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Abstract

An adequate diagnostic quality of radiographs is essential for reliable diagnoses and treat-
ment planning. The patient’s pose during radiography is one of the most important factors
determining the diagnostic quality. Since patient positioning is difficult and not standard-
ized, an automated AI-based approach using depth images to automatically assess the
patient’s pose before the radiograph has been taken would be helpful. Due to regulatory
hurdles, however, it is difficult in practice to acquire the required depth images and cor-
responding radiographs. In this paper, we present a framework that can generate such
training data synthetically from Computer Tomography scans. We further show that by
pretraining on our generated synthetic dataset consisting of 3077 image pairs of upper
ankle joints, the pose assessment of real upper ankle joints can be improved by up to 11
percentage points.

Keywords: patient pose assessment, synthetic data generation, diagnostic quality, CT
scan, time-of-flight cameras, radiography, deep learning

1. Introduction

The diagnostic quality of radiographs is essential for making reliable diagnoses and planning
treatments. Radiographs of inadequate diagnostic quality often lead to retakes and thus
to increased radiation exposure for the patient and increased costs for the hospital. In the
worst case, inadequate diagnostic quality can lead to incorrect treatment and misdiagnosis.
The most important factor affecting the diagnostic quality of a radiograph is the pose of
the patient at the time the radiograph is taken (Little et al., 2017). Furthermore, patient
positioning is error-prone, as it is not standardized and depends heavily on the patient and
the experience of the radiographer, who is also often under time pressure.

© 2025 CC-BY 4.0, M. Laufer et al.

https://creativecommons.org/licenses/by/4.0/


Laufer et al.

To assist the radiographer in positioning the patient and to protect the patient from
increased radiation dose, an automatic pose assessment would help. By attaching two
Time-of-Flight (ToF) cameras to the X-ray device, we were able to show recently that
depth images of anatomical preparations of upper ankle joints contain information that
can lead to high accuracy pose assessment (Laufer et al., 2024). In order to determine
a correspondence between the depth image of the pose and the diagnostic quality of the
radiograph, the radiograph and the depth image must be taken simultaneously and labeled
with their diagnostic quality. The depth image and the label can then be used to train
neural networks to predict the diagnostic quality of the radiograph before the radiograph
is even taken. However, radiographing subjects without an indication is problematic. In
particular, intentionally radiographing subjects in non-diagnostic poses, which are necessary
for the training, is ethically difficult to justify. Furthermore, using cameras in live clinical
practice is not readily possible for data protection and regulatory reasons. Finally, working
with anatomical preparations as a solution is not scalable.

To address this challenge, we present a framework that synthetically generates the re-
quired image pairs of depth images and radiographs from Computer Tomography (CT)
scans. CT scans that have already been taken can thus be used retrospectively to create a
dataset of any size, which makes the approach scalable. It is furthermore possible to inten-
tionally generate non-diagnostic poses by selectively adjusting the CT scans. We show that
by pretraining on our generated synthetic dataset of upper ankle joints, the pose assessment
of real upper ankle joints can be improved by up to 11 percentage points (pp). The dataset
is published under https://github.com/INB-KI-SIGS/patient-pose-assessment.

2. Related Work

For the generation of synthetic radiographs from CT scans, known as digitally reconstructed
radiographs (DRR), two main approaches are used: The ray tracing approach, using forward
projection, casts a ray through the CT volume for each pixel on the detector and accumulates
the intensity of the values along the path. Although ray tracing is computationally efficient,
it is not capable of modeling scattering or beam hardening (Russakoff et al., 2005). In the
approach presented in Unberath et al. (2018), a radiograph generated by forward projection
is combined with deep learning-based scatter and noise estimation. In contrast, the Monte
Carlo (MC) approach simulates the transport of photons across the CT scan to model
the photon-matter interaction and therefore requires material properties for each CT voxel
(Badal and Badano, 2009). Such simulations result in realistic DDRs; however, they are
computationally more expensive than forward projection. Although there is little research
on generating synthetic depth images from CT scans, more works are investigating the
generation of point clouds from CT scans. Chougule et al. (2013) present a slice-based
approach using automatic thresholding and edge detection to generate point clouds from CT
scans. A voxel-based approach to generate surfaces from medical 3D data is the Marching
Cubes Algorithm (MCA) (Lorensen and Cline, 1987). Saiti and Theoharis (2022) use the
MCA to create synthetic point clouds from CT scans to learn multimodal registration with
point clouds and CT scans. To the best of our knowledge, there is no framework that
generates pairs of synthetic depth images and corresponding radiographs for different views
from CT scans and uses them for training patient pose assessment models.
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3. Framework

