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Abstract
Deep ensembles (DE) have been successful in im-
proving model performance by learning diverse
members via the stochasticity of random initial-
ization. While recent works have attempted to
promote further diversity in DE via hyperparam-
eters or regularizing loss functions, these meth-
ods primarily still rely on a stochastic approach
to explore the hypothesis space. In this work,
we present Multi-Symmetry Ensembles (MSE),
a framework for constructing diverse ensembles
by capturing the multiplicity of hypotheses along
symmetry axes, which explore the hypothesis
space beyond stochastic perturbations of model
weights and hyperparameters. We leverage recent
advances in contrastive representation learning
to create models that separately capture oppos-
ing hypotheses of invariant and equivariant func-
tional classes and present a simple ensembling
approach to efficiently combine appropriate hy-
potheses for a given task. We show that MSE
effectively captures the multiplicity of conflict-
ing hypotheses that is often required in large, di-
verse datasets like ImageNet. As a result of their
inherent diversity, MSE improves classification
performance, uncertainty quantification, and gen-
eralization across a series of transfer tasks. Our
code is available at https://github.com/
clott3/multi-sym-ensem

1. Introduction
The field of computer vision has seen significant progress
in various tasks such as classification and semantic segmen-
tation in recent years. This success can be attributed to
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Figure 1. (a) A comparative illustration of the diversity in the
hypothesis space that traditional deep ensembles and our Multi-
Symmetry Ensembles can achieve. While deep ensembles are
effective at capturing different solutions around one hypothesis,
Multi-Symmetry Ensembles can learn diverse solutions around
inherently opposing hypotheses. (b) Schematic visualization of in-
variance (top) v.s. equivariance (bottom) for the four-fold rotation.
The spheres denote the representation space of the models.

the advancements in model architectures, learning meth-
ods, and the availability of large-scale datasets (Dosovitskiy
et al., 2020; Sun et al., 2017; Chen et al., 2020). Large
and diverse datasets have proved crucial in improving per-
formance, yet they present new challenges. The increased
diversity of datasets makes it more difficult for a single
dominant hypothesis to capture all semantic classes. To
overcome this problem, model ensembling (Hansen & Sala-
mon, 1990; Breiman, 1996) can be utilized to combine mul-
tiple networks. A popular approach is Deep Ensembles
(DE) (Lakshminarayanan et al., 2016), which combines net-
works with different random initializations and relies on the
non-convexity of the loss landscape (Fort et al., 2019) and
stochasticity of the training algorithm to arrive at different
solutions. They often significantly improve model perfor-
mance and uncertainty quantification (Ovadia et al., 2019).

Their success can be attributed to the diversity amongst the
ensemble members (Rame & Cord, 2021); ensemble perfor-
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mance can be significantly improved relative to the individ-
ual models when the members are diverse and their errors
are uncorrelated (i.e. when the members make mistakes on
different samples). However, purely relying on the stochas-
ticity in the random initialization and the training algorithm
can only provide a limited amount of diversity (Rame &
Cord, 2021) and previous works have attempted to pro-
mote diversity further by training models with different
data augmentations (Stickland & Murray, 2020), hyperpa-
rameters (Wenzel et al., 2020), or explicitly encouraged
via loss functions (Pang et al., 2019; Rame & Cord, 2021).
Nonetheless, these methods primarily still rely on a stochas-
tic approach to explore the hypothesis space.

In this work, we present a framework for constructing en-
sembles that are inherently diverse with respect to certain
symmetry groups and thus in this regard, are non-stochastic
in exploring the hypothesis space. We argue that current en-
sembling approaches are not effective in capturing the mul-
tiplicity of hypotheses, particularly along symmetry axes,
which are necessary for large vision datasets. We motivate
this with an intuitive example of rotational symmetry on the
ImageNet (Deng et al., 2009) dataset. Recent works (Gi-
daris et al., 2018; Dangovski et al., 2021) have demonstrated
the effectiveness of encoding rotational equivariance 1 on
ImageNet. In this work, the term “equivariance” is used
to explicitly refer to non-trivial equivariances, i.e. not en-
compassing the trivial instance, invariance (see footnote 1).
Empirically, we found equivariance to be useful in images
with a clear stance (e.g. dogs, where an upside-down dog is
never observed in the dataset) and thus encoding informa-
tion about its pose (i.e. rotation) aids their characterization.
However, in large datasets like ImageNet, there also exist
images like flowers that contain rotational symmetry and
thus encoding rotational invariance, i.e. the removal of pose
information, may be more desirable (see Figure 1b for an
illustration of invariance versus equivariance).

Given the opposing nature of these hypotheses (see foot-
note 1 and Figure 1b), a stochastic ensembling approach
cannot capture both simultaneously; i.e. a deep ensemble
of rotational equivariant classifiers cannot be made rota-
tional invariant by simply perturbing hyperparameters or
model weights at initialization. We visually illustrate this
point in Figure 1a. To address this problem, we leverage
recent advances in contrastive representation learning (Chen
et al., 2020; Dangovski et al., 2021) to create models that
separately capture opposing invariant and equivariant hy-

1Equivariance can be best understood when contrasted with
invariance – while invariance requires the outputs to be unchanged
when the inputs are transformed, equivariance requires the outputs
to transform according to the way inputs are transformed. While
invariance is a trivial instance of equivariance (where T ′

g in Equa-
tion (1) is the identity), in this work we use “equivariance” to refer
specifically to non-trivial equivariances.

potheses around a given symmetry group. In particular, in
contrast to task-specific diversity promoting mechanisms of
previous works (Pang et al., 2019; Rame & Cord, 2021), our
approach aims to learn diverse representations that individu-
ally respect different symmetries and such task-agnosticity
is desirable when transferring to new downstream tasks.

We present a practical, greedy ensembling approach that ef-
ficiently combines appropriate hypotheses for a given set of
tasks. We provide extensive empirical results and analyses
to demonstrate the superior performance of our method in
classification performance, uncertainty quantification and
transfer learning on new datasets. Our contributions can be
summarized as follows:

• We empirically show that large, diverse datasets like
ImageNet inherently have multiple and conflicting
dominant hypotheses for classification.

• We propose Multi-Symmetry Ensemble (MSE), an en-
sembling method to train and combine models of op-
posing hypotheses with respect to certain symmetry
groups. In contrast to previous works that rely on
stochasticity created via random initializations or hy-
perparameters, we directly guide diversity exploration
along the axes of symmetry.

• We demonstrate that MSE can leverage weaker mod-
els from the opposing hypothesis that improve per-
formance more than the ensemble of higher-accuracy
models corresponding to the leading hypothesis. To
this end, we conduct a detailed empirical study to show
that MSE improves classification performance and un-
certainty quantification, and better generalizes across a
series of transfer tasks.

• We also show that our method applies to different sym-
metry groups and that opposing hypotheses across mul-
tiple axes of symmetries further improve diversity.

