2 }). Then, we can roughly consider that ek = e0 + g · k + h
2 · k2.
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Let us consider an interaction S between m stones, including mwhite white stones and mblack black
stones. The unbalance level of the masked board state xS is ∆n = mwhite − mblack = k∗. If we
only use AND interactions to explain the output of the value network, then we obtain the following
equation.

vm
def
= ET⊆S:|T |=m[v(xT )] ≈ ek∗

vm′
def
= ET⊆S:|T |=m′ [v(xT )]

≈
ek∗−((m−m′))(

mwhite
m−m′

) +
ek∗−((m−m′−1))(

mwhite
m−m′−1

) + . . .+
ek∗+((m−m′−1))(

mblack
m−m′−1

) +
ek∗+((m−m′))(

mblack
m−m′

)
v0

def
= ET⊆S:|T |=0[v(xT )] ≈ e0

(17)

Note that vm, vm′ and v0 are non-linear functions. The function vm′ can be rewritten by following
Taylor series expansion at the baseline point m′ = 0 as follows.

vm′ = ET⊆S:|T |=m′ [v(xT )] = v0 + gv ·m′ +
hv

2
·m′2 (18)

where gv ∈ R and hv ∈ R denote the first derivative and second derivative of the curve of vm′ w.r.t.
the m′ value. In this way, the effect I(S) of the interaction S can be reformulated as follows.

I(S) =
∑

T⊆S
(−1)|S|−|T |v(xT )

≈
(
m

0

)
vm −

(
m

1

)
· vm−1 +

(
m

2

)
· vm−2 −

(
m

3

)
· vm−3 +

(
m

4

)
· vm−4 − ...

(19)

According to Equation (18), each component vm′ of I(S) consists of a term hv

2 ·m′2. However, the
term hv

2 ·m′2 contained in vm′ cannot cancel out with each other. Therefore, the interaction effect
I(S) will increase with the order of the primitive S.

H THEOREMS AND PROPERTIES OF THE ATTRIBUTION METHOD IN
EQUATION (8).

The coalition attribution satisfies the following desirable properties.

• Symmetry property: If the input variable i ∈ N and the input variable j ∈ N cooperate with
other input variables in S ⊆ N\{i, j} in the same way, i.e. ∀S ⊆ N\{i, j}, v(S∪{i}) = v(S∪{j}),
then the coalition formed by S ∪ {i} and the coalition formed by S ∪ {j} have the same attribution,
i.e., ∀S ⊆ N \ {i, j}, φ(S ∪ {i}) = φ(S ∪ {j}).
• Additivity property: If the output score of the model v can be represented as the sum of the output
score of the model v1 and the output score of the model v2, i.e. ∀S ⊆ N, v(S) = v1(S) + v2(S),
then the attribution of any coalition S on the model v can also be represented as the sum of the
attribution of S on the model v1 and that on the model v2, i.e. ∀S ⊆ N, φv(S) = φv1(S)+φv2(S).

• Dummy property: If a coalition S is a dummy coalition, i.e. ∀i ∈ S, ∀T ⊆ N \{i}, v(T ∪{i}) =
v(T ), then the coalition S has no attribution on the model output, i.e. φ(S) = 0.

• Efficiency property: For any coalition S, the model output can be decomposed into the attribu-
tion of the coalition S and the attribution of each input variable in N \ S and the utilities of the
interactions covering partial variables in S, i.e., ∀S ⊆ N, v(N) − v(∅) = φ(S) +

∑
i∈N\S φ(i) +∑

T⊆N,T∩S ̸=∅,T∩S ̸=S
|T∩S|
|T | [Iand(T ) + Ior(T )]

And we try to use Corollary 4 and Equation (9) to explain the conflict between the Shapley value of
input variables and the attribution of the coalition as follows.
Corollary 4. If ∀T ⊆ N,T ∋ i, T ̸⊇ S, Iand(T ) = Ior(T ) = 0, then ϕ(i) = 1

|S|φ(S)

Corollary 4 shows that if a set S of input variables is always memorized by the DNN as a coalition,
and the DNN does not encode any interactions between a set T of input variables, where T only
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contains partial variables in S, i.e., ∀T ⊆ N,T ∩ S ̸= S, T ∩ S ̸= ∅, Iand(T ) = Ior(T ) = 0, then
the attribution φ(S) of the coalition S can be fully determined by the sum of the Shapley value
ϕ(i) of all input variables in S. Otherwise, if the DNN encodes interactions between a set T of
input variables, where T contains just partial but not all variables in S, then Equation (9) shows
the conflict between individual variables’ attributions and the coalition S’s attribution come from
interactions containing just partial but not all variables in S.