The generation of synthetic radiographs and depth images from CT scans involves several
steps. First, the surface of the target anatomy is extracted from the CT scan as a point
cloud. The point cloud is then augmented to simulate different body types. These point
clouds are placed on a pre-recorded point cloud of an imaging table in an X-ray room and
rotated to create poses of different diagnostic quality. A synthetic depth image is generated
for each pose by 2D projections of the point clouds. The corresponding synthetic radiograph
is generated for each pose from the CT scan using a MC simulation. Our framework, which
is implemented via Open3d’s (Zhou et al., 2018) graphical visualization, is shown in Figure 1
and examples of synthetically generated depth images and radiographs are shown in Figure 4
in Appendix C.

3.1. Preprocessing

In order to generate a synthetic depth image of the target anatomy from a CT scan, the
target anatomy must first be extracted from the CT. For this, the scan is converted to a
point cloud using MCA. The threshold value of the MCA is set to -500 Hounsfield units
(HU) so that the air around the patient is removed. This conversion from a CT array to
a point cloud includes a transformation TP

CT from the CT coordinate system CT to the
patient coordinate system P . The point cloud is then cropped to the target anatomy to
simplify the subsequent steps and calculations. Since only the surface of the target anatomy
is relevant for the synthetic depth image, additional MCA runs, the clustering algorithm
DBSCAN (Ester et al., 1996), and cropping are applied to remove the imaging table and
points that do not belong to the surface of the target anatomy. In order to generate poses
with different diagnostic quality, including inadequate quality, the target anatomy can be
brought into other poses by specific rotations of the point cloud. The axis of rotation is
strongly dependent on the target anatomy. For the upper ankle joint, it is the longitudinal
axis, which is positioned in the point cloud such as to mimic human leg rotations. This
axis passes through the center of the upper ankle joint. See Figure 3(a) in Appendix B for
illustrations.

3.2. Augmentation

By determining the normal vectors of the point cloud, it is possible to shift the point
cloud both outwards and inwards along the direction of the normal vector, resulting in two
additional point clouds. This allows us to simulate patients with different shapes and to
increase the amount of data; see Figure 3(b) in Appendix B. The diagnostic-quality label
applies to all augmentations of a particular pose, as it can be assumed that the anatomy
that determines the quality, in particular the position of the bones in relation to each other,
does not change with minor displacements along the normal direction.

3.3. Scene Composition and Synthetic Depth Image Generation

To generate realistic synthetic depth images, it is beneficial to embed the target anatomy in
a realistic scene. This can be achieved by recording the X-ray room in advance, including
the imaging table, so that the target anatomy can then be placed on the imaging table
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Figure 1: Schematic overview of the framework. The CT scan as input is passed through the
steps described in Section 3 to generate synthetic radiographs and depth images.

under the X-ray device; see Figure 3(c) in Appendix B. The exact position of the target
anatomy is selected so that the X-ray beam of the X-ray device passes through the axis of
rotation of the target anatomy. Since a realistic environment and positioning of the target
anatomy has been established, it is possible for the user to easily determine the range of
rotation of the target anatomy to include non-diagnostic poses. Both the rotation and the
initial embedding of the target anatomy in the X-ray room can be described as a further
transformation T ToF

P from P to the ToF coordinate system ToF . From the point clouds of
the target anatomy and the X-ray room, a 2D projection yields the synthetic depth image
by taking into account intrinsic and extrinsic camera parameters and distortion coefficients.
This way, synthetic depth images can be generated for any desired angles of rotation,
augmentations, and camera views.

