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Abstract

The secretary problem is one of the fundamental problems in online decision
making; a tight competitive ratio for this problem of 1/e ≈ 0.368 has been known
since the 1960s. Much more recently, the study of algorithms with predictions was
introduced: The algorithm is equipped with a (possibly erroneous) additional piece
of information upfront which can be used to improve the algorithm’s performance.
Complementing previous work on secretary problems with prior knowledge, we
tackle the following question:
What is the weakest piece of information that allows us to break the 1/e barrier?
To this end, we introduce the secretary problem with predicted additive gap. As
in the classical problem, weights are fixed by an adversary and elements appear
in random order. In contrast to previous variants of predictions, our algorithm
only has access to a much weaker piece of information: an additive gap c. This
gap is the difference between the highest and k-th highest weight in the sequence.
Unlike previous pieces of advice, knowing an exact additive gap does not make the
problem trivial. Our contribution is twofold. First, we show that for any index k
and any gap c, we can obtain a competitive ratio of 0.4 when knowing the exact
gap (even if we do not know k), hence beating the prevalent bound for the classical
problem by a constant. Second, a slightly modified version of our algorithm allows
to prove standard robustness-consistency properties as well as improved guarantees
when knowing a range for the error of the prediction.
The full version with proofs can be found at https://arxiv.org/abs/2409.
20460 [Braun and Sarkar, 2024].

1 Introduction

The secretary problem is a fundamental problem in online decision making: An adversary fixes
non-negative, real-valued weights w1 ≥ w2 ≥ · · · ≥ wn which are revealed online in random order.
The decision maker is allowed to accept (at most) one element. At the time of arrival of an element,
the decision maker is required to make an immediate and irrevocable acceptance decision. The goal is
to maximize the weight of the selected element. A tight guarantee3 of 1/e is known since the seminal
work of Lindley [1961] and Dynkin [1963] (also see Ferguson [1989] or Freeman [1983]) and can be
achieved with a very simple threshold policy.

In the modern era, the assumption of having no prior information on the weights is highly pessimistic.
To go beyond a worst case analysis, researchers have recently considered the setting where we have
some sort of learned prediction that our algorithm may use up front. This setting spawned the recent
and very successful field of algorithms with predictions. Antoniadis et al. [2020] and Dütting et al.
[2021] studied the secretary problem with a prediction of the largest weight in the sequence, and
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resolve this setting with an algorithm which yields a nice robustness-consistency trade-off. Fujii and
Yoshida [2023] consider the secretary problem with an even stronger prediction: A prediction for
every weight in the sequence.

However, predicting the largest element or weight can sometimes be difficult or unfavorable. For
example in retail, past data may only contain information about prices and not the true values of
buyers [Kleinberg and Leighton, 2003, Leme et al., 2023]; or for data privacy reasons (see e.g. Asi
et al. [2023]), only surrogates for largest weights are revealed in history data. This motivates to
advance our understanding of the following question:

What is the weakest piece of information we can predict that still allows us to break the 1/e barrier?

Stated another way, is there a different parameter we can predict, one that does not require us to
learn the best value, but is still strong enough to beat 1/e? This brings us to the idea of predicting the
gap between the highest and k-th highest weight, or in other words, predicting how valuable wk is
with respect to w1. Coming back to data privacy for example, such a parameter does successfully
anonymize the largest weight in the sequence.

From a theoretical perspective, for some special cases of gaps, previous work directly implies
improved algorithms. For example, if we know w1 and w2 have the same weight, using an algorithm
for the two-best secretary problem [Gilbert and Mosteller, 1966] directly leads to a better guarantee.
More generally, if we know the multiplicative gap w1/w2, we observe that we can generalize the
optimal algorithm for w1 = w2 (see e.g. Gilbert and Mosteller [1966], Buchbinder et al. [2014]).
However, if we instead only know wn/w1 = 0, this does not help at all. The only insight is that
wn = 0; we have no insight on the range of values taken. This essentially boils down to the classical
secretary problem and the best competitive ratio again is 1/e. So while the multiplicative gap advises
about the relative values without needing to know w1 entirely, it is not strong enough in general to
beat 1/e. In this paper, we consider instead predicting an additive gap w1 − wk.

