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ABSTRACT

In-context learning (ICL) describes a language model’s ability to generate outputs
based on a set of input demonstrations and a subsequent query. To understand this
remarkable capability, researchers have studied simplified, stylized models. These
studies have consistently observed long loss plateaus, during which models exhibit
minimal improvement, followed by a sudden, rapid surge of learning. In this work,
we reveal that training on multiple diverse ICL tasks simultaneously shortens the
loss plateaus, making each task easier to learn. This finding is surprising as it
contradicts the natural intuition that the combined complexity of multiple ICL
tasks would lengthen the learning process, not shorten it. Our result suggests that
the recent success in large-scale training of language models may be attributed not
only to the richness of the data at scale but also to the easier optimization (training)
induced by the diversity of natural language training data.

Loss of single-task Test error/acc of single-task
Loss of multi-task Test error/acc of multi-task

Plateau escape point

Figure 1: We train a transformer from scratch on in-context learning tasks. Single-task ICL: Training
loss ( ) and test error/accuracy ( ) when each task is trained individually. The Parity task
cannot be learned even after 1000k training steps. Multi-task ICL: Training loss ( ) and test
error/accuracy ( ) when all six tasks are trained simultaneously. Green lines mark the plateau
escape points. Surprisingly, multi-task ICL training significantly shortens these plateaus, making
training easier.
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1 INTRODUCTION

In-context learning (ICL), first reported by Brown et al. (2020) with GPT-3, describes a language
model’s ability to generate outputs based on a set of input demonstrations and a subsequent query.
In ICL, the model discerns the task implied by the context of these demonstrations without explicit
descriptions, indicating that the model may internally implement an algorithm or engage in a rea-
soning process. To understand this remarkable capability that emerges in language models trained
on complex real-world language data, researchers such as Garg et al. (2022) have studied simplified,
stylized models. In these studies, transformers are trained from scratch to learn simple functions in
context, such as linear regression. We thoroughly review this prior work in Section 1.1.

An intriguing phenomenon observed in these works is the long loss plateau in training for ICL.
Throughout these plateaus, models display minimal performance improvement, followed by a sud-
den, rapid surge of learning—deviating from the typical smooth reduction in training loss. In this
work, we reveal that training on multiple ICL tasks simultaneously shortens the loss plateaus
as illustrated in Figure 1. This finding is surprising as it contradicts the natural intuition that the
combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it.

In the language of multi-task learning, our findings present an instance where multi-task learning
is easier than single-task learning in the sense of training dynamics. While previous research has
primarily focused on the statistical benefits of task diversity in multi-task learning, our findings
reveal optimization benefits. This insight suggests that the recent success in large-scale training of
language models may be attributed not only to the richness of the data at scale but also to the easier
optimization (training) induced by the diversity of natural language training data.

Organization. Section 2 describes the experimental setup for training for multiple ICL tasks. Sec-
tion 3 articulates our main claim that task diversity shortens the ICL plateau and presents experi-
mental evidence with transformers and state-space models trained on synthetic and natural language
ICL tasks. Section 4 investigates the underlying reasons for this phenomenon. Section 4.1 charac-
terizes the model’s behavior during the plateau, which we refer to as the no-context learning regime.
Section 4.2 shows that there is a common structure shared across the ICL tasks and that task diver-
sity accelerates the learning of this shared structure. Section 5 presents further experimental details.
Section 6 concludes the paper.

1.1 RELATED WORKS

In-context learning. In-context learning (ICL) abilities of pretrained Large Language Models
have gained significant attention since first investigated by GPT-3 (Brown et al., 2020). Follow-
ing this, a large body of empirical studies have explored ICL in Large Language Models (Min et al.,
2022a;b; Liu et al., 2021; Nie et al., 2022; Rubin et al., 2022; Wei et al., 2023). Given the complexity
of real-world data, researchers have explored ICL in more stylized and simplified setups. Garg et al.
(2022) formalized an approach to studying transformer’s performance to learn simple function class
in context. Building on this work, several works have investigated the ability of models to learn
stylized function classes in various settings, including boolean functions (Bhattamishra et al., 2024),
regular language (Akyürek et al., 2024), as well as task mixtures (Tripuraneni et al., 2023), and the
ability of Mamba (Park et al., 2024; Grazzi et al., 2024; Li et al., 2024). For more comprehensive
overview, please refer to the survey by Dong et al. (2024).

While these studies have scrutinized ICL abilities across various setups, most have not delved into
the in-context algorithms that are implemented by models. Xie et al. (2022) suggested that the ICL
process can be interpreted as Bayesian inference. A number of works have argued, both theoretically
and empirically, that transformers implement gradient descent to learn linear regression in-context
(Akyürek et al., 2023; von Oswald et al., 2023; Mahankali et al., 2024; Zhang et al., 2024; Ahn
et al., 2023). Beyond these works, many have sought to uncover the internal ICL procedure of
transformers, in more complex algorithms (Fu et al., 2023; Giannou et al., 2024; Cheng et al., 2024;
von Oswald et al., 2024; Lin & Lee, 2024); when handling more intricate tasks (Wang et al., 2024;
Guo et al., 2024; Bai et al., 2023; Lin et al., 2024; Wang et al., 2024).

Abrupt phase transition in in-context learning. Many studies (Srivastava et al., 2023; Wei et al.,
2022; He et al., 2024; Chan et al., 2022; Raventós et al., 2023; Raventos et al., 2023) have shown
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Figure 2: To generate a training sequence, we sample the function f ∈ F1 ∪ . . . ∪ Fk,
where F1, . . . ,Fk are different in-context function classes, sample x1, . . . , xn IID, and form
(x1, f(x1), · · · , xn−1, f(xn−1), xn, f(xn)). We refer to the case k = 1 as single-task ICL and
k > 1 as multi-task ICL. The sequence model is trained with autoregressive next-token prediction,
i.e., the model predicts f(xi) conditioned on (x1, f(x1), xi−1, f(xi−1), · · · , xi) for i = 1, . . . , n.

that a model’s ability to perform ICL emerges abruptly, with respect to dataset and model size.
While these studies do not focus on the training process, abrupt performance gains during training
have also been reported in various works. This transition is typically associated with escaping loss
plateaus. During these plateaus, no performance gains are observed, but once the plateau is escaped,
the model begins to learn in-context abruptly. This phenomenon has been observed in various setups
(Garg et al., 2022; Bhattamishra et al., 2024; Park et al., 2024; Li et al., 2024; Kirsch et al., 2024),
although these works did not primarily focus on it.