3.4. Synthetic Radiograph Generation

When generating synthetic radiographs, it is important that all depicted anatomical features
are identical to those of real radiographs in the same position to avoid false labels of the
corresponding depth images. Generation based on a physical model was therefore preferred
to methods based on deep learning. Since only a region smaller than the one depicted in the
point clouds described in Section 3.1 must be visible in the radiograph, the target anatomy
is cropped out of the CT in the first step. The cropped CT voxels are then converted into
material and mass-density voxels. The material voxels each contain one of the materials
air, soft tissue, bone, or titanium, based on the HU value of the respective voxel. Similarly,
the mass-density voxels contain the density of the material adjusted by the HU value.

For each pair of material and mass-density voxels, multiple radiographs corresponding
to different positions are generated. Instead of changing the position of the target anatomy,
which would require rotation and interpolation of the voxels, the position of the X-ray device
relative to the target anatomy is changed; see Figure 3(d) in Appendix B. The corresponding
position of the X-ray device in the CT coordinate system can be obtained using the inverted
transformations (T ToF

P )−1(TP
CT )

−1. To generate the radiograph, the MCGPU tool (Badal
and Badano., 2011) was used for a MC simulation together with the material properties
from the PENELOPE 2006 material files (Salvat et al., 2006) to simulate 2·1010 X-ray beam
paths. While more simulated paths would reduce the noise in the generated radiographs,
the simulation time would increase. The use of 2 · 1010 simulated paths allowed us to
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create realistic radiographs in a reasonable amount of time. The resulting raw image is
then converted to a synthetic radiograph using a non-linear value mapping, to obtain a
look similar to a real radiograph. The synthetic radiograph is not as detailed as a real
radiograph, but expert radiologists have validated that the visual quality is suitable for
assessing the diagnostic quality for a given pose.

4. Datasets

The two datasets used in this paper consist of depth images from two camera views and
corresponding radiographs. Each of these radiographs was assessed by 4 radiologists to
determine its diagnostic quality on a scale of 1 to 3 in steps of 0.5. A diagnostic quality of
1 is ideal and a diagnostic quality of 3 is inadequate. The deciding factor in the assessment
of the upper ankle joint is the visibility of the joint space; see Figure 4 in Appendix C.
Radiographs with a label in the interval of [1,2.5) can be further classified as diagnostic and
anything with a label greater than that as non-diagnostic.

4.1. Synthetic Dataset

Using the framework proposed in Section 3, we were able to generate pairs of synthetic
radiographs and depth images of upper ankle joints from 10 CTs of different patients in
3077 different poses. The anonymized CT scans were selected to contain flexed upper ankle
positions and exclude clutter such as tubes or screws. From the 10 CTs, a total of 17 upper
ankle joints were extracted and rotated medially around the longitudinal axis in a range
of 90 degrees. A synthetic depth image was generated from two camera views V1 and V2

for each half degree, i.e. a total of 181 poses per foot. This was done for each of the three
augmentations, resulting in a total of 18462 depth images. Since the synthetic radiograph
is the same for all camera views and augmentations, one synthetic radiograph was created
for each of the 181 poses resulting in a total of 3077 synthetic radiographs. To the best of
our knowledge, this is by far the largest dataset linking depth images to diagnostic quality.

4.2. Anatomical Preparations Dataset

As presented in Laufer et al. (2024), we captured two anatomical preparations – a left and
a right lower leg of two women in 174 different poses using two ToF cameras. Parallel to
the depth images from two different views, a radiograph of the upper ankle joint was also
taken. The preparations were not only rotated medially around the longitudinal axis but
also flexed in three different positions of the ankle joint. More detailed information on this
published dataset can be found in Laufer et al. (2024).

5. Experiments and Results

The two experiments carried out are designed to answer the following questions:

Experiment 1: Can a neural network be trained on the generated synthetic depth
images to assess the pose with high accuracy?

