
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TASK DIVERSITY SHORTENS THE ICL PLATEAU

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) describes a language model’s ability to generate outputs
based on a set of input demonstrations and a subsequent query. To understand this
remarkable capability, researchers have studied simplified, stylized models. These
studies have consistently observed long loss plateaus, during which models exhibit
minimal improvement, followed by a sudden, rapid surge of learning. In this work,
we reveal that training on multiple diverse ICL tasks simultaneously shortens the
loss plateaus, making each task easier to learn. This finding is surprising as it
contradicts the natural intuition that the combined complexity of multiple ICL
tasks would lengthen the learning process, not shorten it. Our result suggests that
the recent success in large-scale training of language models may be attributed not
only to the richness of the data at scale but also to the easier optimization (training)
induced by the diversity of natural language training data.

Loss of single-task Test error/acc of single-task
Loss of multi-task Test error/acc of multi-task

Plateau escape point

Figure 1: We train a transformer from scratch on in-context learning tasks. Single-task ICL: Training
loss () and test error/accuracy () when each task is trained individually. The Parity task
cannot be learned even after 1000k training steps. Multi-task ICL: Training loss () and test
error/accuracy () when all six tasks are trained simultaneously. Green lines mark the plateau
escape points. Surprisingly, multi-task ICL training significantly shortens these plateaus, making
training easier.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In-context learning (ICL), first reported by Brown et al. (2020) with GPT-3, describes a language
model’s ability to generate outputs based on a set of input demonstrations and a subsequent query.
In ICL, the model discerns the task implied by the context of these demonstrations without explicit
descriptions, indicating that the model may internally implement an algorithm or engage in a rea-
soning process. To understand this remarkable capability that emerges in language models trained
on complex real-world language data, researchers such as Garg et al. (2022) have studied simplified,
stylized models. In these studies, transformers are trained from scratch to learn simple functions in
context, such as linear regression. We thoroughly review this prior work in Section 1.1.

An intriguing phenomenon observed in these works is the long loss plateau in training for ICL.
Throughout these plateaus, models display minimal performance improvement, followed by a sud-
den, rapid surge of learning—deviating from the typical smooth reduction in training loss. In this
work, we reveal that training on multiple ICL tasks simultaneously shortens the loss plateaus
as illustrated in Figure 1. This finding is surprising as it contradicts the natural intuition that the
combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it.

In the language of multi-task learning, our findings present an instance where multi-task learning
is easier than single-task learning in the sense of training dynamics. While previous research has
primarily focused on the statistical benefits of task diversity in multi-task learning, our findings
reveal optimization benefits. This insight suggests that the recent success in large-scale training of
language models may be attributed not only to the richness of the data at scale but also to the easier
optimization (training) induced by the diversity of natural language training data.

Organization. Section 2 describes the experimental setup for training for multiple ICL tasks. Sec-
tion 3 articulates our main claim that task diversity shortens the ICL plateau and presents experi-
mental evidence with transformers and state-space models trained on synthetic and natural language
ICL tasks. Section 4 investigates the underlying reasons for this phenomenon. Section 4.1 charac-
terizes the model’s behavior during the plateau, which we refer to as the no-context learning regime.
Section 4.2 shows that there is a common structure shared across the ICL tasks and that task diver-
sity accelerates the learning of this shared structure. Section 5 presents further experimental details.
Section 6 concludes the paper.

1.1 RELATED WORKS

In-context learning. In-context learning (ICL) abilities of pretrained Large Language Models
have gained significant attention since first investigated by GPT-3 (Brown et al., 2020). Follow-
ing this, a large body of empirical studies have explored ICL in Large Language Models (Min et al.,
2022a;b; Liu et al., 2021; Nie et al., 2022; Rubin et al., 2022; Wei et al., 2023). Given the complexity
of real-world data, researchers have explored ICL in more stylized and simplified setups. Garg et al.
(2022) formalized an approach to studying transformer’s performance to learn simple function class
in context. Building on this work, several works have investigated the ability of models to learn
stylized function classes in various settings, including boolean functions (Bhattamishra et al., 2024),
regular language (Akyürek et al., 2024), as well as task mixtures (Tripuraneni et al., 2023), and the
ability of Mamba (Park et al., 2024; Grazzi et al., 2024; Li et al., 2024). For more comprehensive
overview, please refer to the survey by Dong et al. (2024).

While these studies have scrutinized ICL abilities across various setups, most have not delved into
the in-context algorithms that are implemented by models. Xie et al. (2022) suggested that the ICL
process can be interpreted as Bayesian inference. A number of works have argued, both theoretically
and empirically, that transformers implement gradient descent to learn linear regression in-context
(Akyürek et al., 2023; von Oswald et al., 2023; Mahankali et al., 2024; Zhang et al., 2024; Ahn
et al., 2023). Beyond these works, many have sought to uncover the internal ICL procedure of
transformers, in more complex algorithms (Fu et al., 2023; Giannou et al., 2024; Cheng et al., 2024;
von Oswald et al., 2024; Lin & Lee, 2024); when handling more intricate tasks (Wang et al., 2024;
Guo et al., 2024; Bai et al., 2023; Lin et al., 2024; Wang et al., 2024).

Abrupt phase transition in in-context learning. Many studies (Srivastava et al., 2023; Wei et al.,
2022; He et al., 2024; Chan et al., 2022; Raventós et al., 2023; Raventos et al., 2023) have shown

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: To generate a training sequence, we sample the function f ∈ F1 ∪ . . . ∪ Fk,
where F1, . . . ,Fk are different in-context function classes, sample x1, . . . , xn IID, and form
(x1, f(x1), · · · , xn−1, f(xn−1), xn, f(xn)). We refer to the case k = 1 as single-task ICL and
k > 1 as multi-task ICL. The sequence model is trained with autoregressive next-token prediction,
i.e., the model predicts f(xi) conditioned on (x1, f(x1), xi−1, f(xi−1), · · · , xi) for i = 1, . . . , n.

that a model’s ability to perform ICL emerges abruptly, with respect to dataset and model size.
While these studies do not focus on the training process, abrupt performance gains during training
have also been reported in various works. This transition is typically associated with escaping loss
plateaus. During these plateaus, no performance gains are observed, but once the plateau is escaped,
the model begins to learn in-context abruptly. This phenomenon has been observed in various setups
(Garg et al., 2022; Bhattamishra et al., 2024; Park et al., 2024; Li et al., 2024; Kirsch et al., 2024),
although these works did not primarily focus on it.

