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Abstract
When extracting structured information from001
text, recognizing entities and extracting rela-002
tionships are essential. Recent advances in both003
tasks generate a structured representation of004
the information in an autoregressive manner,005
a time-consuming and computationally expen-006
sive approach. This naturally raises the ques-007
tion of whether autoregressive methods are nec-008
essary in order to achieve comparable results.009
In this work, we propose ITER, an efficient010
encoder-based relation extraction model, that011
performs the task in three parallelizable steps,012
greatly accelerating a recent language modeling013
approach: ITER achieves an inference through-014
put of over 600 samples per second for a large015
model on a single consumer-grade GPU. Fur-016
thermore, we achieve state-of-the-art results017
on the relation extraction datasets ADE and018
ACE05, and demonstrate competitive perfor-019
mance for both named entity recognition with020
GENIA and CoNLL03, and for relation extrac-021
tion with SciERC and CoNLL04.022

1 Introduction023

In recent years, there has been a shift towards the024

use of autoregressive methods in many common025

natural language processing (NLP) tasks. In paral-026

lel, there has been an increasing focus on approach-027

ing NLP tasks such as relation extraction or (nested)028

named entity recognition as structured prediction029

problems. Given a sequence of text input, a given030

model autoregressively generates outputs that en-031

code the structure contained in the input, providing032

flexibility since the source and target vocabularies033

do not need to have any commonalities.034

Flattening the output structure into a single035

string, preserving the structure information in the036

input, and using an autoregressive model to learn037

to generate this adapted target language (Cabot and038

Navigli, 2021; Paolini et al., 2021), is an implicit039

approach known to work well across task bound-040

aries (Raffel et al., 2020). However, representing041

the structured output as a string introduces addi- 042

tional complexity when modeling intra-structure 043

dependencies (Liu et al., 2022). More recently, Liu 044

et al. has proposed restricting the autoregressive 045

model to explicit generation of the output structure. 046

However, since inference cannot be parallelized 047

across the sequence dimension, language modeling 048

approaches are prone to low throughput, especially 049

as model size increases (Pope et al., 2022). To 050

counteract this effect, a smaller output sequence 051

length is of critical importance. For ASP (Liu et al., 052

2022), the output is always at least as long as the 053

input, leading to poor real-world performance (see 054

Eq. 1 in Appendix C). While scaling the model size 055

from hundreds of millions to billions of parame- 056

ters provides performance gains for Liu et al., this 057

scaling may become unfeasible in terms of both 058

computational requirements and throughput when 059

using these large models in production. 060

This raises the natural question of whether a 061

non-autoregressive process capable of generating 062

such an output structure can achieve similar perfor- 063

mance while addressing the aforementioned limita- 064

tions of language modeling approaches. This paper 065

presents ITER, an encoder-only transformer-based 066

relation extraction model that addresses the limi- 067

tations of state-of-the-art architectures and shows 068

that the structured prediction problem can be ap- 069

proached without language modeling goals. 070

In summary, the main contributions we have 071

made are as follows: 072

1. We present ITER, a transformer-based, 073

encoder-only relation extraction model. In- 074

stead of using a language modeling goal, our 075

model generates the structured output in three 076

basic steps. We show that this encoder-based 077

approach achieves competitive performance 078

compared to language modeling architectures, 079

while retaining only a fraction of the num- 080

ber of parameters and increasing the inference 081
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throughput by a factor of up to 23, to more082