Experiment 2: If so, can the neural network be finetuned on real data in order to
improve the results of patient pose assessment?
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Both experiments were modeled as regressions, to better reflect the nature of the labels.
While the depth images served as input for the models, the models output a single contin-
uous value between 1 and 3 as the diagnostic quality. All experiments were implemented
using PyTorch and repeated 10 times with different seeds. The results were then averaged.

5.1. Experiment 1

The first experiment tests whether relevant features can be learned with only the syn-
thetic dataset. In addition, to clarify whether the augmentation of the depth images (see
Section 3.2) has a benefit, the training was carried out with and without augmentation.

Training Two EfficientNet-B0 (Tan and Le, 2019), called CNNV1 and CNNV2 were used.
Following the separate network architecture (see Figure 2(a)) described in Laufer et al.
(2024) the CNNV1 is only trained on the depth images from camera view V1 while the
CNNV2 is trained on images from camera view V2. The models each receive a single channel
depth image i, resized to 336 × 336 pixels, as input and output a single continuous value
y. The models are trained to minimize the Mean Squared Error (MSE; see Equation (1) in
Appendix A) between the model’s output y and the averaged diagnostic quality x that had
been assigned to the input depth image. The Adam optimizer (Kingma and Ba, 2017) was
used with an initial learning rate of 10−3, which was decreased 4 times by a factor of 10 in
the last 10,000 steps. We used a batch size of 16 and trained each model for 200,000 steps.
For this experiment, a three-fold cross-validation was performed on the synthetic dataset.
For each cross-validation run the test set consisted of three randomly selected upper ankle
joints so that no subject from the test set would appear in the training set. Note that
possible differences in the results in comparison to Laufer et al. (2024) are due to different
implementations and updated libraries. The results are shown in Table 1.

(a) (b) (c)

Figure 2: 2(a) shows the separate network architecture: individual images iV1
j and iV2

j from

each camera view V1 and V2 are used to train two separate CNNs. yV1
j and yV2

j are
the continuous outputs of the networks, ranging from 1 to 3. 2(b) shows the cam-
era view specific approach, where the CNNs are initialized with the weights WV1

and WV2 obtained by pretraining with the corresponding view. CNNV1 would
therefore only be initialized with weights WV1 that were obtained by pretraining
with images only from V1. 2(c) shows the unified camera view approach, where
both CNNs are initialized with the same weights WV1∪V2 obtained by pretraining
with images from both views V1 ∪ V2.
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Table 1: Results of the experiments conducted solely on the synthetic dataset and evaluated
by the metrics described in Section 5.3 regarding the impact of augmentation of
the synthetic depth images. Note that training with augmented data can improve
the results for all metrics.

Metric without augmentation with augmentation

MAE 0.23±0.02 0.21±0.02

Correlation rs 0.85±0.03 0.87±0.02

Accuracy [%] 85.29±2.34 87.6±2.6

Diag. Acc. [%] 85.45±2.77 86.96±2.47

Sens. [%] 91.5±1.5 92.82±1.8

Spec. [%] 76.9±6.01 79.0±5.88

5.2. Experiment 2

To answer the second question, we evaluated whether pretraining with the synthetic data
improves performance when finetuning on real data (see Section 4.2). In addition, we
compare these results with those of a model that was trained from scratch on the anatomical
preparations dataset without any pretraining and with those of a model that was pretrained
on ImageNet (Deng et al., 2009) and then finetuned with the anatomical preparations
dataset. Furthermore, as in Section 5.1, we evaluated whether the augmentation of the
depth data during pretraining has an influence on the results.