Beyond these, several studies have explored loss plateaus themselves. Fu et al. (2024) suggested that
models learn the features of dataset during loss plateaus. Chen et al. (2024) theoretically demon-
strated that a plateau occurs during training when a one-layer transformer is trained by linear regres-
sion ICL task. Olsson et al. (2022) proposed that the plateau escape and the formation of ‘induction
head’ simultaneously happen. Further work by Reddy (2024); Singh et al. (2024); Song et al. (2024),
focused on two-layer transformers, explicitly defining the induction head with transformer parame-
ters and characterizing the internal mechanisms behind its formation. In contrast, Section 4.1 offers
a new perspective by providing the explicit form of the model’s output during plateaus. Furthermore,
in Section 4.2.3, we provide a discrepancy between our finding and induction head.

Task diversity. Multi-task training (Caruana, 1997; Baxter, 2000) is a widely used approach for
model pretraining. In particular, researchers have identified that task diversity is crucial for pre-
trained models to outperform in downstream tasks, alongside a large body of research across various
domains: supervised learning (Tripuraneni et al., 2020; 2021; Du et al., 2021; Maurer et al., 2016;
Crawshaw, 2020; Ruder, 2017), reinforcement learning (Zhang et al., 2023a; Jin et al., 2020; Hu
et al., 2021; Yang et al., 2021; Collins et al., 2021; Lu et al., 2022; Cheng et al., 2022), and natural
language processing (Zhang et al., 2023a; Zhao et al., 2023; Zhang et al., 2023b; Hu et al., 2020;
Song et al., 2020; Zhou et al., 2019; Gunasekar et al., 2023; Sharma et al., 2023). These works
mostly focused on statistical benefits, whereas our finding emphasize on the optimization benefits.

2 EXPERIMENTAL SETUP

Our experimental setup follows Garg et al. (2022) and Bhattamishra et al. (2024). Consider a
function class F with domain X . A sequence model Mθ (transformer or state-space model) is
trained to identify f ∈ F in context and make a prediction on the subsequent query. The training
data consists of sequences of the form P = (x1, f(x1), x2, f(x2), . . . , xn−1, f(xn−1), xn, f(xn)),
where f is sampled from a distribution DF and x1, . . . , xn are independently sampled from a
distribution DX . We train Mθ for the next token-prediction task: The loss over the sequence
P is given by 1

n

∑n
i=1 ℓ(Mθ(Pi), f(xi)), where ℓ(·, ·) is an appropriate loss function and Pi :=

(x1, f(x1), x2, f(x2), . . . , xi−1, f(xi−1), xi) is the i-th prefix for i = 1, . . . , n. In our experiments,
n = 120 is a predetermined number shared across all tasks. This procedure is illustrated on Figure 2.
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ICL tasks. We consider continuous ICL tasks and boolean ICL tasks. For each ICL task, an f ∈ F is
chosen, where F is a function class. For continuous ICL tasks, F consists of f : Rd → R for d ∈ N
and the probability distribution on the domain is assumed to be DX = N (0, Id). For boolean ICL
tasks, F consists of f : {±1}d → {±1} for d ∈ N and the probability distribution on the domain
is assumed to be DX = Unif ({±1}d). We consider 10 different ICL tasks: Linear Regression,
Quadratic Regression, Sparse Linear Regression, ReLU Regression, Decision Tree, Sparse Parity(2),
Sparse Parity(3), Parity, Conjunction, and Disjunction. The function class F defining each of these
10 ICL tasks is precisely stated in Section 5.

Multi-task ICL training. Most prior work on ICL, such as Garg et al. (2022); von Oswald et al.
(2023); Bhattamishra et al. (2024); Park et al. (2024), considers ICL training with a single func-
tion class F . In this work, we train models to learn functions from the union of function classes⋃k

m=1 Fm in context, where F1, . . . ,Fk are distinct ICL task among the 10 that we list in Sec-
tion 5. For instance, if the model is trained on the union of linear and quadratic regression tasks,
then F1 ∪ F2 = {f | f(x) = w⊺x} ∪ {f | f(x) = x⊺Wx}. For each m = 1, . . . , k, we sample
f ∼ DFm

and x1, . . . , xn
IID∼ DXm

and form the sequence (x1, f(x1), x2, f(x2), . . . , xn, f(xn)).
This sampling process is repeated B times for each m = 1, . . . , k, making kB the total batch size.
To balance the loss scales across different tasks, we normalize each task’s loss with constant factors
c1, . . . , ck (further discussed in Section 4.1) so that the training loss stabilizes around 1 during the
plateaus. Appendix A provides further experimental details. In expectation, we minimize the loss

L(θ) =

k∑
m=1

cm E
f∼DFm

x1,...,xn
IID∼DXm

[
1

n

n∑
i=1

ℓ
(
Mθ(Pi), f(xi)

)]
.