2. Background and Related Work
Neural network ensembles and diversity. Using an
ensemble of neural networks to improve performance
and generalization is a well known technique in machine
learning that existed decades ago (Hansen & Salamon,
1990; Breiman, 1996). Deep ensembles (Lakshminarayanan
et al., 2016) create an ensemble of networks by using
different random initializations, and Gal & Ghahramani
(2015); Wen et al. (2020); Havasi et al. (2020) improve upon
this by making it more computationally efficient. Diversity
is an important feature in ensembles, since averaging many
models that give the exact same prediction is no better
than using a single model. Pang et al. (2019); Lee et al.
(2016); Dvornik et al. (2019) create diversity by changing
the losses or the architecture. Wenzel et al. (2020) create
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ensembles using different hyperparameters and Stickland
& Murray (2020); Hendrycks et al. (2019) leverage data
augmentation strategies. All of these methods rely on the
stochasticity from the architecture, random initialization, or
hyperparameters to generate different solutions. However,
our work differs in that, we learn diverse solutions by
leveraging opposing functional classes along certain sym-
metry groups. Moreover, the supervised learning settings
do not focus on the transferability of representations, and
therefore we propose an ensembling method that transfers
better to a series of new downstream datasets. Along
the line of learning diverse representations, Lopes et al.
(2021); Wortsman et al. (2022) both conducted large-scale
empirical studies of ensembling representations and models
across architectures, training methods and datasets. Our
work differs from these in that instead of a large-scale
study of ensembling representations, our work introduces
and focuses on a new technique of creating diversity in
representations by using equivariances and invariances.

Contrastive Learning and augmentations. Contrastive
representation learning (He et al., 2019; Chen et al., 2020) is
an effective method for learning transferable representations
with self-supervised learning. The role of augmentations
in contrastive learning has been extensively studied (Chen
et al., 2020; Tian et al., 2020; Xiao et al., 2020; Reed
et al., 2021; Dangovski et al., 2021) with the objective of
discovering useful augmentations to improve performance
on downstream tasks. In contrast, our work takes a general
approach of creating more robust classifiers by ensembling
models of opposing equivariances. Xiao et al. (2020) de-
signed a training objective that simultaneously computes a
contrastive loss on a variety of projected representations, and
each loss is associated with leaving out one augmentation
from the complete set of augmentations. Our contribution is
different from (Xiao et al., 2020), because we use equivari-
ance, instead of removing augmentations. In addition, rather
than a joint or concatenated latent space that is specialized
to the removed augmentation, we create independent latent
spaces and use an ensembling approach to accumulate the
predictions of each member. A growing field of contribu-
tions introduce equivariance to models via self-supervised
learning (Dangovski et al., 2021; Devillers & Lefort, 2022).

Equivariant neural networks. Let f be a continuous
function (parameterized with an encoder network) and x be
the input; equivariance to a group G of transformations is
mathematically defined as

∀x : f(Tg(x)) = T ′
g(f(x)) (1)

where Tg denotes the transformation associated with a group
element g ∈ G. In this formulation, invariance can be un-
derstood as a particular (trivial) instance where T ′

g is the
identity function, i.e. f(Tg(x)) = f(x) and the output of

the network does not change after a transformation to the
input. Instead, equivariance requires the network output to
change in a well-defined manner according to the way the in-
put has been transformed. Intuitively, the difference between
invariance and non-trivial equivariance can be understood
as follows; while invariance encourages representations to
remove information about the way they are transformed,
non-trivial equivariance encourages the network to preserve
this transformation information. This allows for a broader
class of inductive biases that allows the model to make a de-
cision on how to utilize this information during prediction.

Group equivariant neural networks (Cohen & Welling, 2016;
Weiler & Cesa, 2019; Weiler et al., 2018) are usually de-
signed by generalizing convolutional neural networks to
arbitrary groups by constructing specialized kernels that sat-
isfies the equivariance constraints. As such these networks
usually require specialized architectures that are less com-
monly used on large-scale vision benchmarks. Dangovski
et al. (2021) proposes a technique to encourage equivari-
ance by using a prediction loss and show that approximate
equivariance can be achieved by predicting the transforma-
tion. Along a similar line of work, (Zhang et al., 2016;
Gidaris et al., 2018; Noroozi & Favaro, 2016) propose to
learn visual representations by pretext tasks of predicting
transformations. In our work, to avoid having specialized
architectures and to keep the framework highly general and
flexible, we adopt the method proposed in (Dangovski et al.,
2021) to achieve approximate equivariance by a training
objective that predicts the transformations applied to the
input during the self-supervised learning stage. However, in-
stead of learning better representations, our work focuses on
the importance of creating ensembles containing members
having opposing equivariances. Furthermore, (Dangovski
et al., 2021) showed that rotational equivariance leads to
better representations while rotational invariance is harmful;
in this work, we show that while equivariance is useful for
the majority of classes, there is a significant proportion of
the data that can benefit from rotation invariance.

3. Multi-Symmetry Ensembles
We go beyond the typical deep ensembling approach by
constructing ensembles that include opposing hypotheses
along a set of symmetries. We start by pre-training represen-
tation learning models using contrastive learning methods
(Chen et al., 2020; Dangovski et al., 2021). The pre-training
step allows for encoding the necessary equivariances and
invariances into the models. During fine-tuning, the pre-
trained models are adapted into classifiers, and finally, these
classifiers are combined into an ensemble. We demonstrate
analytically in a simple setting via Proposition A.2 in Ap-
pendix A that the trained classifiers of the equivariant and
invariant models capture different hypotheses.
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3.1. Invariant and Equivariant Constrastive Learners

We now describe the paradigm to obtain the diverse ensem-
ble members by inducing different equivariance and invari-
ance constraints to the models. For ensemble member m,
let fm(·, θm) denote the backbone encoder and pm(·, ϕm)
the projector (here, a 3-layer MLP), parameterized by θm
and ϕm respectively. Let Tbase be the base set of trans-
formations (e.g., RandomResizedCrop, ColorJitter). We
realize the axis of symmetry through the transformations in
SSL. Let Tm denote the transformation to which member
m should be invariant or equivariant.

Contrastive learning operates by learning representations
such that views of an image created via Tbase are pulled
closer together while pushed away from other images. In
doing so, the model learns representations that are invariant
to Tbase. This is realized through the InfoNCE loss (Chen
et al., 2020). Specifically, for a batch of B samples, the loss
is

Lm
CL =

B∑
i=1

− log
exp(ẑmi · ẑmj )/τ∑
k ̸=i exp(ẑ

m
i · ẑmk /τ)

(2)

where ẑmi and ẑmj are the ℓ2-normalized representations of
two views of an input xi and ẑmi = pm ◦ fm(xi)/||pm ◦
fm(xi)||, and τ is a temperature hyperparameter.