Pretraining There are four alternative ways of pretraining to initialize weights before
finetuning. For training from scratch, without any pretraining, the models are randomly
initialized. For the pretraining on ImageNet, both models CNNV1 and CNNV2 are initial-
ized with the ImageNet weights. When pretraining using the synthetic dataset there are
two possible ways, as this dataset also contains depth images of two views: In the unified
camera view approach, both models are initialized with identical weights WV1∪V2 obtained
by pretraining with images from both camera views V1 and V2 of the synthetic dataset; see
Figure 2(c). With the camera view specific approach, each model CNNV1 and CNNV2 is
initialized with weights obtained by pretraining on synthetic depth images from only camera
view V1 or V2 respectively; see Figure 2(b). This approach effectively halves the amount
of pretraining data, but the finetuning is more specific. The pretraining on the synthetic
dataset was performed as described in Section 5.1, but for the fact that the whole dataset
was used as training set.

Finetuning The training from scratch and finetuning on the anatomical preparations
dataset was performed with the same hyperparameters as in Section 5.1 in order to be
comparable, using the separate network architecture; see Figure 2(a). As the anatomical
preparations dataset consists of only two preparations, we trained on one preparation and
tested on the other, and vice versa. The results are shown in Table 2.
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Table 2: Results of the experiments without pretraining, with pretraining on ImageNet and
pretraining with the synthetic dataset and subsequent finetuning on the anatomical
preparations dataset, using the metrics and methods described in Section 5. Note
that pretraining with synthetic data outperforms models without pretraining and
with pretraining on ImageNet.

Metric
from

scratch

pretrained
on

ImageNet

pretrained on synthetic dataset
unified camera view camera view specific
wo/ aug. w/ aug. wo/ aug. w/ aug.

MAE 0.28±0.04 0.31±0.05 0.22±0.04 0.24±0.04 0.23±0.03 0.22±0.06

Correlation rs 0.88±0.04 0.9±0.03 0.92±0.03 0.9±0.04 0.9±0.03 0.91±0.04

Accuracy [%] 79.25±6.98 77.37±8.22 89.03±5.51 86.91±6.14 90.45±4.73 90.07±7.64

Diag. Acc. [%] 89.08±3.75 84.2±2.43 90.93±3.0 91.91±4.64 92.8±2.14 92.43±4.05

Sens. [%] 91.21±4.23 93.79±3.19 92.65±7.45 90.9±±0.29 87.64±4.51 91.16±6.72

Spec. [%] 88.66±4.61 80.05±4.6 89.84±5.49 92.24±6.59 95.34±3.91 93.1±6.27

5.3. Metrics

When using two depth images iV1
j and iV2

j of the same pose from the two camera views as

input, the continuous outputs yV1
j and yV2

j of the two models are averaged and compared
with the corresponding quality label xj . The following metrics are calculated: Mean
Absolute Error (MAE), Spearman correlation coefficient (rs) (see Equation (2) and
Equation (3) in Appendix A), as well as two accuracies. The Accuracy measures how
often the prediction differs with less than 0.5 from the label:

Accuracy =
1

N

N∑
j=1

1(|yj − xj | < 0.5)

where yj = (yV1
j + yV2

j )/2 is the average prediction, N is the number of samples, xj is the
label, and 1 is the indicator function. The Diagnostic Accuracy measures how often the
prediction of whether a depth image is diagnostic or non-diagnostic is correct, i.e., whether
label and prediction are both below or above the 2.5 threshold:

Diagnostic Accuracy =
1

N

N∑
j=1

1 ((yj < 2.5 ∧ xj < 2.5) ∨ (yj ≥ 2.5 ∧ xj ≥ 2.5))

Since it is worse to classify an image that is not diagnostic as diagnostic than vice versa,
the Sensitivity and Specificity are also calculated for the diagnostic accuracy.

5.4. Results

The high accuracy of 87.6% in the experiment 1 based on the synthetic dataset (see Table 1)
shows that synthetic depth images can be used to learn to assess poses and that training
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with augmented synthetic depth images results in an improvement in all metrics compared
to training without augmentation. Compared to the diagnostic accuracy of just 59.3% in
case of a simple baseline that only predicts the mean of all labels, the proposed approach
leads to a significant improvement. The results in Table 2 show that pretraining with the
novel synthetic data improves training on real data. Despite the fact that the sensitivity
of the diagnostic quality is highest (93.79%) for the model pretrained on ImageNet, the
other metrics show, that there is no benefit from pretraining with ImageNet, compared to
training from scratch. This suggests that the features learned on ImageNet are not useful
for the task. However, pretraining on the novel synthetic depth images is useful since,
except for sensitivity, all metrics are improved over those obtained without pretraining.
Most importantly, the accuracy increases by 11 pp to 90.45% for the camera view specific
approach without augmentation. With the same model, the diagnostic accuracy can also
be improved by 3 pp.

