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Abstract
Recent works have studied state entropy maxi-
mization in reinforcement learning, in which the
agent’s objective is to learn a policy inducing high
entropy over states visitation (Hazan et al., 2019).
They typically assume full observability of the
state of the system so that the entropy of the ob-
servations is maximized. In practice, the agent
may only get partial observations, e.g., a robot
perceiving the state of a physical space through
proximity sensors and cameras. A significant mis-
match between the entropy over observations and
true states of the system can arise in those settings.
In this paper, we address the problem of entropy
maximization over the true states with a deci-
sion policy conditioned on partial observations
only. The latter is a generalization of POMDPs,
which is intractable in general. We develop a
memory and computationally efficient policy gra-
dient method to address a first-order relaxation of
the objective defined on belief states, providing
various formal characterizations of approximation
gaps, the optimization landscape, and the hallu-
cination problem. This paper aims to generalize
state entropy maximization to more realistic do-
mains that meet the challenges of applications.

1. Introduction
The state entropy maximization framework, initially pro-
posed in Hazan et al. (2019), is a popular generalization of
the Reinforcement Learning (RL, Bertsekas, 2019) problem
in which an agent aims to maximize, instead of the cumu-
lative reward, a (self-supervised) objective related to the
entropy of the state visitation induced by its policy.

The entropy objective finds motivation as a standalone tool
for learning to cover the states of the environment (Hazan
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et al., 2019), a data collection strategy for offline RL (Yarats
et al., 2022), experimental design (Tarbouriech & Lazaric,
2019), or transition model estimation (Tarbouriech et al.,
2020; Jin et al., 2020b), and as a surrogate loss for policy
pre-training in reward-free settings (Mutti & Restelli, 2020).

While the objective itself is not convex in the policy parame-
ters, it is known to admit a tractable dual formulation (Hazan
et al., 2019), and several practical methods, also in combina-
tion with neural policies, have been developed (Mutti et al.,
2021; Liu & Abbeel, 2021b; Seo et al., 2021; Yarats et al.,
2021) as a testament of the promises of the framework for
tangible impact on real-world applications.

All of the previous works on state entropy maximization
assume the state of the environment is fully observable,
such that the agent-environment interaction can be mod-
eled as a Markov Decision Process (MDP, Puterman, 2014).
Under this assumption, maximizing the entropy over the ob-
servations collected from the environment is well-founded.
However, the agent may only receive partial observation
from the environment in practice.

Let us think of an autonomous robot for rescue operations
as an illustrative application: The robot is placed in an un-
known terrain with the goal of covering every inch of the
ground in order to locate and rescue a wounded human un-
able to move. The robot cannot access its true position, as
well as the human’s location-; it can only perceive its sur-
roundings with sensors and cameras. Arguably, maximizing
the entropy of the observations, such as changing the camera
angle in every direction, is undesirable for the given task.
Instead, we would like the robot to maximize the entropy of
its position, for which the best policy may entail moving the
camera to probe the surroundings and avoid getting stuck,
but also to step forward to cover the most ground so that the
wounded human can be swiftly located and rescued.

In this paper, we aim to generalize the state entropy maxi-
mization framework to scenarios of the kind of the latter, in
which the agent only gets partial, potentially noisy, observa-
tions over the true state of the environment. Especially, we
aim to answer:

How do we maximize the entropy of the true states
with a policy conditioned on observations only?

First, we model this setting through a Partially Observable
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MDP (POMDP, Åström, 1965) formalism, in which the
agent’s observations are generated from an observation ma-
trix conditioned on the true state. We consider two distinct
learning settings in which the specification of the POMDP
is either known or unknown to the agent, respectively.

The former is motivated by domains in which we can train
the agent’s policy on a simulator of the environment and
then deploy the optimal policy in the real world. Still, the
problem is non-trivial, as we have to train a policy taking
the input available at deployment. Even solving a known
POMDP is an intractable problem (Mundhenk et al., 2000)
as it requires exponential time in general. Moreover, the
problem is optimized by policies conditioned on the history
of observations (e.g., Bertsekas, 1976), which are intractable
to store. We sidestep the memory complexity by defining a
clever policy class in which the action distribution is con-
ditioned on a function of the current belief on the state of
the environment, which is a popular model of uncertainty
in POMDPs (Kaelbling et al., 1998). Then, we overcome
the computational complexity by considering a first-order
relaxation of the state entropy objective, which we optimize
via policy gradient (Williams, 1992; Sutton et al., 1999), a
methodology that has been previously considered for state
entropy maximization in MDPs (e.g., Mutti et al., 2021).

However, a simulator is not available in all the relevant ap-
plications. Can we still learn a reasonable policy in those
settings? When the POMDP is unknown, we cannot access
the entropy over the true states to compute the gradient, as
we only have observations. A naive sidestep is to compute
the gradient of the entropy over observations, optimizing an
objective function that is called Maximum Observation En-
tropy (MOE). On a recent study of strengths and limitations
of MOE, Zamboni et al. (2024) show that the mismatch
between the entropy over observations and true states can
be significant in relevant domains (e.g., the rescue operation
setting we described above). To overcome this limitation,
we can instead compute approximate beliefs from obser-
vations (Subramanian et al., 2022) and then optimize the
entropy of the states sampled from the beliefs as a proxy
objective that incorporates all of the information available
about the entropy on the true states. We can show that the
latter is a better approximation than the trivial entropy of
observations in general.

Optimizing the proxy objective still involves a crucial issue:
The belief is not completely out of the control of the agent,
who has an explicit incentive to take actions that maximize
the uncertainty of the belief so that the states sampled from
the belief will come with higher entropy. We call the latter
the hallucination problem, as the agent can hack the objec-
tive to make herself/himself believe the entropy on the true
states is higher than it actually is. To mitigate this effect, we
introduce a regularization scheme that penalizes the entropy

of the belief so that the agent faces a dueling objective that
incentives the entropy of the states sampled from the belief
on one side and discourages the agent from pursuing beliefs
with higher entropy on the other. Finally, we design a policy
gradient method for the regularized objective, for which we
provide extensive theoretical and empirical corroborations,
showing that the resulting performance nearly matches the
one of the policy that maximizes the true objective when
good approximators of the belief are available.

Contributions. We make the following contributions:

• We provide the first generalization of the state entropy
maximization problem to POMDPs (Section 3);

• We provide a family of tractable policy gradient meth-
ods that address first-order relaxations of the intro-
duced problem with known (Section 4) or unknown
(Section 5) POMDP specification, respectively;

• We provide extensive theoretical characterizations of
the approximation gap and optimization landscape of
the introduced objectives (Section 4 and 5);

• We provide an experimental campaign to uphold the
design of the introduced algorithms in a variety of
illustrative POMDPs (Section 6).

2. Preliminaries
In this section, we introduce the notation we will use in
the paper and the most relevant background on POMDPs
(Section 2.1) and state entropy maximization (Section 2.2).

