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2 University Medical Center Schleswig-Holstein, Lübeck, Germany
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Abstract

An adequate diagnostic quality of radiographs is essential for reliable diagnoses and
treatment planning. The patient’s pose during radiography is one of the most important
factors determining the diagnostic quality. Since patient positioning is difficult and not
standardized, an automated AI-based approach using depth images to automatically as-
sess the patient’s pose before the radiograph has been taken would be helpful. Due to
regulatory hurdles, however, it is difficult in practice to acquire the required depth images
and corresponding radiographs. In this paper, we present a framework that can generate
such training data synthetically from Computer Tomography scans. We further show that
by pretraining on our generated synthetic dataset consisting of 3077 image pairs of upper
ankle joints, the pose assessment of real upper ankle joints can be improved by up to 11
percentage points.

Keywords: patient pose assessment, synthetic data generation, diagnostic quality, CT
scan, time-of-flight cameras, radiography, deep learning

1. Introduction

The diagnostic quality of radiographs is essential for making reliable diagnoses and planning
treatments. Radiographs of inadequate diagnostic quality often lead to retakes and thus
to increased radiation exposure for the patient and increased costs for the hospital. In the
worst case, inadequate diagnostic quality can lead to incorrect treatment and misdiagnosis.
The most important factor affecting the diagnostic quality of a radiograph is the pose of
the patient at the time the radiograph is taken (Little et al., 2017). Furthermore, patient
positioning is error-prone, as it is not standardized and depends heavily on the patient and
the experience of the radiographer, who is also often under time pressure.
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To assist the radiographer in positioning the patient and to protect the patient from
increased radiation dose, an automatic pose assessment would help. By attaching two
Time-of-Flight (ToF) cameras to the X-ray device, we were able to show recently that
depth images of anatomical preparations of upper ankle joints contain information that
can lead to high accuracy pose assessment (Laufer et al., 2024). In order to determine
a correspondence between the depth image of the pose and the diagnostic quality of the
radiograph, the radiograph and the depth image must be taken simultaneously and labeled
with their diagnostic quality. The depth image and the label can then be used to train
neural networks to predict the diagnostic quality of the radiograph before the radiograph
is even taken. However, radiographing subjects without an indication is problematic. In
particular, intentionally radiographing subjects in non-diagnostic poses, which are necessary
for the training, is ethically difficult to justify. Finally, using cameras in live clinical practice
is not readily possible for data protection and regulatory reasons. Working with anatomical
preparations as a solution is not scalable, and it is arguable whether the movement apparatus
of anatomical specimens is identical to that of living subjects.

To address this data challenge, in this paper we present a framework that synthetically
generates the required image pairs of depth images and radiographs from Computer Tomog-
raphy (CT) scans. CT scans that have already been taken can thus be used retrospectively
to create a data set of any size, which makes the approach scalable. It is furthermore pos-
sible to intentionally generate non-diagnostic poses by selectively adjusting the CT scans.
We show that by pretraining on our generated synthetic dataset of upper ankle joints, the
pose assessment of real upper ankle joints can be improved by up to 11 percentage points
(pp). We will publish the synthetic depth images along with the diagnostic quality labels.

2. Related Work

The generation of synthetic radiographs from CT scans, known as digitally reconstructed
radiographs (DRR), is a well-researched field. There are methods based on a forward
projection of the CT (Unberath et al., 2018), methods based on a physical simulation
(Badal and Badano., 2011) and generative models (Liu and Lin, 2023; Keerthi et al., 2024).
Chougule et al. (2013) and Olya Grove and Piegl (2010) present slice-based approaches
for generating synthetic point clouds and NURBS from CT scans. To learn multimodal
registration with point clouds and CT scans, Saiti and Theoharis (2022) create synthetic
point clouds from CT scans using the Marching Cubes Algorithm (MCA)(Lewiner et al.,
2012). However, to the best of our knowledge, there is no framework that generates synthetic
depth image and corresponding radiograph pairs for different view angles from CT scans in
order to use them for training patient pose assessment models.

