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ABSTRACT

Deep Neural Networks (DNNs) have shown great promise in multiple fields, but
ensuring their reliability remains a challenge. Current explainable approaches for
DNNs mainly aim at understanding DNNs’ behavior by identifying and prioritiz-
ing the influential input features that contribute to the model’s predictions, often
overlooking vulnerable regions that are highly sensitive to small perturbations.
Traditional norm-based adversarial example generation algorithms, due to their
lack of spatial constraints, often distribute adversarial perturbations throughout
images, making it hard to identify these specific vulnerable regions. To address
this oversight, we introduce an innovative method that uncovers these vulnerable
regions by employing adversarial perturbations at diverse locations. Specifically,
our method operates within a one-pixel paradigm. This enables detailed pixel-
level vulnerability assessments by evaluating the effects of individual perturba-
tions on predictions. By leveraging the robust Sharing Differential Evolution Al-
gorithm, we can simultaneously identify multiple one-pixel perturbations, forming
a vulnerable region. We conduct thorough experiments across a variety of network
architectures and adversarial training techniques, showing that our approach not
only effectively identifies vulnerable regions but also provides invaluable insights
into the inherent vulnerabilities present in a diverse range of deep learning models.

1 INTRODUCTION

Deep Neural Networks (DNNs) have led to groundbreaking advancements in various complex fields,
such as computer vision and natural language processing, setting new benchmarks for both accuracy
and efficiency He et al. (2016); Pouyanfar et al. (2017); Vaswani et al. (2017); Liu et al. (2021).
Despite their remarkable proficiency, the challenge of achieving a comprehensive and reliable un-
derstanding of these networks remains a pressing issue. Much of the existing research on explainable
DNNs has focused on identifying the salient features that influence DNNs’ decisions Zeiler & Fer-
gus (2014); Zhou et al. (2016); Selvaraju et al. (2017); Yang et al. (2021).

While significant strides have been made, a notable challenge remains: pinpointing specific network
regions particularly vulnerable to subtle adversarial manipulations. A straightforward approach for
identifying these vulnerable regions is by analyzing the locations where perturbations effectively
deceive the DNNs. Common norm-based methods, namely, ℓ0, ℓ2, and ℓ∞ approaches for creating
adversarial examples, come with inherent constraints. Those that allow unrestricted perturbations,
such as the ℓ2 and ℓ∞ methods, often distribute perturbations densely across images, obscuring
the identification of specific vulnerable regions Carlini & Wagner (2017a); Moosavi-Dezfooli et al.
(2017); Madry et al. (2018). On the other hand, methods that limit the number of pixel changes (i.e.,
ℓ0 methods) Modas et al. (2019); Croce et al. (2022) tend to distribute perturbations sparsely across
images. These methods rely on the collective effect of the diffused perturbations to deceive DNNs,
complicating the task of analyzing the true vulnerabilities and their severity in specific vulnerable
regions. Specifically, the one-pixel attack Su et al. (2019) focuses only on the most harmful pixel,
limiting its ability to fully reveal these critical vulnerable regions.

Our work addresses the limits of current large-scale and sparse perturbation methods by utilizing
diversely located one-pixel adversarial perturbations to occupy vulnerable regions. The characteris-
tic of this one-pixel approach simplifies attributing DNN errors to distinct input points. This lets us
assess vulnerability based on the influence of these one-pixel perturbations on DNN predictions, as
illustrated in Fig. 1. Additionally, varying the perturbation locations ensures a comprehensive reve-
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Figure 1: Comparing with three different perturbations generated by PGD (ℓ∞) Madry et al. (2018),
CW (ℓ2) Carlini & Wagner (2017b), and RSAttack(ℓ0) Croce et al. (2022) for vulnerable region dis-
covery. Since these methods incorporate different perturbed pixels, we evenly distribute the reduced
confidence of the ground truth across perturbed pixels. Notably, as perturbations generated by the
PGD attack encompass the entire image, each pixel is thought to contribute just a little. In contrast,
our approach reveals detailed vulnerable regions with a bar that indicates the level of vulnerability.

lation of potential vulnerabilities, offering a thorough analysis of these susceptible areas. To avoid
the expensive computational cost of a brute-force approach that enumerates each pixel value, we
leverage a powerful evolutionary algorithm-Sharing Differential Evolution. This algorithm is par-
ticularly efficient, evolving a set of candidate solutions toward a specific optimization direction and
obtaining multiple solutions simultaneously. Furthermore, its unique sharing mechanism reduces
the likelihood of generating similar solutions, such as pixels located nearby, ensuring the production
of diverse one-pixel perturbations. The contribution can be summarized as follows:

• We propose a novel approach to identify vulnerable regions in DNNs through the use of
diversely located adversarial perturbations. Specifically, we focus on a one-pixel scenario,
offering a pixel-level vulnerability assessment.

• We adapt a powerful evolutionary algorithm to efficiently generate a set of diverse adver-
sarial examples, without requiring access to the internal information of DNNs.

• Our extensive experiments demonstrate the effectiveness of our approach, yielding not only
diverse adversarial examples but also providing novel insights into the inherent vulnerabil-
ities of DNNs.

2 RELATED WORK

2.1 PERTURBATION-BASED METHODS FOR UNDERSTANDING DNNS

Perturbation-based methods have emerged as powerful tools to delve deeper into the intricacies
of Deep Neural Networks (DNNs), mainly by altering the input and observing the resulting shifts
in predictions. The Occlusion method Zeiler & Fergus (2014); Petsiuk et al. (2018) employs a
gray square mask on parts of the input image and examine the variations in model predictions.
LIME Ribeiro et al. (2016), leverages the occlusion of superpixels and uses linear models to accu-
rately emulate the decision boundaries defined by the original deep model. However, the obtained
saliency maps often lack precision due to the coarse-grained nature of superpixels. Taking the mor-
phology of the objects into consideration, Fong et al. (2019) and Yang et al. (2021) both introduce
optimization methods to iteratively refine the obtained saliency map. Despite the proficiency of these
methods in identifying critical regions in an input image relative to the DNN output, they exhibit
limitations in exposing any vulnerabilities of DNNs. As such, our research shifts focus towards the
identification of these latent vulnerable regions within DNNs.