Test loss. To evaluate the model’s performance on ICL tasks, we measure the error of the model’s
prediction on the last (n-th) output of the prompt. For continuous ICL tasks, the test error is
(Mθ(Pn) − f(xn))

2. For boolean ICL tasks, the test accuracy is measured by 1[sign(Mθ(Pn)) =
f(xn)], where 1 is the indicator function.

3 TASK DIVERSITY SHORTENS ICL PLATEAUS

Long loss plateaus have been commonly reported in the various setups for training sequence models
from scratch to perform ICL, including simple in-context functions (Garg et al., 2022; Chen et al.,
2024; Li et al., 2024; Bhattamishra et al., 2024; Park et al., 2024), image datasets (Fu et al., 2024;
Kirsch et al., 2024; Singh et al., 2024; Reddy, 2024), and language datasets (Akyürek et al., 2024;
Olsson et al., 2022). In this section, we present the following claim:

Claim: Task diversity shortens the ICL plateau, making each task easier to learn.

Here, task diversity refers to learning multi-task ICL on a mixture of distinct function classes. The
claim that multi-task ICL is easier to learn than single-task ICL is surprising as it contradicts the
natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning
process, not shorten it.

We provide comprehensive experimental evidence to support this claim. Table 1 summarizes our
experimental results on transformers. Figure 3 shows the results of state space models, specifically
Mamba (Gu & Dao, 2024) and Hyena (Poli et al., 2023). Across the hundreds of task combinations
in these setups, we consistently observed that task diversity enables training to escape plateaus
more quickly. Figure 7 shows results in natural language ICL tasks reinforcing our claim. Refer to
Appendix A for experimental details and Appendix B for additional tables.

However, not all ICL tasks mutually reduce the duration of plateaus. For instance, we consider
Regbench task (Akyürek et al., 2024), which is generated by a random automata. Our experiments
in Appendix C.2 show that combining Regbench with the ICL tasks we consider does not reduce the
plateau of Regbench, but does reduce the plateau of the other ICL tasks.

Therefore, the claim should be understood as a description of a general tendency rather than a
universal law. Nevertheless, our finding is broadly and robustly observed, as borne out by our
extensive experiments.
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Figure 3: Mamba (First row) and Hyena (Second row). Red lines and Blue lines re-
spectively represent the loss dynamics of single-task training and multi-task training. (Left):
Quadratic Regression+Linear Regression compared to Quadratic Regression. (Middle): Sparse
Parity(2)+Linear Regression compared to Sparse Parity(2). (Right): Sparse Parity(3)+Conjunction
compared to Sparse Parity(3).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Decision
Tree

1 > 1000k > 1000k 2.4k (2.7k) 2.5k (2.7k) 9.0k (12.1k) 13.1k (14.2k) 3.0k (3.7k) 16.5k (18.4k) 4.3k (16.0k)

2 12.2k (17.2k) 22.4k (26.7k) 1.6k (1.9k) 1.3k (1.6k) 2.7k (3.4k) 5.5k (7.5k) 2.2k (2.8k) 3.1k (3.8k) 5.9k (19.3k)

4 2.1k (2.4k) 2.9k (3.9k) 1.5k (3.0k) 1.2k (1.5k) 1.4k (2.1k) 2.1k (4.5k) 1.8k (2.5k) 1.4k (2.1k) 2.5k (18.0k)

8 1.5k (2.0k) 2.1k (2.4k) 0.9k (1.5k) 1.0k (1.5k) 0.9k (2.0k) 1.7k (5.4k) 0.9k (2.0k) 0.9k (1.9k) 2.0k (20.0k)

9 1.6k (1.8k) 2.2k (2.3k) 0.9k (1.5k) 0.9k (1.4k) 0.8k (1.8k) 1.6k (6.6k) 0.9k (1.9k) 0.8k (1.8k) 1.8k (22.0k)

Table 1: Task diversity shortens the ICL plateau. We train a transformer with various combi-
nations of 9 different tasks (d = 10). For each run, we report two metrics: the time to escape the
plateau and the time to complete the learning of the task (written in parentheses). The rows corre-
spond to the number of tasks trained together, and each entry in the table corresponds to the average
time across the training runs that include the given task. For example, the entry at (Number of tasks
= 4, Conjunction) shows the average of

(
8
3

)
results. We find that multi-task training shortens the ICL

plateau. Precise details are provided in Appendix A.

Figure 4: Complexity model of multi-task training

Model of task complexity. We quickly describe
our mental model of the aggregate complexity of
multi-task ICL training and the speedup due to
task diversity. Let the ‘complexity’ of an ICL task
be the time it takes to escape from the plateau.
The complexity of a single-task ICL is the com-
plexity observed when training with just the sin-
gle task. The complexity of a multi-task ICL is
the sum of the complexities of the constituent
tasks, but the task diversity reduces it. This re-
duction makes the aggregate complexity of the
multi-task ICL less than the complexity of the in-
dividual single-task ICLs. Section 4.2 discusses
when and why task diversity could reduce indi-
vidual complexities. Figure 4 illustrates this notion.
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Escaping plateau≈ training completion. In the ICL setups we consider, we observe that (i) there
is only one plateau, and (ii) learning is very rapid once this plateau is escaped from. This implies that
the time at which training is completed, defined as the moment when the model reaches near-perfect
training accuracy, is very close to the time of escaping from the (first) plateau. The results of Table 1
confirm this.

It should be noted that previous studies have demonstrated that multi-stage learning does occur
in supervised learning, both theoretically (Ghosh et al., 2022; Bietti et al., 2022; Jin et al., 2023;
Wang & Ma, 2023; Berthier et al., 2024) and empirically (Nakkiran et al., 2019; Refinetti et al.,
2023; Rubruck et al., 2024). Therefore, we expect that ICL tasks involving complex hierarchical
structures may exhibit multiple plateaus.

4 WHY IS TASK DIVERSITY HELPFUL?

In Section 3, we demonstrated that task diversity shortens plateaus but did not explore why this
effect occurs. In this section, we provide partial answers and hypotheses toward understanding this
phenomenon.

4.1 PLATEAU IS TASK-WISE NO-CONTEXT LEARNING

Figure 5: During the plateau, the model output very closely matches the task-wise optimal no-
context function. Solid lines ( ) denote the raining loss while the dotted lines ( ) denote the
squared distance between model output and task-wise optimal no-context function. (Left): Linear
Regression(µ = −0.5) + Quadratic Regression(µ = 0.5). (Right): Linear Regression(µ = 1) +
Sparse Parity(2).