Notation. Let A a set of size |A|. We denote the T -times
Cartesian product of A as AT := ×T

t=1A. The simplex on
A is denoted as ∆(A) := {p ∈ [0, 1]|A| |

∑
a∈A p(a) = 1}

and U(A) denotes a uniform distribution on A. For dis-
tributions p1, p2 we denote dTV(p1, p2) their total varia-
tion distance. We denote as A : A → ∆(B) a function
from elements of A to distributions over B. For a function
f : Rn → R, we denote ∇f : Rn → Rn its gradient. For
vectors v = (v1, . . . , vT ) and u = (u1, . . . , uT ), we use ⊕
to denote the concatenation v ⊕ u = (v1, u1, . . . , vT , uT ).

2.1. Partially Observable MDPs

A finite-horizon Partially Observable Markov Decision
Process (POMDP, Åström, 1965) is a tuple M :=
(S,A,O,P,O, T, µ) where S is a set of states of size
S := |A|, A is a set of actions of size A := |A|, O is
a set of observations of size O := |O|, P : S ×A → ∆(S)
is the transition model such that P (s′|s, a) is the probabil-
ity of reaching s′ by taking a in s, O : S → ∆(O) is an
observation function such that O(o|s) is the probability of
observing o in s, T <∞ and µ ∈ ∆(S) are the horizon and
the initial state distribution of an episode, respectively.

2



State Entropy Maximization in POMDPs

In a POMDP, the interaction process goes as follows. At the
start of an episode, an initial state is drawn s1 ∼ µ. For each
t < T , the agent receives an observation ot ∼ O(·|st) and
plays an action at, triggering a transition st+1 ∼ P(·|st, at).
When the final state sT is reached, the agent observes oT ∼
O(·|sT ) and the episode ends. An episode of interaction
returns trajectories over states τS = (s1, . . . , sT ) ∈ TS ⊆
ST , actions τA = (a1, . . . , aT−1) ∈ TA ⊆ AT−1, and
observations τO = (o1, . . . , oT ) ∈ TO ⊆ OT .

Belief. Crucially, the agent cannot access the true state
of the POMDP on which the objective function is usually
defined.1 However, it can infer from the observations it
receives what is the probability of the process being in a
certain state. The latter probability measure, denoted as
b ∈ B ⊆ ∆(S) is called a belief (Kaelbling et al., 1998).
The belief is updated following the Bayes rule. The prior
is typically set as b1 = U(S). Then, for each 1 < t ≤ T ,
the posterior of the belief having taken action at−1 = a and
received observation ot = o is computed as

baot (s) =
O(o|s)

∑
s′∈S P(s|s′, a)bt−1(s

′)∑
s′∈S O(o|s′)

∑
s′′∈S P(s′|s′′, a)bt−1(s′′)

.

In this sense, the elements of B can be seen as belief states
evolving according to the belief-update operator Tao : B →
B such that b′ = Tao(b). In the same way as for states, ac-
tions, and observations, an episode of interaction generates
a trajectory over beliefs τB = (b1, . . . , bT ) ∈ TB ⊆ BT .

Policies. We denote the information available to the agent
in a given time step as the information set i ∈ I. A policy
π : I → ∆(A) ∈ ΠI describes the action selection strategy
of the agent, such that π(a|i) denotes the probability of
taking a given information i and ΠI is the policy space
with information I. We will later specify the meaning of I,
which will be either O, TO, or TB according to the setting.2

Distribution over Trajectories. Interacting with a
POMDP with a fixed policy induces a specific probability
distribution over the generated trajectories. Since we have
several trajectories generated simultaneously, we denote
the joint trajectory as τ = τS ⊕ τA ⊕ τO ⊕ τB, which
probability of being generated under π is given by pπ(τ) =

µ(s1)
∏T

t=1 O(ot|st)π(at|it)P(st+1|st, at)Totat(bt+1|bt).

Interestingly, the belief state formulation allows to ex-
tract from τ believed trajectories as well, i.e., trajectories
τS̃ = (s̃1, . . . , s̃T ) ∈ TS̃ ⊆ ST where the states, called
believed states, are not the true states of the POMDP but
samples from the belief s̃t ∼ bt, which are generated with

1Most of the previous literature in POMDPs define the objective
through the maximization of a reward r : S ×A → R. Here, we
address a different objective that we will formalize in Section 3.

2Introducing the information set allows us to work with sta-
tionary Markovian policies on the information, which can be non-
Markovian policies w.r.t. states or observations.

probability p(τS̃ |τB) =
∏T

t=1 bt(s̃t).

Distribution over States. A trajectory τS obtained from
an interaction episode induces an empirical distribution
over true states d(τS) = (ds1(τS), . . . , dsS (τS)) such that
dsi(τS) = 1

T

∑
st∈τS

1{st = si}. This concept can be
generalized to any finite set as well, leading to distributions
over observations, belief states, and believed states.

2.2. State Entropy Maximization

A POMDP such that O = S and O(s|s) = 1 reduces to a
finite-horizon Markov Decision Process (MDP, Puterman,
2014)M := (S,A,P, T, µ). The true state of the system is
fully observable in MDPs, which means the agent can take
actions according to a policy π : S → ∆(A).

In the absence of a reward to be maximized, Hazan et al.
(2019) proposed a Maximum State Entropy (MSE) objective

max
π∈ΠS

{
H(dπ) := −

∑
s∈S

dπ(s) log(dπ(s))
}

(1)

where dπ := EτS∼pπ [d(τS)] is the expected state distribu-
tion and H(dπ) its entropy. The latter objective is known to
be non-concave w.r.t. the policy yet to admit a dual formula-
tion that is concave w.r.t. the state distribution (Hazan et al.,
2019), which allows for efficient computation of an optimal
(stochastic in general) Markovian policy.

Mutti et al. (2022a) later formulated a single-trajectory
version of the state entropy maximization objective,

max
π∈ΠI

{
JS(π) := E

τS∼pπ
[H(d(τS))]

}
(2)

in which the agent seeks to maximize the entropy of the
empirical state distribution induced in one single trajectory
rather than in multiple trajectories (as in Eq. 1). The optimal
policy in Eq. 2 is known to be deterministic non-Markovian
(ΠI ⊆ ΠTS ) in general, which makes the optimization
problem computationally hard (Mutti et al., 2022a).

3. Problem Formulation
State entropy maximization is particularly challenging in
POMDPs as the objective function is defined on a space to
which the agent has no direct access. It is clear that the ideal
goal of maximizing the MSE objective in Eq. 2 as in (fully
observable) MDPs is far-fetched under these premises. Ad-
dressing MSE in POMDPs includes the following additional
and intertwined challenges: (a) Defining a proxy objective
function compatible with the setting, i.e., on quantities the
agent can observe; (b) Defining a compact policy class such
that policies can be efficiently stored.

In this paper, we will build upon the single-trajectory formu-
lation of the MSE objective, which is closer to the need for
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practical applications (Mutti et al., 2022a). We notice that
the common infinite-trajectories relaxation considered in
previous works (e.g., Hazan et al., 2019) is still intractable
in POMDPs, which leaves minimal benefit over the single-
trajectory formulation (see Appendix A.1 for details).