2.2 ADVERSARIAL VULNERABILITIES

Adversarial attacks, which attempt to fool deep models by exploiting their adversarial vulnerability,
can typically be categorized into white-box and black-box attacks. A white-box attack means that

2



Under review as a conference paper at ICLR 2024

attackers have full access to the DNN Madry et al. (2018); Carlini & Wagner (2017b). Black-
box attacks assume that attackers are limited to only the DNN input and output values, making
it necessary to query the target DNN model (as a black box) a large number of times Chen et al.
(2017); Ilyas et al. (2018); Guo et al. (2019). Recent studies on black-box attacks have prioritized
improving the efficiency of adversarial example generation Andriushchenko et al. (2020); Sun et al.
(2022); Shi et al. (2022); Bai et al. (2023). While such research excels at finding a single adversarial
example to attack the DNN, it does not reveal any other vulnerability of DNNs. It is challenging to
pinpoint the specific locations and characteristics of potential DNN vulnerabilities.

Few-pixel attacks Rao et al. (2020); Croce et al. (2022), which aim to deceive DNNs using the
fewest perturbed pixels, highlighting that certain pixels play a pivotal role in misleading DNNs.
Nonetheless, pinpointing the exact influence of these perturbed pixels on inducing incorrect predic-
tions remains a significant challenge. An extreme form of this, the one-pixel attack, was introduced
by Su et al. (2019). This study primarily demonstrates the feasibility of such an extreme attack with-
out providing detailed analyses of the regions susceptible to these minor perturbations. To bridge
this gap, we employ the Sharing Differential Evolution method to craft diverse adversarial one-pixel
perturbations at varied locations, facilitating a more comprehensive analysis of the potential vulner-
able areas within the networks.

3 PROPOSED APPROACH

3.1 PROBLEM DEFINITION

Consider a data pair (x, y) and a classifier C(x) = argmaxi f(x)i, where f(x)i is the confidence
score of the i-th class predicted by the DNN. If the DNN makes a correct prediction, we have
C(x) = y. The goal of the adversary is to generate the adversarial example x′ = x+ δ and deceive
the classifier to give a false prediction C(x′) ̸= y. The perturbations δ are normally bounded by
the ℓp norm for visual invisibility. Then the search problem can be transformed into an optimization
problem with constraints Szegedy et al. (2013):

argmin
δ

f(x+ δ)y s.t. ||δ||p ≤ ϵp, (1)

where y is the ground truth label and ϵp is the maximum allowed perturbation strength. In our
approach, we allow perturbation of only one pixel, aiming to obtain a more precise assessment
of vulnerability levels. Unlike previous work, which generates a single adversarial example for
each test image, our approach identifies a set of diverse adversarial perturbations, denoted as A =
{δ1, δ2, ..., δn}, to ensure that:

d(δi, δj) ̸= 0 s.t. δi, δj ∈ A (2)

Here, d(·) represents the spatial distance (Euclidean distance) between two perturbed one-pixels.

3.2 GENERATION OF DIVERSE ADVERSARIAL EXAMPLES

Differential Evolution (DE) Storn & Price (1997), a population-based algorithm, has emerged as a
potent tool for tackling complex optimization challenges. It has demonstrated success in addressing
a wide range of scientific problems, particularly in the realm of black-box problems. In this frame-
work, we represent the population of candidate solutions as S ∈ RP×D, where P represents the
population size, and D corresponds to the dimensionality of the optimization problem. Throughout
the evolution of the algorithm, these solutions are iteratively refined using mutation, recombination,
and selection for optimization.

In the realm of one-pixel attacks, each candidate solution, represented as zi ∈ S, can be encoded as
a 5-element tuple encapsulating the coordinates alongside the RGB values of the perturbed pixel in
question. During the mutation process, a new perturbed pixel, termed the mutant vector vi ∈ V, is
generated for each perturbed pixel zi ∈ S based on a weighted differential scheme:

vi = zr1 +W (zr2 − zr3) s.t. r1 ̸= r2 ̸= r3 (3)

where W is a positive scaling factor to control the scale of the difference vector. The indices
r1, r2, r3 are mutually exclusive random integers within the range [1, P ]. Then a trial vector ui ∈ U
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Figure 2: The final solutions obtained using one-pixel attack Su et al. (2019) and our algorithm ‘on
32×32 images of CIFAR-10. Three columns for each example correspond to the original image,
the result of 10 independent one-pixel attacks, and the result of a single run of our algorithm.
Each point on the heatmap represents a successful one-pixel perturbation, with the brightness of the
color indicating the reduction of confidence for the ground truth.

Algorithm 1: Generation of Diverse One-pixel Perturbations
Input: Selected image I , deep neural network f for querying, population size P , number of

generations N , mutation rate W , crossover rate R, sharing radius γ, hyperparameter α
1: Initialize the candidate solutions for the first generation, denoted as S0 ∈ RP×5.
2: Evaluate raw fitness F (S0) by querying f with Image I and perturbed pixels z ∈ S0.
3: for g = 1, ..., N do
4: Execute the mutation process to obtain the set of mutant vectors V using Eq. 3.
5: Execute the recombination process to obtain the set of trial vectors U using Eq. 4.
6: Evaluate raw fitness F (U) by querying f with Image I and perturbed pixels u ∈ U.
7: Merge U and Sg−1 to create the extended set S′g−1 ∈ R2P×5.
8: Compute the Euclidean distance between each pair of perturbed pixels in S′g−1.
9: Calculate the sharing fitness F ′(S′g−1) using Eqs. 5 and 6.