Learning invariant models. Leveraging the contrastive
learning framework, we learn an invariant model by adding
Tm into the set of transformations, i.e. by optimizing the
InfoNCE loss (Chen et al., 2020) with the augmentations
set to T = Tbase ∪ {Tm}.

Learning equivariant models. We learn a model that
is equivariant to Tm by initializing a separate prediction
network hm(·, ψm) and use a prediction loss as proposed
in (Dangovski et al., 2021). Let Gm be a group to which
member m is equivariant, i.e. its elements g ∈ Gm trans-
form the inputs/outputs according to Equation (1). The goal
of Lm

eq is for the model to predict g from the representation
hm ◦ fm(Tg(xi)). By doing such, we encourage equivari-
ance to Gm. In our work, we consider discrete and finite
groups of image transformations (e.g., 4-fold rotations, color
inversion (2-fold), and half-swaps (2-fold)). For discrete
groups, Lm

eq takes the form of a cross-entropy loss,

Lm
eq =

B∑
i=1

|G|∑
g

H(hm ◦ fm(Tg(xi)), g) (3)

where H denotes the cross-entropy loss function and |G|
denotes the order or cardinality of the group, i.e. num-
ber of elements. As an example, for the group of 4-fold
rotations, g takes on values in {0, 1, 2, 3} corresponding
to Tg in {0◦, 90◦, 180◦, 270◦} rotation respectively. The

sum over g is explained as follows; for every input, four
versions are created for each of the 4 possible rotations
and a cross-entropy loss is applied with their correspond-
ing label in {0, 1, 2, 3}. The combined optimization objec-
tive of an equivariant model for a batch of B samples is
L =

∑M
m=1 Lm

CL + λLm
eq. Here, the InfoNCE loss Lm

CL

encourages invariance only to Tbase, i.e. Tm is not included
in the set of augmentations.

Forming the ensemble. The contrastive pretraining step
ensures that the representation learners have the appropriate
equivariance and invariances. The next step is to convert
these pretrained models into classifiers. This can be done
using two methods: linear-probing or fine-tuning. Linear-
probing involves training a logistic regression model to map
the learned representations to the semantic classes while
keeping the pretrained models frozen. Fine-tuning, on the
other hand, allows the pretrained models to be updated
during training, often resulting in higher accuracies on the
same dataset. In this work, we always use fine-tuning to
convert the pretrained models to classifiers unless specified
otherwise. We propose two strategies for ensembling these
classifiers: (1) Random and (2) Greedy. In both cases,
we start by selecting a random model from the leading
hypothesis and sequentially add models until the ensemble
has M members.

(1) Random: MSE under the Random strategy alternates
between the two functional classes at every stage, where a
random model from that functional class is sampled without
replacement, i.e. MSE always consist of models from both
hypotheses. The baselines under the Random strategy is
equivalent to randomly selecting M models.

(2) Greedy: The Greedy strategy is inspired by the approach
of (Wenzel et al., 2020). At each stage, the best model is
chosen based on the validation set score by searching over
all models.

We compute the ensemble prediction f̄(x) by taking the
mean of the member’s prediction probabilities f̄(x) =
1
M

∑M
i=1 fi(x).

4. Experimental Setup
We use the standard ResNet-50 architecture for the back-
bone encoder and follow the experimental setup in (Dan-
govski et al., 2021). Our main results consider four-fold
rotation transformation as the primary hypothesis class. All
contrastive learning models were trained for 800 epochs
with a batch size of 4096. For the equivariant models, hm
is a 3-layer MLP and λ is fixed to 0.4. Additional training
details can be found in the Appendix.

Evaluation Protocol. After contrastive pre-training, we
initialized a linear layer for each backbone and fine-tuned
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them end-to-end for 100 epochs using the SGD optimizer
with a cosine decay learning rate schedule. We conducted a
grid search to optimize the learning rate hyperparameter for
each downstream task.

Transfer tasks. We evaluated the transfer learning per-
formance on 4 natural image datasets. Through these ex-
periments, we evaluated the generalization performance
of Multi-Symmetry Ensembles on new downstream tasks
and to show how models with opposing hypotheses can
contribute to meaningful diversity. For each dataset, we
randomly initialized a linear classifier for each encoder pre-
trained on ImageNet and fine-tuned both the encoder and the
linear head for 100 epochs. Following the approach in (Ko-
rnblith et al., 2018), we performed hyperparameter tuning
for each model-dataset combination and selected the best
hyperparameters using a validation set. For the iNaturalist-
1K dataset (Van Horn et al., 2018), due to its large size and
computational limitations, we used the linear evaluation pro-
tocol (Wu et al., 2018; van den Oord et al., 2018; Bachman
et al., 2019; Wenzel et al., 2022) which involves training a
linear classifier on top of a frozen encoder.

5. Results
In the following sections, we provide empirical evidence to
support our claim that the diversity of opposing hypotheses
along the symmetry axes improves ensemble performance,
both in terms of model accuracy and generalization. We
begin by demonstrating that both the invariant and equiv-
ariant hypotheses along the rotational symmetry tend to be
equally dominant in large datasets like ImageNet. Next,
we show that MSE, which incorporates these hypotheses,
outperforms strong DE-based baselines that do not. We then
provide an analysis of diversity and uncertainty quantifica-
tion of MSE. In Section 5.5, we evaluate MSE on a set of
transfer tasks. Finally, we study the impact of exploring
opposing hypotheses along different symmetry groups on
model performance.

Dominance of hypothesis are class-dependent. In Table
1, we compare two models froteq and frotinv that respec-
tively have trained to be invariant (Inv) and equivariant (Eq)
to four-fold rotation as contrastive learners. Even though
the invariant model falls behind quite significantly from the
equivariant model by 0.9% in the overall performance on
ImageNet, in contrast to the observation from (Lopes et al.,
2021; Mania et al., 2019), we found the dominance of a
hypothesis to be highly class-dependent, as opposed to the
leading hypothesis performing better uniformly across all
classes. While the leading equivariant hypothesis dominates
in 47.7% of ImageNet classes, the invariant still proves to be
more useful in a significant 36.3% of the classes. We repeat
this experiment for a number of large and small datasets,

Table 1. Most suitable functional class differs within a dataset.
The top-half shows the overall accuracy for models from the Sim-
CLR baseline and each of the opposing hypotheses wrt 4-fold
rotations. The bottom-half shows the proportion of classes within
each dataset where each hypotheses dominate (i.e. averaged over
all samples within the class), suggesting that hypotheses apart from
the one with the highest individual accuracy are still beneficial.