Beyond these, several studies have explored loss plateaus themselves. Fu et al. (2024) suggested that
models learn the features of dataset during loss plateaus. Chen et al. (2024) theoretically demon-
strated that a plateau occurs during training when a one-layer transformer is trained by linear regres-
sion ICL task. Olsson et al. (2022) proposed that the plateau escape and the formation of ‘induction
head’ simultaneously happen. Further work by Reddy (2024); Singh et al. (2024); Song et al. (2024),
focused on two-layer transformers, explicitly defining the induction head with transformer parame-
ters and characterizing the internal mechanisms behind its formation. In contrast, Section 4.1 offers
a new perspective by providing the explicit form of the model’s output during plateaus. Furthermore,
in Section 4.2.3, we provide a discrepancy between our finding and induction head.

Task diversity. Multi-task training (Caruana, 1997; Baxter, 2000) is a widely used approach for
model pretraining. In particular, researchers have identified that task diversity is crucial for pre-
trained models to outperform in downstream tasks, alongside a large body of research across various
domains: supervised learning (Tripuraneni et al., 2020; 2021; Du et al., 2021; Maurer et al., 2016;
Crawshaw, 2020; Ruder, 2017), reinforcement learning (Zhang et al., 2023a; Jin et al., 2020; Hu
et al., 2021; Yang et al., 2021; Collins et al., 2021; Lu et al., 2022; Cheng et al., 2022), and natural
language processing (Zhang et al., 2023a; Zhao et al., 2023; Zhang et al., 2023b; Hu et al., 2020;
Song et al., 2020; Zhou et al., 2019; Gunasekar et al., 2023; Sharma et al., 2023). These works
mostly focused on statistical benefits, whereas our finding emphasize on the optimization benefits.

2 EXPERIMENTAL SETUP

Our experimental setup follows Garg et al. (2022) and Bhattamishra et al. (2024). Consider a
function class F with domain X . A sequence model Mθ (transformer or state-space model) is
trained to identify f ∈ F in context and make a prediction on the subsequent query. The training
data consists of sequences of the form P = (x1, f(x1), x2, f(x2), . . . , xn−1, f(xn−1), xn, f(xn)),
where f is sampled from a distribution DF and x1, . . . , xn are independently sampled from a
distribution DX . We train Mθ for the next token-prediction task: The loss over the sequence
P is given by 1

n

∑n
i=1 ℓ(Mθ(Pi), f(xi)), where ℓ(·, ·) is an appropriate loss function and Pi :=

(x1, f(x1), x2, f(x2), . . . , xi−1, f(xi−1), xi) is the i-th prefix for i = 1, . . . , n. In our experiments,
n = 120 is a predetermined number shared across all tasks. This procedure is illustrated on Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ICL tasks. We consider continuous ICL tasks and boolean ICL tasks. For each ICL task, an f ∈ F is
chosen, where F is a function class. For continuous ICL tasks, F consists of f : Rd → R for d ∈ N
and the probability distribution on the domain is assumed to be DX = N (0, Id). For boolean ICL
tasks, F consists of f : {±1}d → {±1} for d ∈ N and the probability distribution on the domain
is assumed to be DX = Unif ({±1}d). We consider 10 different ICL tasks: Linear Regression,
Quadratic Regression, Sparse Linear Regression, ReLU Regression, Decision Tree, Sparse Parity(2),
Sparse Parity(3), Parity, Conjunction, and Disjunction. The function class F defining each of these
10 ICL tasks is precisely stated in Section 5.

Multi-task ICL training. Most prior work on ICL, such as Garg et al. (2022); von Oswald et al.
(2023); Bhattamishra et al. (2024); Park et al. (2024), considers ICL training with a single func-
tion class F . In this work, we train models to learn functions from the union of function classes⋃k

m=1 Fm in context, where F1, . . . ,Fk are distinct ICL task among the 10 that we list in Sec-
tion 5. For instance, if the model is trained on the union of linear and quadratic regression tasks,
then F1 ∪ F2 = {f | f(x) = w⊺x} ∪ {f | f(x) = x⊺Wx}. For each m = 1, . . . , k, we sample
f ∼ DFm

and x1, . . . , xn
IID∼ DXm

and form the sequence (x1, f(x1), x2, f(x2), . . . , xn, f(xn)).
This sampling process is repeated B times for each m = 1, . . . , k, making kB the total batch size.
To balance the loss scales across different tasks, we normalize each task’s loss with constant factors
c1, . . . , ck (further discussed in Section 4.1) so that the training loss stabilizes around 1 during the
plateaus. Appendix A provides further experimental details. In expectation, we minimize the loss

L(θ) =

k∑
m=1

cm E
f∼DFm

x1,...,xn
IID∼DXm

[
1

n

n∑
i=1

ℓ
(
Mθ(Pi), f(xi)

)]
.

Test loss. To evaluate the model’s performance on ICL tasks, we measure the error of the model’s
prediction on the last (n-th) output of the prompt. For continuous ICL tasks, the test error is
(Mθ(Pn) − f(xn))

2. For boolean ICL tasks, the test accuracy is measured by 1[sign(Mθ(Pn)) =
f(xn)], where 1 is the indicator function.

3 TASK DIVERSITY SHORTENS ICL PLATEAUS

Long loss plateaus have been commonly reported in the various setups for training sequence models
from scratch to perform ICL, including simple in-context functions (Garg et al., 2022; Chen et al.,
2024; Li et al., 2024; Bhattamishra et al., 2024; Park et al., 2024), image datasets (Fu et al., 2024;
Kirsch et al., 2024; Singh et al., 2024; Reddy, 2024), and language datasets (Akyürek et al., 2024;
Olsson et al., 2022). In this section, we present the following claim:

Claim: Task diversity shortens the ICL plateau, making each task easier to learn.

Here, task diversity refers to learning multi-task ICL on a mixture of distinct function classes. The
claim that multi-task ICL is easier to learn than single-task ICL is surprising as it contradicts the
natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning
process, not shorten it.

We provide comprehensive experimental evidence to support this claim. Table 1 summarizes our
experimental results on transformers. Figure 3 shows the results of state space models, specifically
Mamba (Gu & Dao, 2024) and Hyena (Poli et al., 2023). Across the hundreds of task combinations
in these setups, we consistently observed that task diversity enables training to escape plateaus
more quickly. Figure 7 shows results in natural language ICL tasks reinforcing our claim. Refer to
Appendix A for experimental details and Appendix B for additional tables.

However, not all ICL tasks mutually reduce the duration of plateaus. For instance, we consider
Regbench task (Akyürek et al., 2024), which is generated by a random automata. Our experiments
in Appendix C.2 show that combining Regbench with the ICL tasks we consider does not reduce the
plateau of Regbench, but does reduce the plateau of the other ICL tasks.