10: Discard the worst half of the population based on sharing fitness F ′(S′g−1) to form the new
generation Sg .

11: if The individual with the highest raw fitness in S′g−1 is removed then
12: Replace the least fit individual in Sg with this removed individual.
13: end if
14: Record the raw fitness F (Sg).
15: end for
Output: Return the population of the final generation SN .

is generated via the recombination of the mutant vector vi and its corresponding parent vector zi:

ui,j = F

{
vi,j , c ≤ R or j = j′

zi,j , otherwise
(4)

where c is a random number within the range [0,1]. The subscript (i, j) denotes the j-th variable of
the i-th individual. And R is a hyperparameter known as the crossover rate, indicating the likelihood
that a variable in the trial vector originates from the corresponding variable in the mutant vector. j′
is an integer randomly sampled from [1, D] and is used to make sure at least one of the variables
of the trial vector comes from the mutant vector. Subsequently, each trial vector is employed to
substitute the corresponding pixel in the original image, facilitating an assessment of the extent
to which it impairs the DNN’s ability to accurately recognize the selected image. The generated
solution ui will replace its corresponding parent solution zi if it leads to greater impairment in
the DNN’s recognition. However, such algorithms are designed to converge towards a particular
optimal solution. As illustrated in Fig. 2, only a very small number of pixels have been pinpointed
as viable for such a one-pixel attack Su et al. (2019), thereby making them unsuitable for uncovering
vulnerable regions. To address this issue, we adapt a sharing differential evolution for the diversely
located one-pixel perturbations.

The sharing mechanism for the evolution algorithm (EA) was introduced in Goldberg & Richardson
(1987) with the goal of locating diverse solutions simultaneously. The core idea of the fitness sharing
is to penalize individuals for occupying the same regions by applying a cost to their fitness scores.
In general, fitness sharing serves to reduce the payoff of the densely populated area by dividing the
raw fitness of an individual by the approximate number of similar individuals Darwen & Yao (1996).
The shared fitness F ′

i of individual i is typically calculated as shown below:

F ′
i =

Fi∑P
j=1 sh(di,j)

(5)

4



Under review as a conference paper at ICLR 2024

Figure 3: Diverse adversarial examples and the corresponding vulnerable region. The set of 8
small images shows the generated adversarial examples. The middle heatmap indicates one-pixel
perturbation locations, with colors denoting reduced confidence in the ‘cat’ label. The rightmost
image presents the heatmap overlaid on the original image, enhanced with Gaussian smoothing.

where Fi is the original fitness score and p is the number of individuals included in the population.
In the context of diverse one-pixel attack strategies, we define the fitness function Fi as 1 − f(I ′)y
for non-targeted attacks, and FI = f(i′)t for targeted attacks. Here, f(I ′)y and f(I ′)t stand for the
predict confidence in the ground truth label and a designated false class, respectively. We use I ′ to
denote the image disturbed by a one-pixel perturbation from either S or U, and employ sh(·) as the
sharing function defined as follows::

sh(di,j) =

{
1− (di,j/γs)

α, d < γs
0, otherwise

(6)

where di,j denotes the distance between the i-th individual and the j-th individual, γs is the sharing
radius and α controls the shape of the sharing function. In our work, we utilize Euclidean distance to
prevent the algorithm from converging to pixels in the same position for obtaining diverse solutions.

In addition to the fitness function, the sharing DE algorithm modifies conventional DE in the fol-
lowing way. Instead of replacing the corresponding parents, all the newly generated offspring are
added to the population to obtain sharing fitness value F ′. Subsequently, we remove the worst half
to stabilize the population size for the next generation. The Elitism ensures the preservation of the
best-found solution throughout the optimization process: the best solution with original fitness F
are used to replace the worst individual in the population if it gets removed with scaled fitness F ′.
The searching process is presented in Algorithm 1.We denote raw fitness as F (·) and sharing fit-
ness as F ′(·). And they are specifically applicable to the set elements indicated within the brackets,
providing the object value for the individual selection process.

4 EXPERIMENTAL STUDIES

We conduct extensive experiments using PyTorch on a single Tesla V100 GPU with two public
image datasets: CIFAR-10 and ImageNet. For CIFAR-10, we evaluate our algorithm on VGG16
(86.04% accuracy), ResNet18 (94.03% accuracy), and Network in Network (91.49% accuracy). For
ImageNet, we test on AlexNet (56.5% accuracy) and ResNet50 (75.9% accuracy). The results shown
are averages from three independent experiments, involving non-targeted attacks to pinpoint vulner-
able regions regardless of false predictions, and targeted attacks to uncover specific original-target
class vulnerabilities. Throughout the following discussion, we refer to ‘images with vulnerable
regions’ as ‘vulnerable images’. Implemented details can be found in Appendix A.2.

4.1 DISCOVERING VULNERABLE REGIONS WITH DIVERSE ADVERSARIAL EXAMPLES

4.1.1 DIVERSE ADVERSARIAL EXAMPLES WITH CIFAR-10

In the non-targeted and targeted attack scenarios, we randomly sample 1,000 and 500 correctly clas-
sified images from the CIFAR-10 test set, respectively. Specifically, for the targeted attack scenario,
we attempt to perturb each of the selected 500 images into each of the other 9 categories. Results
are presented in Table 1. For visualization of the vulnerable regions, the heatmap is overlaid on top
of the images. The value of the heatmap represents the change in confidence of the class label. We
also apply a Gaussian filter to the heatmap for better visualization. Examples of discovered vulner-
able regions are shown in Fig. 4. Additional examples can be found in Fig 12 of Appendix A.7.
Furthermore, to highlight the superiority of our algorithm in pinpointing diverse one-pixel perturba-
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Table 1: Overall results on CIFAR-10 dataset. Left: Non-targeted attacks Right: Targeted attacks
Non-targeted ResNet18 NiN VGG16

Success rate 28.4% 31.6% 60.2%

Pixel number 37.3 40.8 41.7

Targeted ResNet18 NiN VGG16

Success rate 5.0% 5.6% 13.2%

Pixel number 29.4 27.9 20.6

Figure 4: Heatmaps of vulnerable regions on CIFAR-10 (left) and ImageNet (right)

tions, we compare it with ten runs of the one-pixel attack Su et al. (2019). Results in Appendix A.3
demonstrates the effectiveness of our approach in identifying vulnerable regions.

