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ABSTRACT

Different phases of learning dynamics exist when training deep neural networks.
These can be characterised by statistics called order parameters. In this work
we identify a shared, underlying mechanism connecting three seemingly distinct
phase transitions in the training of a class of deep regression models, specificially
Implicit Neural Representations (INRs) of image data. These transitions include:
the emergence of wave patterns in residuals (a novel observation), the transition
from fast to slow learning, and Neural Tangent Kernel (NTK) alignment. We relate
the order parameters for each phenomenon to a common set of variables derived
from a local approximation of the structure of the NTK. Furthermore, we present
experimental evidence demonstrating these transitions coincide. Our results enable
new insights on the inductive biases of sinusoidal INRs.

1 INTRODUCTION

Implicit neural representations (INRs) are increasingly employed as differentiable alternatives to tra-
ditional, discretized signal representations with expressive models such as SIREN(1). By capitalising
on the expressive power of Deep Neural Networks (DNNs), INRs provide a compact framework for
capturing high-frequency details and spatial derivatives of signals. However, despite their growing
popularity in practical applications, our theoretical understanding of their behaviour remains nascent.
A crucial aspect that requires deeper insight is the nature of their inductive biases: what features of
the data are learned by these models, and through what mechanisms does this learning occur?

An increasing body of research emphasizes the pivotal role played by the optimization algorithm in
learning representations. Indeed, it is known that the full expressivity of DNNs - parameter count
notwithstanding - is constrained in practice by the limitations of Gradient Descent (GD) in exploring
the loss landscape (2; 3). Furthermore, it is known that neural networks learn patterns of different
complexity at different rates, resulting in distinct learning phases (4; 5). These phases may be
identified by examining changes in the collective evolution of the model’s weights, as quantified by
summary statistics known as order parameters (6; 7; 8; 9). In statistical mechanics, these parameters
quantify symmetries of a system, and change suddenly at a phase transition (10). Although various
statistics have been independently identified in the DNN literature (11; 12; 13; 14), no underlying
symmetry connects them, and their interrelationships remain unclear. What’s more, while order
parameters can indicate the timing of phase transitions, they offer limited insight into what DNNs
learn during these phases.

By contrast, the Neural Tangent Kernel (15) (NTK) provides a complimentary perspective that mani-
festly describes how datapoints influence one another during training. Critically, in a phenomenon
known as Neural Tangent Kernel Alignment (NTKA), the NTK undergoes significant changes early
in training as it engages in feature learning, aligning with the target function. NTKA has been widely
documented and is suggested as a reason why real-world DNNs often outperform their infinite-width
limit counterparts (16; 17; 18; 19; 20; 21). Despite repeated empirical demonstrations of NTKA,
theoretical exploration of the phenomenon has been largely restricted to toy models and classification
problems, leaving a gap in understanding the transition in complex regression tasks.

In this work, we explore the phenomenon of NTKA within SIRENS, to determine when this alignment
occurs, the driving factors behind it, and its implications for feature learning. Our study is structured
around four primary contributions:
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1. We study the dynamics of learning in DNNs through three different lenses (training curve,
residual evolution, and NTKA), and in each, observe a phase transition. The phase transitions
are related to a common underlying phenomenon, as evidenced by their coincidence in time
(as quantified by order parameters).

2. We identify that one phase of learning on this task is characterised by diffusion-like wave-
crests, and demonstrate analytically that this transition is related to the evolution of the NTK
during training.

3. We construct a local approximation of the NTK that allows us to relate the order parameters to
spatial variations in the parameter gradients - a hallmark of translational symmetry breaking.
We introduce a new order parameter (MAG-Ma) based on these spatial variations. Finally,
we connect the symmetry-breaking perspective with insights from traditional computer
vision.

4. We investigate the effects of model hyperprameter choices and demonstrate how these order
parameters can be used to introspect the learning process.