than 1,000 examples per second.083

2. In our experiments, we find that the trained084

encoder of FLAN T5 is as capable as encoders085

from the BERT family, which motivates fur-086

ther research in this direction.087

3. We set a new state of the art for relation ex-088

traction on ACE05 and ADE, 71.9 (+1.4) and089

85.6 (+1.8) F1 respectively, while being com-090

petitive on CoNLL04, SciERC, GENIA and091

CoNLL03, especially considering a signifi-092

cantly smaller model size and higher through-093

put. For named entity recognition, we set a094

new state of the art of 91.9 and 92.2 on ACE05095

and ADE.096

4. We publish our implementation and check-097

points at HTTPS://ANONYMOUS.4OPEN.098

SCIENCE/R/ITER-8432/README.MD.099

2 Related Work100

The goal of relation extraction (RE), sometimes101

also referred to as end-to-end relation extraction102

or joint entity and relation extraction, is to iden-103

tify the names and types of named entities, within104

a given text, as well as to classify the relation-105

ships among these entities (Grishman and Sund-106

heim, 1996; Zhao and Grishman, 2005).107

Initial approaches to relation extraction have108

been to split the task into named entity recogni-109

tion (NER) and relation classification, where the110

named entities are identified first, while the rela-111

tionships between the found named entities are112

then classified in a second, separate stage that is113

being learned independently. This pipeline-based114

approach is known to be prone to error propagation115

(Sui et al., 2020; Zhong and Chen, 2021). Because116

of this known limitation, joint approaches model-117

ing both tasks simultaneously have been introduced118

and have shown promising results (Gupta et al.,119

2016; Wang and Lu, 2020).120

2.1 Span-based Techniques121

Table-filling or span-based strategies have been,122

and still are, viable approaches to modeling RE123

and related tasks (Gupta et al., 2016; Wang and Lu,124

2020; Joshi et al., 2020; Tang et al., 2022; Zara-125

tiana et al., 2024). Recent examples of this include126

DiffusionNER (Shen et al., 2023b), PL Marker (Ye127

et al., 2022) and UniRel (Tang et al., 2022). Diffu-128

sionNER formulates NER as a diffusion problem,129

allowing overlapping entities to be decoded from 130

textual input in a fixed number of diffusion steps. 131

PL Marker use two types of packing strategies 132

to identify spans from the set of all possible spans, 133

up to a defined maximum length, and their interac- 134

tions. Markers are inserted into the input sequence 135

that cannot be attended to by classical tokens, but 136

can attend everywhere themselves. Controlling 137

the number of markers needed to model the in- 138

teractions in an input is a key challenge faced by 139

the authors, since increasing the input length for 140

a transformer leads to a quadratically scaling in- 141

ference time (Ye et al., 2022). UniRel combines 142

the input text and unique tokens for each relation 143

type to build an interaction map that models the 144

relationships between spans. This approach can 145

become increasingly complex when dealing with 146

common multi-token spans, as three types of in- 147

teraction maps are then required. Interaction map 148

computation for UniRel scales quadratically with 149

the sum of the input size and the number of relation 150

types. 151

The main critic of span-based approaches is the 152

increased design complexity, compared to language 153

modeling approaches, due to the abstraction of 154

most of the design complexity from the models 155

to the target language. 156

2.2 Autoregressive Techniques 157

Modeling the task as a seq2seq problem has 158

become the state of the art for RE in recent 159

years (Cabot and Navigli, 2021; Wang et al., 2022; 160

Paolini et al., 2021; Liu et al., 2022; Fei et al., 161

2022; Lu et al., 2022; Zaratiana et al., 2024). How- 162

ever, the primary concern in using this method- 163

ology however is the sacrifice in model through- 164

put: the inference time of such pretrained language 165

models (PLMs) scales quadratically with the input 166

length. While encoding-based models often require 167

only one pass through the encoder, PLMs require 168

one pass through the decoder per generated token 169

(naively), which cannot be parallelized due to the 170

dependence on all previously generated tokens. 171

(m)REBEL (Cabot and Navigli, 2021; Cabot 172

et al., 2023), TANL (Paolini et al., 2021) and 173

ASP (Liu et al., 2022) translate the input sequence 174

into a flattened output string, which in the case 175

of (m)REBEL also no longer resembles natural 176

language, but an HTML-like structure, where the 177

input text is no longer preserved. This structure has 178

implications for the interpretability of the model, 179

since it is unclear which occurrence is referred to in 180
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Figure 1: Visualization of ITER for nest depth ω = 1. is_left returns two positions where spans start: 1 and 6.
is_span then creates pairings of the types person between position 2 and 1, location between position 8 and 6,
and state for position 8, a 1-token span. Since only the closest left bracket action is being considered when ω = 1,
is_span looks at the marked (✓) positions 1 and 6 for positions 1 to 5 and 6 to 8, respectively. In this example,
is_link tests the two spans “Barack Obama” and “Honolulu, Hawaii” for relationships. As shown above, our
implementation allows parallelization across the sequence dimension.

the output if the entity appears multiple times in the181

input. Paolini et al. extends the target output with182

information about entity types and relationships to183

other named entities. ASP generates a structured184

sequence of actions weaved into the original in-185

put, where three types of actions allow marking the186

start and end of spans and linking them together.187

Due to the autoregressive nature of the generative188

process, Liu et al. need to double the number of189

relation types to properly model the directions of190

relationships between spans.191

This raises the question of whether the struc-192

tured prediction method employed by ASP can be193

performed by an encoder-based, BERT-like model,194

without the autoregressive language modeling ap-195

proach taken by Liu et al., while improving infer-196

ence throughput and maintaining the performance197

of the original work.198

3 Approach199

We base ITER on the work of Liu et al.: To replace200

the autoregressive component of their approach201

with our inference process, several modifications202

to the structured prediction are necessary. We will203

break down the process into three basic steps:204

(1) First, use is_left (Eq. 4) to identify all posi-205

tions n in the input x where a span begins.206

(2) Following (1), identify all positions m ≥ n207

in the input that pair with any of the previ-208

ously identified positions n found in (1) us-209

ing is_span (Eq. 5), forming named entities.210

is_span produces a set of bracket pairs with211

previously found left bracket actions [ cor-212

responding to spans of a given named entity 213

type t ∈ TE from n to m. 214

(3) Finally, test for relationships between all pairs 215

of named entities found in (2) using is_linkλ 216

(Eq. 7). This function returns a vector of 217

Boolean values indicating whether a relation- 218

ship between two spans is present or absent. 219

To allow an efficient implementation of our 220

model, each step can be individually parallelized 221

across the sequence dimension. First, we define the 222

set of structure-building actions A: 223

A = { [ , ] } 224

Our model must be allowed to perform both [ 225

(i.e., marking the possible beginning of a span) and 226

] (i.e., ending a span) actions at the same time, in 227

order not to lose model expressiveness. Otherwise, 228

it will not be able to correctly classify single-token 229

spans1. Therefore, the structure-building actions 230

An ⊆ A performed at position nmust now be a sub- 231

set of A, to allow for this behavior. This change is 232

reflected in the definition of the optimal structured 233

output y∗ that our model will learn to generate: 234

y∗ ∈ ⨉Nn=1Yn. The possible actions Yn to be per- 235

formed at step n are defined as follows: 236

Yn = ℘(A) × ℘(Bn) (1) 237

where ℘ is the powerset operation. 238

1Consider a single-token named entity xi = BERLIN: the
model must be able to determine the span of this entity, since
it ends at the same position where it started. So ai must now
be a set: ai = { [ , ] }.
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To properly handle two or more entities ending239

at the same position, the bracket-pairing actions240

are also present in Yn as a subset of all possible Bn241

actions. This change comes in combination with242

two adjustments to the definition of Bn itself:243

Bn = {n ∣ n
(1)
≤ m ∧ [ ∈ An}

(2)
×TE (2)244

At position m, ITER is allowed to pair [ actions245

at positions n ≤m with position m, circumventing246

single-token named entity issues (1, Eq. 2), and247

each such individual pairing is allowed to have its248

own named entity type t ∈ TE (2, Eq. 2).249

3.1 Identifying Named Entities250

Before relationships can be determined, spans must251

be uniquely identified by their start and end posi-252

tions in combination with the type of the named253

entity in the input sequence. Prior to each of the254

following three generation steps, the input x is255

passed to the encoder of the base model, in our256

case T5, which produces a sequence of contextu-257

alized vector representations h = ⟨h1 . . . hN ⟩ for258

x with hn ∈ Rδ, where δ is the dimension of the259

latent representations produced by the base model.260

All three stages use gated feed-forward networks261

of the following form:262

FFNψ
κ (ĥ) = ((f(ĥWa)⊗ ĥWi)Wo (3)263

where ĥ ∈ Rψδ is the concatenation of ψ δ di-264

mensional vectors from ⟨h1 . . . hN ⟩, Wa,Wi ∈265

Rψδ×η,Wo ∈ Rη×κ are weight matrices learned dur-266

ing training, f is a nonlinear function, and κ is the267

output dimension. ψ = 2 if two vectors are input268

(also ψ = 4 for four vectors), otherwise ψ = 1.269

3.1.1 Determine Where Named Entities Start270

To identify these spans, the model learns to predict271

the positions where the spans of named entities272

in the input x begin. This task is modeled by the273

function is_left (Eq. 4), which takes a latent repre-274

sentation hn as input and outputs a Boolean value275

bn ∈ B:276

is_left(hn) = FFN
ψ=1
κ=1 (hn) > 0 (4)277

At all positions where is_left(hn) is true, the278

left bracket action [ is included in the set of ac-279

tions An that are performed at position n.280

3.1.2 Pair Left and Right Brackets 281

After determining where spans of named entities 282

start in the input x, the next step is to determine 283

which positions xm (m ≥ n) following xn in the 284

input form a span of named entity type t ∈ TE . Our 285

model learns a projection is_span that maps the 286

input position hm to a set of tuples of indices and 287

entity types (n, t), where each entry corresponds 288

to a pair of spans from n to m of type t ∈ TE : 289

is_span ∶ Rδ → ℘(Bn)
is_span(hm) = {(n, t) ∣ stn,m}

(5) 290

where 291

stn,m = FFN
ψ=2
κ=#TE

(hm, hn)t > 0

∧ is_left(hn)