(a) Proxy Objective Functions. Optimizing Eq. 2 is ill-
posed in POMDPs without further assumptions because
states are not observed. We then seek to design proxy ob-
jectives whose maximization leads to policies with good
performance on the (ideal) original MSE objective as well.
The first and most intuitive choice is to formulate an anal-
ogous objective over observations instead of states. The
(single-trajectory) Maximum Observation Entropy (MOE)
is

max
π∈ΠI

{
JO(π) := E

τO∼pπ
[H(d(τO))]

}
(3)

While being rather intuitive, this objective is intrinsically
problematic. There can be significant mismatches between
observation and state spaces. When the POMDPs are under
(respectively over) complete (Liu et al., 2022), i.e., when
the number of observations is less (respectively more) than
the number of states, it may be hard to link entropy over
observations to entropy over states. Moreover, even when
O = S , a random emission function O could jeopardize any
estimate of the state entropy that is based on the entropy of
observations. A formal study of the limitations of MOE has
been provided in (Zamboni et al., 2024), which characterizes
the settings where the entropy of observation is not enough.
To address the latter settings, we introduce more reliable
proxy objectives in Section 4, 5 along with corresponding
assumptions on the information available to the agent.

(b) Deployable Policy Classes. So far, we denoted the
policy class as ΠI for a generic set I of the available in-
formation. An essential point to be addressed in POMDPs
is which policy class to use (Cassandra, 1998). We say a
policy class is deployable if its policies are conditioned on
the information set I that is available to the agent at deploy-
ment.3 We follow a similar definition of deployable poli-
cies as for centralized training and decentralized executions
in multi-agent settings (Albrecht et al., 2024). It follows
that any policy class over true states is not deployable, and
this is the case for deterministic non-Markovian policies
as well (Mutti et al., 2022a). Yet, other policy classes are
deployable, e.g., over observations, trajectories of observa-
tions, and trajectories of beliefs. Ideally, we want to employ
the richer deployable policy class, which is the space of
non-Markovian policies over observations (or, equivalently,
over beliefs). Unfortunately, a policy in this class cannot be
efficiently stored in general, so we will look for restricted
classes with more reasonable memory requirements.

3Even in the case a simulator is available to optimize the policy,
we still want to deploy the policy in unknown partially observable
environments in general.

4. MSE with a POMDP Simulator
First, we consider a simplified setting where:

Assumption 4.1. P,O are fully known in training.

This setting encompasses the best-case scenario, in which a
(white-box) simulator of the environment is available and
the true state of the POMDP can be accessed. Even in this
simplified setting, the problem is non-trivial. First, it does
not reduce to the MDP problem, as we need to learn a de-
ployable policy. Secondly, the best deployable policy class
is problematic in terms of memory complexity. Finally, as
the theory demonstrates (Papadimitriou & Tsitsiklis, 1987;
Mundhenk et al., 2000), even solving a known POMDP is
computationally intractable. These issues drive the algorith-
mic choices in the following sense:

1. Memory complexity. The policy class will be restricted
to memory-efficient policies, such that the policy param-
eters are polynomial in the size ofM.

2. Computational complexity. A first-order method will
be employed, i.e., policy gradient (Williams, 1992; Sut-
ton et al., 1999), to overcome computational hardness.

(1) Unfortunately, the size of TO, TB is exponential in T ,
which means that policies over such spaces would require
an exponential number of parameters. This leaves the in-
formation sets O,B as viable options. Similarly, the set
B of belief states reachable in T steps can be extremely
large even in simple POMDPs.4 Policy classes that are ef-
ficient to store are ΠO and ΠS̃ , i.e., the set of Markovian
policies over observations or believed states. It is known,
however, that non-Markovian policies are needed to op-
timize the single-trajectory MSE in general (Mutti et al.,
2022a). An option is to consider the belief, which is a func-
tion of the trajectory over states and actions, as a succinct
representation of the history, and then to employ a careful
parametrization of the policy to get memory efficiency. For-
mally, we introduce the Belief-Averaged (BA) policy class
as Π̄B := {π ∈ Π̄B : πθ(·|b) = ⟨θ, b⟩} ⊆ ∆(A).

(2) The optimization problem over the latter policy class
will be addressed via first-order methods (Williams, 1992),
in order to overcome computational hardness. Previ-
ous works have considered policy gradient for MSE in
MDPs (Mutti et al., 2021; Liu & Abbeel, 2021b). Here,
we derive a specialized gradient for the POMDP setting.5

Theorem 4.2 (Entropy Policy Gradient in POMDPs). For a
policy πθ ∈ ΠI parametrized by θ ∈ Θ ⊆ RIA, we have

∇θJ
i(πθ) = E

τ∼pπ

[
∇θ log πθ(τ)H(d(τi))

]
(4)

where ∇θ log πθ(τ) =
∑

t∇θ log πθ(at|it), i ∈ {S,O}.

4We can compute B by means of Algorithm 2 in Appendix A.2.
5The full derivation can be found in Appendix A.3.
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Algorithm 1 Reg-PG for MaxEnt POMDPs
1: Input: learning rate α, initial parameters θ1, number of episodes K, batch size N , information set I, proxy class

j ∈ {S,O, S̃}, regularization parameter ρ
2: for k = 1 to K do
3: Sample N trajectories {τnj ∼ pπθk }n∈[N ]

4: Compute the feedbacks {H(d(τnj ))}n∈[N ]

5: Compute {log π(τnj )}n∈[N ]

6: Perform a gradient step θk+1 ← θk + α
N

∑N
n log π(τnj )[H(d(τnj ))−ρ

∑
t H(bnt )]

7: end for
8: Output: the last-iterate policy πK

θ

Algorithmic Architecture. It can be seen that optimizing
for different objectives, the policy gradient differs only on
the second term of the product, which we refer to as feed-
back. Thus, we propose a general algorithmic framework,
which works for any objective, and mimics the structure
of REINFORCE (Williams, 1992). The pseudocode is re-
ported in Algorithm 1.6 The main loop of the algorithm
(2-7) is composed of the main steps: (3) sample N tra-
jectories with the current policy, (4) extract the feedbacks
coherently to the objective being optimized, (5) compute
the log-policy term and (6) perform a gradient ascent step
over the parameters space.

Smoothness of the Optimization Landscape. We can
prove that the considered objectives are locally smooth,
making first-order approaches of the kind described above
well-suited for the problem.7

Theorem 4.3 (Local Lipschitz Constants). Let π1, π2 ∈ ΠI ,
let Ti(π1, π2) = {τi ∈ Ti : pπ1(τi) > 0 ∨ pπ2(τi) > 0} be
the set of realizable trajectories over i ∈ {S,O}, and let
τ⋆i = argmaxτ∈Ti(π1,π2) H(d(τ)). It holds

|J i(π1)− J i(π2)| ≤ TH(d(τ⋆i ))d
TV(π1, π2).

A global (but looser) upper bound of the Lipschitz constant
can be derived as THmax, where Hmax is the maximum
entropy that can be obtained over the support. These results
provide an interesting insight into how (a bound on) the
smoothness constant behaves, as both the objectives defined
over true states or observations have Lipschitz constants that
are not directly dependent on the policies themselves.

5. MSE without a POMDP Simulator
The Assumption 4.1 of having access to the POMDP spec-
ification is rather restrictive and arguably unreasonable in
domains where a (white-box) simulator is not available. To

6Note that the meaning and role of the regularization parame-
ters and corresponding regularization term, color-highlighted in
the algorithm, will be clarified in the next section.