2 PRELIMINARIES

In this work, we consider the class of INRs that model 2D grayscale images, where pixel coordinates
and their intensity form a dataset D of N samples indexed with 4, (x;, firue(2:)), where z; € R?
and firye : R? +— R. On this dataset, we fit SIREN models (1) f with parameters 6, using
sinusoidal activation functions. In the continuum limit, we identify two fields: the local residual field
r(z;0(t)) = frrue(x) — f(x;0(t)), and gradient field Vg f (x; 6(¢)). Their time evolution is induced

by gradient flow § = —Vy L on the mean square error:
1

L(6) = i/da: Pyasa(z) 7(2;0)? ()
We assume the data is distributed uniformly according to Py () = Vol(D)~!. Accordingly,

leveraging gradient flow and the chain rule, the residuals evolve as follows:
i(z;0(t)) = Vor(z; 0(t)) - )

_ 1 ’ / . /.
- - [ vl ar(ao0) - Vor(a's6() 3

1

=— [ da' r(a/ ;0(t)) - ot 4
[ s 10 (g VoS 5000 - Vo a's0(0) @
= / dx’ (2" Knrx(z,2';0(t)) (5)

In the last line, we defined Ky, the Neural Tangent Kernel. Going forward, for notational brevity,
we will drop the explicit dependence on 6, and write 2’ = = + u. We also define a kernel closely
related to the NTK, the Cos NTK:

Vof(x) Vof(z+u)

1
Cnri (@, +u) = VoI(D) [V f ()| [ Vo f (x + u)]] “

3 DERIVING ORDER PARAMETERS FROM THE NTK

We illustrate the different phases of learning with a motivating example. In Figure 1, we train a
five-layer deep, 256-unit wide SIREN model on a 128 x 128 grayscale image of a camera-man, using
full-batch GD with a learning rate of 10~3 for 2000 epochs. Our validation task is super-resolution
reconstruction of the original image. During training, we examine the model’s behaviour through
three different lenses, with a sudden, qualitative shift revealed in each.

While these shifts are visually striking, in this section, we take a more quantitative approach based
on the identification of order parameters. We then demonstrate why these phase transitions occur
simultaneously, by relating the order parameters to a common set of features, which control the local
structure of the NTK. The three lenses are as follows:
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Figure 1: A Single Phase Transition Through Three Lenses: (a) The spatio-temporal evolution
of the loss, as revealed through the magnitude of the residuals. Near the critical point we see the
formation of wavecrests. (b) Evolution of the loss rate during training. The rate of change of the
validation loss reaches a peak at the critical point. (c) Evolution of the principle eigenvector of the
NTK reveals a sudden shift from disorder to learned features. (d) Quantification of NTKA in terms
of alignment between edges and the principal eigenvector.

* Spatial Distribution of Residuals: Early in training, the loss decreases uniformly over the
dataset (Drift Phase). However, at a critical point, we observe the formation of “wave-crests”
corresponding to regions of low-loss, which propagate across the dataset (Diffusion Phase).
To the best of our knowledge, we are the first to report this behaviour in SIREN models. In
Section 3.1, we attribute this behaviour to changes in the equal-time correlation functions of
the gradient field V f(x), whose parameters we derive in Section 3.2.

 Principal Eigenvectors of the NTK: Early in the training, the principal eigenvector vy is
static and appears as a highly-disordered, structureless image (Disordered Phase). However,
at a critical point, v rapidly aligns with the edges of the image (Aligned Phase), after which
it becomes static again. Though NTK alignment has been previously studied in the context
of classification problems (22; 23; 24; 25), there are additional subtleties to consider for
a regression task like INR training. To this end, we introduce a metric, AUC(vg, VI) in
Section 3.3 to identify when alignment occurs. We also derive an approximation of vy based
on the local structure of the NTK, as outlined in Sections 3.1 and 3.2.

¢ Training Curve Analysis: There is a rapid shift in the slope of the training curve, which
we call the loss rate L. Initially, Lis large, indicating the Fast Phase. After a critical point,
the loss rate collapses, and learning slows (Slow Phase). Several works have studied this
transition using order parameters, but in this work, we focus on the concept of gradient
confusion, as described in (12), (13), (14). In Section 3.4, we derive an approximation of
this parameter based on the local structure of the NTK outlined in Section 3.2.

Having united the different order parameters, we are in a better position to speculate on the common
origin of the underlying phase transition. Motivated by the dependence of each parameter on spatial
variations in the magnitude field ||Vg f(z)||, we introduce a new parameter, termed MAG-Ma, in
Section 3.5. MAG-Ma explicitly tracks violations in the translational symmetry of the NTK.