I EXPERIMENTAL DETAILS

I.1 SETTINGS FOR THE GENERATION OF ONE BOARD CONFIGURATION

We use pre-trained networks published on https://github.com/lightvector/KataGo. We set the board
size as 19*19, by letting the KataGo play games against itself, i.e., letting the KataGo take turns to
play the move of black stones and play the move of white stones, we can generate a board state.

I.2 SETTINGS FOR THE EXTRACTION OF INTERACTIONS IN CHALLENGE 3.

The learning rate for the learnable vector p, q exponentially decays from 1e-6 to 1e-7. In particular,
each element ak in the vector a has different initial learning rates. Specifically, the learning rate of
ak decayed from 1

(|k|
n
2
)
· 1e− 6 to 1

(|k|
n
2
)
· 1e− 7.

The threshold τ is a small scalar to bound unavoidable noises q in the network output,
which is set to be τ = 0.38 in experiments, which is set to be 0.01 time of the average
strength of the top-1% most salient interaction. Specifically, we compute all AND interactions
{Iand(S1), Iand(S2), ..., Iand(S2n)} by setting vand(xT ) as v(xT ), and compute all OR interactions
{Ior(S1), Ior(S2), ..., Ior(S2n)} by setting vor(xT ) in Equation (4) as v(xT ). Then, all AND interac-
tions {Iand(S1), Iand(S2), ..., Iand(S2n)} and all OR interactions {Ior(S1), Ior(S2), ..., Ior(S2n)} are
arranged in descending order of their interaction strength.

I.3 COMPUTING THE ATTRIBUTION OF THE INTERACTION CONTEXT.

The attribution of the stone in the interaction context can be computed as:

attribution(xi) =
∑
S

|I(S|xi ∈ S)|
|S|

(20)

J MORE EXPERIMENTAL RESULTS

We show more shape patterns extracted from the value network for the game of Go.

For Game 1 in Figure 8 (1.a), Go players are confused about why the coalition {7, 8, 9} is advanta-
geous for black stones. For Game 2 in Figure 8 (2.a), Go players cannot figure out why the coalition
{6, 7, 8} is advantageous for white stones. For Game 3 in Figure 8, Go players consider that the
black stones x6, x7 are caught, and the white stones are in advantage. However, the value network
think that the coalition {2, 7, 8, 9} and the coalition {4, 6, 8, 9}. Go players are confused about that.
For Game 4 in Figure 8 (4.a-4.d), φ({1, 2, 9}) < φ({1, 2, 3, 9}), which means that the black stone
x3 is a low-value move, Go players consider that the stone x3 a valuable move.

16



Game 1 Game 2

Game 3 Game 4

(1.a)

(2.a)

𝜑 7,8,9 = −0.94

𝜑 6,7,8 = 1.03

𝜑 2,7,8,9 = −2.28 𝜑 4,6,8,9 = −1.89

𝜑 1,2,9 = −1.58 𝜑 1,2,3,9 = −0.67 𝜑 1,2,4,5 = 0.62 𝜑 1,2,3,4 = 0.81

(3.a) (3.b)

(4.a) (4.b) (4.c) (4.d)

Figure 8: More experimental results for the estimated attributions of different coalitions (shape
patterns). Stones in the coalition are high-lighted by red circles.

17


	Introduction
	Related work
	Explaining the inference logic of the value network
	Preliminaries: interactions encoded by the DNN
	Extracting sparse and simple interaction primitives
	Discovering novel shapes from the value network
	Human players' interpretation of the classic shapes/coalitions

	Conclusion
	Properties for the Harsanyi dividend
	Common conditions for the sparsity of interactions encoded by a DNN
	Proving that the OR interactions can be considered as a specific AND interaction
	Proving that the model output can be represented as OR interactions
	Proving that the network output can be represented as AND-OR interactions
	Proving that unavoidable noises in network output will enlarged in interactions
	The reason why the saturation problem causes high-order interactions
	Theorems and properties of the attribution method in Equation (8).
	Experimental details
	Settings for the generation of one board configuration
	Settings for the extraction of interactions in Challenge 3.
	Computing the attribution of the interaction context.

	More experimental results