3. Framework

Our framework, which is implemented via Open3d’s (Zhou et al., 2018) graphical visualiza-
tion, is shown in Figure 1 and described in the following sections:
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3.1. Preprocessing

In order to create a synthetic depth image of the target anatomy from a CT scan, the target
anatomy must first be extracted from the CT. For this purpose, the scan is converted into
a point cloud using the Marching Cubes Algorithm (MCA). The relevant parameters are
the pixel spacing of the CT and the level threshold value for the MCA, which in this case is
defaulted to a Hounsfield (HU) value of −500 so that air around the patient is removed. This
conversion from the CT array to the point cloud includes a transformation TP

CT from the CT
coordinate system CT to the patient coordinate system P . The point cloud is now cropped
to the target anatomy to simplify subsequent steps and calculations. Since only the target
anatomies surface is relevant for the synthetic depth image, further MCA runs, clustering
algorithms such as DBSCAN (Ester et al., 1996) and cropping are applied to remove the
imaging table and points inside and outside the surface. In order not to only generate the
pose in which the patient was during the CT scan, but also synthetic depth images of other
poses, especially non-diagnostic poses, the target anatomy can be brought into other poses
by specific rotations of the point cloud. The axis of rotation is strongly dependent on the
target anatomy. For the upper ankle joint, it is the longitudinal axis which is positioned in
the point cloud such as to mimic human leg rotation. This axis passes through the center
of the upper ankle joint. See Figure 3(a) in Section A for illustrations.

3.2. Augmentation

By determining the normal vectors of the point cloud, it is possible to shift the point cloud
both in the direction of the normal vector outwards and against the normal vector direction
inwards. This allows patients with different shapes to be simulated and the amount of data
generated to be increased, see Figure 3(b) in Section A. The label for diagnostic quality
applies to all augmentations of a particular pose, as it can be assumed that the anatomy
decisive for the quality, in particular the position of the bones in relation to each other,
does not change with minor displacements along the normal vectors.

3.3. Scene Composition and Synthetic Depth Image Generation

To generate realistic synthetic depth images, it is beneficial to embed the target anatomy in
a realistic scene. This can be achieved, by recording the X-ray room including the imaging
table with the depth camera at desired position so that the target anatomy can then be
placed on the imaging table under the X-ray device, see Figure 3(c) in Section A. The
exact position of the target anatomy is selected so that the X-ray beam of the X-ray device
passes through the axis of rotation of the target anatomy. Since a realistic environment
and positioning of the target anatomy has been established, it is possible for the user to
easily determine the range of rotation of the target anatomy, including intentionally chosen
non-diagnostic poses. Both the rotation and the initial embedding of the target anatomy
in the X-ray room can be described as a further transformation T ToF

P from P to the ToF
coordinate system ToF . From the point clouds of the target anatomy and the X-ray room,
a 2D projection yields the synthetic depth image by taking into account camera-specific
intrinsic and extrinsic parameters and any distortion coefficients. In this way, synthetic
depth images can be produced for every angle of rotation as well as for every augmentation.
The transformations for each individual pose are used in the next step as described below.
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Figure 1: Schematic overview of the framework. The CT scan as input is passed through
the steps described in Section 3 to eventually synthetic radiographs and depth
images are generated.

3.4. Synthetic Radiograph Generation

When generating synthetic radiographs, it is crucial that all depicted anatomical features
are identical with real radiographs in the same position, as otherwise it could lead to false
labels of the corresponding depth images. A generation based on a physical model was
therefore preferred to methods based on deep learning. Since only a region smaller than
the one on the depth images in Section 3.1 must be visible on the radiograph, only the
target anatomy is cropped out of the CT in a first step. The cropped CT voxels are then
converted into material and mass density voxels. The material voxels each contain one of
the materials air, soft tissue, bone or titanium, based on the HU value of the respective
voxel. Similarly, the mass density voxels contain the density of the material adjusted by
the HU value.