3.1 CORRELATION FUNCTIONS AND THE ONSET OF DIFFUSION

The form of equation 5 is reminiscent of the linear response functions in statistical field theory (10; 26):
to find the rate of change of the residual field at a point x, the kernel K aggregates information about
the residual at points « + u. To quantify the range of these interactions, we may examine the rate
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Figure 2: Visualization showing the empirical correlation function for the normalized parameter
gradients. On the left-hand side is the global correlation-function for the C'yrx. On the right is the
local-correlation function for the K ny7x around a test point x. Dashed lines show fitted Gaussian
approximation, and error bars show variance across dataset. Over the course of training, both the
global correlation lengthscale &.,,.., and the terminal value ¢, evolve.

at which correlations decay with distance. For the field Vg f(z), the local, equal-time correlation
function measures the average alignment between the gradients at points separated by a distance e:

k(z,€) = Ey[Vof(x)- Vof(x+ eiy)] (7

=By [Knric(z, 7+ ety)] @®)

Here, é4 denotes a unit vector pointing in the direction ¢. Similarly, the global, equal-time correlation
is given by:

k(e) =E, [k(m, €)] 9

Here, the expectation is taken uniformly over the unit vectors 4. We may define similar quantities for

the Cnyrr, which we denote by ¢(z, €) and c(€). To estimate the correlation functions empirically,

we group pairs of datapoints based on their distance, and then compute the mean value of the

Cnry; for the group. For SIREN models, we observe that the equal-time correlation functions are
well-approximated by Gaussians of the form:

c€) & (1 — cog)e™ /%orr + oy (10)
k(z,€) = || Vo f (@)|P(1 — coo(2))e™ 2@ 1 ||V f(2)|[Peoo () (11)

This is illustrated in Figure 2. This approximation introduces two important order parameters: the first,
the correlation length-scale &..,,-, controls the rate at which correlations decay with distance, defining
the range of interactions. The second, the asymptotic value ¢, describes the interactions between
points at separations € much greater than &, where the gradient field vectors become uncorrelated. We

have:
. Vo f(x)
lim c(€) = coo = ||E { (12)
s—00 °° “LiIVef ()]l
Dynamically, we see from Figure 2 that both £ and ¢, evolve during training, and we shall demon-
strate that changes in these values account for the onset of diffusion. When ¢, decays to zero, we
have, as a very simple approximation of the NTK:

K (2,2 +u) = ||V f(2)|]* exp(~[ul[*/€*(x)) (13)
When £(z) is small, the NTK will suppress all contributions to the residual 7(z) except from the
immediate vicinity of . As such, performing a Taylor expansion to second order in u, we obtain:

2

1
r(x+u;0) = r(z;0) +u' Ver(z;0) + iuTVir(x; O)u (14)

Inserting this, along with the NTK approximation, into equation 5, the full integral may be solved
using Gaussian integration (full details in Appendix A.2). We obtain:

d
5"(@0) = =27@)||Vo f(@)|*r(z) — 7 (@)|| Vo f(2)[ A%, (15)
which resembles a standard diffusion equation.
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Figure 3: Evolution of the Cosine NTK: We visualize Cnyrx (2,2 + u) around three points
x € {A, B,C} for small separations u. At initialization, Cyrx locally resembles an isotropic,
translation-invariant RBF. However, as training progresses, these symmetries are broken. MAG-Ma
(described in Section 3.5) is an order-parameter that monitors the original symmetry, and changes at
the critical point.

3.2 BEYOND THE ISOTROPIC GAUSSIAN APPROXIMATION

Though the isotropic Gaussian approximation of the NTK can explain the appearance of the diffusion
wavecrests, empirically, the NTK is anisotropic (see Figure 3). What’s more, the isotropic Gaussian
approximation is positive definite, whereas the real NTK takes on negative values. In this section,
we develop a better local approximation that overcomes these limitations. Our approach has the
additional benefit that we may predict the correlation length-scale, along with other order parameters.