At first glance, plateaus might appear to be a failure mode where no meaningful learning occurs.
However, in the Sparse Parity(2) task, for example, both test and train accuracies hover around 0.55
during plateaus, as illustrated in Figure 3. If the model learned nothing and were making random
predictions, the accuracy should be 0.5. This deviation implies the model is learning something.

For continuous ICL tasks, define the optimal no-context function as

g⋆F := argmin
g

E
f∼DF ,x∼DX

[
(g(x)− f(x))2

]
,

i.e., g⋆F is the context-independent function that minimizes the test error. For boolean ICL tasks, g⋆F
is analogously defined with the argmax of the test accuracy. In many cases, the optimal no-context
function has a simple closed-form expression. For instance, if F = {f | f(x) = w⊺x} and DF is
given by w ∼ N (µ, Id), then g⋆F (x) = µ⊺x. As another example, if F = {f | f(x) = x⊺Wx} and
DF is given by W ∼ N (U, Id×d), then g⋆F (x) = x⊺Ux. The ICL plateau corresponds to task-wise
no-context learning, which we describe in the following. When we train a model Mθ for ICL with
function classes F1, . . . ,Fk, the model’s output during its plateau corresponds to

Mθ(Pn) = g⋆Fm
(xn), Pn is sampled from Fm.

In other words, the model identifies the function class Fm ∈ {F1, . . . ,Fk} and then ap-
plies the optimal no-context function corresponding to Fm. The in-context demonstrations
(x1, f(x1), . . . , xn−1, f(xn−1)) are used to determine the function class Fm ∈ {F1, . . . ,Fk} but
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Figure 6: (Left) Illustration. We pre-train on Task A and extract a checkpoint as training escapes
the plateau. We then train on Task B starting from the checkpoint. (Right) Plateau escape time
comparison. Each cell represents the ratio of plateau escape time, with lower ratios (blue color)
indicating that the model pre-trained on Task A significantly aids the learning of Task B.

not to determine the specific f ∈ Fm. This claim can be verified by measuring the error between
Mθ(Pn) and g⋆F , which we plot in Figure 5. Revisiting the Sparse Parity(2) task, the accuracy dur-
ing plateau is indeed attributed to 0.55 = Ef∼DF ,x∼DX [1(g

⋆
F (x) = f(x))]. Appendix F provides

further details on no-context learning regime.

In Section 2, we used the scaling factors c1, . . . , ck to normalize each task’s empirical loss. Specifi-
cally, we set cm = 1/Ef∼DF ,x∼DX

[
ℓ(g⋆Fm

(x), f(x))
]
. Our findings on no-context learning imply

that the normalized loss will have a plateau of height 1.

4.2 COMMON STRUCTURE ACROSS ICL TASKS

Consider a multi-task ICL setup, where a model is trained on a set of tasks
⋃k

m=1 Tm. Suppose there
exists a “common structure” C shared across tasks. Denoting the remaining part of each task as Im,
we can decompose each task as Tm = C + Im for m = 1, . . . , k. Thus, multi-task ICL training is
decomposed into two sub-problems: [learning C] and [learning I1, . . . , Ik]. We argue that the main
claim of Section 3 can be explained by the following hypotheses:

(1) There exists a common structure shared across the multiple ICL tasks.

(2) The ICL plateau arises from the difficulty of learning this common structure.

(3) Training multiple tasks jointly with a shared structure makes it easier to learn that structure.

In the following, we present evidence supporting these hypotheses. Section 4.2.1 demonstrates (1)
and (2). Section 4.2.2 elucidates (3) with a toy experiment on feature learning.

4.2.1 CHECKPOINT EXPERIMENT

Consider the following checkpoint experiment. For each single-task training with task A, we save
the model as it escapes the plateau as illustrated in Figure 6 (left). Using this checkpoint model as
the initialization, we train it on task B.

The findings, summarized in Figure 6, indicate that the checkpoint model transferred from task
A quickly learns task B with a shortened plateau. This implies that (1) task A and task B share a
common structure and that (2) the plateau arises from the difficulty of learning the common structure.
We conduct an analogous experiment on natural language ICL tasks and observe similar results, as
shown in Figure 8 of the appendix. Further details are presented in Appendix D.

4.2.2 GENERALITY OF OUR HYPOTHESIS

Consider the following intuition. When
⋃k

m=1 Tm are trained concurrently, the model receives
multiple “views” of the common structure C through the different compositions C + Im for m =
1, . . . , k. We hypothesize (3): These multiple “views” of C make C easier to learn in the sense of a

7
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more favorable optimization landscape. This may be the key mechanism allowing task diversity to
shorten the ICL plateau, and this phenomenon may extend beyond the ICL setup.

The following feature learning experiment makes this intuition more concrete. Consider the 2-layer
feature learning setup, a setup with a large body of prior work (Damian et al., 2022; Ba et al.,
2022; Dandi et al., 2023; Wang et al., 2023). For input x ∈ Rd, the true function to learn is
f⋆(x) = Uσ(A⋆x), where U ∈ Rk×h and a true feature matrix A⋆ ∈ Rh×d. The goal is to
learn f ≈ f⋆ with f(x) = V σ(Wx), where h′ ≫ h, V ∈ Rk×h′

, and W ∈ Rh′×d. The loss
function is:

L(W,V ) =

k∑
m=1

Ex∼Dx

[
(v⊺i σ(Wx)− u⊺

i σ(A⋆x))
2
]
, U = [u1 · · · uk] , V = [v1 · · · vk] .

The idea is that u1, . . . , uk represent k sub-tasks that share the common feature matrix A⋆. If we
sample u1, . . . , uk from k different distributions, this corresponds to multi-task training of k distinct
tasks. Conversely, if we sample u1, . . . , uk from a single distribution, this corresponds to single-task
training, as the k sub-tasks become identical. Interestingly, we find that multi-task training exhibits
significantly shorter plateau compared to single-task training, as shown in Figure 7 (right). Figure 12
of the appendix shows that additional results with different hyperparameter configurations provide
qualitatively similar results.