∧ n ≤m

292

That is, a pair of positions n ≤ m was identified 293

as a span pair of type t, where previously hn was 294

marked as the beginning of a span. 295

For each position m where the output of Bm = 296

is_span(hm) is not empty, ITER performs a right 297

bracket action ] at position m. Each element 298

(n, t) ∈ Bm determines a pair of a left bracket at 299

position n with a right bracket at position m of 300

type t, forming a named entity. If a left bracket 301

from step one is left unbound, no named entity is 302

identified. This prevents invalid output artifacts. A 303

visualization of our model is available in Figure 1. 304

3.2 Identify Relations among Named Entities 305

The third step now tests pairs of identified named 306

entities for their relationship to each other. For the 307

non-nested case, is_link projects two hidden states 308

hi and hj onto a vector of non-normalized logits, 309

similar to probabilities after applying the sigmoid 310

function (Eq. 6). 311

is_linkλ ∶ Rδ ×Rδ → Bκ

is_link(hi, hj)λ = σ(FFNψ
κ (hi, hj)) > λ

(6) 312

where λ ∈ [0,1] , κ = ∣TR∣, ψ = 2. The com- 313

parison with λ, a decision boundary parameter is 314

done element-wise. Thus, our model can predict 315

multiple relationships between any pair of entities 316

(spans). λ allows you to trade precision for recall. 317

By default, we set λ = 0.5 as shown in Figure 2 318
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Figure 2: Visualization of the trade-off between RE+
precision and recall for different values of λ on ACE05.
Five different seeds evaluated at the last checkpoint.

At both positions i, j, our model previously per-319

formed a ] action. It also paired those two ac-320

tions with left bracket actions at positions k, l with321

span types ti, tj ∈ TE : ] ∈ Ai,Aj ∧ (k, ti) ∈322

Bi ∧ (l, tj) ∈ Bj . is_link returns vectors contain-323

ing Boolean values for relations between two enti-324

ties identified in (1) and (2). During inference, all325

combinations of entities found are tested for rela-326

tionships. The order of the head and tail entities327

is important, so is_link(hi, hj) ≠ is_link(hj , hi)328

unless a relationship is symmetric.329

The abstraction of using only the latent represen-330

tation of the last position of the span can no longer331

be applied when dealing with nested entities, since332

spans are no longer uniquely identified by their last333

position. To counteract this, the representation of334

the first position of a span is also included:335

is_link ∶ R4×δ
→ Bκ

is_link(h) = σ(FFNψ=4
κ=#TR

(h1 . . .h4))
(7)336

where now ψ = 4,h = ⟨hi, ho, hj , hp⟩.337

3.3 Training338

A key issue in training our proposed model was the339

choice of transformer encoder used in our experi-340

ments. Since we base our work on the ASP (Liu341

et al., 2022) architecture, we ultimately decided342

to use the T5 (Raffel et al., 2020) autoregressive343

model as the encoder by simply relying on the PLM344

encoder stack. In addition, we perform experiments345

on several BERT-like encoder models: ALBERT346

and DeBERTa.347

To avoid error propagation between the three348

stages of ITER, the training will include all three349

functions simultaneously: is_left , is_span , and350

is_link . ITER takes as input a sequence of la-351

tent representations h = ⟨h1, h2, . . . , hN ⟩. The352

sequence of representations is shared across all 353

three tasks. The loss function used during training 354

can be found in Appendix B, in Equations 10, 12, 355

and 13. To minimize training loss, the model is 356

encouraged to assign weights greater than zero to 357

the correct decisions in all three cases, which af- 358

fects the decisions made by is_left , is_span , and 359

is_link . 360

3.4 ITER versus other Encoders 361

Since ITER is no longer an autoregressive model, 362

this motivates the discussion of other, encoding- 363

based approaches in terms of their differences and 364

similarities to our model. 365

Table-filling Approaches: Unlike most previ- 366

ous approaches, ITER does not recognize entities 367

with a classical table-filling pipeline, where each 368

combination of tokens in the input x is tested to be 369

a named entity (Gupta et al., 2016; Wang and Lu, 370

2020; Ma et al., 2020; Tang et al., 2022). 371

Span-Based Approaches: The best known and 372

most powerful span-based approaches include Dy- 373

GIE++, PURE, and PL Marker (Wadden et al., 374

2019; Zhong and Chen, 2021; Ye et al., 2022), 375

which mostly seem to follow the same basic idea 376

of creating all possible spans (with up to length 377

L) and consequently predicting the correct types 378

(including none). In addition, they use markers to 379

better teach the model start and end indices. For 380

instance, in PL Marker a group of levitated markers 381

is built for each token in the input, and appended 382

to the input sequence. Each such pair of markers 383

is able to accompany a subsequence of the whole 384

input, and there is one pair per possible span with a 385

maximum span length L depending on the data (Ye 386

et al., 2022). As a consequence, the input length 387

increases drastically by about 2NL depending on 388

L. This increase is also reflected in the throughput 389

of PL Marker (211.7 samples/s) compared to our 390

method (392.9 samples/s), as shown in Table 3. 391

In contrast, ITER identifies named entities in two, 392

linear time steps, as discussed in the next section. 393

To the best of our knowledge, and supported by our 394

experiments, ITER is the most efficient transformer- 395

based end-to-end relation extraction model. 396

3.5 Complexity 397

Here, the theoretical time complexity of our ap- 398

proach is briefly discussed. As follows from their 399

definitions, both steps (1) and (2) can be paral- 400

lelized over the sequence dimension. Since is_left 401

uses only linear projections and activation func- 402
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tions, its runtime is bounded by the length of the403