Diverse adversarial examples with non-targeted scenario Among the three DNN types we eval-
uated, our algorithm consistently demonstrated proficiency in generating diverse one-pixel adversar-
ial examples. Notably, VGG16 emerged as the most vulnerable, with a success rate of 60.2%, almost
twice as high as the 31.6% rate of the NiN network. This high success rate suggests that a significant
portion of data points lies near the decision boundary along a single dimension. While success rates
vary among the three DNNs, indicating the distinct likelihood of discovering vulnerable regions, the
number of detected one-pixel perturbations for each vulnerable image exhibits remarkable similarity,
with a maximum difference of 4.4 between VGG16 and ResNet18.

Diverse adversarial examples with targeted scenario With the lowest success rate being 5.0%,
it’s clear that vulnerabilities are class-specific. Particularly, VGG16 exhibits the largest vulnerable
regions for non-targeted attacks, averaging 41.7 pixels. However, when considering class-specific
vulnerabilities, VGG16’s pixel count drops to 20.6, the smallest among the three studied networks.
Further analysis reveals that VGG16 has the highest diversity of target classes where a single sample
can be successfully perturbed to, averaging 2.0 classes, compared to 1.7 (ResNet18) and 1.6 (NiN).
This suggests their vulnerabilities are distributed across multiple target classes.

4.1.2 DIVERSE ADVERSARIAL EXAMPLES WITH IMAGENET

In the case of non-targeted vulnerable region discovery, we sample 500 correctly classified images.
Due to the significant computational load involved in perturbing each correctly classified sample
into the remaining 999 classes, we select five parent classes, each including two child classes: Bird
(including snowbird, chickadee), Dog (elkhound, malamute), Plane (space shuttle, warplane), Cat
(tabby, Persian), and Ship (pirate ship, schooner). Each child class contains 50 images.

Diverse adversarial examples with non-targeted scenario Our algorithm is still capable of gen-
erating diverse one-pixel adversarial examples with high-resolution images, as evidenced in Table 2.
Both DNNs exhibit similar success rates and pixel numbers, differing by only 1% and 0.1, respec-
tively. Examples of vulnerable regions for high-resolution images are presented in the right three
images of Fig. 4. However, it’s worth noting that the average number of one-pixel perturbations ac-
counts for only a small fraction of the total pixels in these images, making the identified vulnerable
regions relatively smaller and sparser compared to those on CIFAR-10.

Table 2: Results on ImageNet
Non-targeted AlexNet ResNet50

Success rate 11.7% 10.7%

Pixel number 20.5 20.6

Diverse adversarial examples with targeted scenario
While thousands of attacks are applied to each DNN, only
four successful attacks occur for AlexNet, and fourteen
are observed for ResNet50, resulting in a success rate of
under 1%. Notably, all successful targeted attacks hap-
pen between pairs of child classes. These results can be
attributable to several reasons: i) DNNs trained on higher-resolution ImageNet images are less vul-
nerable to one-pixel modifications, as evidenced in the non-targeted attack section. ii) In our ex-
periments on CIFAR-10, we find that vulnerable regions typically only enable crossing the decision
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Figure 5: Number of successful attacks (vertical axis) for a specific class acting as the original class.
Orange bar: Number of successful attacks where one-pixel perturbations are located in the image
background. Blue bar: Number of successful attacks where one-pixel perturbations are found only
in the foreground.

boundaries of a limited number of classes. On average, each sample can be perturbed to 1.7, 1.6,
and 2.0 classes for ResNet18, NiN, and VGG16, respectively. For ImageNet models, we calculate
an average of 1.04 classes for AlexNet and 1.13 classes for ResNet50 can be perturbed to, based
on non-targeted attack results. Considering we select only 10 classes, there’s no guarantee that the
targeted vulnerable classes are among them. This reveals limitations of our algorithm when applied
to high-resolution images. We plan to conduct more comprehensive studies on various types of vul-
nerable regions (e.g., regions with small patches in Appendix A.6) in models trained on ImageNet
in future work.

4.2 VULNERABLE REGIONS LOCATIONS

Figure 6: Examples of segmentation with Grabcut

In addition to evaluating the size of vulnera-
ble regions, we are particularly interested in ex-
ploring whether these regions might appear in
the backgrounds of images. This exploration is
driven by our desire to understand the degree to
which background elements can influence DNNs’ final predictions. Experiments are conducted with
CIFAR-10 for both targeted and non-targeted scenarios. Since CIFAR-10 images are low-resolution
and may lack a clear demarcation between foreground and background, we utilize the Grabcut al-
gorithm Rother et al. (2004) to segment the identified objects and background, Examples of this
segmentation are provided in Fig. 6. To evaluate the influence of the location of vulnerable regions,
we employ following metrics: 1) Background Percentage: This metric quantifies the proportion of
vulnerable images where one-pixel perturbations appear in the background. 2) BPixel Percentage:
This denotes the ratio of one-pixel perturbations that are identified in the background. 3) Fore-
ground/Background Effect: This metric measures the mean confidence shift for the true label in
non-targeted attacks and the mean confidence boost for a chosen false class in targeted attacks.

4.2.1 VULNERABLE REGIONS LOCATIONS IN NON-TARGETED SCENARIO

We re-sample 1,000 correctly classified images from the test set (100 images per class) to evaluate all
three DNNs. The results, illustrating the impact of perturbation positions, are presented in Table 4.