Therefore, the claim should be understood as a description of a general tendency rather than a
universal law. Nevertheless, our finding is broadly and robustly observed, as borne out by our
extensive experiments.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Mamba (First row) and Hyena (Second row). Red lines and Blue lines re-
spectively represent the loss dynamics of single-task training and multi-task training. (Left):
Quadratic Regression+Linear Regression compared to Quadratic Regression. (Middle): Sparse
Parity(2)+Linear Regression compared to Sparse Parity(2). (Right): Sparse Parity(3)+Conjunction
compared to Sparse Parity(3).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Decision
Tree

1 > 1000k > 1000k 2.4k (2.7k) 2.5k (2.7k) 9.0k (12.1k) 13.1k (14.2k) 3.0k (3.7k) 16.5k (18.4k) 4.3k (16.0k)

2 12.2k (17.2k) 22.4k (26.7k) 1.6k (1.9k) 1.3k (1.6k) 2.7k (3.4k) 5.5k (7.5k) 2.2k (2.8k) 3.1k (3.8k) 5.9k (19.3k)

4 2.1k (2.4k) 2.9k (3.9k) 1.5k (3.0k) 1.2k (1.5k) 1.4k (2.1k) 2.1k (4.5k) 1.8k (2.5k) 1.4k (2.1k) 2.5k (18.0k)

8 1.5k (2.0k) 2.1k (2.4k) 0.9k (1.5k) 1.0k (1.5k) 0.9k (2.0k) 1.7k (5.4k) 0.9k (2.0k) 0.9k (1.9k) 2.0k (20.0k)

9 1.6k (1.8k) 2.2k (2.3k) 0.9k (1.5k) 0.9k (1.4k) 0.8k (1.8k) 1.6k (6.6k) 0.9k (1.9k) 0.8k (1.8k) 1.8k (22.0k)

Table 1: Task diversity shortens the ICL plateau. We train a transformer with various combi-
nations of 9 different tasks (d = 10). For each run, we report two metrics: the time to escape the
plateau and the time to complete the learning of the task (written in parentheses). The rows corre-
spond to the number of tasks trained together, and each entry in the table corresponds to the average
time across the training runs that include the given task. For example, the entry at (Number of tasks
= 4, Conjunction) shows the average of

(
8
3

)
results. We find that multi-task training shortens the ICL

plateau. Precise details are provided in Appendix A.

Figure 4: Complexity model of multi-task training

Model of task complexity. We quickly describe
our mental model of the aggregate complexity of
multi-task ICL training and the speedup due to
task diversity. Let the ‘complexity’ of an ICL task
be the time it takes to escape from the plateau.
The complexity of a single-task ICL is the com-
plexity observed when training with just the sin-
gle task. The complexity of a multi-task ICL is
the sum of the complexities of the constituent
tasks, but the task diversity reduces it. This re-
duction makes the aggregate complexity of the
multi-task ICL less than the complexity of the in-
dividual single-task ICLs. Section 4.2 discusses
when and why task diversity could reduce indi-
vidual complexities. Figure 4 illustrates this notion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Escaping plateau≈ training completion. In the ICL setups we consider, we observe that (i) there
is only one plateau, and (ii) learning is very rapid once this plateau is escaped from. This implies that
the time at which training is completed, defined as the moment when the model reaches near-perfect
training accuracy, is very close to the time of escaping from the (first) plateau. The results of Table 1
confirm this.

It should be noted that previous studies have demonstrated that multi-stage learning does occur
in supervised learning, both theoretically (Ghosh et al., 2022; Bietti et al., 2022; Jin et al., 2023;
Wang & Ma, 2023; Berthier et al., 2024) and empirically (Nakkiran et al., 2019; Refinetti et al.,
2023; Rubruck et al., 2024). Therefore, we expect that ICL tasks involving complex hierarchical
structures may exhibit multiple plateaus.

4 WHY IS TASK DIVERSITY HELPFUL?

In Section 3, we demonstrated that task diversity shortens plateaus but did not explore why this
effect occurs. In this section, we provide partial answers and hypotheses toward understanding this
phenomenon.

4.1 PLATEAU IS TASK-WISE NO-CONTEXT LEARNING

Figure 5: During the plateau, the model output very closely matches the task-wise optimal no-
context function. Solid lines () denote the raining loss while the dotted lines () denote the
squared distance between model output and task-wise optimal no-context function. (Left): Linear
Regression(µ = −0.5) + Quadratic Regression(µ = 0.5). (Right): Linear Regression(µ = 1) +
Sparse Parity(2).

At first glance, plateaus might appear to be a failure mode where no meaningful learning occurs.
However, in the Sparse Parity(2) task, for example, both test and train accuracies hover around 0.55
during plateaus, as illustrated in Figure 3. If the model learned nothing and were making random
predictions, the accuracy should be 0.5. This deviation implies the model is learning something.

For continuous ICL tasks, define the optimal no-context function as

g⋆F := argmin
g

E
f∼DF ,x∼DX

[
(g(x)− f(x))2

]
,

i.e., g⋆F is the context-independent function that minimizes the test error. For boolean ICL tasks, g⋆F
is analogously defined with the argmax of the test accuracy. In many cases, the optimal no-context
function has a simple closed-form expression. For instance, if F = {f | f(x) = w⊺x} and DF is
given by w ∼ N (µ, Id), then g⋆F (x) = µ⊺x. As another example, if F = {f | f(x) = x⊺Wx} and
DF is given by W ∼ N (U, Id×d), then g⋆F (x) = x⊺Ux. The ICL plateau corresponds to task-wise
no-context learning, which we describe in the following. When we train a model Mθ for ICL with
function classes F1, . . . ,Fk, the model’s output during its plateau corresponds to

Mθ(Pn) = g⋆Fm
(xn), Pn is sampled from Fm.

In other words, the model identifies the function class Fm ∈ {F1, . . . ,Fk} and then ap-
plies the optimal no-context function corresponding to Fm. The in-context demonstrations
(x1, f(x1), . . . , xn−1, f(xn−1)) are used to determine the function class Fm ∈ {F1, . . . ,Fk} but

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: (Left) Illustration. We pre-train on Task A and extract a checkpoint as training escapes
the plateau. We then train on Task B starting from the checkpoint. (Right) Plateau escape time
comparison. Each cell represents the ratio of plateau escape time, with lower ratios (blue color)
indicating that the model pre-trained on Task A significantly aids the learning of Task B.

not to determine the specific f ∈ Fm. This claim can be verified by measuring the error between
Mθ(Pn) and g⋆F , which we plot in Figure 5. Revisiting the Sparse Parity(2) task, the accuracy dur-
ing plateau is indeed attributed to 0.55 = Ef∼DF ,x∼DX [1(g

⋆
F (x) = f(x))]. Appendix F provides

further details on no-context learning regime.

In Section 2, we used the scaling factors c1, . . . , ck to normalize each task’s empirical loss. Specifi-
cally, we set cm = 1/Ef∼DF ,x∼DX

[
ℓ(g⋆Fm

(x), f(x))
]
. Our findings on no-context learning imply

that the normalized loss will have a plateau of height 1.