7The full derivation of the result is in Appendix A.4.

overcome this assumption, we aim to refine the design of
our algorithmic solution to work with quantities related to
observations only. Luckily, beliefs can still be computed
approximately well without access to the POMDP model.
Belief approximation techniques have been extensively stud-
ied in the literature (e.g., see (Subramanian et al., 2022) for
a summary). Here, we do not delve into the technicalities of
the latter, which are out of the scope of this work, and we
instead assume to have access to an approximated oracle to
compute beliefs.

Assumption 5.1. Let a ∈ A and o ∈ O. Given an approxi-
mate belief b̂t ∈ ∆(S) of the true belief bt, an oracle belief
approximator gives b̂t+1 such that ∥Tao(b̂t)− b̂t+1∥1 ≤ ϵ.

With the latter, we can follow Algorithm 1 as is, computing
approximate beliefs instead of the true beliefs. Yet, we have
to change the feedback as we cannot compute the entropy
on the true states. Luckily, the trivial MOE feedback (3) is
not the only option we have. We can use the approximate
beliefs to reconstruct believed trajectories over states and
then compute the feedbacks as their entropy. We call the
latter the Maximum Believed Entropy (MBE):

max
π∈ΠI

{
J̃(π) := E

τB∼pπ
E

τS̃∼p(·|τB)
[H(d(τS̃))]

}
(5)

where the update of the belief in pπ is now given by the
approximate belief oracle. Notably, we can extend both
Theorem 4.2, 4.3 to the MBE objective.8

Theorem 5.2. For a policy πθ ∈ ΠI parametrized by θ ∈
Θ ⊆ RSA, we have

∇θJ̃(π) = E
τB∼pπ

E
τS̃∼p(·|τB)

[
∇θ log πθ(τS̃)[H(d(τS̃))]

]
(6)

where∇θ log πθ(τS̃) are defined as in 4.2. Additionally, let
TB(π1, π2) = {τB ∈ TB : pπ1(τB) > 0 ∨ pπ2(τB) > 0},
τ⋆B = argmaxτ∈TB(π1,π2) Eτ∼τB H(d(τ)), and H̄(τ⋆B) =
EτS̃∼τ⋆

B
H(d(τS̃)), we have

|J̃(π1)− J̃(π2)| ≤ TH̄(τ⋆B)d
TV(π1, π2). (7)

8A full derivation can be found in Appendix A.3.

5



State Entropy Maximization in POMDPs

Interestingly, compared to the other results in Theorem 4.3,
MBE displays an upper bound of the Lipschitz constant that
depends on the policies π1, π2 directly (through τ⋆B). Ad-
ditionally, H̄(τ⋆B) consists in the best expected believed
entropy, which is generally smaller than H(d(τ⋆i )), i ∈
{S,O} of Theorem 4.3.

Objectives Gaps and Hallucinatory Effect. Without As-
sumption 4.1, we cannot know the value of the MSE objec-
tive anymore. Thus, it is hard to keep track of the mismatch
between what the agent expects the (latent) performance
to be and what it truly is once it is evaluated on the true
states of the environment. However, it is possible to show
that the true objective lies in a space explicitly encircled by
the proxies. First, we provide the following instrumental
definitions:
Definition 5.3. We define TO(τS) = {τO ∈ TO :
H(d(τO)) ≥ H(d(τS))}, T (τS) = {τS̃ ∈ TS̃ :
H(d(τS̃)) ≥ H(d(τS))} as the set of trajectories
over observations and believed states, respectively, for
which their entropy is higher than the entropy of a
fixed trajectory over true states. We let P(TO|τS) =∑

τO∈TO(τS) p
π(τO|τS),P(T |τB) =

∑
τS̃∈T (τS) τB(τS)

the cumulative probability of drawing a trajectory form
the above sets and p̄S(τS) = EτB∼pπ(·|τS) P(T |τB)
the expected probability of the believed set. Fi-
nally, JO(π|τS) = EτO∼pπ(·|τS)[H(d(τO))], J̃(π|τS) =
EτB∼pπ(·|τS) EτS̃∼τB [H(d(τS̃))] the MOE (MBE) objective
for a fixed trajectory on the states.

Then, the following theorem holds:
Theorem 5.4 (Proxy Gaps). For a fixed policy π ∈ ΠI ,
the MSE objective JS(π) is bounded by the MOE objective
according to

JS(π) ≤ E
τS∼p̄S

[ 1

P(TO|τS)
JO(π|τS)

]
JS(π) ≥ E

τS∼p̄S

[ 1

1− P(TO|τS)
JO(π|τS)

]
− E

τS∼p̄S

[ P(TO|τS)
1− P(TO|τS)

]
logO

Analogously, JS(π) is bounded by the MBE objective ac-
cording to

JS(π) ≤ E
τS∼p̄

[ 1

p̄S(τS)
J̃S(π|τs)

]
JS(π) ≥ E

τS∼p̄

[ 1

1− p̄S(τS)
J̃S(π|τS)

]
− E

τS∼p̄

[ p̄S(τS)

1− p̄S(τS)

]
logS

These results show that the true objective (MSE) is up-
per/lower bounded by the proxies depending on the proba-
bility to generate trajectories (over observations or believed

(a) p̄ = 0.02 (b) p̄ = 0.25 (c) p̄ = 0.5 (d) p̄ = 0.9

Figure 1. MBE Proxy gaps: for different hallucination probabili-
ties p̄S and a fixed trajectory τs, the y-axis represents the possi-
ble MSE values contained between the upper bound and lower
bound as J̃ S(π|τs) varies between 0 and the maximum value
log(S) (the corresponding MBE values are plotted over the diag-
onal to allow a comparisons).

states, respectively) with entropy higher than the one of the
trajectory that generated them. We refer to this probability as
hallucination probability and to the resulting phenomenon
as hallucinatory effect. We show in Figure 1 a visual rep-
resentation of the MBE gaps in Theorem 5.4. It is evident
that for low over-estimation probabilities (p̄S = 0.02), the
MBE objective is a good lower bound for the MSE ob-
jective,9 while it is less so as the hallucination probability
increases. The full derivation of these results can be found
in Appendix A.5.

The role of hallucinatory effects is crucial. Indeed, when the
effect of hallucinations is negligible, the proxy objectives
are reasonable lower bounds to the true MSE objective, and
optimizing them guarantees at least a non-degradation of
the MSE objective. The hallucinatory effect, i.e., generat-
ing over-entropic trajectories due to the randomness of the
generating process, on either observations or beliefs, can
be controlled by reducing the randomness of the generating
process itself. Unfortunately, under Assumption 5.1, we
cannot control the observation model as done in Zamboni
et al. (2024). However, we have partial control over the
trajectory of beliefs that are generated, as they are (approxi-
mately) learned and the belief update is conditioned on the
taken action. Thus, we can follow the same rationale and
derive a regularized objective built upon J̃(π). In particular,
we can maintain a valid lower bound to the MBE objective
while enforcing the generation of a sequence of low-entropy
belief states τB = (b1, · · · , bT ) with the following:

J̃(π) ≥ J̃(π)− ρ E
τB∼pπ

[H(τB)]

≥ J̃(π)− ρ E
τB∼pπ

[∑
t
H(bt)

]
=: J̃ρ(π)

where the second inequality is due to the sub-additivity of
the entropy. We call the obtained J̃ρ(π) MBE with belief reg-
ularization (Reg-MBE for short). Then, the policy gradient

9One may notice that the MOE gap is potentially looser: In
many scenarios log(O) ≫ log(S) while on the other hand p̄S(τS)
is the result of an additional expectation with respect to P(TO|τS).