The additive gap between w1 and wk can be viewed as interpolating between two previously studied
setups: when w1 − wk gets small, we get closer towards the k-best secretary problem, and when
w1 − wk is very large, the additive gap acts as a surrogate prediction of w1, the prediction setting in
Antoniadis et al. [2020] and Dütting et al. [2021]. As we will see, even though the additive gap is
much weaker than a direct prediction for w1, it strikes the perfect middle ground: it is strong enough
to beat 1/e by a constant for any possible value of the gap w1 −wk (and even if we do not know what
k is upfront). In addition, in contrast to pieces of advice studied in the literature so far, knowing an
exact additive gap does not make the problem trivial to solve.

1.1 Our Results and Techniques

Our contribution is threefold. First, in Section 3, we show the aforementioned result: knowing an
exact additive gap allows us to beat the competitive ratio of 1/e by a constant.
Theorem 1 (Theorem 4, simplified form). There exists a deterministic online algorithm which
achieves an expected weight of E [ALG] ≥ 0.4 · w1 given access to a single additive gap ck for
ck = w1 − wk and some k.

Still, getting an exact gap might be too much to expect. Hence, in Section 4, we introduce a slight
modification in the algorithm to make it robust with respect to errors in the predicted gap while
simultaneously outperforming the prevalent competitive ratio of 1/e by a constant for accurate gaps.
Theorem 2 (Theorem 5, simplified form). There exists a deterministic online algorithm which uses a
predicted additive gap and is simultaneously (1/e +O(1))-consistent and O(1)-robust.

The previous Theorem 2 does not assume any bounds on the error of the predicted additive gap used
by our algorithm. In particular, the error of the prediction might be unbounded and our algorithm is
still constant competitive. However, if we know that the error is bounded, we can do much better.
Theorem 3 (Theorem 6, simplified form). There exists a deterministic online algorithm which
achieves an expected weight of E [ALG] ≥ 0.4 · w1 − 2ϵ given access to a bound ϵ on the error of
the predicted gap.

Our algorithms are inspired by the one for classical secretary, but additionally incorporate the gap:
Wait for some time to get a flavor for the weights in the sequence, set a threshold based on the past
observations and the gap, pick the first element exceeding the threshold.
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At first glance, this might not sound promising: In cases when the gap is small, incorporating the gap
in the threshold does not really affect the best-so-far term. Hence, it may seem that beating 1/e is still
hard. However, in these cases, even though the threshold will be dominated by the best-so-far term
most of the time, the gap reveals the information that the best value and all other values up to wk are
not too far off. That is, even accepting a weight which is at least wk ensures a sufficient contribution.

Our analyses use this fact in a foundational way: Either the gap is large in which case we do not
consider many elements in the sequence for acceptance at all. Or the gap is small which implies that
accepting any of the k highest elements is reasonably good. For each of the cases we derive lower
bounds on the weight achieved by the algorithm.

Since we do not know upfront which case the instance belongs to, we optimize our initial waiting time
for the worse of the two cases. In other words, the waiting time cannot be tailored to the respective
case but rather needs to be able to deal with both cases simultaneously. This introduces some sort of
tension: For instances which have a large gap, we would like the waiting time to be small. By this,
we could minimize the loss which we incur by waiting instead of accepting high weighted elements
at the beginning of the sequence. For instances which have a small gap, the contribution of the gap to
the algorithm’s threshold can be negligible. This results in the need of a longer waiting time at the
beginning to learn the magnitude of weights reasonably well. We solve this issue by using a waiting
time which balances between these two extremes: It is (for most cases) shorter than the waiting time
of 1/e from the classical secretary algorithm. Still, it is large enough to gain some information on the
instance with reasonable probability.

As a corollary of our main theorem, we show that we can beat the competitive ratio of 1/e even if we
only know the gap w1 −wk but do not get to know the index k. In particular, this proves that even an
information like “There is a gap of c in the instance” is helpful to beat 1/e, no matter which weights
are in the sequence and which value c attains.