Although this toy model is a simple supervised learning setup, without sequence models or in-
context learning, it reproduces the shortened plateau and makes our intuition more concrete through
analogy. The results of this toy model, shown in Figure 7, lead us to make the general hypothesis (3):
Training multiple tasks jointly with a shared structure makes it easier to learn the common structure.

Figure 7: (Left) Language ICL task. Previous work Fu et al. (2024) identified the difficulty of
learning the WordSelection(4) task. We found that mixing it with WordLength or WordSelection(2)
reduces the plateau. Refer to Appendix C.1 for further details. (Right) Feature learning setup. For
the toy model described in Section 4.2.2, multi-task feature learning significantly shortens the loss
plateau. Refer to Appendix E for further details.

4.2.3 THE COMMON STRUCTURE IS NOT JUST AN INDUCTION HEAD

So then, what specifically is this common structure? We believe it must involve some algorithmic
component, as all of the ICL tasks necessitate an internal algorithm to identify the specific function
being demonstrated by the in-context demonstrations.

A plausible candidate is the induction head, a circuit that searches over the sequence for previous
instances of a current token and predicts the same completion again. Indeed, Olsson et al. (2022)
argued that the development of an induction head coincides with the escape from the training plateau.
To test this idea, we designed the following Retrieval ICL task, inspired by the prior ICL tasks from
Park et al. (2024); Singh et al. (2024); Reddy (2024).

Retrieval. Sample 1024 5-tuples of one key and four values: {(ki, v1i , v2i , v3i , v4i )}1024i=1 . The kis and
vji s are independently sampled from DK and DV , respectively. To generate prompts, we uniformly
sample (n − 1) 5-tuples without replacement and uniformly choose one vi per 5-tuple, resulting
in {(ki,vi)}n−1

i=1 . Next, we sample p ∼ Unif ({1, . . . , n − 1}) and set q = kp. Finally, given
Pn = (k1,v1, . . . ,kn−1,vn−1,q), the task is to predict vp. We consider two Retrieval tasks:
Gaussian Retrieval with (DK,DV) = (N (0, Id),N (0, 1)) and Boolean Retrieval with (DK,DV) =
(Unif {±1}d,Unif {±1}).
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Note that the induction head is precisely the mechanism for solving this Retrieval task. We conduct
a checkpoint experiment for the Retrieval tasks, allowing the models to learn the induction head. To
train continuous ICL tasks, we use a checkpoint model pre-trained with Gaussian Retrieval. To train
Boolean ICL tasks, we use a checkpoint model pre-trained with Boolean Retrieval. We find that the
checkpoint does not significantly shorten the ICL tasks’ plateaus. This result demonstrates that the
common structure shared by other ICL tasks is not just an induction head. (It is unclear whether an
induction head is useful for our ICL tasks at all.) For further details, please refer to Appendix D.2.

Presently, the problem of characterizing the common structure with any specificity remains unre-
solved. We defer further investigation of this matter to future work.

5 IN-CONTEXT LEARNING TASKS

In this section, we quickly list and define the ICL tasks that we consider, which are primarily adapted
from Garg et al. (2022); Bhattamishra et al. (2024). Each ICL task is specified by F the function
class, DF a probability distribution over the function class, and DX a probability distribution over
the inputs. For continuous ICL tasks, DX = N (0, Id). For boolean ICL tasks, DX = Unif {±1}d.

Continuous ICL tasks:

• Linear Regression. F = {f | f(x) = w⊺x}. DF : Each element of w ∈ Rd is independently
sampled from N (µ, 1).

• Quadratic Regression. F = {f | f(x) = x⊺Wx}. DF : Each element of W ∈ Rd×d is indepen-
dently sampled from 1√

d
N (µ, 1).

• Sparse Linear Regression. F = {f | f(x) = w⊺
sparsex}. DF : Each element of w ∈ Rd is

independently sampled from N (µ, 1). To sample wsparse, we uniformly choose k = 3 coordinates
and retain the corresponding coordinates of w.

• ReLU Regression. F = {f | f(x) = ReLU (w⊺x)}. DF : Each elements of w ∈ Rd is indepen-
dently sampled from N (µ, 1).

• Decision Tree. Consider a full binary tree of fixed depth= 4. The values of leaf nodes and
branch nodes are independently sampled fromN (µ, 1) and Unif (1, . . . , d), respectively. When x
traverses through the tree, at each branch node with index i, we move right if x[i] > 0 and move
left otherwise. f(x) corresponds to the value of the leaf node reached at the end of the traversal.

Boolean ICL tasks:

• Sparse Parity(k). F = {f | f(x) =
∏

i∈A x[i]}. DF : A ⊆ {1, . . . , d} is a uniformly sampled
subset of size k.

• Parity. F = {f | f(x) =
∏

i∈A x[i]}. DF : A ⊆ {1, . . . , d} is a uniformly sampled subset,
regardless of the size.

• Conjunction. F = {f | f(x) = (∧i∈Ax[i]) ∧ (∧i∈Bx̄[i])}. DF : A is an uniformly sampled
subset of {1, . . . , d}. Thereafter, we uniformly sample a subset B ⊆ {1, . . . , d}\A. .

• Disjunction. F = {f | f(x) = (∨i∈Ax[i])∧ (∧i∈Bx̄[i])}. DF : A is an uniformly sampled subset
of {1, . . . , d}. Thereafter, we uniformly sample a subset B ⊆ {1, . . . , d}\A.