MODEL ACCURACY ON IMAGENET (%)

BASELINE 76.5
EQ 76.9
INV 76.0

PROPORTION OF CLASSES (%)

EQ > INV 47.7
EQ < INV 36.3
EQ == INV 16.0

Table 2. Multi-Symmetry Ensembles capturing opposing hy-
pothesis outperform naive ensembles of the same hypothesis.
The top-half of the table compares the acccuracy of naive ensemble
of a single hypothesis and a random ensemble of both equivariant
and invariant hypotheses. We show that as the number of members
in the ensemble grow, capturing weaker performing models from
the opposing hypothesis outperforms the naive-counterpart. The
lower half of the table shows that, the gains are further amplified
when the ensembles are chosen in a greedy manner.

M = 2 M = 3 M = 4 M = 5

RANDOM ENSEMBLE

INV 77.4±0.0 78.0±0.1 78.4±0.0 78.5±0.0
EQ 78.2±0.1 78.7±0.1 78.9±0.1 79.1±0.0
EQ + INV 78.2±0.1 78.8±0.0 79.1±0.1 79.3±0.1

GREEDY ENSEMBLE

INV 77.65±0.02 78.24±0.04 78.59±0.02 78.75±0.01
EQ 78.32±0.00 78.87±0.00 79.09±0.01 79.17±0.00
EQ + INV 78.32±0.01 78.94±0.03 79.28±0.01 79.43±0.05

as shown in Figure 4, and found that large datasets tend to
follow this trend.

5.1. MSE captures meaningful diversity that leads to
improved performance

We now compare deep ensembles (DE) constructed with
models from the leading hypothesis (Eq) against MSE,
which combines models from both hypotheses (Eq + Inv),
as shown in Table 2 for ImageNet. Intuitively, given that
Eq outperforms Inv significantly by 0.9%, one might ex-
pect to get larger gains by adding high-accuracy models
from the leading hypothesis to the ensemble. Instead, we
found ensembles involving lower-accuracy models from the
opposing hypothesis to be better, with MSE (Eq + Inv)
outperforming DE of rotational equivariant models (Eq)
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Figure 2. Ensembles with opposing hypotheses have signifi-
cantly larger potential. Ensembles constructed only from a single
hypothesis very quickly give marginal ensembling gains from
adding more members. DE SimCLR and DE supervised refer to
deep ensembles of baseline SimCLR (neither equivariant nor in-
variant) and supervised learning (without pretraining) respectively.

consistently across all ensemble sizes. Figure 2 further high-
lights the gap between the ensemble accuracy of Eq + Inv
and Eq. Ensembles constructed only from the leading hy-
pothesis quickly result in marginal improvements gained
from adding more members; by M = 5, the ensemble ac-
curacy plateaus and does not benefit from further addition
of more models. On the other hand, the ensemble accuracy
of MSE demonstrates greater potential and continues to
benefit from increasing ensemble sizes.

Greedy search finds alternating sequences. Interest-
ingly, the outcome of the greedy search produces the follow-
ing sequence of models: [Eq, Inv, Eq, Eq, Inv, Eq, Inv],
that almost alternates between adding an equivariant and
an invariant model at every step. This result suggests that
in order to best maximize ensemble accuracy, it is ideal to
construct ensembles that contain opposing hypotheses.

MSE’s performance can be attributed to greater ensem-
ble diversity. To further analyze the effectiveness of MSE
(Eq+ Inv) over the DE of Eq hypotheses, we evaluate their
diversity on commonly used metrics, such as the error in-
consistency (Lopes et al., 2021) between pairs of models,
variance in predictions (Kendall & Gal, 2017) and pair-wise
divergence measures (Fort et al., 2019) of the prediction dis-
tribution. We use error inconsistency as the main measure of
diversity given its intuitive nature, which can be described
as the fraction of samples where only one of the models
makes the correct prediction, averaged over all possible
pairs of models in the ensemble. Other diversity measures
are defined in Appendix D.1. Ensemble diversity is an im-
portant criterion since higher ensembling performance is
derived when individual models make mistakes on different
samples. Table 3 demonstrates that by including models
from opposing hypotheses, MSE indeed achieves a greater
amount of diversity compared to the DE of Eq, consistently
across all the diversity metrics.

Table 3. Diversity of ensembles. We compare the diversity across
several metrics for ensembles with M = 3 members: error in-
consistency, variance of the logits, variance of the probabilities
and KL-divergence between pair-wise predictions. In all metrics,
higher the score, greater the diversity.

INCONS.(%) LOGITS PROB (10−4) KL-DIV

INV 17.0±0.1 0.88±0.02 2.85±0.04 0.332±0.012

EQ 15.6±0.1 0.82±0.01 2.64±0.00 0.287±0.001

EQ + INV 17.5±0.1 0.94±0.01 2.94±0.00 0.359±0.007

Comparison between ensembling methods. Figure 3
further compares Multi-Symmetry Ensembles across some
alternative methods to creating ensembles: ensembling mod-
els trained with supervised learning (Lakshminarayanan
et al., 2016) (Sup), models that are separately fine-tuned
with randomly initialized linear head but using the same
pre-trained backbone (SSL FT), models trained with the
baseline SimCLR (Chen et al., 2020) (SSL), models trained
with Equivariant SSL (Dangovski et al., 2021) (E SSL) and
models with opposing equivariance (E+I SSL). Apart from
E+I SSL, all other methods create models from a single
hypothesis. Unsurprisingly, SSL FT produces ensembles
with particularly poor diversity due to the limited variance
between members since they differ only in the initalization
of the linear heads. In general, the ensemble diversity is
directly correlated with the ensemble efficiency (defined as
the performance improvement relative to the mean accuracy
of all the models in the ensemble (Lopes et al., 2021)). How-
ever, larger ensemble diversity does not necessarily lead to
greater ensemble accuracy, since it is also important for the
individual models to be high performing. This is evident
in ensembles of supervised models – while they demon-
strate high diversity and ensemble efficiency, their ensemble
accuracy is poorer than their SSL counterparts since SSL
produces higher performing models.

5.2. MSE can quantify uncertainty better but may
require more models

A strong motivation to using an ensemble of models is it
provides a way to quantify uncertainty from a Bayesian
perspective (Wilson, 2020; Ovadia et al., 2019). To evalu-
ate the quality of the ensembles’ uncertainty estimates, we
use the negative log likelihood (NLL), which is a proper
scoring rule and a popular metric used to evaluate predictive
uncertainty (Lakshminarayanan et al., 2016; Quiñonero-
Candela et al., 2006). As seen from Table 4, for ensembles
consisting of 3 members or more, Multi-Symmetry Ensem-
bles built from opposing hypotheses (Eq + Inv) performs
slightly better in terms of NLL when compared to ensem-
bles with members only sampled from a single hypothesis
(Eq). However, when there are very few members in the en-
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Diversity (%) Ensem. E�ciency (%) Ensem. Acc. (%)

Figure 3. Comparison between ensembling methods for M = 3:
supervised ensembles (Sup), models created from separate fine-
tuning on the same backbone (SSL FT), models pre-trained with
SimCLR (Chen et al., 2020), models pre-trained with equivariant-
SimCLR (Dangovski et al., 2021) (E SSL) and Multi-Symmetry
Ensembles of opposing hypotheses (E+I SSL). Diversity is mea-
sured by pair-wise error inconsistency, ensemble efficiency is de-
fined as the relative improvement over the mean accuracy of the
members.