Complementing theoretical results, we run simulations in Section 6 which strengthen our theoretical
findings. First, we show that for instances in which the classical secretary algorithm achieves a nearly
tight guarantee of 1/e, our algorithm can almost always select the highest weight. In addition, we
further investigate the robustness-consistency trade-off of our algorithm. In particular, as it will turn
out, underestimating is not as much of an issue as overestimating the exact gap.

1.2 Additional Related Work

Implications of related results on the additive gap. In the two-best secretary problem, we can pick at
most one element but win when selecting either the best or second best element. For this problem,
the competitive ratio is upper bounded by approximately 0.5736 [Buchbinder et al., 2014, Chan et al.,
2015] (the authors provide an algorithm which matches this bound, so the guarantee is tight). As our
setting with w1 − w2 = 0 can be viewed as a special case, this yields a hardness result; the best any
algorithm can perform with the exact additive gap provided upfront is approximately 0.5736.

A non-exhaustive list of related work on secretary problems. Since the introduction of the secretary
problem in the 1960s, there have been a lot of extensions and generalizations of this problem with
beautiful algorithmic ideas to solve them Kleinberg [2005], Babaioff et al. [2007, 2018], Feldman
et al. [2018], Korula and Pál [2009], Mahdian and Yan [2011], Kesselheim et al. [2018], Rubinstein
[2016]. Beyond classical setups, recent work by Kaplan et al. [2020] and Correa et al. [2021] studies
the secretary problem with sampled information upfront. Here, some elements are revealed upfront
to the algorithm which then tries to pick the best of the remaining weights. Guarantees are achieved
with respect to the best remaining element in the sequence. In addition, there are also papers bridging
between the secretary problem and the prophet inequality world, e.g. Correa et al. [2020] or Correa
et al. [2019] and many more [Bradac et al., 2020, Kesselheim and Molinaro, 2020, Argue et al.,
2022].

Algorithms with machine learned advice. In the introduction, we already scratched the surface of
the field on algorithms with predictions. Here, the algorithm has access to some machine learned
advice upfront and may use this information to adapt decisions. Initiated by the work of Lykouris and
Vassilvitskii [2021] and Purohit et al. [2018], there have been many new and interesting results in
completely classical problems within the last years, including ski rental Wei and Zhang [2020], online
bipartite matching Lavastida et al. [2021], load balancing Ahmadian et al. [2023], and many more
(see e.g. Im et al. [2021], Zeynali et al. [2021], Almanza et al. [2021]). Since this area is developing
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very fast, we refer the reader to the excellent website Algorithms-with-Predictions for references of
literature.

As mentioned before, also the secretary problem itself has been studied in this framework. Antoniadis
et al. [2020] consider the secretary problem when the machine learned advice predicts the weight of
the largest element w1. Their algorithm’s performance depends on the error of the prediction as well
as some confidence parameter by how much the decision maker trusts the advice. In complementary
work, Dütting et al. [2021] give a bigger picture for secretary problems with machine learned advice.
Their approach is LP based and can capture a variety of settings. They assume that the prediction is
one variable for each weight (e.g. a 0/1-variable indicating if the current element is the best overall
or not). Fujii and Yoshida [2023] assume an even stronger prediction: Their algorithm is given a
prediction for every weight in the sequence. In contrast, we go into the opposite direction and deal
with a less informative piece of information.

Our work also fits into the body of literature studying weak prediction models, previously studied
for e.g. paging [Antoniadis et al., 2023], online search [Angelopoulos, 2021], to just mention a few.
In these, several different directions for weak prediction models were considered. For example, the
setting in scheduling or caching where the number of predictions is smaller than the input size [Im
et al., 2022, Benomar and Perchet, 2024].

2 Preliminaries

In the secretary problem, an adversary fixes n non-negative, real-valued weights, denoted w1 ≥
w2 ≥ · · · ≥ wn. For each of the elements, there is an arrival time4 ti