6 CONCLUSION

In this work, we identify that training on a diverse set of multiple ICL tasks is surprisingly easier
than training for a single ICL task in the sense of a more favorable optimization landscape. This
observation aligns with the “blessing of dimensionality/scale” seen in the modern era of deep learn-
ing. Indeed, LLM training via next-token prediction can be thought of effectively as a highly diverse
multi-task learning, requiring a wide range of reasoning skills for a wide range of text types, and the
success of LLM training may be attributed not only to the richness of the data at scale but also to the
easier optimization (training) induced by the diversity of natural language training data.

This insight opens new avenues for future work. It may be that explaining and understanding the
success of large-scale deep learning requires considering not just the large data, large network, and
large compute but also the large (effective) task diversity.
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A EXPERIMENTAL DETAILS

Model Architectures. We focus on transformer (Vaswani et al., 2017), Mamba (Gu & Dao, 2024),
and Hyena (Poli et al., 2023). To handle model architectures that process inputs and outputs as
vectors in an embedding space, we first pad each f(xi) with (d − 1) zeros to match the dimension
of xis. We then add a learnable linear layer to map these vectors into the embedding space. A
second learnable linear layer maps the model’s output to a scalar. Each model’s hyperparameters
are dictated as follows. For transformer, we use GPT2 (Radford et al., 2019), with 12 decoder layers
of embedding size 256 with 8 heads and relative positional encoding. Hyena follows the exact
configuration of transformer’s setup for the relevant hyperparameters. On the other hand, Mamba
employs 24 layers, doubling the number of layers to match the model parameter size as is standard
for Mamba. All models contain input and output projection heads that map input to the hidden
state and hidden state to output. To train a model from scratch, we randomly initialize the model
parameters.

Configuration. We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0001.
The batch size B = 64 corresponds to each task. Regarding the choice of ℓ(·, ·), we use mean-
squared error loss for continuous ICL tasks and cross-entropy loss for boolean ICL tasks. The input
dimensions considered are d = 10 and 15.

Plateau and Training Exit Conditions. The plateau escape time tplateau is defined as tplateau =

mint>100

[
1

100

∑t
t′=t−99 Training loss(t′) < 0.8

]
. This effectively captures the plateau escape as

we have normalized each task’s loss around 1. The training exit conditions are defined as fol-
lows texit = mint>100

[
1

100

∑t
t′=t−99 Test error(t′) < 0.2

]
for continuous ICL tasks and texit =

mint>100

[
1

100

∑t
t′=t−99 Test accuracy(t′) > 0.95

]
for boolean ICL tasks. tplateau and texit are mea-

sured for each individual task.

Batch generation process The following pseudo algorithm summarizes the batch generation pro-
cess of (multi)-task ICL training.

Algorithm 1 Batch generation process

Require: Multi-tasks {F1, . . . ,Fk}
Require: Corresponding domains {DX1

, . . . ,DXk
}

Require: Batch size for each task {B1, . . . , Bk}
Ensure: Generated batch of prompts

1: Initialize Batch B← ∅
2: for m = 1 to k do
3: for j = 1 to Bm do
4: Sample function f ∼ DFm

5: Sample inputs x1, . . . , xn
IID∼ DXm

6: Generate prompt: P (j,m) = (x1, f(x1), . . . , xn−1, f(xn−1), xn, f(xn))
7: Update batch B← B ∪ {P (j,m)}
8: end for
9: end for

After constructing a batch, we minimize the following empirical loss. Denote f (j,m) and x
(j,m)
i as

the corresponding in-context function and i-th input for each P (j,m).

L̂(θ) : =

k∑
m=1

cm

 B∑
j=1

[
1

n

n∑
i=1

ℓ
(
Mθ(P

(j,m)
i ), f (j,m)(x

(j,m)
i )

)]
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B ADDITIONAL TABLES

To demonstrate the generality of our claim, we conducted extensive experiments beyond those
shown in Table 1. The following tables summarize results for transformer (input dimension d = 15),
Mamba (input dimension d = 10), and Hyena (input dimension d = 10). We report two metrics for
each run: time to escape the plateau and the time to complete the learning (written in parentheses).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Decision
Tree

1 > 1000k > 1000k 46.9k (66.6k) 22.6k (50.7k) 58.8k (61.3k) 25.0k (25.1k) 4.1k (5.4k) 31.6k (35.3k) 32.4k (86.2k)

2 38.9k (52.6k) 104.7k (148.2k) 7.5k (16.5k) 5.0k (11.6k) 12.4k (13.9k) 14.8k (17.2k) 4.1k (5.1k) 4.8k (5.4k) 26.6k (70.4k)

8 4.0k (4.8k) 10.1k (13.1k) 2.8k (8.5k) 2.7k (8.7k) 2.3k (3.7k) 4.0k (4.3k) 2.4k (3.9k) 2.2k (3.6k) 13.1k (44.4k)

9 3.6k (4.1k) 10.9k (11.6k) 2.5k (7.9k) 2.5k (7.8k) 2.0k (3.2k) 3.5k (3.6k) 2.0k (3.4k) 1.9k (3.2k) 13.8k (50.0k)

Table 2: Task diversity shortens the ICL plateau. We train a transformer with various combina-
tions of 9 different tasks (d = 15).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

1 7.5k (7.7k) 194.3k (196.5k) 0.4k (0.4k) 0.4k (0.4k) 0.2k (0.4k) 17.7k (37.7k) 0.2k (1.0k) 0.2k (0.4k)

2 2.9k (3.2k) 14.4k (15.6k) 0.4k (0.5k) 0.3k (0.4k) 0.2k (0.5k) 7.7k (22.8k) 0.3k (0.9k) 0.2k (0.5k)

4 1.5k (1.7k) 6.0k (6.7k) 0.3k (0.4k) 0.3k (0.4k) 0.2k (0.6k) 3.4k (17.1k) 0.3k (0.9k) 0.2k (0.6k)

8 2.4k (2.4k) 3.7k (4.3k) 0.3k (0.4k) 0.3k (0.4k) 0.3k (0.7k) 2.8k (20.5k) 0.3k (0.9k) 0.3k (0.6k)