Among the studied networks, NiN exhibits the highest dependence on vulnerable contextual infor-
mation. Specifically, 67.1% of the vulnerable images for NiN are identified one-pixel perturbations
in the background, which is 6.5% higher than that for ResNet18 and 1% higher than that for VGG16.
Furthermore, 39.1% of all one-pixel perturbations for NiN are detected in the background, surpass-
ing the rates for ResNet18 and VGG16 by 10.4% and 4.9%, respectively. In contrast, ResNet18
shows reduced reliance on vulnerable background features compared to the other models. However,
the one-pixel perturbations in recognized objects (foreground) for ResNet18 result in more signifi-
cant misclassifications: 10% more compared to NiN and 18.9% more than VGG16. This observation
highlights ResNet18’s increased sensitivity to changes in the foreground, suggesting the model gives
higher importance to object-specific vulnerable features to achieve higher accuracy.

While one-pixel perturbations in the foreground do result in a larger drop in the confidence of the
ground-truth label, it’s noteworthy that perturbations in the image background still lead to a signifi-
cant average reduction of 54.6% in label confidence. In fact, for over 60% of the images, we identify
vulnerable regions in the background.
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Table 4: Overall results on CIFAR-10 dataset. Left: Non-targeted attacks Right: Targeted attacks
Non-Targeted ResNet18 NiN VGG16

Background percentage 60.6% 67.1% 66.1%
BPixel percentage 29.2% 39.6% 34.7%

Foreground effect 74.1% 64.1% 55.2%
Background effect 58.3% 58.1% 47.3%

Targeted ResNet18 NiN VGG16

Background percentage 54.2% 60.7% 59.1%
BPixel percentage 30.4% 37.5% 34.8%

Foreground effect 73.3% 62.6% 46.9%
Background effect 63.2% 57.1% 41.9%

ResNet18 NiN VGG16 Plane Bird Frog

Figure 7: Vulnerable regions among different DNNs(left) and targeted classes(right)

Locations with different original classes are quite differently The number of vulnerable images
belonging to a specific class is depicted in Fig. 5. Notably, classes like planes, birds, and ships
consistently exhibit a high percentage of vulnerable images with one-pixel perturbations in their
backgrounds. This trend might be attributed to the simplicity of the backgrounds associated with
these classes. For instance, ship images often feature the sea as a background. To explore the
prevalence of certain background attributes in the training data, we randomly sample additional
1000 images (100 images per class) from the training set. We find that the attribute ‘sky’ appeared
in 81 out of 100 sampled images belonging to the plane class. For the ship class, 62 images have
the attribute of ‘sky’ and 90 images have the attribute of ‘sea’ out of the sampled 100 images. These
insights imply that the vulnerability to one-pixel perturbations in classes like planes and ships might
arise from the dominant presence of particular background attributes in the training data.

Table 3: Sharing Ratio Across DNN Pairs
Res&NiN Res&VGG VGG&NiN All

Image ratio 14% 16.5% 19.3% 9.8%

Pixel ratio 7.9% 6.2% 5.4% 1.2%

Vulnerable regions are shared among differ-
ent types of DNNs We are curious to see
if such vulnerable regions are shared across
models given adversarial examples are usually
transferred across different models Inkawhich et al. (2019). The results are presented in Table 3.
The ‘Image Ratio’ indicates the percentage of tested images that are identified as vulnerable by both
DNNs listed in the first row of the table. Meanwhile, ‘Pixel Ratio’ signifies the average overlap of
vulnerable regions (i.e., positions of one-pixel perturbations) among these shared vulnerable images.
We find that only a small percentage of images are identified as vulnerable across different DNNs,
with the highest overlap being 19.3% between VGG16 and NiN. The overlap in vulnerable regions
within these shared vulnerable images is limited. Heatmaps for a common vulnerable image are
provided in the left of Fig. 7. Additional examples can be found in Fig. 13 of Appendix A.7.

4.2.2 VULNERABLE REGIONS LOCATIONS IN THE TARGETED SCENARIO

In the targeted vulnerable region discovery experiment, we re-sample 500 classified images (50 im-
ages per class). Table 4 presents the ratio of one-pixel perturbations located in the image background
and their corresponding effects on different DNNs. A detailed analysis of one-pixel perturbation lo-
cations across various original-target class pairs is provided in Appendix A.4.

Some vulnerable regions are associated with multiple targeted classes We visualize the
heatmap of vulnerable regions in the right of Fig. 7, where each pixel’s intensity corresponds to
increase in confidence for the target classes. Additional examples are provided in Fig. 14 of Ap-
pendix A.7. With these examples, we discover that there exist common vulnerable regions across
different target classes. This indicates that the samples can penetrate the decision boundaries of
multiple classes along these specific dimensions. However, a detailed analysis revealed that the per-
centage of attacked positions, which can lead to perturbations causing more than one target classes,
is only 3.0%, 1.9%, and 2.9% for ResNet18, NiN, and VGG16, respectively. While the vulnera-
ble regions primarily concentrate on distinct areas for different target classes, there exist common
vulnerable regions shared by multiple target classes.
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4.3 VULNERABLE REGIONS WITH ADVERSARIAL TRAINING

Adversarial training is one of the most effective methods to defend against ℓ∞ attacks. In this
section, we evaluate the influence on CIFAR-10’s vulnerable regions, focusing on two prominent
adversarial training algorithms: PGD Madry et al. (2018) and TRADES Zhang et al. (2019) using
ResNet18. The detailed training setup can be found in Appendix A.2. Additionally, a comprehen-
sive analysis of the locations of one-pixel perturbations across different original-target class pairs is
available in Appendix A.5.