iid∼ Unif[0, 1]. Weight wi is
revealed at time ti and we immediately and irrevocably need to decide if we want to accept or reject
this element. Overall, we are allowed to accept at most one element with the objective of maximizing
the selected weight. We say that an algorithm is α-competitive or achieves a competitive ratio of α if
E [ALG] ≥ α · w1 = α ·maxi wi, where the expectation is taken over the random arrival times of
elements (and possible internal randomness of the algorithm).
In addition to the random arrival order, we assume to have access to a single prediction ĉk for one
additive gap together with its index k. The additive gap for some index 2 ≤ k ≤ n is ck := w1 −wk.
We say that an algorithm has access to an exact or accurate gap if ĉk = ck (as in Section 3). When the
algorithm gets a predicted additive gap ĉk which might not be accurate (as in Section 4 or Section 5),
we say that ĉk has error η = |ĉk−ck|. We call an algorithm ρ-robust if the algorithm is ρ-competitive
regardless of error η and we say the algorithm is ψ-consistent if the algorithm is ψ-competitive when
η = 0. To fix notation, for any time τ ∈ [0, 1], we denote by BSF(τ) (read best-so-far at time τ ) the
highest weight which did appear up to time τ . In other words, BSF(τ) = maxi:ti≤τ wi. Also, when
clear from the context, we drop the index k at the gap and only call it c or ĉ respectively.

3 Knowing an Exact Gap

Before diving into the cases where the predicted gap may be inaccurate in Section 4 and Section 5,
we start with the setup of getting a precise prediction for the gap. That is, we are given the exact gap
ck = w1 − wk for some 2 ≤ k ≤ n. We assume that we get to know the index k as well as the value
of ck, but neither w1 nor wk.

Our algorithm takes as input the gap c as well as a waiting time τ . This gives us the freedom to
potentially choose τ independent of k if required. As a consequence, we could make the algorithm
oblivious to the index k of the element to which the gap is revealed. We will use this in Corollary 1.

Algorithm 1 Secretary with Exact Additive Gap
Input: Additive gap c, time τ ∈ [0, 1]
Before time τ : Observe weights wi

At time τ : Compute BSF(τ) = maxi:ti≤τ wi

After time τ : Accept first element with wi ≥ max(BSF(τ), c)

4Note that this setting is equivalent to drawing a random permutation of the n elements and revealing
elements in this order one by one.
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This algorithm beats the prevalent competitive ratio of 1/e ≈ 0.368 by a constant.

Theorem 4. Given any additive gap ck = w1 − wk, for τ = 1− (1/k+1)
1/k, Algorithm 1 achieves a

competitive ratio of max
(
0.4, 1/2 (1/k+1)

1/k
)

.

Note that as k tends towards n and both become large, the competitive ratio approaches 1/2.

We split the proof of Theorem 4 in the following two lemmas. Each of them gives a suitable bound
on the performance of our algorithm for general waiting times τ in settings when wk is small or large.

The first lemma gives a lower bound in cases when wk is small in comparison to w1.

Lemma 1. If wk <
1
2w1, then E [ALG] ≥ (1− τ)

(
1
2 + 1

2(k−1)

)
· w1.

The second lemma will be used to give a bound when wk is large compared to w1.
Lemma 2. If wk ≥ 1

2w1, then the following two bounds hold:

(i) E [ALG] ≥ k+1
2k

(
1− τ − (1− τ)k+1

)
· w1 and

(ii) E [ALG] ≥
(
3
2τ ln

(
1
τ

)
− 1

2τ(1− τ)
)
· w1 .

As a consequence, E [ALG] is also at least as large as the maximum of the two bounds.

The proofs of the lemmas as well as their combination to prove Theorem 4 can be found in the full
version [Braun and Sarkar, 2024]. From a high level perspective, the two lemmas give a reasonable
bound depending of we either exclude a lot of elements in the algorithm (Lemma 1) or if the largest k
elements ensure a sufficient contribution (Lemma 2).

As a corollary of the proof of Theorem 4, we also get a lower bound on the weight achieved by the
algorithm if we are only given the gap, but not the element which obtains this gap. That is, we are
given ck but not the index k.
Corollary 1. If the algorithm only knows ck, but not k, setting τ = 0.2 achieves E [ALG] ≥ 0.4 ·w1.

The full version [Braun and Sarkar, 2024] contains a proof of Corollary 1 as well. It mainly relies on
the fact that some lower bound we obtained in the proof of Theorem 4 holds for any choice τ ∈ [0, 1].
Also, the algorithm itself only uses the gap to contribute to the threshold. The index k is only used to
compute τ . As a consequence, when choosing τ = 0.2 independent of k, the algorithm is oblivious to
the exact value of k, but only depends on the gap ck. For this choice of τ , we can show that α ≥ 0.4.