Table 3: Task diversity shortens the ICL plateau (Mamba). We train a Mamba with various
combinations of 9 different tasks (d = 10).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

1 1.1k (1.3k) 53.9k (58.6k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.4k) 11.1k (35.4k) 0.2k (0.7k) 0.1k (0.4k)

2 2.0k (2.4k) 23.7k (27.2k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.4k) 7.6k (33.6k) 0.2k (0.7k) 0.1k (0.4k)

4 2.4k (2.5k) 16.8k (17.5k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.5k) 6.3k (41.7k) 0.2k (0.8k) 0.1k (0.5k)

8 3.8k (4.0k) 13.6k (14.2k) 0.2k (0.3k) 0.2k (0.3k) 0.2k (0.5k) 7.1k (55.0k) 0.2k (0.9k) 0.2k (0.5k)

Table 4: Task diversity shortens the ICL plateau (Hyena). We train a Hyena with various combi-
nations of 9 different tasks (d = 10).

For Mamba and Hyena, loss plateaus are less consistently observed. Specifically, training on Con-
junciton, Disjunction, Linear regression, ReLU Regression, and Sparse Linear Regression rarely
exhibit a loss plateau. This tendency, however, does not violate our claim, as we focus on how task
diversity shortens the plateau when it does occur.
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C LANGUAGE ICL TASKS

C.1 NATURAL LANGUAGE ICL TASKS

Figure 8: Checkpoint experiments on language ICL tasks.

To further verify our claim on tasks with real-world language data, we examine ICL in natural
language processing (NLP) tasks.

Model. We use GPT2 (Radford et al., 2019) model with 12 layers, 12 attention heads, 768 embed-
ding size, and 50257 vocabularies. We train GPT2 from scratch to learn in-context tasks.

Dataset. We use the word data from Nguyen et al. (2017). Following the approach in Todd et al.
(2024), we choose 5245 words that can be tokenized to a single token. Words are then randomly
chosen and arranged into sequences according to the task. Each sequence consists of six examples
where the preceding five serve as context examples, and the last one as the query example.

Prompting. We convert a given sequence of words to a prompt by following Todd et al. (2024),
where words are separated by a space, and examples are separated by a line:

<bos>Q. word1
1 word1

2 . . . word1
d

A. answer1

...

Q. word5
1 word5

2 . . . word5
d

A. answer5

Q. word6
1 word6

2 . . . word6
d

A.

WordSelection(d). We devise WordSelection(d) by generalizing the WordSelection Task (Fu
et al., 2024). The goal of this task is to select a single word from given d words. The model’s
goal is to learn in-context which word to select.

WordLength. We also devise WordLength Task. Let len(w) be the length of word w and % be the
remainder operator. Given four words w1, . . . w4, the goal of this task is to learn in-context either∑4

i=1 len(wi) or
∑4

i=1 len(wi)%10 from given examples.

Result. Prior work Fu et al. (2024) reported the difficulty of learning WordSelection(4), by show-
ing that it cannot learn within about 78k iterations. Indeed, as shown in (Figure 7, Right), single-
task training of WordSelection(4) exhibits a plateau for over 180k iterations. However, mixing
WordSelection(4) and WordSelection(2) significantly shortens the plateau to 3.2k iterations, accel-
erating the learning. The same phenomenon is observed when WordSelection(4) and WordLength
are trained simultaneously. These results reveal that our claim generally holds in NLP tasks.
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We also conduct the checkpoint experiment, where we use checkpoint models on WordSelection(2)
and WordLength as baseline models and train them respectively on WordSelection(4). As shown in
Figure 8, using checkpoint models shortens the plateau, demonstrating that NLP tasks also share a
certain common structure.

C.2 FORMAL LANGUAGE ICL TASK: REGBENCH

We follow the configuration of Akyürek et al. (2024). To jointly train Quadratic Regression and
DFA tasks, since their input formats differ, we use two different input embedding layers. Figure 9
illustrates the result.

Figure 9: Regbench. DFA task shortens the Quadratic Regression’s plateau, while Quadratic Re-
gression does not shorten the DFA’s plateau. Red line shows the multi-task training dynamics and
blue and green lines show the single-task training dynamics.

D CHECKPOINT EXPERIMENT

D.1 EXPERIMENTAL DETAILS

In this section, we provide the configurations for the checkpoint experiments in Section 4.2.1. The
input dimension is set to d = 10. For each single-task training, we save the model once it escapes
the plateau. The exact iteration numbers where the models are saved are provided in Table 5. Since
Sparse Parity(2) and Sparse Parity(3) do not escape the plateau within observable training steps, no
checkpoint models could be obtained. After saving the baseline models, we train each task (Con-

Boolean Task Continuous Task

Conjunction Disjunction Boolean
Retrieval

Linear
Regression

Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Gaussian
Retrieval

Iteration number 2.2k 2.6k 105k 19k 11.7k 2.8k 7k 50k

Table 5: Checkpoint models.

junction, Disjunction, Linear Regression, Quadratic Regression, ReLU Regression, Sparse Linear
Regression, Sparse Parity(2), and Sparse Parity(3)) according to the configuration in Appendix A.
To calculate the ratio, we divide the result by the plateau escape time summarized in the first row of
Table 1.

Learning time comparison of checkpoint models. In Figure 6, we demonstrated that checkpoint
models significantly shorten the plateaus. However, since the time required to escape the plateau
and to learn the task may differ, it is necessary to verify whether the same phenomenon holds for
learning time. Figure 10 confirms that this is indeed the case, although the effect is less robust
compared to Figure 6.
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Figure 10: Learning time ratios of checkpoint models.

D.2 EXPERIMENT ON RETRIEVAL TASK

Recall the description of Retrieval task.