For each pair of material and mass density voxels, multiple radiographs of different
positions are generated. Instead of changing the position of the target anatomy, which
would need rotation and interpolation of the voxels, the position of the X-ray device in
relation to the target anatomy is changed, see Figure 3(d) in Section A. The corresponding
position of the X-ray device in the CT coordinate system can be achieved by using the
inverted transformations (T ToF

P )−1(TP
CT )

−1. To generate the radiograph the tool MCGPU
(Badal and Badano., 2011) was used together with the material properties from PENELOPE
2006 material files (Salvat et al., 2006) to simulate 2 ·1010 X-ray beam paths. The resulting
raw image, containing the energy that reached the detector for each pixel, is then converted
to a synthetic radiograph using a non-linear value mapping, to obtain the same look as a
real radiograph.

Although the synthetic radiograph is not as detailed as a real radiograph, it is suitable
for assessing the diagnostic quality of the pose. Examples of synthetically generated depth
images and corresponding radiographs are shown in Figure 4 in Section B

4. Datasets

The two datasets used in this paper consist of depth images from two camera views and
corresponding radiographs, which have been assessed regarding their diagnostic quality.
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4.1. Synthetic Dataset

Using the framework proposed in Section 3, we were able to generate 3077 image pairs
of synthetic radiographs and depth images of upper ankle joints from 10 CTs of different
patients. The anonymized CT scans were selected to contain flexed upper ankle positions
and exclude clutter such as tubes or screws. From the 10 CTs, a total of 17 upper ankle
joints were extracted and rotated medially around the longitudinal axis in an angular range
of 90°. A synthetic depth image was generated for each half degree, i.e. a total of 181 poses
per foot. This is done for each augmentation and for two camera views, resulting in a total
of 18462 depth images. Since the synthetic radiograph image is the same for the camera
view and augmentations, one synthetic radiograph was created for each of the 181 poses
resulting in a total of 3077 synthetic radiographs. Each of these radiographs was assessed
by 4 radiologists according to its diagnostic quality on a scale of 1 to 3 in steps of 0.5. A
diagnostic quality of 1 is ideal and a diagnostic quality of 3 is inadequate. The deciding
factor in the assessment of the upper ankle joint is the visibility of the joint space, see
Figure 4 in Section B. Radiographs with a label in the interval of [1,2.5) can be furthermore
classified as diagnostic and anything with a label above that as non-diagnostic. To the
best of our knowledge, this is by far the largest dataset linking depth images to diagnostic
quality.

4.2. Anatomic Preparation Dataset

In Laufer et al. (2024) we captured two anatomical preparations - a left and a right lower leg
of two women in 174 different poses by two ToF cameras. Parallel to the depth images from
two different views, the radiograph of the upper ankle joint were also captured. The subjects
were not only rotated medially around the longitudinal axis but also flexed in three different
positions of the ankle joint. The radiographs were also evaluated by 4 radiologists in the
same manner and on the same scale described in Section 4.1. More detailed information on
this published dataset is found in Laufer et al. (2024).

5. Experiments and Results

With the following experiments we intend to answer two questions:

1. Can a neural network be trained on the generated synthetic depth images to assess
the pose with high accuracy?

2. If so, can the neural network be finetuned on real data in order to improve the results
of the patient’s pose assessment?

To answer the first question, a 3-fold cross-validation was performed on the synthetic
dataset. The test set, consisting of three upper ankle joints, was randomly selected so
that no subject from the test set appears in the training set. To clarify whether the aug-
mentation of the depth images has a benefit, the training was carried out with and once
without augmentation. The results are shown in Table 1.

In order to investigate whether the synthetic data are beneficial, we evaluated whether
pretraining with the synthetic data improves performance when finetuning on real data.
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As the finetuning dataset consisted of only two anatomical preparations, the leave-one-out
dataset splitting strategy was used, i.e. training on one preparation and testing on the
other, and vice versa. In this experiment, it is furthermore helpful to compare the results
with those of a model that was trained without pretraining from scratch on the anatomical
preparations dataset and one that was previously pretrained on another dataset in our
case on ImageNet (Deng et al., 2009) and then finetuned with the anatomical preparations’
dataset. Furthermore, it was evaluated whether camera-specific pretraining (Section 5.1)
and the augmentation of the data during pretraining have an influence on the results. The
results are shown in Table 2

Table 1: Results of the experiments conducted solely on the synthetic dataset and evaluated
by the metrics described in Section 5.2 regarding the impact of augmentation of
the synthetic depth images. Note that training with augmented data can improve
the results for all metrics.