4.2 COMMON STRUCTURE ACROSS ICL TASKS

Consider a multi-task ICL setup, where a model is trained on a set of tasks
⋃k

m=1 Tm. Suppose there
exists a “common structure” C shared across tasks. Denoting the remaining part of each task as Im,
we can decompose each task as Tm = C + Im for m = 1, . . . , k. Thus, multi-task ICL training is
decomposed into two sub-problems: [learning C] and [learning I1, . . . , Ik]. We argue that the main
claim of Section 3 can be explained by the following hypotheses:

(1) There exists a common structure shared across the multiple ICL tasks.

(2) The ICL plateau arises from the difficulty of learning this common structure.

(3) Training multiple tasks jointly with a shared structure makes it easier to learn that structure.

In the following, we present evidence supporting these hypotheses. Section 4.2.1 demonstrates (1)
and (2). Section 4.2.2 elucidates (3) with a toy experiment on feature learning.

4.2.1 CHECKPOINT EXPERIMENT

Consider the following checkpoint experiment. For each single-task training with task A, we save
the model as it escapes the plateau as illustrated in Figure 6 (left). Using this checkpoint model as
the initialization, we train it on task B.

The findings, summarized in Figure 6, indicate that the checkpoint model transferred from task
A quickly learns task B with a shortened plateau. This implies that (1) task A and task B share a
common structure and that (2) the plateau arises from the difficulty of learning the common structure.
We conduct an analogous experiment on natural language ICL tasks and observe similar results, as
shown in Figure 8 of the appendix. Further details are presented in Appendix D.

4.2.2 GENERALITY OF OUR HYPOTHESIS

Consider the following intuition. When
⋃k

m=1 Tm are trained concurrently, the model receives
multiple “views” of the common structure C through the different compositions C + Im for m =
1, . . . , k. We hypothesize (3): These multiple “views” of C make C easier to learn in the sense of a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

more favorable optimization landscape. This may be the key mechanism allowing task diversity to
shorten the ICL plateau, and this phenomenon may extend beyond the ICL setup.

The following feature learning experiment makes this intuition more concrete. Consider the 2-layer
feature learning setup, a setup with a large body of prior work (Damian et al., 2022; Ba et al.,
2022; Dandi et al., 2023; Wang et al., 2023). For input x ∈ Rd, the true function to learn is
f⋆(x) = Uσ(A⋆x), where U ∈ Rk×h and a true feature matrix A⋆ ∈ Rh×d. The goal is to
learn f ≈ f⋆ with f(x) = V σ(Wx), where h′ ≫ h, V ∈ Rk×h′

, and W ∈ Rh′×d. The loss
function is:

L(W,V) =

k∑
m=1

Ex∼Dx

[
(v⊺i σ(Wx)− u⊺

i σ(A⋆x))
2
]
, U = [u1 · · · uk] , V = [v1 · · · vk] .

The idea is that u1, . . . , uk represent k sub-tasks that share the common feature matrix A⋆. If we
sample u1, . . . , uk from k different distributions, this corresponds to multi-task training of k distinct
tasks. Conversely, if we sample u1, . . . , uk from a single distribution, this corresponds to single-task
training, as the k sub-tasks become identical. Interestingly, we find that multi-task training exhibits
significantly shorter plateau compared to single-task training, as shown in Figure 7 (right). Figure 12
of the appendix shows that additional results with different hyperparameter configurations provide
qualitatively similar results.

Although this toy model is a simple supervised learning setup, without sequence models or in-
context learning, it reproduces the shortened plateau and makes our intuition more concrete through
analogy. The results of this toy model, shown in Figure 7, lead us to make the general hypothesis (3):
Training multiple tasks jointly with a shared structure makes it easier to learn the common structure.

Figure 7: (Left) Language ICL task. Previous work Fu et al. (2024) identified the difficulty of
learning the WordSelection(4) task. We found that mixing it with WordLength or WordSelection(2)
reduces the plateau. Refer to Appendix C.1 for further details. (Right) Feature learning setup. For
the toy model described in Section 4.2.2, multi-task feature learning significantly shortens the loss
plateau. Refer to Appendix E for further details.

4.2.3 THE COMMON STRUCTURE IS NOT JUST AN INDUCTION HEAD

So then, what specifically is this common structure? We believe it must involve some algorithmic
component, as all of the ICL tasks necessitate an internal algorithm to identify the specific function
being demonstrated by the in-context demonstrations.

A plausible candidate is the induction head, a circuit that searches over the sequence for previous
instances of a current token and predicts the same completion again. Indeed, Olsson et al. (2022)
argued that the development of an induction head coincides with the escape from the training plateau.
To test this idea, we designed the following Retrieval ICL task, inspired by the prior ICL tasks from
Park et al. (2024); Singh et al. (2024); Reddy (2024).

Retrieval. Sample 1024 5-tuples of one key and four values: {(ki, v1i , v2i , v3i , v4i)}1024i=1 . The kis and
vji s are independently sampled from DK and DV , respectively. To generate prompts, we uniformly
sample (n − 1) 5-tuples without replacement and uniformly choose one vi per 5-tuple, resulting
in {(ki,vi)}n−1

i=1 . Next, we sample p ∼ Unif ({1, . . . , n − 1}) and set q = kp. Finally, given
Pn = (k1,v1, . . . ,kn−1,vn−1,q), the task is to predict vp. We consider two Retrieval tasks:
Gaussian Retrieval with (DK,DV) = (N (0, Id),N (0, 1)) and Boolean Retrieval with (DK,DV) =
(Unif {±1}d,Unif {±1}).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Note that the induction head is precisely the mechanism for solving this Retrieval task. We conduct
a checkpoint experiment for the Retrieval tasks, allowing the models to learn the induction head. To
train continuous ICL tasks, we use a checkpoint model pre-trained with Gaussian Retrieval. To train
Boolean ICL tasks, we use a checkpoint model pre-trained with Boolean Retrieval. We find that the
checkpoint does not significantly shorten the ICL tasks’ plateaus. This result demonstrates that the
common structure shared by other ICL tasks is not just an induction head. (It is unclear whether an
induction head is useful for our ICL tasks at all.) For further details, please refer to Appendix D.2.

Presently, the problem of characterizing the common structure with any specificity remains unre-
solved. We defer further investigation of this matter to future work.

5 IN-CONTEXT LEARNING TASKS

In this section, we quickly list and define the ICL tasks that we consider, which are primarily adapted
from Garg et al. (2022); Bhattamishra et al. (2024). Each ICL task is specified by F the function
class, DF a probability distribution over the function class, and DX a probability distribution over
the inputs. For continuous ICL tasks, DX = N (0, Id). For boolean ICL tasks, DX = Unif {±1}d.