Our starting point is the local structure of the Cos NTK. The full details of our derivation are found
in Appendix A.3, but the main strategy is to leverage the law of cosines to express the Cyrx as:

IVof@)I* +[IVof(x +wl? = [IVof(z +u) = Vof ()]
2[Vof@)[[IVof(x +u)l|

Performing a Taylor expansion in u and retaining terms only up the second order, we find the Cosine
NTK locally takes the form of a Cauchy Distribution:

CNTK($,17+U) = (16)

202 +u' D,
Cnri (T, T +u) ~ 52+ u D, tu Mo’ (17)
where we have:
az = [|Vof(2)]| (18)
Dy = V.||Vof ()| (19)
Hy = (Vo Vo f(2))(VaVaf(2))" (20)

To obtain a correlation length-scale from this anisotropic model, we note that the level sets of
equation 17 correspond to ellipses. For a given value c, the area of the level set can be shown to be
(see Appendix A.4):

w20, (e oo
Aellzpse(-ryc)— m( c az‘f‘ 42 D H D (21)

To take into account the asymptotic value of Cnrx, we choose ¢ = 1/2 + ¢ /2. Then:

f(%) ~ \/Aellipse(x; 1/2 + Coo/2) (22)

™

3.3 ORDER PARAMETERS FOR THE ONSET OF NTK ALIGNMENT

In the classification problems typically studied in the NTKA literature, the principle eigenvector vg
is seen to learn class-separating boundaries (22; 23). Similarly, for our 2D image reconstruction
task, we see the NTK learns information about the distribution of edges in the image (Figure 4).
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To quantify this alignment, we use a Canny Edge Detector (27) to estimate connected image edges.
We then quantify the utility of vy in predicting edges in terms of average recall, as measured by
the area under the Receiver Operating Characteristic Curve (ROC AUC). We denote this measure
AUC(vg, VI), and it has the advantage of being insensitive to monotonic transformations of vg.

Another hallmark of NTKA is early anisotropic growth of the spectrum of the NTK (23), as the NTK
becomes stretched along a relatively small number of directions that are correlated with the task. This
is especially the case for the principal eigenvalue )y, which becomes orders of magnitude larger than
the next leading eigenvalue. In subsequent sections, we will demonstrate, empirically, that this also
holds during INR training.

The divergence of A\g enables a particularly simple approximation of the princpal eigenvector vg.
Namely, because the principal eigenvalue is so dominant, Ky becomes effectively low-rank, and
so power iterations converge quickly. Thus, choosing a vector of ones v = 1 as our initial vector, we
expect K1/171 to have strong cosine alignment with the principal eigenvalue. In the continuum
limit, this is simply given by:

K1/N = E,[K(z,z + u)] (23)
= E[Eu[K (2,2 + )] ||u]] = €] 24)
— [ de . oP. (25)

0

Here, P(z, €) denotes the density of points that are located a distance € from the point x, and €, is
an upper bound on the distance that we assume is much greater than &,,... Close to this z!, P(z, €)
grows like 2me. Thus, leveraging equations 11 and 18, we have:

Ey[K (2,7 + )] = 27a2 / " de e [cm@) +(1- cm<x>>e€2/%2<ﬂ (26)
0
— 2ma? {%cmeim +E(@)(1 - co(@))(1 - eefw/%“”)} @7)

~a? [coo(a:)Vol(D) + 22 (2) (1 — coo (x))} (28)

=~ ’UQ(I) (29)
As we approach the phase transition, the asymptotic values tend towards 0, and the second term
dominates. Considering the approximation in equation 22 for the correlation length-scale &, we
note that vo(x) grows as O(||Vef(z)||*). This implies particular sensitivity to pixels in regions
with substantial high-frequency information, such as edges and corners. As natural images tend
to be piecewise smooth, pixels on boundaries have the strongest spatial gradients within their
neighbourhood, and are therefore the greatest source of information, being poorly compressible
due to the lack of smoothness/redundancy, and accordingly disagreement in paramater gradients.
Given the inability of models to accurately describe sharp discontinuities these edge pixels can
be considered as influential datapoints, which accounts for their prominence within the principal
eigenvector. We consider parallels between these observations of the NTK principal eigenvector
and traditional approaches from the image processing literature concerning corners and edges in
Appendix E. The fidelity of our approximation is evaluated in Appendix F.