6



State Entropy Maximization in POMDPs

(a) Env. i, deterministic, 0.1 (b) Env. i, deterministic, 10 (c) Env. ii, deterministic, 10 (d) Env. iii, deterministic, n.a.

(e) Env. i, stochastic, 10 (f) Env. i, stochastic, 10 (g) Env. iv, deterministic, n.a. (h) Env. iv, deterministic, n.a.

Figure 2. True state entropy (or regularization term) obtained by Algorithm 1 specialized for the feedbacks MSE, MOE, MBE, MBE with
belief regularization (Reg-MBE). For each plot, we report a tuple (environment, transition noise, observation variance) where the latter is
not available (n.a.) when observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs.

∇πJ̃ρ(π) for this objective is

∇πJ̃(π)− ρ E
τB∼pπ

[
∇θ log πθ(τB)

∑
t
H(bt)

]
.

It is easy to see that whenever J̃(π) is a good proxy (i.e., a
tight lower bound) of the true MSE objective, then the regu-
larized objective J̃ρ(π) will be a reasonable lower bound as
well. Most importantly, the regularization term incentives
lower-entropy beliefs, which keeps J̃(π) in a region where
it approximates MSE well. From these considerations, a
belief-regularized version of the Algorithm 1 is proposed by
simply modifying how the gradient step in (6) is computed,
as can be seen in the regularized version of Algorithm 1.

6. Numerical Experiments
In this section, we provide an empirical corroboration of the
proposed methods and reported claims (results reported in
Figure 2 and 3). The section is organized as follows:

6.1 We describe the experimental set-up;
6.2 We compare the performance driven by the proxy ob-

jectives (MOE, MBE, MBE with belief regularization)
against the ideal objective (MSE);

6.3 We study the impact of belief approximation on MBE-
based algorithms (with and without regularization).

6.1. Experimental Set-Up

We consider the following set of finite domains:

(i) A 5× 5-Gridworld with a single room, where O = S
and the emission matrix O is such that every row is a
(discretized) Gaussian O(o|s) = N (s, σ2);

(ii) A 6× 6-Gridworld with 4 identical rooms, where O =
S and the emission matrix O is such that every row is
a (discretized) Gaussian O(o|s) = N (s, σ2);

(iii) A 6× 6-Gridworld with 4 identical rooms, where O =
{1, 2, 3, 4} and the deterministic emission matrix O
such that for every state O(s) is the id of the room in
which the state lies;

(iv) A 6× 6-Gridworld with 4 identical rooms, where O =
{1, 2} and the deterministic emission matrix O such
that for every state O(s) is the side of the grid (left
rooms or right rooms) the state lies in.

In all the environments described above, the agent has four
actions to take, one for moving to the adjacent grid cell in
each of the coordinate directions. Moving against a wall un-
does the effect of an action. When we say an environment is
deterministic we mean that the agent actions never fail. In a
stochastic environment each action has 0.1 failure probabil-
ity, which has the equivalent effect of taking one of the other
three actions at random. Finally, we compare the algorithms
designed for the MSE, MOE, MBE objectives presented in
previous sections.10 Irrespective of the optimized objective,
their performance is evaluated on the true state entropy
(Equation 2), which is the ultimate target of state entropy
maximization in POMDPs. All of the algorithms optimize
a policy within the BA class Π̄B. A visualization of the de-
scribed environment is provided in Appendix B.3, while the
choice of the experimental parameters is discussed in Ap-
pendix B.4. Appendix B.5 provides a finer analysis of the
choice of the policy class.

10While we only compare algorithms of our design, we note that
we could not find any previous algorithm addressing state entropy
maximization in POMDPs.
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(a) Env. i, deterministic, 10 (b) Env. i, stochastic, 10 (c) Env. iii , deterministic, n.a. (d) Env. iv, deterministic, n.a.

Figure 3. True state entropy obtained by Algorithm 1 with MBE, MBE with belief regularization (MBE with Reg) feedbacks under
different levels of approximation noise s2. For each plot, we report a tuple (environment, transition noise, observation variance) where the
latter is not available (n.a.) when observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs.

6.2. MSE in POMDP with the Proxy Objectives

In this section, we compare the performance obtained by
Algorithm 1 specialized for the different proxy objectives.
For the sake of clarity, here we assume the belief updates
to be computed exactly, while we study the impact of the
belief approximation in the next section.

Figure 2(a) shows that all of the objectives works equally
well in easy settings, e.g., deterministic transitions and small
observation noise. However, major differences arise when
considering harder settings. The MOE objective is sensitive
to the quality of the observations, which is evident from the
performance degradation in Figures 2(b), 2(c), 2(d). Instead,
MBE objectives are remarkably robust to their (diminishing)
quality. MBE with belief regularization (Reg-MBE) always
performed better than the non-regularized version, showing
faster convergence or better final performance.

In Figure 2(e), we see that stochastic transitions are also
arduous for MOE and MBE. MBE with belief regularization
proved to be better. Interestingly, the true state entropy
improvement happens concurrently with the optimization
of the regularization term (Figure 2(f)).

Unsurprisingly, optimizing the MSE objective leads to the
best performance in most cases, as a testament that whenever
the POMDP specification is available in simulation, it is
worth training the policy we seek to deploy on the true state
entropy. Interestingly, in some limit cases with extreme
disentanglement between the observations and the true MSE
objective (Figure 2(g)), the belief-regularized MBE proxy
performed slightly better.

Finally, Figure 2(f) shows how the MBE is severely halluci-
nated, an effect that is mitigated with belief regularization.

6.3. The Impact of Belief Approximation

In the previous section, we compared the algorithms in
an ideal setting in which the belief is approximated ex-
actly. Here we instead consider the effect of the belief
approximation on the same experiments. Especially, to
keep full generality of our results, we perturb the exact

beliefs with an entry-wise Gaussian noise (with variance
s2 = {0, 0.01, 0.03, 0.04} respectively), so that our results
do not apply to a single belief approximator but any approx-
imator with a bounded error.11

All Figures from 3(a) to 3(d) provide two important evi-
dences. First, when good belief approximators are available,
the resulting performance is strikingly similar to the ideal
setting with exact beliefs. Secondly, MBE with belief regu-
larization is significantly more robust to perturbations, hint-
ing that mitigating hallucination also alleviates the impact
of the approximation error to some extent.

7. Related Work
Below, we summarize the most relevant work on POMDPs,
state entropy maximization, and policy optimization.

POMDPs. Learning and planning problems in POMDPs
have been extensively studied. In the most general formula-
tion, POMDPs have been shown to be computationally and
statistically intractable (Papadimitriou & Tsitsiklis, 1987;
Krishnamurthy et al., 2016). Nonetheless, several recent
works have analyzed tractable sub-classes of POMDPs un-
der convenient structural assumptions (to name a few Jin
et al., 2020a; Golowich et al., 2022; Chen et al., 2022; Liu
et al., 2022; Zhan et al., 2023; Zhong et al., 2023). Strides
have also been made in modeling beliefs as approximate
information states (Subramanian et al., 2022) and in the
design of practical algorithms (Hafner et al., 2019).