Continuous ICL tasks:

• Linear Regression. F = {f | f(x) = w⊺x}. DF : Each element of w ∈ Rd is independently
sampled from N (µ, 1).

• Quadratic Regression. F = {f | f(x) = x⊺Wx}. DF : Each element of W ∈ Rd×d is indepen-
dently sampled from 1√

d
N (µ, 1).

• Sparse Linear Regression. F = {f | f(x) = w⊺
sparsex}. DF : Each element of w ∈ Rd is

independently sampled from N (µ, 1). To sample wsparse, we uniformly choose k = 3 coordinates
and retain the corresponding coordinates of w.

• ReLU Regression. F = {f | f(x) = ReLU (w⊺x)}. DF : Each elements of w ∈ Rd is indepen-
dently sampled from N (µ, 1).

• Decision Tree. Consider a full binary tree of fixed depth= 4. The values of leaf nodes and
branch nodes are independently sampled fromN (µ, 1) and Unif (1, . . . , d), respectively. When x
traverses through the tree, at each branch node with index i, we move right if x[i] > 0 and move
left otherwise. f(x) corresponds to the value of the leaf node reached at the end of the traversal.

Boolean ICL tasks:

• Sparse Parity(k). F = {f | f(x) =
∏

i∈A x[i]}. DF : A ⊆ {1, . . . , d} is a uniformly sampled
subset of size k.

• Parity. F = {f | f(x) =
∏

i∈A x[i]}. DF : A ⊆ {1, . . . , d} is a uniformly sampled subset,
regardless of the size.

• Conjunction. F = {f | f(x) = (∧i∈Ax[i]) ∧ (∧i∈Bx̄[i])}. DF : A is an uniformly sampled
subset of {1, . . . , d}. Thereafter, we uniformly sample a subset B ⊆ {1, . . . , d}\A. .

• Disjunction. F = {f | f(x) = (∨i∈Ax[i])∧ (∧i∈Bx̄[i])}. DF : A is an uniformly sampled subset
of {1, . . . , d}. Thereafter, we uniformly sample a subset B ⊆ {1, . . . , d}\A.

6 CONCLUSION

In this work, we identify that training on a diverse set of multiple ICL tasks is surprisingly easier
than training for a single ICL task in the sense of a more favorable optimization landscape. This
observation aligns with the “blessing of dimensionality/scale” seen in the modern era of deep learn-
ing. Indeed, LLM training via next-token prediction can be thought of effectively as a highly diverse
multi-task learning, requiring a wide range of reasoning skills for a wide range of text types, and the
success of LLM training may be attributed not only to the richness of the data at scale but also to the
easier optimization (training) induced by the diversity of natural language training data.

This insight opens new avenues for future work. It may be that explaining and understanding the
success of large-scale deep learning requires considering not just the large data, large network, and
large compute but also the large (effective) task diversity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. NeurIPS, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. ICLR, 2023.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Archi-
tectures and algorithms. ICML, 2024.

Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
NeurIPS, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. NeurIPS, 2023.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:
149–198, 2000.

Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural
networks. Foundations of Computational Mathematics, 2024.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and llms by learning to learn discrete functions. ICLR, 2024.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. NeurIPS, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. NeurIPS, 2020.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.
Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive emergent in-
context learning in transformers. NeurIPS, 2022.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. COLT, 2024.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. ICML, 2024.

Yuan Cheng, Songtao Feng, Jing Yang, Hong Zhang, and Yingbin Liang. Provable benefit of multi-
task representation learning in reinforcement learning. NeurIPS, 2022.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared repre-
sentations for personalized federated learning. ICML, 2021.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv 2009.09796,
2020.

Alex Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. COLT, 2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time. Mathematics of Modern Machine Learning
Workshop at NeurIPS 2023, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning.
arXiv 2301.00234, 2024.

Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. Few-shot learning via
learning the representation, provably. ICML, 2021.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimiza-
tion methods for in-context learning: A study with linear models. arXiv 2310.17086, 2023.

Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Breaking through the learning
plateaus of in-context learning in transformer. ICML, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. NeurIPS, 2022.

Nikhil Ghosh, Song Mei, and Bin Yu. The three stages of learning dynamics in high-dimensional
kernel methods. ICLR, 2022.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well
can transformers emulate in-context newton’s method? arXiv 2403.03183, 2024.

Riccardo Grazzi, Julien Niklas Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba
capable of in-context learning? ICLR Workshop on Mathematical and Empirical Understanding
of Foundation Models, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
2312.00752, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. arXiv 2306.11644, 2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. ICLR, 2024.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence of in-
context learning and skill composition in modular arithmetic tasks. arXiv 2406.02550, 2024.

Jiachen Hu, Xiaoyu Chen, Chi Jin, Lihong Li, and Liwei Wang. Near-optimal representation learn-
ing for linear bandits and linear rl. ICML, 2021.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson.
XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generali-
sation. ICML, 2020.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
learning with linear function approximation. COLT, 2020.

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon S. Du, and Jason D. Lee. Understanding incremental
learning of gradient descent: A fine-grained analysis of matrix sensing. ICML, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arxiv 2212.04458, 2024.

Yingcong Li, Xupeng Wei, Haonan Zhao, and Taigao Ma. Can mamba in-context learn task mix-
tures? ICML 2024 Workshop on In-Context Learning, 2024.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. ICLR, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning. ICML, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv 2101.06804, 2021.

Rui Lu, Gao Huang, and Simon S. Du. On the power of multitask representation learning in linear
mdp. NeurIPS, 2022.

Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
ably the optimal in-context learner with one layer of linear self-attention. ICLR, 2024.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. JMLR, 17(81):1–32, 2016.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. ACL, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?
EMNLP, 2022b.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman, Fred
Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing complexity.
NeurIPS, 2019.

Kim Anh Nguyen, Sabine Schulte im Walde, and Ngoc Thang Vu. Distinguishing antonyms and
synonyms in a pattern-based neural network. EACL, 2017.

Feng Nie, Meixi Chen, Zhirui Zhang, and Xu Cheng. Improving few-shot performance of language
models via nearest neighbor calibration. ICML, 2022.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. arXiv 2209.11895, 2022.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. ICML, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. ICML, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. The effects of pretraining task
diversity on in-context learning of ridge regression. ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2023.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. NeurIPS, 2023.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. ICLR, 2024.

Maria Refinetti, Alessandro Ingrosso, and Sebastian Goldt. Neural networks trained with sgd learn
distributions of increasing complexity. ICML, 2023.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. ACL, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jirko Rubruck, Jan P. Bauer, Andrew Saxe, and Christopher Summerfield. Early learning of the
optimal constant solution in neural networks and humans. arXiv 2406.17467, 2024.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv 1706.05098,
2017.