Moreover, the camera view specific approach is performing slightly better compared to
the unified camera view approach according to the more important accuracy metrics, which
is presumably due to the higher similarity of the pretraining and finetuning dataset. In
contrast to the results from Table 1, the augmentation of the synthetic depth images does
not yield any benefits in these experiments. This is possibly due to an insufficient variance
in the shape of the rather few anatomical preparations.

Note that we here obtain an overall accuracy of 90.45% when predicting diagnostic
quality based on depth images. When comparing with the accuracy (93.0%) obtained for
predicting the same diagnostic quality by using real radiographs (Mairhöfer et al., 2021), we
can conclude that a similar quality assessment is possible with only depth images, although
it is significantly more difficult.

6. Conclusion and Outlook

In this paper, we presented a framework for generating both synthetic depth images and
radiographs from CT scans. We have shown that by pretraining on such a synthetic dataset
relevant features can be learned, which are useful for the assessment of patients‘ poses on real
data. This makes it easier to assess whether the patient’s pose would lead to a radiograph
with inadequate diagnostic quality before it is taken and thus protect the patient from
unnecessary radiation due to a retake.

The main advantage of this framework is that the data acquisition problem, which is
often critical in the medical context, can be solved by using already available CT scans. It is
also possible to adapt the synthetic training data to different X-ray rooms and different ToF-
camera setups in order to generate realistic and case-specific training data. Furthermore,
it is possible to investigate which camera positions and how many cameras are best suited
for the pose assessment task.

Although we have here only shown this for upper ankle joints, we believe that the
framework can also be applied to other anatomies. Ideally, our novel way of generating
radiographs and depth images can be used beyond the here demonstrated pose-assessment
application.
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Appendix A. Metrics Definition

The Mean Squared Error (MSE) and Mean Absolute Error (MAE) are calculated as

MSE =
1

N

N∑
j=1

(yj − xj)
2 (1)

and

MAE =
1

N

N∑
j=1

|yj − xj | (2)

where N is the total number of samples, yj is the prediction, and xj is the true label. The
Spearman correlation coefficient (rs) is calculated as

rs = 1−
6
∑N

j=1 d
2
j

N(N2 − 1)
(3)

where N is the total number of samples, dj = R[xj ] − R[yi], and R(xj) is the rank of xj
and R(yj) is the rank of yj .
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Synthetic Data Generated from CT Scans for Patient Pose Assessment

Appendix B. Framework Illustrations

(a) (b)

(c) (d)

Figure 3: This figure illustrates the different steps described in Section 3. Figure 3(a) shows
the target anatomy cut out of the CT scan as a point cloud and the rotation axis,
which passes through the center of the upper ankle joint. Figure 3(b) shows
the augmentation of the point clouds by moving the points along the direction
of the normal vectors. Figure 3(c) shows the target anatomy combined with
the previously acquired X-ray room including the imaging table and detector.
Figure 3(d) sketches the positions of the X-ray device, which change due to the
medial rotation around the longitudinal axis of rotation.
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Appendix C. Synthetic Example Images

Figure 4: This figure shows synthetic images generated by using the framework. The first
row shows the synthetic depth images that were generated with different rotations
of the target anatomy. The second row shows the manually created ROIs for
the synthetic depth images from the first row, which are then used for training.
The third row shows the synthetic radiographs corresponding to the synthetic
depth images, including their diagnostic quality, which has been assessed by the
radiologists. Note that only small rotations are necessary to change a diagnostic
quality of 1 to a diagnostic quality of 2, which is reflected in the visibility of the
joint space in the different images.
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