3.4 ORDER PARAMETERS FOR THE L0OSS RATE COLLAPSE

In (12), (13), (14), and related works, the authors examine the role of gradient alignment statistics in
determining the speed of learning under stochastic gradient descent. They note that the emergence
of negative alignments between batches correlates with a reduction in learning speed. Intuitively,
when gradient alignment becomes negative, the sum of the gradients approaches zero, resulting in a
diminished learning signal. The minimum alignment between the gradients is simply given by the
minimum value of the Cos NTK, which we may obtain explicitly from equation 17 as follows (full
derivation in Appendix A.5):

D]H;'D,
DI H;'D, — 8a2

min Cnrx (z, 2 +u) = (30)

'The true form of P(x, €) is complicated and varies from point to point, due to edge effects. However, these
effects are suppressed as P(x, €) only appears when multiplied the Gaussian k.
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min Cyrx is then simply the minimum of 30 across the whole dataset.

3.5 MAG-MA: ORDER PARAMETERS FROM TRANSLATIONAL SYMMETRY BREAKING

While previous sections have focused on a bottom-up construction and analysis of order parameters,
this section adopts a top-down approach rooted in symmetry principles. Within the framework of
statistical field theory, symmetry plays a crucial role in analyzing phase transitions by enabling the
classification of distinct interaction mechanisms in complex systems. Specifically, the alteration of
symmetry properties during a phase transition provides key insights into the nature of the transition
and informs the construction of appropriate order parameters.

In Sections 3.1-3.4, we expressed several order parameters in terms of the parameters a, D, H, which
characterize the local structure of the C 7. Tellingly, each of these parameters is now a function of
the spatial variation of the parameter gradients. This suggests it is a translation symmetry which is
broken at the phase transition. Indeed, from Figure 3, we observe that the Cyrx is an approximately
stationary, isotropic kernel. Phrased another way, the Kernel exhibits no bias for location or direction.
Over the course of training, we may monitor the emergence of such a bias with the following metric :

B2 [V log || Vo f[°]||* = [Ex[Dq/az]|” 3D

We refer to this statistic as MAG-Ma: the Magnitude of the Average Gradient of the Log Gradient-
Field Magnitudes. Intuitively, this order parameter captures the statistical preference for a spatial
direction in the dataset. The evolution of this quantity is plotted in Figure 3, and its alignment with
the other order parameters is shown in Figure 4. We see that throughout the Fast Phase of training
(before the peak in the loss rate Leval), the local structure of the Cyrx is statistically translation
invariant, and MAG-Ma is close to zero. However, just after the critical point, it grows rapidly -
coinciding with the structure learning described in Section 3.3.

4 EXPERIMENTAL RESULTS

4.1 EXAMINING THE DISTRIBUTION OF CRITICAL POINTS

In this section, we demonstrate that the critical points defined in Section 3 all cluster around a
common time. We train a range of SIREN models (1) on fifteen images (Figure 9), varying seed,
depth, and width (full details can be found in Appendix B). We also vary wq (which we term the
bandwidth), an important hyperparameter which multiplies the pre-activations before non-linearity
in SIRENs. We illustrate the results of this sweep in Figure 4. In addition to the order parameters
described in Section 3, we consider three more order parameters from the literature, which may be
defined in terms of the NTK:

* We track the principal eigenvalue )\ of the NTK.

e In (11) and others, the authors consider the impact of the norm and standard deviations
of model parameters on the loss rate. During the fast learning phase, the means of model
gradients are large and the variances are small, with the converse true in the slower phase.
To this end, we monitor spikes in the variance of the weight gradients, as measured by the
trace of the covariance matrix. In terms of the NTK and the residual r, this corresponds to
(see Appendix A.6 for derivation):

1 . 1
of = NTr(dlag(T)QKNTK) - FTTKNTKT (32)

The critical point corresponds to the point where the variance reaches its maximum.

Centred Kernel Alignment (CKA): Empirically, as a DNN learns features that support the
prediction of a target, its NTK begins to resemble the task kernel Ky . For classification
problems, if Y denotes a onehot encoding of the class labels, then Ky is simply Y'Y . For
INR regression, we opt to use:

(33)

z) — flz+u)l?
Ky<x,x+u>:exp<_f<> fla+ >||>

2K2
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Here, « is a bandwidth parameter. We also compare the alignment of K 7 with the RBF
Kx(z,7 + u) = exp(—||u||?/x). To monitor the similarity between kernels, we employ
the centred, normalized Hilbert-Schmidt Information Criterion (HSIC) used in (23; 24; 25).
See Appendix B.2 for additional details.