input sequence h, yielding a linear time complexity404

O(N). is_span is optimized to consider only the405

ω closest left bracket actions, and in the trivial case406

we set ω = 1. For nested named entity records, ω407

can be calculated as follows:408

ω =max{
m

∑
k=n

r
[ ∈ Ak

z
∣(n, t) ∈ Bm,1 ≤m ≤ N}409

for an element of a given record. For ω = 1,410

is_span performs one pass through the FFN per411

element of the sequence h, thereby yielding a time412

complexity O(N) linear in the input length N .413

Correspondingly, ω can be derived for the whole414

dataset by taking the maximum value over all sam-415

ples. Our choices for ω are also shown in Table 1.416

For ω > 1, we have O(N ∗ ω), but ω ≪ N . Since417

steps (1) and (2) are performed sequentially, their418

combination remains bounded by the sequence419

length N . Testing for relationships in step (3) re-420

quires testing all combinations of entities found421

and thus gives a quadratic runtime, but not in the422

sequence length, but in the number of entities E423

with E ≪ N . Using ITER thus gives a complexity424

of O(N +E2)), where E is the number of entities.425

4 Experimental Results426

In this section, we give an overview of the datasets427

used (Section 4.1) followed by a discussion of the428

results from our experiments (Section 4.2). Details429

of the hyperparameter search we performed can be430

found in Appendix D.431

4.1 Data432

To evaluate our proposed model, we measured its433

performance and throughput on a diverse portfo-434

lio of six datasets, varying in domain and task:435

CoNLL03 (Sang and Meulder, 2003) and GE-436

NIA (Kim et al., 2003) were selected for NER,437

followed by CoNLL04 (Roth and Yih, 2004),438

ACE05 (Walker et al., 2006), ADE (Gurulingappa439

et al., 2012) and SciERC (Luan et al., 2018) for440

RE. CoNLL03, CoNLL04 and ACE05 contain ex-441

amples taken from news articles, GENIA and ADE442

have a biomedical domain and contain examples443

of Medline abstracts and drug-drug interactions,444

respectively. SciERC consists of 500 scientific445

abstracts that have been annotated for scientific en-446

tities, their relationships and co-references (Luan447

et al., 2018). An overview of the selection of our448

datasets can be found in Table 1. Following the449

literature, we primarily evaluate our model in a 450

strict setting for RE: A predicted relationship be- 451

tween two entities is only considered correct if both 452

the span and the type of the entity match the gold 453

standard (RE+). We report micro F1 values unless 454

otherwise noted. 455

Dataset TRAIN DEV TEST ω
OVERLAPPING

ENTITIES

CONLL03 954 216 231 1 0
CONLL04 922 231 288 1 0

SciERC 1861 275 551 3 2.7%
ADE 4,272 10%* 10%* 2 1.6 - 4.4%

ACE05 5217 1277 1130 1 0
GENIA 16,692 † 1,854 4 21.6%

NYT 56,196 5,000 5,000 2 1.1%

Table 1: We report the number of samples per dataset
split, the choice of ω per dataset and the number of
samples where overlaps do occur. We count overlaps
as entities that begin inside another. (*): There is no
official dataset split for ADE, so we use 10-fold cross-
validation with 10% of the total examples. † In the
dataset split provided by Shen et al., the training (train)
and development (dev) sets have been merged.

Models. We use an ensemble of different models 456

during training, in particular the FLAN T5 (Shen 457

et al., 2023a) encoders, referred to as FT5, T5 (Raf- 458

fel et al., 2020) and BART (Lewis et al., 2020). 459

We also train our model with DeBERTaV3 (He 460

et al., 2023, 2021), BERT (Devlin et al., 2019), and 461

ALBERT (Lan et al., 2020). 462

4.2 Results 463

Overall, ITER outperforms or is competitive with 464

the state-of-the-art on all datasets, as shown in Ta- 465

ble 2 for NER and RE+. In addition, our model 466

excels in terms of throughput: Our large model 467

variant ITER + FLAN T5 (large) outperforms the 468

autoregressive ASP by up to 22× and the encoder- 469

based PL Marker by up to 12.5×. See Table 3 for 470

the results of our throughput measurements. 471

For ACE05, we set a new state of the art of 472

71.9 F1 for RE+, but with a very large PLM as an 473

encoder: FLAN T5 (xl) with 1.3 billion parameters. 474

DeBERTaV3 (large) gave very competitive results 475

despite it being a 2.7 times smaller model: 70.8 F1 476

for RE+ and a state-of-the-art of 91.9 for NER. We 477

also set a new state-of-the-art for the biomedical 478

dataset ADE, for both NER and RE+ with 92.2 and 479

85.6 F1, respectively. 480

On CoNLL04, our model is only outperformed 481

by ASP + T0 (3b), DeepStruct and ATG with respect 482

to the strict RE F1 metric. The first two are ×7.12 483
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ARCHITECTURE DATASET

MODEL PARAMETERS ACE05 CONLL04 ADE SCIERC CONLL03 GENIA
TOTAL VS. OURS NER RE+ NER RE+ NER RE+ NER RE+ NER NER

ITER (ours) (∗) (∗)
+ FT5 (large) 393 M 1.0 91.5 70.5 71.1 89.8 75.2 91.6 84.3 63.8 31.5 32.1 91.6 80.4
+ FT5 (xl) 1.3 B ×3.33 91.7 71.9 72.7 90.1 75.6 92.2 85.6 69.1 38.9 40.2 91.8 81.2
+ DeBERTaV3 (large) 476 M ×1.21 91.9 70.8 71.4 91.2 75.9 91.6 84.7 68.1 36.9 38.6 91.8 80.6
+ BERT (large) 340 M ×0.86 88.3 64.5 65.4 87.4 68.0 90.9 82.8 53.2 28.1 ◆ 28.6 77.6
+ SciDeBERTa (full) 436 M ×1.11 68.1 38.4 40.1

ASP
+ T5 (base) 229 M ×0.58 90.7 68.6 - 89.4 73.8 91.8
+ T5 (large) 745 M ×1.89 91.3 69.4 - 89.4 73.8 92.8
+ T5 / T0 (3b) 2.8 B ×7.12 91.3 70.5 - 90.3 76.3