As a consequence, very surprisingly, even if we only get to know some additive gap ck and not even
the index k, we can outperform the prevalent bound of 1/e. Also, observe that this is independent of
the exact value that ck attains and holds for any small or large gaps.

As mentioned before, Algorithm 1 is required to get the exact gap as input. In particular, once the
gap we use in the algorithm is a tiny bit larger than the actual gap ck, we might end up selecting no
element at all.
Example 1. We get to know the gap to the smallest weight cn = w1 − wn and the smallest weight
wn in the sequence satisfies wn = 0. Let the gap which we use in Algorithm 1 be only some tiny
δ > 0 too large. In other words, we use cn + δ as a gap in the algorithm. Still, this implies that our
threshold max(BSF(τ), cn + δ) after the waiting time satisfies

max(BSF(τ), cn + δ) ≥ cn + δ = w1 + δ > w1 ≥ w2 ≥ · · · ≥ wn .

As a consequence, we end up selecting no weight at all and have E [ALG] = 0.

This naturally motivates the need to introduce more robust deterministic algorithms in this setting. In
Section 4, we will show that a slight modification in the algorithm and its analysis allows to obtain
robustness to errors in the predictions while simultaneously outperforming 1/e for accurate gaps.

4 Robustness-Consistency Trade-offs

Next, we show how to slightly modify our algorithm in order to still beat 1/e when getting the correct
gap as input, but still be constant competitive in case the predicted gap is inaccurate. The modification
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leads to Algorithm 2: Initially, we run the same algorithm as before. After some time 1− γ, we will
lower our threshold in order to hedge against an incorrect prediction.

Algorithm 2 Robust-Consistent Algorithm
Input: Predicted gap ĉ, times τ ∈ [0, 1), γ ∈ [0, 1− τ)
Before time τ : Observe weights wi

At time τ : Compute BSF(τ) = maxi:ti≤τ wi

Between time τ and time 1− γ: Accept first element with wi ≥ max(BSF(τ), ĉ)
After time 1− γ: Accept first element with wi ≥ BSF(τ)

Note that by γ ∈ [0, 1− τ), we ensure that τ < 1− γ, i.e. the waiting time τ is not after time 1− γ
and hence, the algorithm is well-defined. Now, we can state the following theorem which gives
guarantees on the consistency and the robustness of Algorithm 2. We will discuss afterwards how to
choose τ and γ in order to outperform the classical bound of 1/e by a constant for accurate predictions
while ensuring to be constant-robust at the same time.

Theorem 5. Given a prediction ĉk for the additive gap ck, define

• α1 := 1− γ − τ + τ ln
(

1
1−γ

)
and

α2 := 1
2

(
(1 + γ)(1− τ − γ) + τ ln

(
1
τ

)
+ τ ln

(
1

1−γ

))
,

• α3 := k+1
2k

(
1− τ − (1− τ)k+1

)
and α4 := 3

2τ ln
(
1
τ

)
− 1

2τ(1− τ).

Then, Algorithm 2 is (i) min (min (α1, α2) ,max (α3, α4))-consistent and (ii)
(
τ · ln

(
1

1−γ

))
-

robust.

Observe that if we do not trust the prediction at all, we could set τ = 1/e and 1− γ = 1/e. Doing so,
we do not use the prediction in our algorithm. Still, for these choices, we recover the guarantee from
classical secretary of 1/e. In other words, we can interpret γ as a trust parameter for the prediction
which also mirrors our risk appetite. If we do not trust the prediction at all or if we are highly risk
averse, we can set 1− γ ≈ τ . If we are willing to suffer a lot in case of an inaccurate prediction (or if
we have high trust in the prediction), we will set γ ≈ 0.

Theorem 5 yields a trade-off between robustness and consistency. In particular, for a fixed level of
robustness, we can choose the optimal values for τ and 1− γ for the bounds in Theorem 5 to obtain
the plot in Figure 1. Observe that when not focusing on robustness (i.e. choosing robustness being
equal to zero), we can achieve a consistency approximately matching the upper bound of 0.5736
described in Section 1.2.