State Entropy Maximization. State entropy maximization
in MDPs has been introduced in Hazan et al. (2019) and then
considered in a flurry of subsequent works (Lee et al., 2019;
Mutti & Restelli, 2020; Mutti et al., 2021; 2022a;b; Mutti,
2023; Zhang et al., 2021; Guo et al., 2021; Liu & Abbeel,
2021b;a; Seo et al., 2021; Yarats et al., 2021; Nedergaard
& Cook, 2022; Yang & Spaan, 2023; Tiapkin et al., 2023;
Jain et al., 2023; Kim et al., 2023; Zisselman et al., 2023)
addressing the problem from various angles. While Savas

11For the sake of clarity, here we report the variance of the
perturbation instead of the approximation as in Assumption 5.1.
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et al. (2022) study the problem of maximizing the entropy
over trajectories induced in a POMDP, we are the first to
formulate state entropy maximization in the latter setting.
Complementary results on when the observation entropy is
a sensible target for state entropy maximization in POMDPs
are reported in the concurrent work (Zamboni et al., 2024).

Policy Optimization. The use of first-order methods (Sut-
ton et al., 1999; Peters & Schaal, 2008) to address non-
concave policy optimization is not new in RL. We consid-
ered a vanilla policy gradient estimator (Williams, 1992)
but several refinements could be made, such as natural gradi-
ent (Kakade, 2001), trust-region schemes (Schulman et al.,
2015), and importance sampling (Metelli et al., 2018).

8. Conclusion
In this paper, we generalize the state entropy maximization
problem in POMDPs. Especially, we aim to learn a policy
that maximizes the entropy over the true states of the envi-
ronment while accessing partial observations only. In the
paper, we show that this entails several critical challenges.
First, we propose a family of proxy objectives to approxi-
mate the ideal (but not accessible) original objective through
quantities that are available to the agent. Then, we choose a
convenient sub-class of non-Markovian policies that retain
compressed information of history without incurring unrea-
sonable memory requirements. Finally, we designe practical
first-order algorithms, which are based on policy gradient,
to overcome the inherent non-convexity of the considered
objective functions.

Future works can extend our results in many directions,
which include integrating a belief approximation method
into the algorithmic pipeline (e.g., Zintgraf et al., 2019; Sub-
ramanian et al., 2022), designing practical implementations
for continuous domains (e.g., Liu & Abbeel, 2021b), and
investigating more policy classes with succinct representa-
tions of the history beyond the one we considered.

We believe that our work can be a crucial first step in the
direction of extending state entropy maximization to yet
more practical settings, in which the state of the system is
often not fully observed.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Åström, K. J. Optimal control of Markov processes with
incomplete state information. Journal of Mathematical
Analysis and Applications, 10(1):174–205, 1965.

Bertsekas, D. Reinforcement learning and optimal control.
Athena Scientific, 2019.

Bertsekas, D. P. Dynamic programming and stochastic
control. Academic Press, Inc., 1976.

Cassandra, A. R. Exact and approximate algorithms for
partially observable Markov decision processes. PhD
Thesis, Brown University, 1998.

Chen, F., Bai, Y., and Mei, S. Partially observable rl with
b-stability: Unified structural condition and sharp sample-
efficient algorithms. arXiv preprint arXiv:2209.14990,
2022.

Golowich, N., Moitra, A., and Rohatgi, D. Planning in ob-
servable pomdps in quasipolynomial time. arXiv preprint
arXiv:2201.04735, 2022.

Guo, Z. D., Azar, M. G., Saade, A., Thakoor, S., Piot,
B., Pires, B. A., Valko, M., Mesnard, T., Lattimore, T.,
and Munos, R. Geometric entropic exploration. arXiv
preprint arXiv:2101.02055, 2021.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2019.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-
tional Conference on Machine Learning, 2019.

Jain, A. K., Lehnert, L., Rish, I., and Berseth, G. Maximum
state entropy exploration using predecessor and succes-
sor representations. In Advances in Neural Information
Processing Systems, 2023.

Jin, C., Kakade, S., Krishnamurthy, A., and Liu, Q.
Sample-efficient reinforcement learning of undercom-
plete pomdps. In Advances in Neural Information Pro-
cessing Systems, 2020a.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
International Conference on Machine Learning, 2020b.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1-2):99–134, 1998.

9



State Entropy Maximization in POMDPs

Kakade, S. M. A natural policy gradient. In Advances in
Neural Information Processing Systems, 2001.

Kim, D., Shin, J., Abbeel, P., and Seo, Y. Accelerating
reinforcement learning with value-conditional state en-
tropy exploration. In Advances in Neural Information
Processing Systems, 2023.

Krishnamurthy, A., Agarwal, A., and Langford, J. Pac rein-
forcement learning with rich observations. In Advances
in Neural Information Processing Systems, 2016.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. arXiv preprint arXiv:1906.05274,
2019.

Liu, H. and Abbeel, P. Aps: Active pretraining with suc-
cessor features. In International Conference on Machine
Learning, 2021a.

Liu, H. and Abbeel, P. Behavior from the void: Unsuper-
vised active pre-training. In Advances in Neural Informa-
tion Processing Systems, 2021b.

Liu, Q., Chung, A., Szepesvári, C., and Jin, C. When is
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A. Proofs and Additional Material
A.1. Infinite-trajectories Formulations

As for MDP theory, the Maximum State Entropy proxies can be formulated in an infinite trajectories form, namely as for
Equation (1) it is possible to write the infinite trajectories formulation of the MOE (MBE) as

max
π∈ΠI

{
JO
∞ = H(dπO) := −

∑
o∈O

dπO(o) log(d
π
O(o))

}
max
π∈ΠI

{
J̃∞ = H(dπS) := −

∑
s∈S

dπS(s) log(d
π
S(s))

}
where dπO := EτO∼pπ [d(τO)] and dπS := EτB∼pπ EτS̃∼p(·|τB)[d(τS̃)] is the expected observation (believed state) distribution.
These objectives are linked to the single trajectory ones through Jensen’s Inequality due to the concavity of the entropy
function, namely

JO = E
τO∼pπ

[H(d(τO)] ≤ H( E
τO∼pπ

d(τO)) = H(dπO) = JO
∞

J̃ = E
τB∼pπ

E
τS̃∼p(·|τB)

[H(d(τS̃)] ≤ H( E
τB∼pπ

E
τS̃∼p(·|τB)

[d(τS̃)]) = H(dπS) = J̃∞

Interestingly, the MBE objective has a clean and neat equivalent formulation in belief-state POMDPs that can be turned into
a dual problem as for MDPs, yet the resulting problem is still intractable. More specifically, having defined belief states, we
can encode the POMDPM into a corresponding belief MDPMB := (B,A, P̃,B, b0, T ) where

• B is a finite set of states such that each b ∈ B corresponds to a belief state, and B is obtained by running Algorithm 2
inM;

• A is the set of actions inM;

• P̃ : B ×A → ∆B is the transition model of the belief MDP defined in a few lines;

• b0 ∈ B is the initial state;

• T is the horizon length.