PL Marker (albert-xxlarge-v1) 223 M ×0.56 91.1 - 71.1
PL Marker (scibert-uncased) 110 M ×0.27 69.9 - 41.6
DeepStruct (finetuned) 10 B ×25.1 86.9 66.8 - 90.7 78.3 91.3 83.2 93.1 80.8
ATG (deberta-v3-large) 479 M ×1.21 90.1 66.2 - 90.5 78.5
ATG (scibert-cased) 151 M ×0.38 69.7 38.6
TANL 222 M ×0.57 88.9 63.7 - 89.8 72.6 91.2 83.8 92.0 76.4
REBEL 406 M ×1.03 - 75.4 - 82.2
DiffusionNER 381 M ×0.85 86.9 - - 92.8 - 92.78 81.53
PFN 223 M ×0.56 89.0 66.8 - 91.3 83.2 66.8 38.4 -
UIE 737 M ×1.87 85.8 66.1 - - 75.0 - 36.53 92.99
LasUIE 737 M ×1.87 86.0 66.4 - - 75.3 93.2
Wang and Lu 223 M ×0.56 89.5 64.3 - 90.1 73.6 89.7 80.1
UNIRE (Wang et al.) 110 M ×0.27 68.4 - 36.9
TF-MTRNN unknown 93.6 72.1 86.80
Spert.PL 110 M ×0.27 70.53 39.41

Table 2: Final results for CoNLL04, ACE05, ADE, SciERC, CoNLL03, and GENIA. (∗): PL Marker and Wang
et al. weight correct symmetry relations twice (Ye et al., 2022), further explained in Appendix F. To allow a fair
comparison, we also report results using their scoring method. ◆ One of the 5 runs with bert-large-cased diverged.

and ×25.1 larger. For CoNLL03, our model per-484

forms in line with the results from ASP, but does485

not perform close to the state of the art on this486

dataset. In an ablation study, we find that using487

the best final checkpoint from CoNLL03 as the ini-488

tialization for CoNLL04 increases the final model489

performance by an average of 0.6 F1 points. More490

details can be found in Appendix E. On both GE-491

NIA and SciERC, our model achieves results that492

are competitive with the current state of the art.493

We conducted experiments with the BART, De-494

BERTa, and ALBERT encoders on ACE05. Our495

goal was to identify the best fitting pretrained496

model for our proposed method. The results of this497

investigation can be seen in Table 4 in Appendix A.498

Comparing the performance of ITER with these499

PLMs, we find that models with relative position500

embeddings (T5 family, DeBERTa) to generally501

perform better in our setting when compared to502

models with absolute position embeddings (BART,503

ALBERT).504

5 Conclusion and Future Work505

In this work, we propose ITER, an efficient, well-506

performing relation extraction model. We translate507

the autoregressive process of Liu et al. into a con-508

stant, easily parallelizable three-step process, while509

maintaining the same level of performance and in- 510

creasing model throughput, especially for longer 511

sequence lengths. Our model allows us to perform 512

any kind of structured prediction task with max- 513

imum throughput (Figure 3) and state-of-the-art 514

performance. On ACE05, we set a new state-of- 515

the-art of 71.9 F1 and 91.9 for RE and NER. For 516

the biomedical dataset ADE, we set a new state- 517

of-the-art for NER (92.2) and RE+ (85.6). In our 518

experiments, we find that using the encoders of 519

generative T5 models can yield model performance 520

advantages over using discriminative models such 521

as BERT and ALBERT, while also outperforming 522

these models in terms of throughput. The only 523

exception to this finding is DeBERTa, where F1 524

performance is competitive (RE+) or even better 525

(NER). However, in terms of model throughput, 526

the T5 family models still outperform DeBERTa. 527

We also highlight the advantages of encoder-based 528

models over generative approaches in terms of 529

model throughput, with ITER being up to 42 times 530

faster than the autoregressive state-of-the-art model 531

ASP. To the best of our knowledge ITER is the first 532

model to successfully use only the encoder of an 533

autoregressively trained PLM in this domain, in- 534

spiring further research in this direction. 535

One area of future work may be to develop a 536
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Figure 3: Visualization of the throughput of ITER vs. ASP (autoregressive) and PL Marker (encoder-based). ¼
marks ITER, ⋎ marks PL Marker (Ye et al., 2022) and & marks ASP (Liu et al., 2022). For the visualization, we
measured on ITER models of different sizes from 15 M to 410 M parameters.

Dataset Architecture Throughput
NAME

# TOKENS MODEL PARAMS SAMPLES/S

WITHOUT CONTEXT:

ACE05 &
29 / 360 / 135.35

MIN / MAX / AVG

ITER + T5 (large) 410 M 392.908
PL Marker (base) 108 M 211.7
WITH CONTEXT:

ITER + T5 (large) 410 M 158.476
ASP + T5 (large) 745 M 34.826

SMALL MODELS:

CoNLL03
DOCUMENT LEVEL
46 / 1015 / 308.18

MIN / MAX / AVG

ITER + T5 (small) 46 M 156.44
ASP + T5 (small) 61 M 5.6685
LARGE MODELS:

ITER + FT5 (large) 370 M 43.05
ASP + T5 (large) 738 M 1.4981

CoNLL03
SENTENCE LEVEL

2 / 213 / 24.55
MIN / MAX / AVG

ITER + T5 (small) 46 M 3276.12
ITER + FT5 (large) 370 M 512.49
PL Marker (base) 108 M 54.8

SMALL MODELS:

CoNLL04
4 / 173 / 43.84
MIN / MAX / AVG

ITER + T5 (small) 54 M 1040.550
ASP + T5 (small) 64 M 44.459
LARGE MODELS:

ITER + T5 (large) 410 M 605.398
ASP + T5 (large) 745 M 27.177
ASP + T5 (3b) 2.9 B 29.427

Table 3: Comparing the inference throughput of various
RE architectures: ITER, ASP and PL Marker. Experi-
ments for ITER and ASP were performed on a single
RTX 4090 GPU using a batch size of 64. For document
level CoNLL03, a single H100 GPU was used with a
batch size of 8. ITER is significantly faster in inference
than ASP and PL Marker, especially when dealing with
longer input lengths, such as in CoNLL03. &: Statistics
for ACE05 with additional context; without, ACE05 has
25.21 tokens on avg.

large (synthetic) dataset that allows evaluation of537

the expressiveness of RE models with respect to538

nested entities, since nested entities are a real-world539

problem, but existing datasets contain only a small540

fraction of such examples (see Table 1). Enabling541

zero- and few-shot task transfer for our pretrained 542

models without further training may be another 543

area of future work. As discussed earlier, using 544

the T5 encoder instead of BERT-style models gave 545

us equivalent training results for us and motivates 546

a more comprehensive study of the performance 547

of autoregressive, encoder-decoder models in set- 548

tings where typically encoder-based models are 549

employed. 550

6 Limitations 551

One limitation of our model is the output of named 552

entities that are not directly contained in the input 553

text. However, out of the six datasets used in this 554

work, none contain an example where this problem 555

occurs. 556

While the three functions is_left , is_span and 557

is_link seem very task-specific at a first glance, 558

they allow very flexible modeling of first-order re- 559

lationships between any kind of spans in all kinds 560

of span modeling tasks. This includes tasks like 561

coreference resolution and entity linking. Our refer- 562

ence implementation on GitHub2 includes easy-to- 563

use scripts to apply ITER to any kind of structured 564

prediction problem. 565
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A ITER with different PLMs814