Brihat Sharma, Yanjun Gao, Timothy Miller, Matthew M. Churpek, Majid Afshar, and Dmitriy
Dligach. Multi-task training with in-domain language models for diagnostic reasoning. arXiv
2306.04551, 2023.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation. ICML, 2024.

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in transformers. arXiv 2408.09503, 2024.

Linfeng Song, Kun Xu, Yue Zhang, Jianshu Chen, and Dong Yu. ZPR2: Joint zero pronoun recovery
and resolution using multi-task learning and BERT. ACL, 2020.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, and et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. TMLR, 2023.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. ICLR, 2024.

Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On the theory of transfer learning: The impor-
tance of task diversity. NeurIPS, 2020.

Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. Provable meta-learning of linear representations.
ICML, 2021.

Nilesh Tripuraneni, Lyric Doshi, and Steve Yadlowsky. Can transformers in-context learn task
mixtures? NeurIPS Workshop on Distribution Shifts: New Frontiers with Foundation Models,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. ICML, 2023.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan
Pascanu, and João Sacramento. Uncovering mesa-optimization algorithms in transformers. ICLR
Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024.

Mingze Wang and Chao Ma. Understanding multi-phase optimization dynamics and rich nonlinear
behaviors of relu networks. NeurIPS, 2023.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understand-
ing of self-correction through in-context alignment. arXiv 2405.18634, 2024.

Zhichao Wang, Andrew Engel, Anand Sarwate, Ioana Dumitriu, and Tony Chiang. Spectral evolu-
tion and invariance in linear-width neural networks. NeurIPS, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
TMLR, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently. arXiv 2303.03846, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. ICLR, 2022.

Jiaqi Yang, Wei Hu, Jason D. Lee, and Simon S. Du. Impact of representation learning in linear
bandits. ICLR, 2021.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
context. JMLR, 25(49):1–55, 2024.

Yi Zhang, Arturs Backurs, Sebastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with LEGO: A synthetic reasoning task. arXiv 2206.04301, 2023a.

Zhihan Zhang, Wenhao Yu, Mengxia Yu, Zhichun Guo, and Meng Jiang. A survey of multi-task
learning in natural language processing: Regarding task relatedness and training methods. ACL,
2023b.

Yulai Zhao, Jianshu Chen, and Simon S. Du. Blessing of class diversity in pre-training. AISTATS,
2023.

Wenjie Zhou, Minghua Zhang, and Yunfang Wu. Multi-task learning with language modeling for
question generation. ACL, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

Model Architectures. We focus on transformer (Vaswani et al., 2017), Mamba (Gu & Dao, 2024),
and Hyena (Poli et al., 2023). To handle model architectures that process inputs and outputs as
vectors in an embedding space, we first pad each f(xi) with (d − 1) zeros to match the dimension
of xis. We then add a learnable linear layer to map these vectors into the embedding space. A
second learnable linear layer maps the model’s output to a scalar. Each model’s hyperparameters
are dictated as follows. For transformer, we use GPT2 (Radford et al., 2019), with 12 decoder layers
of embedding size 256 with 8 heads and relative positional encoding. Hyena follows the exact
configuration of transformer’s setup for the relevant hyperparameters. On the other hand, Mamba
employs 24 layers, doubling the number of layers to match the model parameter size as is standard
for Mamba. All models contain input and output projection heads that map input to the hidden
state and hidden state to output. To train a model from scratch, we randomly initialize the model
parameters.

Configuration. We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0001.
The batch size B = 64 corresponds to each task. Regarding the choice of ℓ(·, ·), we use mean-
squared error loss for continuous ICL tasks and cross-entropy loss for boolean ICL tasks. The input
dimensions considered are d = 10 and 15.

Plateau and Training Exit Conditions. The plateau escape time tplateau is defined as tplateau =

mint>100

[
1

100

∑t
t′=t−99 Training loss(t′) < 0.8

]
. This effectively captures the plateau escape as

we have normalized each task’s loss around 1. The training exit conditions are defined as fol-
lows texit = mint>100

[
1

100

∑t
t′=t−99 Test error(t′) < 0.2

]
for continuous ICL tasks and texit =

mint>100

[
1

100

∑t
t′=t−99 Test accuracy(t′) > 0.95

]
for boolean ICL tasks. tplateau and texit are mea-

sured for each individual task.

Batch generation process The following pseudo algorithm summarizes the batch generation pro-
cess of (multi)-task ICL training.

Algorithm 1 Batch generation process

Require: Multi-tasks {F1, . . . ,Fk}
Require: Corresponding domains {DX1

, . . . ,DXk
}

Require: Batch size for each task {B1, . . . , Bk}
Ensure: Generated batch of prompts

1: Initialize Batch B← ∅
2: for m = 1 to k do
3: for j = 1 to Bm do
4: Sample function f ∼ DFm

5: Sample inputs x1, . . . , xn
IID∼ DXm

6: Generate prompt: P (j,m) = (x1, f(x1), . . . , xn−1, f(xn−1), xn, f(xn))
7: Update batch B← B ∪ {P (j,m)}
8: end for
9: end for

After constructing a batch, we minimize the following empirical loss. Denote f (j,m) and x
(j,m)
i as

the corresponding in-context function and i-th input for each P (j,m).

L̂(θ) : =

k∑
m=1

cm

 B∑
j=1

[
1

n

n∑
i=1

ℓ
(
Mθ(P

(j,m)
i), f (j,m)(x

(j,m)
i)

)]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL TABLES

To demonstrate the generality of our claim, we conducted extensive experiments beyond those
shown in Table 1. The following tables summarize results for transformer (input dimension d = 15),
Mamba (input dimension d = 10), and Hyena (input dimension d = 10). We report two metrics for
each run: time to escape the plateau and the time to complete the learning (written in parentheses).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Decision
Tree

1 > 1000k > 1000k 46.9k (66.6k) 22.6k (50.7k) 58.8k (61.3k) 25.0k (25.1k) 4.1k (5.4k) 31.6k (35.3k) 32.4k (86.2k)

2 38.9k (52.6k) 104.7k (148.2k) 7.5k (16.5k) 5.0k (11.6k) 12.4k (13.9k) 14.8k (17.2k) 4.1k (5.1k) 4.8k (5.4k) 26.6k (70.4k)

8 4.0k (4.8k) 10.1k (13.1k) 2.8k (8.5k) 2.7k (8.7k) 2.3k (3.7k) 4.0k (4.3k) 2.4k (3.9k) 2.2k (3.6k) 13.1k (44.4k)

9 3.6k (4.1k) 10.9k (11.6k) 2.5k (7.9k) 2.5k (7.8k) 2.0k (3.2k) 3.5k (3.6k) 2.0k (3.4k) 1.9k (3.2k) 13.8k (50.0k)

Table 2: Task diversity shortens the ICL plateau. We train a transformer with various combina-
tions of 9 different tasks (d = 15).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

1 7.5k (7.7k) 194.3k (196.5k) 0.4k (0.4k) 0.4k (0.4k) 0.2k (0.4k) 17.7k (37.7k) 0.2k (1.0k) 0.2k (0.4k)

2 2.9k (3.2k) 14.4k (15.6k) 0.4k (0.5k) 0.3k (0.4k) 0.2k (0.5k) 7.7k (22.8k) 0.3k (0.9k) 0.2k (0.5k)

4 1.5k (1.7k) 6.0k (6.7k) 0.3k (0.4k) 0.3k (0.4k) 0.2k (0.6k) 3.4k (17.1k) 0.3k (0.9k) 0.2k (0.6k)

8 2.4k (2.4k) 3.7k (4.3k) 0.3k (0.4k) 0.3k (0.4k) 0.3k (0.7k) 2.8k (20.5k) 0.3k (0.9k) 0.3k (0.6k)

Table 3: Task diversity shortens the ICL plateau (Mamba). We train a Mamba with various
combinations of 9 different tasks (d = 10).