Figure 1: Choosing the optimal parameters τ and 1− γ for our analysis in Theorem 5: For a given
level of robustness, what is the best consistency we can obtain with our analysis.
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The proof of Theorem 5 can be found in the full version [Braun and Sarkar, 2024]. Concerning
robustness, we can only obtain a reasonable contribution by accepting the best weight. Therefore, we
derive a lower bound on the probability of accepting the highest weight via Algorithm 2. Concerning
consistency, we can perform a case distinction whether wk is small or large. Crucially, one is required
to take the drop in the threshold after time 1− γ into account.

For example, when using a waiting time τ = 0.2 as in Corollary 1 independent of the index k
and a value of γ = 0.6, i.e. 1 − γ = 0.4, we get the following: Algorithm 2 is approximately
0.383-consistent and 0.183-robust (also see Figure 2).

Figure 2: Trade-off between robustness and consistency as a function of the time 1 − γ for fixed
choice of τ = 0.2.

In particular, we can outperform the prevalent bound of 1/e by a constant if the predicted gap is
accurate while ensuring to be constant competitive even if our predicted gap is horribly off. Of
course, when being more risk averse, one could also increase the robustness guarantee for the cost of
decreasing the competitive ratio for consistent predictions.5

We highlight that these guarantees as well as Theorem 5 hold independent of any bounds on the
error of the predicted gap. However, it is reasonable to assume that we have some bounds on how
inaccurate our predicted gap is (for example, if our predicted gap is learned from independent random
samples). We show in Section 5 that we can achieve much better competitive ratios when we know a
range for the error.

5 Improved Guarantees for Bounded Errors

Complementing the previous sections where we had either access to the exact gap (Section 3) or
no information on a possible error in the prediction (Section 4), we now assume that the error is
bounded6. That is, we get to know some c̃k ∈ [ck − ϵ; ck + ϵ] which is ensured to be at most an ϵ off.
Also, the bound ϵ on the error is revealed to us. Still, the true gap ck remains unknown.

Our algorithm follows the template which we discussed before. Still, we slightly perturb c̃k to ensure
that the threshold is not exceeding w1. This algorithm allows to state an approximate version of
Theorem 4 for the same lower bounds of α as in the exact gap case.

5We can also slightly improve the trade-off by allowing randomization: Flip a (biased) coin and either
choose our algorithm from Section 3 or the classical secretary algorithm which achieves a guarantee of 1/e. Our
deterministic approach is approximately as good as this randomized variant if we use an unbiased coin and even
better compared to biasing the coin towards the algorithm using the prediction. When using a bias towards the
classical algorithm, the randomized algorithm has a better trade-off than our deterministic approach.

6In order to distinguish a bounded error from a possibly unbounded one, we use c̃ instead of ĉ for the
predicted gap in this section.
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Algorithm 3 Secretary with Bounded Prediction Error
Input: Approximate gap c̃, time τ ∈ [0, 1], error bound ϵ
Before time τ : Observe weights wi

At time τ : Compute BSF(τ) = maxi:ti≤τ wi

After time τ : Accept first element with wi ≥ max(BSF(τ), c̃− ϵ)

Theorem 6. Given any prediction of the gap c̃k ∈ [ck − ϵ; ck + ϵ], where ck = w1−wk, Algorithm 3

satisfies E [ALG] ≥ α · w1 − 2ϵ. For τ = 1 −
(

1
k+1

)1/k

, α ≥ max

(
0.4, 12

(
1

k+1

)1/k
)

and for

τ = 0.2, α ≥ 0.4.

As a consequence, the guarantees from the exact gap case in Section 3 carry over with an additional
loss of 2ϵ. Also, the results when not knowing the index k carry over. In particular, this nicely
complements the robustness result from Theorem 5 as follows: Once we can bound the error in a
reasonable range, even not knowing the gap exactly does not cause too much of an issue. The proof
of Theorem 6 can be found in the full version [Braun and Sarkar, 2024].

6 Simulations

In order to gain a more fine-grained understanding of the underlying habits, we run experiments7

with simulated weights and compare our algorithms among each other and to the classical secretary
algorithm8.