We investigate the performance of ITER with a815

variety of different PLMs: T5, FLAN T5 (FT5),816

BART, DeBERTaV3 and ALBERT. The results can817

be seen in Table 4.818

Transformer NER RE+ Throughput
MODEL F1 F1 SAMPLES/S

ITER +

T5 (large) 91.0 69.4 175.510
FT5 (large) 91.5 70.5 176.056
BART (large) 91.4 68.5 172.871
DeBERTaV3 (large) 91.9 70.8 138.589
ALBERT (xxlarge-v2) 91.4 69.8 36.029

Table 4: Comparing the performance of ITER on
ACE05 using different base models: using encoders
from the autoregressive models (FLAN-)T5, BART,
and the encoder-only models DeBERTa and ALBERT.
Throughput was measured with batch_size = 8 for all
models on a single H100 GPU.

B Training819

The log-sum-exp operation LSE ∶ RN → R used820

in the following equations is defined as:821

LSE N
n=1(x) = log

N

∑
n=1

exp (xn) (8)822

where x ∈ RN is a vector of real numbers. We823

define η =#TE and φ =#TR to hold the number824

of entity and relation types. An ∈ An holds the set825

of correct actions at position n. Likewise, Bn ∈ Bn826

holds the set of correct bracket pairings at position827

n.828

During training, the model will learn to mini-829

mize the following loss function:830

LITER =
N

∑
n=1
∑

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Lis_left(n)
Lis_span(n)
Lis_link(n)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(9)831

is a sum of three loss values for each position in832

the input sequence x.833

The loss for placing left-bracket actions Lis_left 834

is defined as follows: 835

Lis_left(n) = LSE [
γn
0
] −LSE [

Γn
α ∗ −M

] (10) 836

using the feed-forward network from Eq. 4, we 837

define 838

γn = FFNis_left(hn) 839
840

Γn = γn + (1 − α) ∗ −M 841

where hn ∈ R is the real-valued output of the en- 842

coder model for input position n, M →∞. 843

α =

⎧⎪⎪
⎨
⎪⎪⎩

1 iff. [ ∈ An
0 otherwise

844

is equal to one if the model should perform a [ 845

action at time step n, effectively canceling out one 846

of the terms in the above equation. Accordingly, 847

we define L′is_span for a pairing between positions 848

n and m: 849

L
′
is_span(n,m) = LSE [

πn,m
0
]

−LSE [
Πn,m + βn,m ∗ −M
(1 − βn,m) ∗ −M

]

(11) 850

where M →∞, 851

πn,m = LSE
η
t=1 (ĥn,m,t)

Πn,m = LSE
η
t=1 (ĥn,m,t +∆n,m,t)

852

using the feed-forward network from Eq. 5 853

ĥn,m = FFNis_span(hn, hm) ∈ Rη 854

ĥn,m is a vector containing one logit per entity type 855

corresponding to whether positions n to m form a 856

span of a particular type. 857

βn,m =

⎧⎪⎪
⎨
⎪⎪⎩

0 iff. (n, t) ∈ Bm
1 otherwise

858

equals one iff. pairing n with m with any type is 859

not a correct action at time-step m. Using Eq. 11, 860

we define Lis_span for ω = 1: Lis_span(n) = 861

L′is_span(n,m) where 862

n =max{n ∣ n ≤m ∧ [ ∈ An} 863

is the closest of the preceding positions n ≤ m 864

where [ ∈ An. For ω > 1, we define Lis_span the 865

following: 866

Lis_span(m) =
n≤m
∑
n∈N
L
′
is_span(n,m) (12) 867
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Dataset Learning Rate (LR)
Learning Rate

Schedule Warmup Weight Decay Batch
Size

Activation
Function

T5 ITER T5 ITER T5 ITER T5 ITER

CoNLL04 5e−5 3e−4 linear
with warmup

linear
with warmup

5% 1% 0.100 0.020 8 ReLU

ADE 2e−4 2.9e−4 constant
with warmup

constant
with warmup

10% 1% 0.028 0.026 32 ReLU

ACE05 4.9e−5 5.9e−4 linear
with warmup

linear
with warmup

1% 5% 0.082 0.109 8 ReLU

SciERC 3e−5 1e−4 linear
with warmup

linear
with warmup

5% 0% 0.1 0.1 8 ReLU

GENIA 2.6e−4 8e−4 linear
with warmup

linear
with warmup

20% 10% 0.045 0.056 16 ReLU

CoNLL03 2e−5 3e−4 linear
with warmup

linear
with warmup

0% 0% 0.096 0.0098 8 ReLU

Table 5: Hyperparameter search results obtained with SMAC3 (Lindauer et al., 2022). The single best incumbent
configuration was selected for final training on each dataset. For SciERC, we used the provided values since the
found hyperparameters did yield subpar training results.

where N = ⟨n1 . . . nω⟩ are the ω closest preceding868

left bracket actions:869

ni =max{j ∣ j ≤m ∧ [ ∈ Aj ∧ j /∈ N<i} .870

We define871

∆n,m,t =

⎧⎪⎪
⎨
⎪⎪⎩

0 iff. (m, t) ∈ Bn, t ∈ TE

−M otherwise
872

(M →∞) to equal zero iff. There is a bracket pair-873

ing between the positions n ≤ m of type t ∈ TE ,874

and a large negative value otherwise, effectively875

canceling out any interaction between n and m of876

type t. To minimize the loss function, the model877

must assign negative values to non-existent interac-878

tions between two positions n and n of a particular879

type ti.880

Finally, Lis_link is defined as the binary cross881

entropy loss function:882

Lis_link(m) =
N

∑
n=1

φ

∑
i=1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µn,m,i iff. ] ∈ An
∧ ] ∈ Am

0 otherwise

(13)883

where884

µn,m,i = θn,m,i ∗ log (ĥn,m,i)