Metric without augmentation with augmentation

MAE 0.23±0.02 0.21±0.02

Correlation rs 0.85±0.03 0.87±0.02

Accuracy [%] 85.29±2.34 87.6±2.6

Diag. Acc. [%] 85.45±2.77 86.96±2.47

Sens. [%] 91.5±1.5 92.82±1.8

Spec. [%] 76.9±6.01 79.0±5.88

Table 2: Results of the experiments without pretraining, with pretraining on ImageNet and
pretraining with the synthetic dataset and subsequent finetuning on the anatomical
preparation dataset, using the metrics and methods described in Section 5. Note
that pretraining with synthetic data outperforms models without pretraining and
with pretraining on ImageNet.

Metric
from

scratch

pretrained
on

ImageNet

pretrained on synthetic dataset
unified camera view camera view specific
wo/ aug. w/ aug. wo/ aug. w/ aug.

MAE 0.28±0.04 0.31±0.05 0.22±0.04 0.24±0.04 0.23±0.03 0.22±0.06

Correlation rs 0.88±0.04 0.9±0.03 0.92±0.03 0.9±0.04 0.9±0.03 0.91±0.04

Accuracy [%] 79.25±6.98 77.37±8.22 89.03±5.51 86.91±6.14 90.45±4.73 90.07±7.64

Diag. Acc. [%] 89.08±3.75 84.2±2.43 90.93±3.0 91.91±4.64 92.8±2.14 92.43±4.05

Sens. [%] 91.21±4.23 93.79±3.19 92.65±7.45 90.9±±0.29 87.64±4.51 91.16±6.72

Spec. [%] 88.66±4.61 80.05±4.6 89.84±5.49 92.24±6.59 95.34±3.91 93.1±6.27
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5.1. Training

Since in Laufer et al. (2024) the separate network architecture with paired evaluation
method performs best, we use it in this paper, to address the multiview problem. In this
architecture, there is one network for each different camera view. The outputs of the two
networks are then averaged, see Figure 2(a). As models, we used the EfficientNet-B0 (Tan
and Le, 2019). Due to the underlying order of the labels, we have modeled the problem as
a regression. All experiments were implemented using the PyTorch Lightning framework
version 2.3.3 (Falcon and The PyTorch Lightning team, 2019). In order to be comparable to
our previous work (Laufer et al., 2024), we have used the same hyperparameters for train-
ing, preprocessing of the depth images and augmentation. Note that possible differences
in the results in comparison to Laufer et al. (2024) are due to different implementations
and updated libraries. The pretraining was identical to the training from scratch and the
finetuning. All experiments, including the 3-fold cross validation and leave-one-out strategy
were repeated 10 times with different seeds. The results were then averaged.

Since the separate network architecture has one model per camera view, it is possible
to pretrain it in two different ways: In the unified camera view approach, both models are
pretrained on images from both camera perspectives and then only finetuned on images
from one camera perspective, see Figure 2(c). This way, all models are pretrained equally
with the full number of synthetic depth images. With the camera view specific approach, the
model that is only finetuned on one camera view is also only pretrained on synthetic depth
images from the same camera view, see Figure 2(b). This effectively halves the amount of
pretraining data, but the finetuning is more specific.

(a) (b) (c)

Figure 2: 2(a) shows the separate network architecture: individual images from each view
(V1, V2) are used to train two separate CNNs. 2(b) shows the camera view specific
approach, where the CNNs are initialized with the weights (WV1

,WV2
) obtained

by pretraining with the corresponding view. 2(c) shows the unified camera view
approach, where the CNNs are initialized with the weights obtained by pretraining
with images from both views.