Boolean Tasks Continuous Tasks

Number of
tasks Sparse Parity(2) Sparse Parity(3) Conjunction Disjunction Linear

Regression
Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

1 1.1k (1.3k) 53.9k (58.6k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.4k) 11.1k (35.4k) 0.2k (0.7k) 0.1k (0.4k)

2 2.0k (2.4k) 23.7k (27.2k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.4k) 7.6k (33.6k) 0.2k (0.7k) 0.1k (0.4k)

4 2.4k (2.5k) 16.8k (17.5k) 0.2k (0.3k) 0.2k (0.3k) 0.1k (0.5k) 6.3k (41.7k) 0.2k (0.8k) 0.1k (0.5k)

8 3.8k (4.0k) 13.6k (14.2k) 0.2k (0.3k) 0.2k (0.3k) 0.2k (0.5k) 7.1k (55.0k) 0.2k (0.9k) 0.2k (0.5k)

Table 4: Task diversity shortens the ICL plateau (Hyena). We train a Hyena with various combi-
nations of 9 different tasks (d = 10).

For Mamba and Hyena, loss plateaus are less consistently observed. Specifically, training on Con-
junciton, Disjunction, Linear regression, ReLU Regression, and Sparse Linear Regression rarely
exhibit a loss plateau. This tendency, however, does not violate our claim, as we focus on how task
diversity shortens the plateau when it does occur.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C LANGUAGE ICL TASKS

C.1 NATURAL LANGUAGE ICL TASKS

Figure 8: Checkpoint experiments on language ICL tasks.

To further verify our claim on tasks with real-world language data, we examine ICL in natural
language processing (NLP) tasks.

Model. We use GPT2 (Radford et al., 2019) model with 12 layers, 12 attention heads, 768 embed-
ding size, and 50257 vocabularies. We train GPT2 from scratch to learn in-context tasks.

Dataset. We use the word data from Nguyen et al. (2017). Following the approach in Todd et al.
(2024), we choose 5245 words that can be tokenized to a single token. Words are then randomly
chosen and arranged into sequences according to the task. Each sequence consists of six examples
where the preceding five serve as context examples, and the last one as the query example.

Prompting. We convert a given sequence of words to a prompt by following Todd et al. (2024),
where words are separated by a space, and examples are separated by a line:

<bos>Q. word1
1 word1

2 . . . word1
d

A. answer1

...

Q. word5
1 word5

2 . . . word5
d

A. answer5

Q. word6
1 word6

2 . . . word6
d

A.

WordSelection(d). We devise WordSelection(d) by generalizing the WordSelection Task (Fu
et al., 2024). The goal of this task is to select a single word from given d words. The model’s
goal is to learn in-context which word to select.

WordLength. We also devise WordLength Task. Let len(w) be the length of word w and % be the
remainder operator. Given four words w1, . . . w4, the goal of this task is to learn in-context either∑4

i=1 len(wi) or
∑4

i=1 len(wi)%10 from given examples.

Result. Prior work Fu et al. (2024) reported the difficulty of learning WordSelection(4), by show-
ing that it cannot learn within about 78k iterations. Indeed, as shown in (Figure 7, Right), single-
task training of WordSelection(4) exhibits a plateau for over 180k iterations. However, mixing
WordSelection(4) and WordSelection(2) significantly shortens the plateau to 3.2k iterations, accel-
erating the learning. The same phenomenon is observed when WordSelection(4) and WordLength
are trained simultaneously. These results reveal that our claim generally holds in NLP tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We also conduct the checkpoint experiment, where we use checkpoint models on WordSelection(2)
and WordLength as baseline models and train them respectively on WordSelection(4). As shown in
Figure 8, using checkpoint models shortens the plateau, demonstrating that NLP tasks also share a
certain common structure.

C.2 FORMAL LANGUAGE ICL TASK: REGBENCH

We follow the configuration of Akyürek et al. (2024). To jointly train Quadratic Regression and
DFA tasks, since their input formats differ, we use two different input embedding layers. Figure 9
illustrates the result.

Figure 9: Regbench. DFA task shortens the Quadratic Regression’s plateau, while Quadratic Re-
gression does not shorten the DFA’s plateau. Red line shows the multi-task training dynamics and
blue and green lines show the single-task training dynamics.

D CHECKPOINT EXPERIMENT

D.1 EXPERIMENTAL DETAILS

In this section, we provide the configurations for the checkpoint experiments in Section 4.2.1. The
input dimension is set to d = 10. For each single-task training, we save the model once it escapes
the plateau. The exact iteration numbers where the models are saved are provided in Table 5. Since
Sparse Parity(2) and Sparse Parity(3) do not escape the plateau within observable training steps, no
checkpoint models could be obtained. After saving the baseline models, we train each task (Con-

Boolean Task Continuous Task

Conjunction Disjunction Boolean
Retrieval

Linear
Regression

Quadratic
Regression

ReLU
Regression

Sparse Linear
Regression

Gaussian
Retrieval

Iteration number 2.2k 2.6k 105k 19k 11.7k 2.8k 7k 50k

Table 5: Checkpoint models.

junction, Disjunction, Linear Regression, Quadratic Regression, ReLU Regression, Sparse Linear
Regression, Sparse Parity(2), and Sparse Parity(3)) according to the configuration in Appendix A.
To calculate the ratio, we divide the result by the plateau escape time summarized in the first row of
Table 1.

Learning time comparison of checkpoint models. In Figure 6, we demonstrated that checkpoint
models significantly shorten the plateaus. However, since the time required to escape the plateau
and to learn the task may differ, it is necessary to verify whether the same phenomenon holds for
learning time. Figure 10 confirms that this is indeed the case, although the effect is less robust
compared to Figure 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Learning time ratios of checkpoint models.

D.2 EXPERIMENT ON RETRIEVAL TASK

Recall the description of Retrieval task.