+ (1 − θn,m,i) ∗ log (1 − ĥn,m,i)
885

with the feed-forward network from Eq. 7:886

ĥ = FFNis_link(hn, hm).887

θn,m,i = 1 iff. The spans ending at positions n and888

m are in relationship i, otherwise θn,m,i = 0.889

C Proofs 890

Theorem 1. Let x ∈ VN be a sequence of tokens 891

with xN = EOS. If y ∈ Y1 × . . .YM is the decoded 892

sequence of actions, then M ≥ N holds for all 893

x ∈ VN. 894

Proof. Let am be the action chosen at step m, 895

# copy (m) = ∑mi=1 1[ai= copy ] be the number 896

of tokens xn that have been copied until generation 897

step m. Recall: generation completes at step m 898

when x# copy (m) = EOS ∧ am = copy (1), i.e. 899

the EOS token has been copied into the output. 900

Let #A(m) = m be the number of actions per- 901

formed up until a certain point m in the output 902

sequence y of length M . It holds that 903

#A(m) = ∑mi=1 1ai= copy
≥ 0

+ ∑
m
i=1 1ai≠ copy

≥ 0

. 904

With that, it follows that # copy (m) ≤ #A(m) 905

(2). Using (1) we get # copy (M) = N and with 906

(2) we then get N ≤ #A(M) = M Ô⇒ N ≤ 907

M ⇔M ≥ N 908

D Hyperparameter Search 909

Before training ITER with FLAN T5 (large) on 910

ACE05, CoNLL04, ADE, SciERC, CoNLL03 and 911

GENIA, we perform a hyperparameter search on 912

all datasets using SMAC3 (Lindauer et al., 2022). 913

For all datasets, we optimize for high RE+ or NER 914

F1, depending on the task. The search space con- 915

sists of learning rates lr ∈ [1e−3,2e−5], learning 916

rate schedules (constant or linear), warmup ra- 917

tio r ∈ {0.0,0.05,0.1,0.2} and weight decay rate 918

wd ∈ [0,0.1] for both the parameters of the base 919

model (T5 in our case) and the parameters above 920

that are responsible for modeling the functions 921

is_left , is_span and is_link , combined with the 922

12



batch size bs ∈ {8,16,32,64} and the choice of923

activation function act ∈ {GELU,ReLU, tanh}.924

The results of this hyperparameter search can be925

found in Table 5.926

E Pretraining ITER927

In this ablation study, we experiment with using928

the best performing CoNLL03 checkpoint for trans-929

fer learning by using it as a starting point used to930

train ACE05 and CoNLL04. On CoNLL04, we are931

able to increase the average model performance by932

0.6 F1 points to 76.3 F1. Using the same strategy933

for ACE05 does not yield any improvement at all,934

performance drops by an average of 1.8 F1 points.935

Dataset and Architecture NER RE+
MODEL PARAMS F1 F1

C
oN

L
L

04

ITER (ours)

+ FT5 (large) 393 M 89.7 ± 0.51 75.1 ± 0.39
+ FT5+CONLL03 (large) 393 M 91.1 ± 0.53 76.3 ± 0.80
+ DeBERTaV3 (large) 476 M 91.2 ± 0.20 75.9 ± 1.41

A
C

E
05

ITER (ours)

+ FT5 (large) 393 M 91.5 ± 0.16 70.5 ± 0.51
+ FT5+CONLL03 (large) 393 M 91.3 ± 0.15 68.3 ± 0.36
+ DeBERTaV3 (large) 476 M 91.9 ± 0.38 70.8 ± 0.47

Table 7: Comparing CoNLL03-pretrained ITER +
FT5+CONLL03 (large) with normal ITER versions on 3
seeds. FT5 refers to FLAN T5.

F On the Evaluation of PL Marker936

PL Marker follow Wang et al. and imple-937

ment the following evaluation for symmet-938

ric relations in ACE05 and SciERC: Their939

model predicts symmetric relations twice,940

outputting (head, symmetric_type, tail) and941

(tail, symmetric_type, head) for a symmetric942

relation between head and tail. In their evaluation,943

however, this counts as two different outputs, and944

thus they will be weighted twice in case of either945

being a correct model output. Apart from our evalu-946

ation, where symmetric relationships are output as947

a 3-element set {head, tail, symmetric_type,}948

and thus a correct output is not weighted twice,949

we also implement the evaluation according to950

PL Marker and Wang et al. and indicate results951

stemming from this evaluation with an asterisk952

(∗) in our result tables to allow a fair comparison953

between the two methods. This subtle change has954

an effect on the final performance for RE+, as can955

be seen in Tables 2 and 6.956
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Dataset Architecture # NER RE RE+ (strict)
W/ MODEL SEEDS PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1

CoNLL04

ITER (ours)

+ FLAN T5 (large) 5 89.5 ± 0.43 90.1 ± 0.80 89.8 ± 0.51 78.3 ± 2.04 73.0 ± 1.43 75.5 ± 0.29 77.9 ± 2.10 72.7 ± 1.38 75.2 ± 0.39
+ FLAN T5 (xl) 5 89.9 ± 0.56 90.3 ± 0.52 90.1 ± 0.44 77.8 ± 2.16 73.7 ± 1.25 75.7 ± 1.52 77.7 ± 2.13 73.6 ± 1.22 75.6 ± 1.49
+ DeBERTaV3 (large) 5 90.8 ± 0.28 91.7 ± 0.43 91.2 ± 0.20 79.2 ± 2.49 73.1 ± 1.24 76.0 ± 1.43 79.0 ± 2.51 73.0 ± 1.15 75.9 ± 1.41
+ BERT (large-cased) 3 87.3 ± 0.29 87.6 ± 0.67 87.4 ± 0.23 69.1 ± 2.13 67.2 ± 2.28 68.1 ± 1.25 69.0 ± 2.03 67.2 ± 2.03 68.0 ± 1.11

ACE05

ITER (ours)

+ FLAN T5 (large) 5 90.6 ± 0.38 92.4 ± 0.20 91.5 ± 0.24 75.3 ± 0.62 72.0 ± 0.48 73.6 ± 0.36 72.1 ± 0.76 69.0 ± 0.53 70.5 ± 0.51
+ FLAN T5 (xl) 5 90.6 ± 0.26 92.6 ± 0.26 91.6 ± 0.12 76.7 ± 0.72 73.5 ± 0.92 75.1 ± 0.49 73.5 ± 0.65 70.4 ± 1.00 71.9 ± 0.56
+ DeBERTaV3 (large) 5 91.1 ± 0.49 92.7 ± 0.30 91.9 ± 0.38 76.2 ± 0.90 71.6 ± 0.60 73.8 ± 0.54 73.1 ± 0.91 68.6 ± 0.40 70.8 ± 0.47
+ T5 (large) 3 90.0 ± 0.55 91.3 ± 0.02 90.7 ± 0.27 76.0 ± 1.12 63.1 ± 0.53 69.0 ± 0.58 73.1 ± 1.01 60.7 ± 0.65 66.3 ± 0.62
+ BART (large) 3 90.7 ± 0.27 92.0 ± 0.08 91.4 ± 0.15 74.6 ± 0.77 68.3 ± 0.82 71.3 ± 0.50 71.7 ± 0.35 65.6 ± 0.92 68.5 ± 0.42
+ ALBERT (xxlarge-v2) 3 90.8 ± 0.32 92.1 ± 0.23 91.4 ± 0.23 74.9 ± 2.32 70.3 ± 1.24 72.5 ± 0.70 72.1 ± 2.16 67.7 ± 1.28 69.8 ± 0.67