Table 4. Uncertainty Quantification. We evaluate the uncertainty
quantification of our greedy ensembles, using the negative log like-
lihood loss (NLL) and the ‘area under the uncertainty quantifica-
tion curve’ (AUUQC) which is obtained by sequentially removing
the most uncertain samples and computing the area under the plot
of ensemble accuracy versus fraction of samples removed. See
Appendix G for results on our random ensembles.

M = 2 M = 3 M = 4 M = 5

NLL ↓ (10−1)

INV 8.77±0.03 8.49±0.01 8.35±0.00 8.26±0.00

EQ 8.40±0.00 8.18±0.00 8.06±0.00 7.99±0.00

EQ + INV 8.43±0.03 8.16±0.01 8.03±0.01 7.97±0.01

AUUQC ↑
INV 0.919±0.000 0.924±0.000 0.925±0.000 0.926±0.000

EQ 0.921±0.000 0.925±0.000 0.927±0.000 0.928±0.000

EQ + INV 0.921±0.000 0.926±0.000 0.928±0.000 0.929±0.000

semble (M = 2), Multi-Symmetry Ensembles of opposing
hypotheses performed slightly worse than single hypothesis
according to the NLL metric. This is perhaps unsurprising,
since the space of hypotheses is much larger with models
from non-overlapping hypotheses and thus such an ensem-
ble is likely to require more members in order to quantify
the uncertainty surrounding each of these hypotheses. The
NLL results show consistent trends the different ensembles.

To further evaluate the ensembles’ ability to quantify model
uncertainty (Gal, 2016), we also consider a different metric
using an uncertainty-based prediction rejection setup, de-
scribed as follows. We sequentially remove pools of test
samples with the highest uncertainty from the ensemble
and evaluate the ensemble accuracy on the remaining sam-

Table 5. Ensemble performance on transfer tasks using the
greedy approach. Ensemble efficiency is defined as the relative
improvement from the mean accuracy of all the models in the en-
semble. All experiments are fine-tuned except iNaturalist-1k which
is linear-probed. Note that by construct of the greedy approach,
Eq+ Inv searches over possible Eq and Inv models and thus will
be at least as good as Eq, i.e. datasets with equal performance
for Eq and Eq + Inv do not benefit from the opposing hypothesis.
See Appendix F for results on our random ensembles.

INATURALIST-1K FLOWERS-102 CIFAR-100 FOOD-101

SINGLE MODEL ACCURACY

EQ 55.1 ±0.3 91.9 ±0.0 85.5 ±0.1 87.9 ±0.1

INV 56.3 ±0.2 91.2 ±0.1 84.0 ±0.1 87.9 ±0.1

ENSEMBLE ACCURACY (M = 2) (ENSEMBLE EFFICIENCY)

EQ 58.4 ±0.0 (3.3) 92.7 ±0.0 (0.8) 86.6 ±0.0 (1.1) 89.3 ±0.1 (1.4)
EQ + INV 59.9 ±0.2 (4.2) 93.1 ±0.1 (1.5) 86.6 ±0.1 (1.4) 89.5 ±0.1 (1.6)

ENSEMBLE ACCURACY (M = 3) (ENSEMBLE EFFICIENCY)

EQ 59.8 ±0.0 (4.7) 92.9 ±0.1 (1.0) 87.1 ±0.0 (1.6) 89.9 ±0.0 (2.0)
EQ + INV 61.4 ±0.1 (5.5) 93.2 ±0.1 (1.4) 87.2 ±0.0 (1.8) 90.1 ±0.1 (2.2)

ples. This allows us to plot a curve of fraction of samples
removed against ensemble accuracy which asymptotically
approaches one when all samples are removed. An ensem-
ble that “knows when it does not know” would produce a
curve that is closer to the upper-left corner, since it can more
accurately remove uncertain samples to give higher ensem-
ble accuracies more quickly. We use the commonly used
uncertainty measure BALD in the active learning frame-
work (Gal et al., 2017; Houlsby et al., 2011), which is de-
fined the information gained of the model parameters; see
Appendix G.1 for a definition. Samples with large BALD
would have the highest probability assigned to a different
class on every stochastic forward pass (Gal et al., 2017) and
thus have the highest model uncertainty. We compute and re-
port the area under this curve and call it the “Area under the
uncertainty quantification curve” (AUUQC) — higher AU-
UQC signifies better uncertainty quantification (see Figure 7
in Appendix G.2 for an illustration of this curve). Under this
metric, we found that ensembles of opposing hypotheses
(Eq + Inv) consistently outperforms ensembles of a single
hypothesis across ensembles of different sizes.

5.3. Different tasks may have different leading
hypotheses and thus MSE transfers better

Another important axis to evaluate is the generalization of
the learned representations in MSE. To this end, we con-
duct transfer learning experiments using pre-trained MSE
on four downstream tasks. As shown in Table 5, MSE im-
proves transfer performance in majority of the cases. In
the largest and most diverse dataset iNaturalist-1K, we see
consistent improvements of 1.5% and 1.6% from MSE in
the respective cases of M = 2 and M = 3. Also, across
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the four transfer tasks, it is evident that ensemble efficiency,
the change in performance of the ensemble relative to the
mean accuracy of the individual models in the ensemble,
always improves significantly with our method except in
one case. In Section 5.4, we further empirically analyze the
circumstances under which our Multi-Symmetry Ensembles
prove to be more useful. An interesting phenomenon to
highlight in these results is that the dominant hypothesis
can change depending on the downstream task. In the pre-
training dataset (ImageNet), the equivariant model always
proved to be the dominant hypothesis, outperforming the in-
variant model by 0.9%. However, after transfer learning on
iNaturalist-1K, for example, the invariant model switches to
become the dominant hypothesis, outperforming the equiv-
ariant model by 1.2%. This result emphasizes that different
downstream tasks encompass different sets of hypotheses
and therefore an ensemble of opposingly equivariant models
can lead to better generalization.

5.4. Effectiveness of MSE depends on dataset diversity

In this section, we aim to provide empirical guidance on
when the inclusion of opposing hypotheses in an ensemble is
beneficial. We evaluate the proportion of classes dominated
by each of the opposing hypotheses (invariant and equivari-
ant symmetries) for different datasets, including iNaturalist-
1k, CIFAR-100, ImageNet-V2, and ImageNet-R. These re-
sults are shown in Figure 4. Our findings indicate that on
datasets such as iNaturalist-1k, the inclusion of opposing hy-
potheses in the ensemble improves performance. However,
on datasets like CIFAR-100 and ImageNet-R, the opposing
hypotheses do not provide significant gains. This is be-
cause these datasets have a high level of imbalance between
the dominance of the two hypotheses, with one hypothesis
dominating in a majority of the classes. For example, in
ImageNet-R, the equivariant hypothesis dominates in 76.5%
of the classes while the invariant hypothesis only dominates
in 18% of classes. These datasets are poorly described by
the opposing hypothesis and thus including them in the
ensemble provides little to no improvement in performance.