Table 5: Attack results with different
adversarial trained models

PGD TRADES

Success rate 14.0% 9.7%
Pixel number 29.0 17.8

Background percentage 68.9% 65.8%
BPixel percentage 49.2% 53.6%

Foreground effect 31.4% 5.0%
Background effect 20.9% 7.6%

Adversarial training reduce the vulnerabilities along
single pixels We apply the non-targeted attack on the
same sampled 1000 images for standard trained models.
The results are presented in Table 5. The number of
vulnerable images is significantly diminished with DNNs
trained with PGD (-14.4%) and TRADES (-18.7%) algo-
rithm. Besides the vulnerable regions getting shrunk, we
can observe that sensitivity of vulnerable regions is also
greatly weakened. These results provide further evidence
that the ℓ∞ adversarial training can smooth the loss land-
scape not only within the ℓ∞ ball Madry et al. (2018) but along every single dimension of images.

Natural PGD TRADES

Figure 8: Vulnerable regions with Stan-
dard/PGD/Trades trained models.

The effect of adversarial training on the lo-
cation of vulnerable regions While the suc-
cess rate significantly drops, vulnerable regions
are more likely to be found in the background
compared to standard trained models . This
suggests adversarial training may smooth loss
landscape along dimensions on objects better.
The impact on the output of the model gets
largely reduced wherever the location of one-
pixel perturbations is. Especially for the DNN
trained with TRADES, 69.1% and 50.7% reduction on the change of confidence of the label can be
observed. An interesting phenomenon is noticed, the one-pixel perturbations located in the back-
ground have a slightly larger influence than that in the foreground for TRADES trained models. This
suggests that TRADES works better on attenuating the effect of foreground one-pixel perturbations.
Examples of vulnerable region heatmap for DNNs with different training algorithms are presented
in Fig. 8, and more examples can be found in Fig. 15 of Appendix A.7.

4.4 COMPARE WITH IMPORTANT REGIONS IDENTIFIED BY THE EXPLAINABLE APPROACH

Vulnerable Important

Figure 9: Vulnerable regions lo-
cated by our algorithm and impor-
tant regions with Grad-CAM.

Explainable DNNs focus on identifying the key features that
influence their predictions. In contrast, our research delves
deeper, placing greater emphasis on the detection of vulnera-
ble regions. These regions, interestingly, might not always be
highlighted by standard explainability techniques. As demon-
strated in Fig. 9, there’s a clear difference between these vul-
nerable regions and the regions deemed important by the ex-
plainable DNNs. More examples of comparision can be found
in Fig. 16 of Appendix A.7. It’s evident that certain areas,
even if overlooked as non-essential by the explainability per-
spective, can significantly alter the DNN’s output with just minor perturbations.

5 CONCLUSION

In this study, we aim to reveal vulnerable regions using various adversarial examples, each with
single perturbed pixels placed at different locations. Extensive experimental results demonstrates
our algorithm can effectively locate large amounts of vulnerable regions, including those in the
backgrounds. And valuable insights are provided with analysis of such vulnerable regions. A com-
prehensive study on vulnerable regions specifically for high-resolution images is expected for our
future work.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: A query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision, pp. 484–501, 2020.

Yang Bai, Yisen Wang, Yuyuan Zeng, Yong Jiang, and Shu-Tao Xia. Query efficient black-box
adversarial attack on deep neural networks. Pattern Recognition, 133:109037, 2023.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57, 2017a. doi: 10.1109/SP.2017.49.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017b.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute mod-
els. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec
’17, pp. 15–26, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450352024. doi: 10.1145/3128572.3140448. URL https://doi.org/10.1145/
3128572.3140448.

Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and Matthias
Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box adversarial attacks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 6437–6445,
2022.

Paul Darwen and Xin Yao. Every niching method has its niche: Fitness sharing and implicit sharing
compared. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel
(eds.), Parallel Problem Solving from Nature — PPSN IV, pp. 398–407, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg. ISBN 978-3-540-70668-7.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal per-
turbations and smooth masks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2950–2958, 2019.

David E. Goldberg and Jon Richardson. Genetic algorithms with sharing for multimodal function
optimization. In Proceedings of the Second International Conference on Genetic Algorithms on
Genetic Algorithms and Their Application, pp. 41–49, 1987. ISBN 0805801588.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. arXiv e-prints, art. arXiv:1412.6572, December 2014.

Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
black-box adversarial attacks. In International Conference on Machine Learning, pp. 2484–2493.
PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2137–2146, 10–15 Jul
2018.

Nathan Inkawhich, Wei Wen, Hai Helen Li, and Yiran Chen. Feature space perturbations yield more
transferable adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7066–7074, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, October
2021.

10

https://doi.org/10.1145/3128572.3140448
https://doi.org/10.1145/3128572.3140448


Under review as a conference paper at ICLR 2024

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels
make a big difference. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9087–9096, 2019.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In International Conference on Machine Learning, pp. 4970–4979.
PMLR, 2019.

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Samira Pouyanfar, Shu-Ching Chen, and Mei-Ling Shyu. An efficient deep residual-inception net-
work for multimedia classification. In 2017 IEEE International Conference on Multimedia and
Expo (ICME), pp. 373–378, 2017. doi: 10.1109/ICME.2017.8019447.

Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial training against location-optimized adver-
sarial patches. In European Conference on Computer Vision, pp. 429–448. Springer, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1135–1144, 2016.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. " grabcut" interactive foreground extrac-
tion using iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3):309–314, 2004.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626,
2017.

Yucheng Shi, Yahong Han, Qinghua Hu, Yi Yang, and Qi Tian. Query-efficient black-box adver-
sarial attack with customized iteration and sampling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):2226–2245, 2022.

Suraj Srinivas and François Fleuret. Full-gradient representation for neural network visualiza-
tion. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf.

Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11:341–359, 01 1997. doi:
10.1023/A:1008202821328.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019. doi:
10.1109/TEVC.2019.2890858.