ACE05 (∗)

ITER (ours)

+ FLAN T5 (large) 5 90.6 ± 0.38 92.4 ± 0.20 91.5 ± 0.24 75.5 ± 0.59 72.5 ± 0.64 74.0 ± 0.40 72.5 ± 0.34 69.6 ± 0.71 71.1 ± 0.59
+ FLAN T5 (xl) 5 90.6 ± 0.26 92.6 ± 0.26 91.6 ± 0.12 77.0 ± 0.62 74.1 ± 0.84 75.6 ± 0.37 73.9 ± 0.51 71.2 ± 0.93 72.6 ± 0.44
+ DeBERTaV3 (large) 5 91.1 ± 0.49 92.7 ± 0.30 91.9 ± 0.38 76.5 ± 0.90 72.2 ± 0.66 74.3 ± 0.56 73.6 ± 0.91 69.4 ± 0.54 71.4 ± 0.53
+ T5 (large) 3 90.0 ± 0.55 91.3 ± 0.02 90.7 ± 0.27 76.4 ± 1.05 63.7 ± 0.38 69.4 ± 0.43 73.6 ± 0.89 61.4 ± 0.50 67.0 ± 0.42
+ BART (large) 3 90.7 ± 0.27 92.0 ± 0.08 91.4 ± 0.15 75.0 ± 0.76 69.0 ± 0.57 71.9 ± 0.50 72.3 ± 0.33 66.4 ± 0.61 69.2 ± 0.29
+ ALBERT (xxlarge-v2) 3 90.8 ± 0.32 92.1 ± 0.23 91.4 ± 0.23 75.2 ± 2.30 70.8 ± 1.08 72.9 ± 0.78 72.6 ± 2.16 68.4 ± 1.13 70.4 ± 0.75

ADE

ITER (ours)

+ FLAN T5 (large) 10 91.1 ± 0.93 92.1 ± 0.85 91.6 ± 0.73 83.6 ± 1.46 85.0 ± 1.85 84.3 ± 1.46 83.6 ± 1.46 85.0 ± 1.85 84.3 ± 1.46
+ FLAN T5 (xl) 10 91.2 ± 1.37 93.3 ± 0.60 92.2 ± 0.89 84.3 ± 1.95 87.0 ± 1.38 85.6 ± 1.42 84.3 ± 1.95 87.0 ± 1.38 85.6 ± 1.42
+ DeBERTaV3 (large) 10 90.6 ± 1.24 92.7 ± 0.90 91.6 ± 0.77 83.2 ± 2.00 86.3 ± 1.85 84.7 ± 1.39 83.2 ± 2.01 86.3 ± 1.86 84.7 ± 1.40
+ BERT (large-cased) 10 89.9 ± 0.97 91.8 ± 1.02 90.9 ± 0.85 81.4 ± 2.16 84.4 ± 2.22 82.8 ± 1.83 81.4 ± 2.16 84.4 ± 2.22 82.8 ± 1.83

SciERC

ITER (ours)

+ FLAN T5 (large) 5 64.9 ± 1.05 62.8 ± 0.59 63.8 ± 0.75 51.7 ± 2.53 36.0 ± 2.19 42.3 ± 1.12 38.5 ± 1.69 26.8 ± 2.12 31.5 ± 1.47
+ FLAN T5 (xl) 5 68.3 ± 0.50 69.9 ± 1.19 69.1 ± 0.46 56.7 ± 0.83 46.4 ± 2.07 51.0 ± 1.12 43.2 ± 0.78 35.4 ± 1.35 38.9 ± 0.58
+ DeBERTaV3 (large) 5 67.3 ± 1.12 69.0 ± 1.93 68.1 ± 1.21 56.0 ± 1.39 45.5 ± 0.95 50.2 ± 0.22 41.2 ± 1.51 33.5 ± 1.92 36.9 ± 1.62

SciERC (∗)

ITER (ours)

+ FLAN T5 (large) 5 64.9 ± 1.05 62.8 ± 0.59 63.8 ± 0.75 52.7 ± 2.38 36.8 ± 2.39 43.3 ± 1.21 39.1 ± 1.61 27.3 ± 2.39 32.1 ± 1.74
+ FLAN T5 (xl) 5 68.3 ± 0.50 69.9 ± 1.19 69.1 ± 0.46 57.7 ± 1.00 48.3 ± 2.28 52.6 ± 1.04 44.2 ± 1.01 37.0 ± 1.53 40.2 ± 0.54
+ DeBERTaV3 (large) 5 67.3 ± 1.12 69.0 ± 1.93 68.1 ± 1.21 57.6 ± 1.38 47.9 ± 1.16 52.2 ± 0.28 42.5 ± 1.29 35.4 ± 2.09 38.6 ± 1.63

CoNLL03

ITER (ours)

+ FLAN T5 (large) 5 90.9 ± 0.59 92.3 ± 0.28 91.6 ± 0.39
+ FLAN T5 (xl) 5 91.2 ± 0.87 92.4 ± 0.53 91.8 ± 0.69
+ DeBERTaV3 (large) 5 91.4 ± 0.70 92.1 ± 0.33 91.8 ± 0.29

GENIA

ITER (ours)

+ FLAN T5 (large) 5 81.7 ± 3.47 78.7 ± 7.25 80.2 ± 2.52
+ FLAN T5 (xl) 5 81.6 ± 0.60 80.8 ± 0.76 81.2 ± 0.25
+ DeBERTaV3 (large) 5 82.0 ± 0.24 79.2 ± 0.49 80.6 ± 0.24

Table 6: Final training results for all used datasets: CoNLL04, ACE05, ADE, SciERC, CoNLL03 and GENIA.
We run experiments on five seeds (three for ablation studies) and report the mean performance and the standard
deviation. (∗): On the SciERC and ACE05 datasets, we implement PL Marker and Wang et al.’s strict F1 scoring
for symmetric relations to get comparable results. More information regarding this evaluation method can be found
in Appendix F.
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