The left side of Figure 4 illustrates our procedure for identifying critical points on the astro dataset?.
We use a simple peak detector to identify the region of interest for the loss rate L.,q; and the gradient
variance oy, using the F'W H M to define a confidence region. For the min C'nr g, we look for
zero-crossings, with a confidence region constructed from the cumulative variance. For every other
order parameter, we fit a sigmoid, where the inflection point marks the critical point, and the slope
defines the confidence region (refer to Appendix B.2 for full details). The right side of Figure 4
demonstrates how frequently these confidence regions overlap across the different architectures and
images studied®. Remarkably, the phase transitions described by the order parameters - despite being
derived to measure different phenomenon in the literature - consistently occur at the same time during
training.
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Figure 4: Alignment of Order Parameters. Left: Order parameter evolution and critical points
during training of a SIREN model on the astro image. The red vertical lines denote the location of
the critical points, and the green vertical lines denote confidence regions. Right: Heatmap showing
the frequency of intersections between the confidence regions.

4.2 DYNAMICAL CONSEQUENCES OF HYPERPARAMETERS

In this section, we perform an ablation study to understand the impact of different hyperparameters
on the phase transitions. The baseline model is a 5-layer 128-unit wide SIREN with wy = 60, which
on average was the best performing model on the cameraman dataset*. We visualize the evolution
of the min Cyry, the global correlation length &, and the CKA between the NTK and an RBF
Kernel K x in Figures 6 and 5. Error bars are obtained by averaging the runs over five random seeds.

2Additional figures for other datasets may be found in Section G.1 of the Supplementary materials.

3In computing the coincidence matrix on the right side of Figure 4, we only included experimental runs in
which our critical point detection succeeded for both pairs of order parameters. In Section C of the Supplementary
Materials, we investigate the specific failure modes, and tie their failure rates (between 21% and 51%) to image
properties

4 Additional figures for other datasets may be found in Section G.2 of the supplementary materials.
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Figure 5: Effect of depth on Critical Behaviour: Average MSEs, in order of ascending depth:
7.742e73 £ 1.580e ™4, 6.819¢ 73 £ 2.696e 5, 6.571e 3 & 2.705¢°. Dashed vertical lines denote
the location of the peak of the loss rate L.,4;, marking the phase transition.
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Figure 6: Effect of wy on Critical Behaviour: Average MSEs, in order of ascending wp: 8.380e 3 4
9.191e7°, 7.234e73 + 5.591e75, 6.571e 2 £ 2.705¢ >, 7.853e ™3 + 5.629¢~*. Dashed vertical
lines denote the location of the peak of the loss rate Ley,, marking the phase transition.

When depth (and therefore model capacity) is decreased (Figure 5), we observe a corresponding
increase in the validation error. For such models, the initial min C'y7k is lower, and consequently,
learning is slower. Correspondingly, the peak in the loss rate Levar, occurs later. With increasing
depth, there is less variance in order parameters across runs. Importantly, though the location of the
phase transition changes, the trajectory shapes remain consistent. By contrast, we see more variance
in the runs as we increase wy (Figure 6) accompanying a decrease in validation error. The phase
transition is also delayed until later in training.

Modifying wy also leads to a dramatic change in the shape of the trajectories of the order parameters.
When wy is low, we see strong alignment between the NTK and a uniform RBF model. This indicates
a strong preference for aggregating information from immediate neighbours. CKA (K x, Kn1x)
peaks at the critical point, where, accompanying a large decrease in the global correlation length-scale
Ecorrs it begins to rapidly decrease. In contrast, when wy is high, the model begins with a very low
CKAKx, KnTK, and rapidly grows, in sigmoidal fashion, at the critical point.

Taken together, our results suggest that hyperparameters such as depth and width are less important
than wy in terms of controlling inductive bias.