5.2. Metrics

In addition to the Mean Absolute Error (MAE) and the Spearman correlation two
accuracies are used: the Accuracy measures how often the prediction differs less than
by 0.5 from the label. The Diagnostic Accuracy measures how often the prediction of
whether a depth image is diagnostic or non-diagnostic is correct. I.e., whether the label and
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prediction both are below or above the 2.5 threshold. Since it is worse to classify an image
that is not diagnostic as diagnostic, the Sensitivity and Specificity are also calculated
for the diagnostic accuracy, sensitivity being more important than specificity in this case.

5.3. Results

The high accuracy of 87.6% in the experiments based on the synthetic dataset (Table 1)
show that synthetic depth images can be used to learn to assess poses and that training
with augmented synthetic depth images results in an improvement in all metrics compared
to training without augmentation. The results in Table 2 show that pretraining with the
synthetic data improves training on real data. Despite the fact that the sensitivity of the
diagnostic quality is highest (93.79%) for the model pretrained on ImageNet, the other
metrics show, that there is no benefit, compared to training from scratch. This suggests
that the features learned on ImageNet are not useful for the task. This is different for
the features learned by pretraining on the synthetic depth images. Except for sensitivity,
all metrics for the models pretrained on the synthetic depth images are improved over
those without pretraining. The accuracy even increases by about 11 pp to 90.45% for the
camera view specific approach without augmentation. With the same model, the diagnostic
accuracy can also be improved by 3 pp.

Moreover, the camera view specific approach is performing slightly better according
to the more important metrics accuracy metrics, which is presumably due to the higher
similarity of the pretraining and finetuning dataset. In contrast to the results from Table 1,
no advantage can be determined from the use of augmentation of the synthetic depth images
in these experiments. This is possibly due to the lack of variance in the shape and the small
number of the anatomical preparations, both of which come from relatively thin subjects.

6. Conclusion and Outlook

In this paper, we presented a framework for generating both synthetic depth images and
radiographs from CT scans. We have shown that by pretraining on such a synthetic dataset
relevant features can be learned, which are useful for the assessment of patients‘ poses on
real data. This makes it easier to determine whether the patient’s pose would lead to a
radiograph with inadequate diagnostic quality before it is taken and thus protect the patient
from unnecessary radiation due to a retake.

The main advantage of this framework is that the data acquisition problem, which often
exists in the medical context, can be solved by using already available CT scans. It is also
possible to adapt the synthetic training data to different X-ray rooms and different ToF
cameras in order to generate realistic case-specific training data that is as close to real data
as possible. Furthermore, it is possible to investigate which camera positions and how many
cameras are best suited for the pose assessment task. Although we have here only shown
this for upper ankle joints, we believe that the framework can also be applied to other
anatomies.

Ideally our novel way of generating radiographs and depth images can be used beyond
the here demonstrated pose-assessment application.
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Appendix A. Framework Illustrations

(a) (b)

(c) (d)

Figure 3: This figure illustrates the different steps described in Section 3. Figure 3(a) shows
the target anatomy cut out of the CT scan as a point cloud and the rotation axis,
which passes through the center of the upper ankle joint. Figure 3(b) shows
the augmentation of the point clouds by moving the points along the direction
of the normal vectors. Figure 3(c) shows the target anatomy combined with
the previously acquired X-ray room including the imaging table and detector.
Figure 3(d) sketches the positions of the X-ray device, which change due to the
medial rotation around the longitudinal axis of rotation.
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Appendix B. Synthetic Example Images

Figure 4: This figure shows the synthetic images generated by using the framework. The
first row shows the synthetic depth images that were generated with different
rotations of the target anatomy. The second row shows the manually created
ROIs for the synthetic depth images from the first row, which are then used
for training. The third row shows the synthetic radiographs corresponding to
the synthetic depth images, including their diagnostic quality, which has been
assessed by the radiologists. Note that only small rotations are necessary to
change a diagnostic quality of 1 to a diagnostic quality of 2, which is reflected in
the visibility of the joint space in the different images.
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