To fully characterizeMB, we can extract the transition model P̃ fromM as

P̃(b′|b, a) =
∑

{o∈O|b′=Tao(b)}

P (o|b, a) =
∑

{o∈O|b′=Tao(b)}

∑
s∈S

P (o|s)P (s|b, a)

=
∑

{o∈O|b′=Tao(b)}

∑
s∈S

O(o|s)
∑
s′∈S

b(s′)P(s|s′, a).

Let us denote as dπ ∈ ∆S the expected finite-horizon state distribution induced by a policy π ∈ ΠI on the true (unobserved)
states. Then, we can define the objective function of our problem as

max
π∈ΠI

H(dπ) = min
π∈ΠI

E
s∼dπ

[log dπ(s)] (8)

Following standard techniques for MDPs (Puterman, 2014), we can obtain the optimal planning policy for (8) by solving the
dual convex program

maximize
d∈∆S

{ωt∈∆B×A}t∈[1:T ]

H(d)

subject to
∑
a′∈A

ωt+1(b
′, a′) =

∑
b∈B,a∈A

ωt(b, a)P̃(b′|b, a) ∀b′ ∈ B, ∀t ∈ 1 . . . T

subject to d(s) =
1

T

T∑
t

∑
b∈B,a∈A

ωt(b, a)b(s) ∀(s, a) ∈ S ×A
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and then obtaining the resulting (non-stationary) policy from the solution ω∗ as πt(a|b) =
ω∗
t (b, a)/

∑
a′∈A ω∗

t (b, a
′),∀(b, a) ∈ B × A. As one may notice, while this problem has a neat and concise

formulation, the dimensionality of the optimization problem does not scale with the dimension ofM.

A.2. Belief Set Computation

The belief states set reachable in a T step interaction with a POMDP can be computed via the following Algorithm

Algorithm 2 Belief set(b,B, t, T )
Input: belief b, set B, step t, horizon T
if t < T then

for (o, a) ∈ O ×A do
b′ = T ao(b)
if b′ /∈ B then
B = Belief set(b′,B ∪ {b′}, t+ 1, T )

end if
end for

end if
return B

A.3. Proofs of Theorem 4.2 & Theorem 5.2: Policy Gradients Computation

Let us denote τ = τS ⊕ τO ⊕ τB ⊕ τS̃ and for a generic i ∈ {S,O,B, S̃} we denote τ |i as the trajectory τi extracted from
τ . This is done to be able to use any kind of policy class considered in the main paper as well. For a generic single trajectory
objective defined with J ∈ {JS , JO, J̃} it is possible to write:

∇θJ(π) = ∇θ E
τ∼pπ

[H(d(τ |I))]

= ∇θ

∑
τ

pπ(τ)H(d(τ |i))

=
∑
τ

(
∇θp

π(τ)
)
H(d(τ |i))

Thanks to the usual log-trick

=
∑
τ

pπ(τ)
(
∇θ log p

π(τ)
)
H(d(τ |i))

= E
τ∼pπ

[
∇θ log p

π(τ)H(d(τ |i))
]

The computation of the gradient is then reconducted to the calculation of the log-policy term ∇θ log p
π(τ) for the generic

class π ∈ ΠI . It follows that

∇θ log p
π(τ) = ∇θ log

(
µ(s1)

T∏
t=1

O(ot|st)π(at|it)P(st+1|st, at)Totat(bt+1|bt)
)

= ∇θ

(
log(µ(s1)) +

T∑
t=1

log(O(ot|st)) + log(π(at|it)) + log(P(st+1|st, at)) + log(Totat(bt+1|bt))
)

Where the only terms depending on θ are indeed the I-specific log-policy terms, leading to

∇θ log p
π(τ) =

T∑
t

∇θ log πθ(at|it)

which leads to the standard REINFORCE-like formulation of policy gradients.

13
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A.4. Proofs of Theorem 4.3 & Theorem 5.2: Lipschitz Constants Computation

MSE/MOE (Theorem 4.3): Let us define the set of reachable trajectories in T steps by following a generic policy πi as
Ti = {τ ∈ Ti : p

πi(τ) > 0}, it follows that for both MSE and MOE objective, by defining τ as τS or τO respectively, we
can see that

|J(π1)− J(π2)| =
∣∣∣ E
τ∼pπ1

[H(d(τ))]− E
τ∼pπ2

[H(d(τ))]
∣∣∣

≤
∑

τ∈T1∪T2

H(d(τ))
∣∣∣pπ1(τ)− pπ2(τ)

∣∣∣
By defining τ⋆ ∈ argmaxτ∈T1∪T2

H[d(τ)]

≤ H[d(τ⋆)]
∑

τ∈T1∪T2

∣∣∣pπ1(τ)− pπ2(τ)
∣∣∣

We notice that pπi =
∏π

t p
πi
t and that the total variation between two product distributions can be upper-bounder by the

summation over the per-step total variations, namely dTV(
∏π

t p
πi
t ,

∏π
t p

πj

t ) ≤
∑T

t dTV(pπi
t , p

πj

t ), leading to

= H[d(τ⋆)]dTV(pπ1 , pπ2)

≤ H[d(τ⋆)]

T∑
t

dTV(pπ1
t , pπ2

t )

The only difference between the two distributions (for a fixed step) consists of the policies

= TH[d(τ⋆)]dTV(π1, π2) = L(π1, π2)d
TV(π1, π2)

It follows a (bound on a) Lipschitz constant dependent on the two policies to be compared that is directly proportional to the
best single trajectory (in terms of entropy) reachable by the policies themselves. Any policy able to generate a maximum
entropic trajectory will have the highest possible Lipschitz constant. The constant then gets steeper as the quality of the
policies improves.

MBE (Theorem 5.2): Similarly to the previous steps,

|J̃(π1)− J̃(π2)| =
∣∣∣ E
τB∼pπ1

E
τS̃∼τB(·)

[H(d(τS̃))]− E
τB∼pπ2

E
τS̃∼τB(·)

[H(d(τS̃))]
∣∣∣

≤
∑

τB∈T1∪T2

∑
τS̃

τB(τS̃)H(d(τS̃))
∣∣∣pπ1(τB)− pπ2(τB)

∣∣∣
=

∑
τB∈T1∪T2

E
τS̃∼τB

H(d(τS̃))
∣∣∣pπ1(τB)− pπ2(τB)

∣∣∣
Again let us define τ⋆B ∈ argmaxτB∈T1∪T2

EτS̃∼τB H(d(τS̃))

≤ E
τS̃∼τ⋆

B

H(d(τS̃))d
TV(pπ1 , pπ2)

≤ E
τS̃∼τ⋆

B

H(d(τS̃))

T∑
t

dTV(pπ1
t , pπ2

t )

= T E
τS̃∼τ⋆

B

H(d(τS̃))d
TV(π1, π2) = L̃(π1, π2)d

TV(π1, π2)

Again, the (local) Lipschitz constant L̃(π1, π2) is dependent on the maximum (expected) entropy that can be induced by one
of the policies. One may notice that L(π1, π2) will be usually higher than L̃(π1, π2).
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A.5. Proofs of Theorem 5.4: Proxy Gaps

MOE: Let us define the set of observation-trajectories that have an entropy higher than the entropy of a fixed trajectory
over true states, namely TO(τS) = {τO ∈ TO : H(d(τO)) ≥ H(d(τS))}. It follows that by employing the conditional
trajectory probability pπ(τO|τS) one can define the probability P(TO|τS) =