5.5. Exploring different symmetry groups captures
further meaningful diversity

So far, we have shown that capturing opposing hypothesis
along the axis of rotational symmetry increases the diversity
and performance of model ensembles. A natural question
arises: can other symmetry groups be useful as well? Specif-
ically, referring back to the illustration in Figure 1, is it suf-
ficient to capture diversity around the opposing hypotheses
of a single symmetry group, or would opposing hypotheses
across symmetry groups further add meaningful diversity?
To address this question, we conduct an ablation study with
two additional transformations, half swap (random swap-
ping of the upper and lower halves of an image) and color

Δ Ensem. E�.
Δ Ensem. Acc. 1.6 0.2 0.1 0.1 0.1 0.0

0.8 0.2 0.4 0.5 0.2 0.0

Figure 4. Understanding the effectiveness of including the op-
posing hypothesis. Plot shows the proportion of classes in each
dataset where each hypothesis dominates. The remaining pro-
portions (not shown) are classes where Eq and Inv are equally
performant. Gains are minimal in datasets with a high level of
imbalance between the leading and opposing hypothesis.

Table 6. Capturing opposing hypotheses across transforma-
tions for M = 6. The upper three rows are ensembles that consist
of both equivariant and invariant learners with respect to a sin-
gle transformation and the bottom row greedily searches over all
models across the three transformations.

ENSEMBLE ACCURACY ON IMAGENET-100 (%)

ROTATE 86.60
HALFSWAP 86.00
COLORINVERT 86.26

ROTATE + HALFSWAP + COLORINVERT 87.22

inversion (randomly inverting the color of an image). Due
to computational limitations, we conduct this ablation study
on ImageNet-100, a subset of ImageNet generated by ran-
domly selecting 100 classes from ImageNet-1k and train the
classifiers using linear-probing. This dataset contains about
129k samples and thus is still sufficiently diverse.

We present the results in Table 6. In the upper three rows, we
create ensembles that consist of both equivariant and invari-
ant learners with respect to a single axis of transformation.
In the last row, we greedily search over the space of models
that were trained across the three axes of transformations
(rotation, half swap, and color inversion). By exploring
multiple symmetry groups, we find additional diversity that
improves the performance by up to 1.2%. This result bol-
sters the value of exploring multiple groups of opposing
hypotheses and highlights the potential for future research
directions to more effectively combining these models.

6. Conclusion and Limitations
In this work, we have showed that many large vision datasets
benefit from a multiplicity of hypotheses, particularly along
different axes of symmetries. To address this, we proposed
to ensemble members from opposing hypotheses, disregard-
ing the fact that models from the opposing hypothesis are
significantly poorer performing. We showed that despite
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their lower accuracies, ensembles containing the opposing
hypotheses are meaningfully diverse and outperform current
ensembling approaches of exploring the leading hypothesis
class in multiple metrics of ensemble performance, ensem-
ble potential, uncertainty quantification and generalization
across transfer tasks.

While we explored a simple deep ensembling approach to
combine multiple hypotheses, in principle one could also
combine these hypotheses in alternative model combination
approaches such as stacking (Wolpert, 1992) and mixture of
experts (Riquelme et al., 2021; Mustafa et al., 2022; Alling-
ham et al., 2022). Furthermore, since equivariance and in-
variance are invoked in the pre-training stage, the construc-
tion of these ensembles have higher computational costs
compared to supervised deep ensembles that are trained
from scratch (but on par with deep ensembles of contrastive
learners), further work could look into more efficient meth-
ods to invoke equivariance and invariance during fine-tuning
to mitigate this. Finally, while we found MSE to be highly
effective in diverse, natural vision datasets, its effectiveness
is dependent on dataset diversity (for e.g. less effective in
ImageNet-R); we provide some intuition for these cases
in Appendix B. We hope the findings from our work can
motivate future research in these directions.
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I., Magnini, B., and d’Alché Buc, F. (eds.), Machine
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A. Formalism and Intuition
We show analytically that the functional classes of invariant and equivariant contrastive learners are different in a simple
setting. As our assumptions are strong and simplistic, we only aim to provide intuition through a simple formalism. Our
experiments in Section 5 support this intuition without the strong assumption and demonstrate the diversity from equivariance
using real-world examples.

Assumption A.1. Consider a linear model class from (Kumar et al., 2022), which is fv,B(x) = vTBx, where B ∈ Rk×d,
is a linear encoder, v ∈ Rk is a linear head and x ∈ Rd is a datapoint. Consider an invariant model, f invv (x) := vTBx,
such that BTg(x) = Bx for every g ∈ G and x ∈ X . Let f equivv (x) := vTB′x be an equivariant model, such that
B′Tg(x) = T ′

g(B
′x) for all g ∈ G. Here we assume that B and B′ are pretrained and fixed encoders and so we are only

training v. Thus, we can represent v ≡ v(B) as a function of the backbone B. Let X̃ = [XT | Tg(X)T ]T ∈ R2n×d be our
training input data for some X = {xi}ni=1 ∈ Rn×d, a fixed group element g ∈ G, and Tg(X) := {Tg(xi)}ni=1. Assume the
labels are ỹ = [yT |y′T ]T ∈ R2n×1 where y are the labels for X and y′ are the corresponding labels for Tg(X). Here we
assume that the data contains all input images from X and their transformation by Tg. Finally, assume an ordinary least
squares (OLS) problem for learning v with (X̃BT , ỹ) training data for the invariant case and (X̃B′T , ỹ) for the equivariant.

Proposition A.2. Under Assumption A.1, the solutions vinv and vequiv to the ordinary least squares problem for the
corresponding f inv and f equiv with (X̃BT , ỹ) training data for the invariant case and (X̃B′T , ỹ) for the equivariant are:

vinv(B) =
1

2
(BXTXBT )−1BXT (y + y′)

vequiv(B′) = (B′XTXB′T + T ′
g(XB

′T )TT ′
g(XB

′T ))−1(BXT y + T ′
g(XB

′T )T y′).

Proof. The proof is a simple combination of the OLS solution and the equivariance property. Namely, if the input data
is A and the target is b, then the OLS solution is (ATA)−1AT b. Now, it suffices to replace the placeholder b with ỹ, and
the placeholder A with X̃B′T in the invariant case, and X̃B′T = [B′XT |T ′

g(XB
′T )T ]T in the equivariant case. For the

invariant case, we use the invariance property, which yields Tg(X)BT = XBT . For the equivariant case, we use the
equivariance property, which yields us Tg(X)B′T = T ′

g(XB
′T ). Simplifying the algebra completes the proof.