Chenghao Sun, Yonggang Zhang, Wan Chaoqun, Qizhou Wang, Ya Li, Tongliang Liu, Bo Han, and
Xinmei Tian. Towards lightweight black-box attack against deep neural networks. Advances in
Neural Information Processing Systems, 35:19319–19331, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv e-prints, art. arXiv:1312.6199,
December 2013.

11

https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.neurips.cc/paper_files/paper/2019/file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf


Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 501–509, 2019.

Qing Yang, Xia Zhu, Jong-Kae Fwu, Yun Ye, Ganmei You, and Yuan Zhu. Mfpp: Morphological
fragmental perturbation pyramid for black-box model explanations. In 2020 25th International
Conference on Pattern Recognition (ICPR), pp. 1376–1383. IEEE, 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision, pp. 818–833. Springer, 2014.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016.

A APPENDIX

A.1 RELATED WORK WITH ADVERSARIAL TRAINING:

Adversarial training, a pioneering technique introduced by Goodfellow et al. (2014), has been a cor-
nerstone in improving the robustness of deep neural networks (DNNs) against adversarial attacks.
The core concept involves training the model on adversarial examples generated by perturbing in-
put data to maximize the loss. Madry et al. (2018) expanded on this concept by introducing the
Projected Gradient Descent (PGD) adversarial training, considered one of the most effective meth-
ods for training robust models. Subsequent research has explored various dimensions of adversarial
training. For instance, Xie et al. (2019) introduced feature denoising to improve model robustness.
Zhang et al. (2019) proposed TRADES, a theoretical framework balancing model accuracy on clean
data with robustness against adversarial examples. Furthermore, Pang et al. (2019) improved ro-
bustness by incorporating ensemble methods. In this work, we have also explored how the identified
vulnerable regions change with different adversarial training algorithms.

A.2 EXPERIMENT SETUP

Dataset: The CIFAR-10 dataset comprises 60,000 images, each of 32x32 dimensions, evenly dis-
tributed across 10 distinct classes with 6,000 images per class. This dataset is divided into 50,000
training images and 10,000 testing images. The ImageNet dataset, also known as ILSVRC 2012,
contains high-resolution natural images spanning 1,000 classes. These images are resized to dimen-
sions of 224×224 for DNN classification.

Hyperparameters for diverse adversarial examples generation: In our experimental setup, we
use a Gaussian distribution represented by N (µ = 128, δ = 127) for initializing the r, g, b values,
whereas the coordinates x, y are determined utilizing uniform distributions: U(1, 32) for CIFAR-
10 and U(1, 224) for ImageNet. For the CIFAR-10 dataset, our approach uses 200 individuals,
each undergoing 100 iterations using the Sharing DE procedure. Given that ImageNet images are
approximately 50 times larger than those in CIFAR-10, we increase the population size to 800. The
scale factor W and recombination rate R are predetermined at 0.5 and 1.0, respectively. Notably,
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Table 6: Accumulate results of 10 runs for the one-pixel attack
Non-targeted ResNet18 NiN VGG16

Success rate 27.2% 32.0% 58.4%

Pixel number 1.3 1.9 2.7

Targeted ResNet18 NiN VGG16

Success rate 5.0% 5.7% 12.9%

Pixel number 1.2 1.6 3.2

a sharing radius of 4 pixels is consistently applied for both CIFAR-10 and ImageNet datasets. The
parameter α, which controls the shape of the sharing function, is set to 1.

Training details for standard training models: In our ImageNet experiments, we employe pre-
trained ResNet50 and AlexNet models directly from PyTorch. For the CIFAR-10 experiments, the
models are trained using SGD with a momentum of 0.9 and a weight decay of 5× 10−4. We initial-
ize the learning rate at 0.1, applying cosine annealing for its adjustment. The training process spans
a total of 200 epochs.

Training details for adversarial methods: For both PGD and TRADES, models are trained using
SGD with a momentum of 0.9 and a weight decay of 2 × 10−4. The initial learning rate is set to
0.1 and is reduced by a factor of 10 at the 75th, 90th, and 100th epochs, respectively. A total of 120
epochs are used for training the DNN. The maximum perturbation is set at ϵ = 0.031, with a step
size of ϵ/4 for generating adversarial examples.

A.3 SUPERIORITY IN DISCOVERING DIVERSE ADVERSARIAL EXAMPLES

We verify the superiority of our algorithm to compare against an alternative algorithm one-pixel at-
tack Su et al. (2019). The experiment is conducted on CIFAR-10. To generate a range of adversarial
examples, we execute the one-pixel attack ten times. Results are presented in Table 6. For a fair
comparison, we set the population size to 200 and limited the number of generations to 100 for this
experiment.

Our algorithm identifies a comparable count of vulnerable images to the multi-run one-pixel at-
tack Su et al. (2019), it discovers a broader variety of one-pixel perturbations with fewer compu-
tational resources. Notably, the one-pixel attack often converges to specific regions on the object
across multiple runs. In contrast, our method unearths a more expansive set of vulnerable areas,
highlighting its proficiency in vulnerable region discovery.

A.4 LOCATIONS OF ONE-PIXEL PERTURBATIONS WITH ORIGINAL-TARGET PAIRS

The results in Fig. 10 illustrate the average number of one-pixel perturbations detected for each
original-target class pair. Beyond findings from the previous work Su et al. (2019), we have iden-
tified additional intriguing properties. For instance, cats (class 3) are more easily perturbed to dogs
and vice versa Su et al. (2019). Interestingly, the perturbations are predominantly located on the cat
or dog itself, rather than the background. Additionally, we have observed that images of ships (class
8) are susceptible to being perturbed into the plane class through perturbations in the background.
However, the opposite—planes being perturbed to ships—is less common. This difference may be
attributed to the similar but not identical background attributes shared by these two classes. Notably,
the attribute sky appears more frequently in ship images (60 out of 100), while the presence of the
sea is less common in plane images (only 7 out of 100).