Retrieval. Sample 1024 5-tuples of one key and four values: {(ki, v1i , v2i , v3i , v4i)}1024i=1 . The kis and
vji s are independently sampled from DK and DV , respectively. To generate prompts, we uniformly
sample (n − 1) 5-tuples without replacement and uniformly choose one vi per 5-tuple, resulting
in {(ki,vi)}n−1

i=1 . Next, we sample p ∼ Unif ({1, . . . , n − 1}) and set q = kp. Finally, given
Pn = (k1,v1, . . . ,kn−1,vn−1,q), the task is to predict vp. We consider two Retrieval tasks:
Gaussian Retrieval and Boolean Retrieval, with (DK,DV) = (N (0, Id),N (0, 1)) and (DK,DV) =
(Unif {±1}d,Unif {±1}), respectively.

To train continuous ICL tasks, we use a checkpoint model saved from Gaussian Retrieval, and
for boolean ICL tasks, we use a checkpoint model saved from Boolean Retrieval. We follow the
configuration in Appendix A. For each experiment, we measure the time spent to learn each ICL
task. The Results are illustrated in Figure 11.

Figure 11: Checkpoint experiment on Retrieval.

E FEATURE LEARNING EXPERIMENT

The true function is f⋆(x) = Uσ(A⋆x), where U ∈ Rk×h and A⋆ ∈ Rh×d. Columns of U , de-
noted as ums, are independently sampled fromN (µm, Id), with (µ1, . . . , µk) being pre-determined
vectors prior to training.

To design multi-task learning, we independently sample k different vectors µ1, . . . , µk from
√
h ×

Sh−1, making N (µm, Id)s differ. In contrast, for single-task training, all µ1, . . . , µk are set to the
same vector µ, which is also sampled from

√
h× Sh−1.

The model that learns the true function is f(x) = V σ(Wx) where V ∈ Rm×h′
and W ∈ Rh′×d.

We set d = 150, h ∈ {10, 20}, h′ ∈ {100, 300}, and k ∈ {15, 30}. The Adam optimizer is used
with a learning rate of lr = 0.001 and we apply 0.1×lr for the model’s heads, following the approach
in Berthier et al. (2024). We use the sigmoid activation function σ(x) = 1

1+e−x .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Additional Figures. Figure 7 represents the result when (d, h, h′, k) = (150, 10, 100, 15). To
enhance the generality, we present figures for other hyperparameters as well. For each figure, multi-
task training (blue lines) exhibits a much shorter plateau compared to single-task training (red lines).

(a) (h′, k) = (100, 15) (b) (h′, k) = (100, 30) (c) (h′, k) = (300, 15) (d) (h′, k) = (300, 30)

(e) (h′, k) = (100, 15) (f) (h′, k) = (100, 30) (g) (h′, k) = (300, 15) (h) (h′, k) = (300, 30)

Figure 12: First row corresponds to the case when (d, h) = (150, 10). Second row corresponds to
the case when (d, h) = (150, 20).

F NO-CONTEXT LEARNING

F.1 OPTIMAL NO-CONTEXT FUNCTIONS

In this section, we provide a detailed explanation of the optimal no-context function. We
have defined the optimal no-context function as follows. For continuous ICL tasks, g⋆F : =
argmingEf∼DF ,x∼DX

[
(g(x)− f(x)2)

]
, where the argmin is taken over {g | g : Rd → R}. For

boolean ICL tasks, g⋆F : = argmaxgEf∼DF ,x∼DX [1(g(x) = f(x))], where the argmin is taken
over {g | g : {±1}d → {±1}}.
For boolean ICL tasks, we can calculate g⋆F (x) for each x ∈ {±1}d. The closed form of g⋆F (x) can
be expressed using Gx : = {f(x) | f ∈ F} as follows.

g⋆F (x) =

{
1 #(1 ∈ Gx) > #(−1 ∈ Gx)

−1 (otherwise)
.

For continuous ICL tasks, we cannot apply the same approach since the output space is not discrete.
However, we can still derive the closed form for g⋆F (x) for most tasks: g⋆F (x) : = Ef∼DF [f(x)].
This is because

g⋆F (x) : = argmina∈REf∼DF

[
(f(x)− a)2

]
= argmina∈R (a− Ef∼DF [f(x)])

2
.

For tasks other than ReLU Regression, we can obtain the closed forms of g⋆F (x) using the above
property, as listed follows.

• Linear Regression: g⋆F (x) = (µ, . . . , µ)⊺x.

• Quadratic Regression: g⋆F (x) = x⊺Ux, (U)ij = µ.

• Sparse Linear Regression: g⋆F (x) =
k
d (µ, . . . , µ)

⊺x.

• Decision Tree: g⋆F (x) = µ.

For ReLU Regression, we can estimate g⋆F (x) with small error through a sufficient number of sam-
ples from DF .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.2 EXPERIMENTAL DETAILS AND ADDITIONAL FIGURES

Let tasks with in-context function classes
⋃k

m=1 Fm be trained simultaneously. Note that we do not
discern the single-task and multi-task training: k can be 1 as well. During training, we measure

E
f∼DFm ,x1,...,xn

IID∼DXm

|Mθ(Pn)− g⋆Fm
(xn)|2, Pn = (x1, f(x1), . . . , xn−1, f(xn−1), xn)

for continuous ICL tasks and

E
f∼DFm ,x1,...,xn

IID∼DXm

[
1(sign(Mθ(Pn)) ̸= g⋆Fm

(xn))
]
, Pn = (x1, f(x1), . . . , xn−1, f(xn−1), xn).

for boolean ICL tasks. As shown by the following figures, these measurements are close to 0, which
indicates that the model’s output corresponds to task-wise optimal no-context function. We follow
Appendix A for other configurations. Moreover, to prevent the optimal no-context be merely zero
function, we use µ ̸= 0 to parameterize the in-context function classes.

Figure 13: No-context learning regime. During the plateau, the model output matches the task-wise
optimal no-context function. (Top) Sparse Parity(2). (Middle) Quadratic Regression (µ = −1).
(Bottom) Quadratic Regression (µ = −1) + Sparse Parity(2).

21

	Introduction
	Related works

	Experimental setup
	Task diversity shortens ICL plateaus
	Why is task diversity helpful?
	Plateau is task-wise no-context learning
	Common structure across ICL tasks
	Checkpoint experiment
	Generality of our hypothesis
	The common structure is not just an induction head

	In-context learning tasks
	Conclusion
	Experimental details
	Additional tables
	Language ICL tasks
	Natural Language ICL tasks
	Formal Language ICL task: Regbench

	Checkpoint experiment
	Experimental details
	Experiment on Retrieval task

	Feature learning experiment
	No-context learning
	Optimal no-context functions
	Experimental details and additional figures