Retrieval. Sample 1024 5-tuples of one key and four values: {(ki, v1i , v2i , v3i , v4i )}1024i=1 . The kis and
vji s are independently sampled from DK and DV , respectively. To generate prompts, we uniformly
sample (n − 1) 5-tuples without replacement and uniformly choose one vi per 5-tuple, resulting
in {(ki,vi)}n−1

i=1 . Next, we sample p ∼ Unif ({1, . . . , n − 1}) and set q = kp. Finally, given
Pn = (k1,v1, . . . ,kn−1,vn−1,q), the task is to predict vp. We consider two Retrieval tasks:
Gaussian Retrieval and Boolean Retrieval, with (DK,DV) = (N (0, Id),N (0, 1)) and (DK,DV) =
(Unif {±1}d,Unif {±1}), respectively.

To train continuous ICL tasks, we use a checkpoint model saved from Gaussian Retrieval, and
for boolean ICL tasks, we use a checkpoint model saved from Boolean Retrieval. We follow the
configuration in Appendix A. For each experiment, we measure the time spent to learn each ICL
task. The Results are illustrated in Figure 11.

Figure 11: Checkpoint experiment on Retrieval.

E FEATURE LEARNING EXPERIMENT

The true function is f⋆(x) = Uσ(A⋆x), where U ∈ Rk×h and A⋆ ∈ Rh×d. Columns of U , de-
noted as ums, are independently sampled fromN (µm, Id), with (µ1, . . . , µk) being pre-determined
vectors prior to training.

To design multi-task learning, we independently sample k different vectors µ1, . . . , µk from
√
h ×

Sh−1, making N (µm, Id)s differ. In contrast, for single-task training, all µ1, . . . , µk are set to the
same vector µ, which is also sampled from

√
h× Sh−1.

The model that learns the true function is f(x) = V σ(Wx) where V ∈ Rm×h′
and W ∈ Rh′×d.

We set d = 150, h ∈ {10, 20}, h′ ∈ {100, 300}, and k ∈ {15, 30}. The Adam optimizer is used
with a learning rate of lr = 0.001 and we apply 0.1×lr for the model’s heads, following the approach
in Berthier et al. (2024). We use the sigmoid activation function σ(x) = 1

1+e−x .
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Additional Figures. Figure 7 represents the result when (d, h, h′, k) = (150, 10, 100, 15). To
enhance the generality, we present figures for other hyperparameters as well. For each figure, multi-
task training (blue lines) exhibits a much shorter plateau compared to single-task training (red lines).

(a) (h′, k) = (100, 15) (b) (h′, k) = (100, 30) (c) (h′, k) = (300, 15) (d) (h′, k) = (300, 30)

(e) (h′, k) = (100, 15) (f) (h′, k) = (100, 30) (g) (h′, k) = (300, 15) (h) (h′, k) = (300, 30)

Figure 12: First row corresponds to the case when (d, h) = (150, 10). Second row corresponds to
the case when (d, h) = (150, 20).

F NO-CONTEXT LEARNING

F.1 OPTIMAL NO-CONTEXT FUNCTIONS

In this section, we provide a detailed explanation of the optimal no-context function. We
have defined the optimal no-context function as follows. For continuous ICL tasks, g⋆F : =
argmingEf∼DF ,x∼DX

[
(g(x)− f(x)2)

]
, where the argmin is taken over {g | g : Rd → R}. For

boolean ICL tasks, g⋆F : = argmaxgEf∼DF ,x∼DX [1(g(x) = f(x))], where the argmin is taken
over {g | g : {±1}d → {±1}}.
For boolean ICL tasks, we can calculate g⋆F (x) for each x ∈ {±1}d. The closed form of g⋆F (x) can
be expressed using Gx : = {f(x) | f ∈ F} as follows.

g⋆F (x) =

{
1 #(1 ∈ Gx) > #(−1 ∈ Gx)

−1 (otherwise)
.

For continuous ICL tasks, we cannot apply the same approach since the output space is not discrete.
However, we can still derive the closed form for g⋆F (x) for most tasks: g⋆F (x) : = Ef∼DF [f(x)].
This is because

g⋆F (x) : = argmina∈REf∼DF

[
(f(x)− a)2

]
= argmina∈R (a− Ef∼DF [f(x)])

2
.

For tasks other than ReLU Regression, we can obtain the closed forms of g⋆F (x) using the above
property, as listed follows.

• Linear Regression: g⋆F (x) = (µ, . . . , µ)⊺x.

• Quadratic Regression: g⋆F (x) = x⊺Ux, (U)ij = µ.

• Sparse Linear Regression: g⋆F (x) =
k
d (µ, . . . , µ)

⊺x.

• Decision Tree: g⋆F (x) = µ.

For ReLU Regression, we can estimate g⋆F (x) with small error through a sufficient number of sam-
ples from DF .
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F.2 EXPERIMENTAL DETAILS AND ADDITIONAL FIGURES

Let tasks with in-context function classes
⋃k

m=1 Fm be trained simultaneously. Note that we do not
discern the single-task and multi-task training: k can be 1 as well. During training, we measure

E
f∼DFm ,x1,...,xn

IID∼DXm

|Mθ(Pn)− g⋆Fm
(xn)|2, Pn = (x1, f(x1), . . . , xn−1, f(xn−1), xn)

for continuous ICL tasks and

E
f∼DFm ,x1,...,xn

IID∼DXm

[
1(sign(Mθ(Pn)) ̸= g⋆Fm

(xn))
]
, Pn = (x1, f(x1), . . . , xn−1, f(xn−1), xn).

for boolean ICL tasks. As shown by the following figures, these measurements are close to 0, which
indicates that the model’s output corresponds to task-wise optimal no-context function. We follow
Appendix A for other configurations. Moreover, to prevent the optimal no-context be merely zero
function, we use µ ̸= 0 to parameterize the in-context function classes.

Figure 13: No-context learning regime. During the plateau, the model output matches the task-wise
optimal no-context function. (Top) Sparse Parity(2). (Middle) Quadratic Regression (µ = −1).
(Bottom) Quadratic Regression (µ = −1) + Sparse Parity(2).
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