A.5 THE EFFECT OF ADVERSARIAL TRAINING ON VULNERABLE PAIRS

We conduct an experiment to identify targeted vulnerable regions and observe how the average
number of one-pixel perturbations in various locations changes for different original-target pairs We
reuse the 500 correctly classified images for standard trained and conducted the targeted attack on
the adversarial trained models. The experiment results are presented in Fig. 11. From the results, we
notice a decrease in the number of diverse one-pixel perturbations for most original-target class pairs.
TRADES is found to perform better in eliminating the adversarial vulnerable regions. Notably, no
one-pixel perturbations are found for the original class ‘plane’ to other target classes. However,
there are still some class pairs where the vulnerable regions increase after adversarial training. For
the PGD-trained model, the class ‘bird’, ‘cat’, and ‘deer’ (class 2, 3, 4) are more likely to perturbed
than the class ‘frog’ (class 6). And the class ‘bird’ (class 2) is more easily to perturbed than the class
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ResNet18 NiN VGG16

Figure 10: The average number of adversarial pixels for the original-target class pair with standard
trained DNNs. Vertical and horizontal indices indicate respectively the original and target classes.
Original means the average number of adversarial pixels with the whole image. Background in-
dicates the average number of adversarial pixels on the background. The classes are identified by
numbers from 0 to 9, representing the following classes respectively: plane, car, bird, cat deer, dog,
frog, horse, ship, and truck.

Table 7: Results of attacks with 2× 2 pixel patch with our adapted algorithm on CIFAR-10. Region
size refers to the average total number of perturbed pixels covered in each successful attack.

CIFAR-10 Perturbation Level Success Rate Region Size

VGG16 (ours) 2x2 pixel patch 83.2% 171.3
NiN (ours) 2x2 pixel patch 57.4% 122.4

ResNet18 (ours) 2x2 pixel patch 51.2% 105.7

‘plane’ (class 0). This suggests that while adversarial training aims to eliminate a majority of the
vulnerabilities, it inadvertently introduces new vulnerabilities between other class pairs.

A.6 ADDITIONAL EXPERIMENTS WITH DIVERSE ADVERSARIAL PATCHES:

While our proposed approach excels in identifying vulnerable regions susceptible to one-pixel per-
turbations, it does exhibit limitations when applied to higher-resolution images. To further assess the
effectiveness of our algorithm, we conducted additional experiments by adapting it from pixel-level
vulnerability assessment to patch-level vulnerability analysis. In the context of patch attacks, each
candidate solution, denoted as zi ∈ S, can be modified to a tuple containing the coordinates of the
top-left pixel of the patch and the RGB values of different perturbed pixels within the patch. As a
result, the tuple comprises 2 + 3× n elements, where n represents the number of perturbed pixels.

For our CIFAR-10 experiment, we utilized 2× 2 pixel patches with 500 correctly classified images.
In the case of ImageNet, where images are approximately 50 times larger than those in CIFAR-10,
we employed 4 × 4 pixel patches with 100 correctly classified images. The results of these experi-
ments are presented in Tables 7 and 8, where the term ’region size’ refers to the average number of
distinct perturbed pixels covered by diverse adversarial patches. The improved success rate and ex-
panded region size demonstrate the adaptability of our algorithm to varying requirements. However,
this modification shifts our analytical focus from individual pixels to patch-level analysis, striking
a balance between achieving a higher success rate and maintaining the granularity of vulnerability
assessment. We leave a comprehensive analysis for future work.
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PGD TRADES

Figure 11: The average number of adversarial pixels for the original-target class pair with adversarial
trained DNNs.

Table 8: Results of attacks with 4× 4 patch with our adapted algorithm on ImageNet. Region size
refers to the average total number of perturbed pixels covered in each successful attack.

Perturbation Level Success Rate Region Size

AlexNet (ours) 4x4 pixel patch 40% 1106.2
ResNet50 (ours) 4x4 pixel patch 28% 1920.5

A.7 ADDITIONAL EXAMPLES OF VULNERABLE REGIONS

In this subsection, we provide extended visual illustrations to better highlight the vulnerable regions
pinpointed by our algorithm. Fig. 12 depicts these areas across varying architectures for both the
CIFAR10 and ImageNet datasets. Notably, these regions can identified on both recognized objects
and backgrounds, independent of the image resolution. In Fig. 13 and Fig. 14, we exhibit vulner-
able regions of the same images across different DNNs and different target classes, respectively,a
shared vulnerability pattern. We provide more examples of vulnerable regions for adversarial trained
models in Fig. 15, demonstrating that adversarial trained models are more likely to have vulnerable
regions in the background. Finally, we present more examples to compare the vulnerable regions
discovered by our algorithm with important regions identified by two explainable DNN methods by
Grad-CAM Selvaraju et al. (2017) and Full-Grad methods Srinivas & Fleuret (2019) in Fig. 16. This
comparison highlights that certain regions, often missed by explainability tools, can significantly in-
fluence the DNN’s predictions with slight changes.
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ResNet18 NiN VGG16 AlexNet ResNet

Figure 12: Visualization of vulnerable regions with CIFAR10(left) and ImageNet (right).

ResNet18 NiN VGG16 ResNet18 NiN VGG16

Figure 13: Visualization of vulnerable regions for shared vulnerable images by 3 different DNNs.
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Plane Dog Bird

Deer Horse Bird Bird Cat Ship

Bird Dog Frog

Figure 14: Visualization of vulnerable regions to different false classes.
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Figure 15: Vulnerable regions of adversarial trained ResNet18 Models.

Ours Grad-CAM Full-Grad Ours Grad-CAM Full-Grad

Figure 16: Vulnerable regions discovered by our algorithm and Important regions discovered by
Grad-CAM Selvaraju et al. (2017) and Full-Grad methods Srinivas & Fleuret (2019).
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