5 RELATED WORK

Neural Tangent Kernels for Implicit Neural Representations: Previous research has investigated
the inductive biases of INRs using the Neural Tangent Kernel (NTK), focusing on aspects such as
spectral properties (28) and dependencies on uniformly sampled data (29). Furthermore, studies by
(30) and (31) have analyzed the eigenfunctions of the empirical NTK to elucidate the approximation
capabilities of INRs. These investigations, however, primarily examine static properties of the NTK at
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initialization, which do not account for feature learning dynamics. In contrast, our work concentrates
on the evolution of the NTK, aiming to deepen our understanding of how INRs learn to model images.

Neural Tangent Kernel Alignment In practical settings, recent studies have shown that during
training, the NTK dynamically aligns with a limited number of task-relevant directions (32; 33; 22;
34; 23; 35; 24; 25). Specifically in classification tasks, this alignment results in a block structure
within the kernel matrix, where correlations between samples from the same class are notably
stronger than those between different classes (35). Concurrently, at the eigenfunction level, the modes
increasingly reflect salient features of the dataset, such as class-separating boundaries (22; 23). The
widespread occurrence and influence of kernel alignment suggest its critical role in DNN feature
learning, contributing to the superior performance of DNNs over models based on infinite-width
NTKs (24).

That said, these theoretical discussions often focus on shallow networks (34; 35), toy models (24; 23),
and deep linear networks (35). Empirical studies of more complex models primarily analyze centered-
kernel alignment and cumulative power (23; 24; 25). In this work, we extend this research to
encompass INRs. INRs exhibit the full complexity of DNNs, though their low-dimensional input
space makes certain analyses more tractable, and we may leverage expert knowledge from computer
vision. Additionally, we adapt metrics from the theory of DNN phase transitions to analyze the
conditions, timing, and mechanisms of NTK alignment.

Fast and Slow Phases of Neural Network Training The literature highlights a critical dynamical
phase transition in DNN training, marked by a shift from fast to slow learning regimes (11). In the
initial Fast Phase where gradient norms are significantly larger than their individual fluctuations,
global consensus amongst the datapoints leads to rapid loss reduction. In the subsequent Slow Phase,
fluctuations dominate, leading to slow learning. This transition may be quantified by a number of
order parameters, such as changes in the signal-to-noise ratios of the gradient norms (11), gradient
confusion, (12; 13; 14), and changes in the correlation lengthscale (12).

The transition from fast to slow learning not only delineates changes in learning dynamics, but
also aligns with the model’s progression from learning easy patterns to memorizing complex ones
(4). This shift represents a collision between the dataset and the model’s inductive biases, and thus,
presents an avenue to understanding feature learning. (36) is similarly motivated to study inductive
biases in terms of the dynamics of representations in ReLu networks. In this work, we focus on
insights obtained from the dynamics of the NTK.

6 CONCLUSION

We have conducted preliminary investigations into the dynamics of feature learning within INRs
for image data. Specifically, we demonstrated that SIREN models typically exhibit pronounced
spatial variations in the parameter gradients ||V f||. This variation facilitates the alignment of the
local structure of the NTK with the edges in the images being modelled. Notably, this alignment
predominantly occurs during a critical phase transition, characterized by increased spatial variation
and translational symmetry breaking. This phase transition aligns with a shift from the fast to a slow
learning phases. By approximating the local structure of the NTK with a Cauchy distribution, we
were able to relate various order parameters associated with this dynamic phase transition, such as
the correlation length, and gradient confusion.

Overall, many promising lines of research remain open. In this work, our focus has been primarily
on SIREN models trained using full-batch gradient descent. Future works may investigate whether
our observations hold true across different architectures and optimizers. For example, the ADAM
optimizer (37), which adaptively adjusts the learning rate throughout the optimization process, could
potentially influence the stability and divergence behaviours of the principal eigenvalue - a key
element in our study of NTK alignment. Moreover, one could employ a static positional encoding,
such as a random Fourier embedding (29), which may prevent the accumulation of spatial gradients.

This work has demonstrated how the NTK provides a rich theoretical tool for deriving and relating
order parameters to understand training dynamics. Our approach provides new methodology to
rigorously study the influence of inductive biases, such as model architectures and hyper-parameter
values, on the underlying learning process and may have practical utility in diagnosing the cause of
poor learning outcomes.
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