As functions of the pretraining backbones (B and B′), the two models in Assumption A.1 yield different functional classes
(or hypotheses) as it can be seen by the forms of solutions in Proposition A.2. This analytical example provides us with
further motivation to leverage on self-supervised models with opposing equivariances to capture diversity around multiple
hypotheses. We choose to ensemble these different members instead of training one model because a single model cannot be
simulataneouly invariant and equivariant to the same transformation due to conflicting objectives (i.e., a model cannot be
invariant to a transformation and still change its representations according to the transformation).

B. More discussion towards Equivariance and Invariance
Comparison with Group Equivariant networks. The general notion of ”Equivariance” typically emcompasses both
non-trivial equivariance and invariance (i.e. trivial equivariance where T ′

g of Equation (3) is the identity. For brevity and to
maintain the convention used in (Dangovski et al., 2021), we however use the term “equivariance” to specifically refer only
to non-trivial equivariance (i.e. excluding invariance) in our work. Equivariance in deep learning is most commonly known
through the concept of Group Equivariant neural networks (Cohen & Welling, 2016; Weiler & Cesa, 2019; Weiler et al.,
2018). There, non-trivial equivariance and invariance to a particular group are achieved through equivariant architectures,
by generalizing convolutional kernels to respect the symmetries of that group. These are often implemented in the form
of equivariant layers, where the trivial instance of invariance can be acheived by invoking a global pooling function after
a series of equivariant layers. In our work, (non-trivial) equivariance and invariance to a particular transformation Tm
are achieved purely via training objectives — invariance is achieved by adding Tm into the set of augmentations used in
contrastive learning that encourages representations to be invariant to and equivariance is achieved by adding an auxiliary
self-supervised task that predicts the transformation Tm applied to the input. The architecture we use for all models is a
non-equivariant architecture, i.e. the common ResNet-50 model. In this setting and our definition of “equivariance” that
refers only to non-trivial equivariance, a single model cannot be equivariant and invariant simultaneously and thus the two
form a set of opposing hypotheses.
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Empirical intuition. Equivariance to rotation has been known to be highly beneficial for learning visual representa-
tions (Gidaris et al., 2018; Dangovski et al., 2021), however the underlying reasons are not so clear. Empirically, we found
the usefulness of rotation equivariance is generally related to pose or the existence of rotational symmetry in the dataset.
We found that rotation equivariance is useful in image classes that often occur with a clear stance, for e.g. some classes of
animals, where an upside-down dog is almost never observed in the dataset and thus the ability to recognize the rotation
would require the features to encode information about its pose (Gidaris et al., 2018), aiding the characterization of dogs.
On the other hand, we found that rotation invariance is useful in image classes that do not occur with a clear stance (for e.g.
corkscrews that can be pictured in any orientation) or in images that have a clear rotation symmetry (e.g. flowers imaged
from the front or analog clocks).

Empirical intuition on datasets where MSE are effective. In our work, we found the effectiveness of MSE to be
highly dependent on dataset diversity. In particular, if the datasets are poorly described by the opposing hypothesis (i.e.
ImageNet-R) as discussed in section 5.4, the gains from MSE would be negligible. Here, we provide some intuition on
why this may be so. Following the intuition provided in the previous paragraph, we conjecture that this could be related
to the existence of a dominant pose of images in the dataset. An example of the class of “jellyfish” in ImageNet (IN) and
IN-R is shown in Figure 5. In IN-R which contains renditions of the images, such as in cartoon and art, many images
assume a conventional “upright” pose of the jellyfish with its head on top and its tentacles trailing below vertically. However,
in IN where real-life jellyfish are imaged, they often occur in multiple poses. We believe this is true for other classes as
well, since artists often draw objects in their ‘conventional pose’. Thus, for IN, invariant models are useful for 36.3% (v.s.
equivariant models being useful in 47.7%). In contrast, for IN-R, invariant models are dominant only for 18% of the classes
(v.s. equivariant models being dominant in 76.5%). Given the existence of an upright pose in IN-R, equivariant models that
encode pose information are likely more useful than invariant models leading to this stark difference.

Figure 5. Examples of images from the “jellyfish” class in ImageNet (left) and ImageNet-R (right). Samples visualized using
https://knowyourdata-tfds.withgoogle.com/

C. Additional Training Details
All pre-training. We use the SGD optimizer with a learning rate of 4.8 (0.3 ×BatchSize/256). We decay the learning
rate with a cosine decay schedule without restarts. Following (Dangovski et al., 2021), Tbase uses a slightly more optimal
implementation that uses BYOL’s augmentation (i.e. including solarization).

Equivariant pre-training. Following (Dangovski et al., 2021), the predictor for equivariance uses a smaller crop of
96 × 96. The predictor network uses a 3-layer MLP with a hidden dimension of 2048 to predict the corresponding

13

https://knowyourdata-tfds.withgoogle.com/


Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries

transformation (i.e. 4-way rotation).

Invariant pre-training. For invariant models, the transformation Tm is added to the base set of augmentations Tbase with
probability p = 0.5, i.e. with 0.5 probability, one of the possible transformations (0◦, 90◦, 180◦, 270◦ for the case of 4-fold
rotations) are applied.

Explored hyperparameters for fine-tuning. For fine-tuning on ImageNet, we swept the learning rate (lr ∈
{0.1, 0.03, 0.01, 0.003, 0.004} for both equivariant and invariant models. We found lr = 0.003 to consistently give
the best performance for equivariant models and lr = 0.004 to consistently give the best performance for invariant models.
For fine-tuning on transfer tasks, we swept the learning rate lr ∈ {0.003, 0.1, 0.2, 0.5, 1.0, 5.0} for each equivariant/invariant
model and picked the best learning rate. We set the weight-decay to 10−6 for all fine-tuning experiments.

D. Ensemble Diversity
D.1. Diversity measures

Error inconsistency. Following (Lopes et al., 2021), we use error inconsistency between pairs of models to quantify their
diversity. For every sample and a pair of models, model A and model B, there are four possibilities: 1) both models are
correct, 2) both models are wrong, 3) model A is correct and model B is wrong and 4) model B is correct and model A
is wrong. Samples that fall into the case of (3) and (4) constitute to the error inconsistency. We report the percentage of
samples in the test set that pairs of models make inconsistent errors on. For ensembles more than M = 2 members, we take
the average over all possible pairs of models.

Variance of predictions. Another measure one could use to measure ensemble diversity is the variance of the predic-
tions (Kendall & Gal, 2017):

Varp(f)[f(x)] =

C∑
i=1

Varp(f)[f
(i)(x)] (4)

where f (i) refers to the probability assigned by the model to the ith class and C is the total number of classes. We report
both the variance of the probabilities (labeled ‘prob’ in Table 3) and the variance of the logits (before the softmax, labeled
‘logits’ in Table 3).