∑
τO∈TO(τS) p

π(τO|τS). It follows that

JS − JO = E
τS∼pπ(·)

[
H(d(τS))− JO(π|τS)

]
= E

τS∼pπ(·)

[
H(d(τS))− E

τo∼pπ(·|τS)
H(d(τo))

]
= E

τS∼pπ(·)

[
H(d(τS))−

∑
τo

pπ(τo|τS)H(d(τo))
]

By definition H(d(τO ∈ TO(τS))) ≥ H(d(τS)), and by positivity of the entropy function H(d(τO /∈ TO(τS))) ≥ 0

≤ E
τS∼pπ(·)

[
H(d(τS))− P(TO|τS)H(d(τS))

]
≤ E

τS∼pπ(·)

[
(1− P(TO|τS))H(d(τS))

]
It follows that

JS(π) ≤ E
τS∼pπ(·)

[ 1

P(TO|τS)
JO(π|τS)

]
In the same way, focusing on the terms inside the outer expectation for simplicity, one obtains:

JS − JO = E
τS∼pπ(·)

[
H(d(τS))− JO(π|τS)

]
= E

τS∼pπ(·)

[
H(d(τS))− E

τo∼pπ(·|τS)
H(d(τo))

]
= E

τS∼pπ(·)

[
H(d(τS))−

∑
τo

pπ(τo|τS)H(d(τo))
]

Again, one notices that H(d(τO ∈ TO(τS)))) ≤ H(d(τS)) and H(d(τO ∈ TO(τS)))) ≤ log(O), from which the inner
expectation turns out to be bounded by the use of the complementary probability P(T C

O |τS) =
∑

τO /∈TO(τS) p
π(τO|τS)

≥ E
τS∼pπ(·)

[
(1− P(T C

O |τS))H(d(τS))− P(TO|τS) log(O)
]

= E
τS∼pπ(·)

[
P(TO|τS)H(d(τS))− P(TO|τS) log(O)

]
Leading to

JS(π) ≥ E
τS∼pπ(·)

[JO(π|τS)− P(TO|τS) log(O)

1− P(TO|τS)

]
MBE: Let us define the similar set for hallucinated trajectories T (τS) = {τS̃ ∈ TS̃ : H(d(τS̃)) ≥ H(d(τS))},P(T |τB) =∑

τS∈T (τS) τB(τS).

JS(π)− J̃(π) = E
τS∼pπ(·)

[
H(d(τS))− J̃S(π|τS)

]
= E

τS∼pπ(·)

[
H(d(τS))− E

τOτA,τB∼pπ(·|τS)
E

τS̃∼τB
H(d(τS̃))

]
= E

τS∼pπ(·)

[
H(d(τS))− E

τOτA,τB∼p(·|τS)

∑
τS̃

τB(τS̃)H(d(τS̃))
]
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Again H(d(τ ∈ TS(τS))) ≥ H(d(τS)) and H(d(τ /∈ TS(τS))) ≥ 0

≤ E
τS∼pπ(·)

[
H(d(τS))− E

τOτA,τB∼p(·|τS)
[P(T |τB)]H(d(τS))

]
≤ E

τS∼pπ(·)

[
(1− E

τOτA,τB∼p(·|τS)
P(T |τB))H(d(τS))

]
We call p̄S(τS) = EτB∼pπ(·|τS) P(T |τB), it follows that

JS(π) ≤ E
τS∼pπ(·)

[ 1

p̄(τS)
J̃S(π|τS)

]
In the same way as before, by simply changing the definitions accordingly, one obtains that:

JS(π) ≥ E
τS∼pπ(·)

[ J̃S(π|τS)− p̄(τS) logS

1− p̄(τS)

]
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B. Experimental Details
B.1. Code Repository and Reproducibility

The code is available at this link.

B.2. Wall-Clock Time for the Main Experiments

The computational cost of Algorithm 1 is mostly due to the sampling of trajectories in line 3, whereas line 4 and 5 can be
computed concurrently to the sampling process and the parameters updates at line 6 are done in parallel. It follows that the
computational complexity of Algorithm 1 is

• O(KT ) when we can access to parallel simulators for the POMDP;

• O(NKT ) when the N trajectories are sampled sequentially (e.g., interacting with a real-world system).

Additionally, here we report a table with the wall-clock time for running the main experiments in the paper. Note that all of
the experiments take less than an hour of training on general-purpose CPUs.

Experiment MSE MOE MBE MBE-Reg
Figure 2.a 1802 1797 2497 2342
Figure 2.b 1800 1791 2537 2465
Figure 2.c 2594 2603 3483 3455
Figure 2.d 2535 2510 3535 3305
Figure 2.e 1780 1803 2423 2582
Figure 2.g 2810 2746 3452 3515

Table 1. Wall-clock time [sec] of the main experiments on general-purpose CPUs.

B.3. POMDP Domains Visualization

In Figure 4 we report a visualization of the four types of domain taken into account.

(a) Single Room (b) Four Rooms (c) Four Rooms with 4 Ob-
servations

(d) Four Rooms with 2 Ob-
servations

Figure 4. Environments Visualization.

B.4. Choice of Hyperparameters

The learning rate was selected as α = 0.3. The batch size was selected to be N = 10 after tuning. As for the time horizon,
T = S in all the experiments. This makes the exploration task more challenging as every state can be visited at most once.
The best regularization term ρ was found to be approximately equal to 0.02.
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B.5. Policy Class Investigation

As already described, a plethora of deployable policy classes are possible for addressing MSE in POMDPs. In the main
paper, we focused on belief-averaged policies. In Figure 5, we show how this policy class is superior (or non-worse) to other
possible options, being implicitly non-Markovian over observations while being memory efficient. In Figure 6, we show that
belief-averaged policies perform better than (direct-parametrization) Markovian policies over belief states, even in the case
when the belief states set is manageable in size.

(a) Env. (a), deterministic, 0.1 (b) Env. (a), deterministic, 10 (c) Env. (b), deterministic, 10

(d) Env. (c), deterministic, n.a. (e) Env. (a), stochastic, 10 (f) Env. (d), deterministic, n.a.

Figure 5. True state entropy obtained by Algorithm 1 specialized for the feedbacks MSE, MOE, MBE, MBE with belief regularization
(Reg-MBE) over different policy classes with direct parametrization: Markovian over observation (O), Belief Averaged (BA), Markovian
over hallucinated states (S). For each plot, we report a tuple (environment, transition noise, observation variance) where the latter is not
available (n.a.) when observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs. BA confirms to be
the policy class with generally higher performance in all the considered instances.

(a) Env. (a) (|S| = 9), deterministic, 0.2 (b) Env. (a) (|S| = 16), deterministic, 0.2

Figure 6. True state entropy obtained by Algorithm 1 with MSE and MBE employing belief averaged policies (BA) and Markovian
policies over belief states (B). For each plot, we report a tuple (environment, transition noise, observation variance) where the latter is
not available (n.a.) when observations are deterministic. For each curve, we report the average and 95% c.i. over 16 runs. Limited size
instances were reported since |B| = 104 in 6(a) and |B| = 105 in 6(b) leading to memory issues in the policies storage. Even in these
cases, BA shows higher performances.
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