Divergence measures. One can also use divergence metrics to quantify ensemble diversity (Fort et al., 2019). We simple
use the KL-divergence between the prediction probability distributions of a pair of models, and take the average over all
possible pairs in the ensemble.

D.2. Visualization of diversity across selected classes

Figure 6 shows the accuracy per class for 10 randomly selected classes in ImageNet. The figure compares the performance
of models trained with opposing equivariances (upper plot) and those with different random initializations (lower plot)
and shows larger variances induced from opposing equivariant hypotheses. Further analysis of their diversity is presented
in Section 5.1. The above results motivate the use of leveraging opposing equivariances as a method to induce diversity
especially for large datasets like ImageNet.
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Figure 6. Accuracy per class for 10 randomly selected classes in ImageNet. Top panel compares the per class accuracy for a rotation
equivariant model versus an invariant model and bottom panel compares the per class accuracy for two rotation equivariant models.

E. Uncertainty quantification results using random ensembles
Appendix G supplements the results in Table 4 in the main text. While Table 4 shows the results for the greedy ensembling
approach, this table shows the results for the random ensembling approach. In both of the cases, we see general improvements
in the uncertainty quantification metrics with additional models.

Table 7. Uncertainty Quantification. We evaluate the uncertainty quantification of the ensembles using the negative log likelihood loss
(NLL) and the ‘area under the uncertainty quantification curve’ (AUUQC) which is obtained by sequentially removing the most uncertain
samples and computing the area under the plot of ensemble accuracy versus fraction of samples removed.

M = 2 M = 3 M = 4 M = 5

RANDOM ENSEMBLE

NLL ↓ (10−1)

EQ 8.43±0.03 8.20±0.03 8.09±0.02 8.03±0.02
EQ + INV 8.46±0.01 8.17±0.01 8.08±0.02 7.98±0.02

AUUQC ↑
EQ 0.919±0.001 0.924±0.001 0.926±0.000 0.927±0.000

EQ + INV 0.921±0.001 0.926±0.001 0.927±0.000 0.928±0.000

GREEDY ENSEMBLE

NLL ↓ (10−1)

EQ 8.40±0.00 8.18±0.00 8.06±0.00 7.99±0.00

EQ + INV 8.43±0.03 8.16±0.01 8.03±0.01 7.97±0.01

AUUQC ↑
EQ 0.921±0.000 0.925±0.000 0.927±0.000 0.928±0.000

EQ + INV 0.921±0.000 0.926±0.000 0.928±0.000 0.929±0.000
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F. Transfer results using random ensembles
Table 8 supplements the results in Table 5 in the main text. While Table 5 shows the results for the greedy ensembling
approach, this table shows the results for the random ensembling approach.

Table 8. Transfer tasks for Random ensembles. Ensemble efficiency is defined as the relative improvement over the mean accuracy of
all the models in the ensemble. All experiments are fine-tuned except for iNaturalist-1k which is linear-probed.

INATURALIST-1K FLOWERS-102 CIFAR-100 FOOD-101

SINGLE MODEL ACCURACY

EQ 55.1 ±0.3 91.9 ±0.0 85.5 ±0.1 87.9 ±0.1

INV 56.3 ±0.2 91.2 ±0.1 84.0 ±0.1 87.9 ±0.1

ENSEMBLE ACCURACY (M = 2) (ENSEMBLE EFFICIENCY)

EQ 58.3 ±0.1 (3.2) 92.3 ±0.4 (0.4) 86.6 ±0.2 (1.1) 89.2 ±0.1 (1.2)
EQ + INV 60.0 ±0.0 (4.3) 92.8 ±0.1 (1.3) 86.5 ±0.1 (1.8) 89.5 ±0.1 (1.6)

ENSEMBLE ACCURACY (M = 3) (ENSEMBLE EFFICIENCY)

EQ 59.8 ±0.0 (4.7) 92.4 ±0.2 (0.5) 87.1 ±0.1 (1.6) 89.9 ±0.0 (1.3)
EQ + INV 61.2 ±0.1 (5.5) 93.0 ±0.3 (1.3) 87.0 ±0.1 (2.0) 90.0 ±0.0 (2.1)

G. Uncertainty Quantification
G.1. Definition of BALD

In Section 5.2, we use the commonly used uncertainty measure BALD (Gal et al., 2017; Houlsby et al., 2011) to measure
model uncertainty. It is defined as below

I[y,w|x,D] = H[y|x,D]− Ep(w|D) [H[y|x,w]]

where D refers to the training set, p(w|D) is the posterior our ensemble approximates, w are the model parameters, i.e. a
member sampled from p(w|D), H[y|x,w] is the predictive entropy given model weights w and H[y|x,D] = −

∑
c p(y =

c|x,D) log p(y = c|x,D) is the entropy of the ensemble’s prediction.

G.2. Area under uncertainty quantification curve (AUUQC)

Figure 7 provides an illustration of the ‘uncertainty quantification curve’ described in Section 5.2, for ensembles of the
leading hypothesis (rotation equivariant) with different ensemble sizes. As the ensemble size grows, the AUUQC increases
as expected since a larger ensemble should be able to quantify uncertainty better.

16



Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries

AUUQC
M=2: 0.920
M=3: 0.925
M=4: 0.927

Fraction of samples removed

Figure 7. Example of plot of the ‘uncertainty quantification curve’ used to generate AUUQC.

H. Proportion of classes for hypothesis dominance

Table 9. Proportion of classes and performance gains in Transfer datasets. The top half of the table detail the proportion of classes
captured by dominating hypothesis for each transfer dataset. The bottom half describes the accuracy and ensemble efficiency gained by
capturing opposing hypothesis over a single hypothesis. This table is used to generate the bar plot (Figure 4) in the main text

IN INAT FOOD C100 IN-V2 IN-R

EQ > INV 47.7 38.9 43.6 65.0 36.1 76.5
EQ < INV 36.3 35.7 40.6 20.0 23.7 18.0

∆acc (EI - EE) +0.1 +1.6 +0.2 +0.1 +0.1 0.0
∆eff (EI - EE) +0.4 +0.8 +0.2 +0.2 +0.5 0.0

Table 10. Proportion of classes and performance gains in ImageNet-100. The top half of the table detail the proportion of classes
captured by dominating hypothesis over different axes of transformations. The bottom half describes the accuracy and ensemble efficiency
gained by capturing opposing hypothesis over a single hypothesis. This table supplements the results from Table 6 in the main text

ROTATE HALFSWAP COLORINVERT

EQ > INV 65.0 28.0 48.0
EQ < INV 15.0 44.0 26.0
EQ == INV 20.0 28.07 26.0

∆acc (EI - EE) 0.0 0.04 0.14
∆eff (EI - EE) 0.0 0.27 0.24
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