In Section 6.1, we compare our Algorithm 1 to the classical secretary algorithm. To this end, we draw
weights i.i.d. from distributions and execute our algorithm and the classical one. As it will turn out,
instances which are hard in the normal secretary setting (i.e. when not knowing any additive gap)
become significantly easier with additive gap; we can select the best candidate with a much higher
probability. We also demonstrate that for some instances, knowing the gap has a smaller impact,
though our Algorithm 1 still outperforms the classical one.

Second, in Section 6.2, we turn towards inaccurate gaps and compare Algorithm 1 developed in
Section 3 to the robust and consistent variant of Algorithm 2 from Section 4. As a matter of fact, we
will see that underestimating the exact gap is not as much of an issue as an overestimation. In particular,
underestimating the gap implies a smooth decay in the competitive ratio while overestimating can
immediately lead to a huge drop.

6.1 The Impact of Knowing the Gap

We compare our algorithm with additive gap to the classical secretary algorithm (see e.g. [Dynkin,
1963]) with a waiting time of 1/e.

6.1.1 Experimental Setup

We run the comparison on three different classes of instances:

(i) Pareto: We first draw some θ ∼ Pareto(5/n, 1). Afterwards, each weight wi is determined

as follows: Draw Yi ∼ Unif[0, θ] i.i.d. and set wi = Y
(n1.5)
i (for more details on Pareto

distributions and secretary problems, see e.g. Ferguson [1989]).

(ii) Exponential: Here, all wi ∼ Exp(1).

(iii) Chi-Squared: Draw wi ∼ χ2(10). That is, each wi is drawn from a chi-squared distribution
which sums over ten squared i.i.d. standard normal random variables.

7All experiments were implemented in Python 3.9 and executed on a machine with Apple M1 and 8 GB
Memory.

8As the piece of information we use as a prediction is fairly different to the pieces which were used in
the literature before, we will not compare our algorithms to other algorithms from the secretary problem with
predictions literature.
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For each class of instances, we average over 5000 iterations. In each iteration, we draw n = 200
weights i.i.d. from the respective distribution together with 200 arrival times which are drawn i.i.d.
from Unif[0, 1]. The benchmark is the classical secretary algorithm with a waiting time of τ = 1/e:
Set the largest weight up to time τ as a threshold and accepts the first element afterwards exceeding
this threshold. Algorithm 1 is executed with waiting times τ = 0.2 as well as τ = 1− (1/k+1)

1/k.

6.1.2 Experimental Results

When weights are sampled based on the procedure explained in (i), we observe an inter-
esting phenomenon (see Figure 3). For the classical secretary algorithm, we achieve ap-
proximately the tight guarantee of 1/e. Our algorithm, however, achieves a competitive ra-
tio of approximately 0.8 for τ = 0.2. When having a waiting time depending on k,
we improve the competitive ratio for large k while suffering a worse ratio for small k.

Figure 3: Competitive ratios for weights
based on (i). On the x-axis, we have the index
k from 2 to n. The y-axis shows the competi-
tive ratios.

This can be explained as follows. Weights which are
distributed according to (i) almost always have a very
large gap between the highest and second highest
weight. Hence, no matter which gap we observe, it
will always be sufficiently large to exclude all ele-
ments except the best one. Therefore, we only incur
a loss if we do not accept anything (which happens if
and only if the best element arrives before the waiting
time). As a consequence, for τ = 0.2, we observe the
ratio of 0.8 (which is the probability of the highest
weight arriving after time τ ). For the waiting times
depending on k, the waiting time turns out to be larger
for smaller k and vice versa. The improvement in the
competitive ratio for large k comes from the reduced
waiting time and hence a smaller probability of facing
an arrival of w1 during the waiting period.

Interestingly, this shows that there are instances for
which the classical secretary algorithm almost obtains
its tight guarantee of 1/e while these instances become
easy when knowing an additive gap. As a side remark:
One might wonder if it is always true that the index
k does not play a pivotal role when using a constant waiting time τ = 0.2. In the full version [Braun
and Sarkar, 2024], we show that this is not the case for exponentially distributed weights as in (ii) or
Chi-Squared distributed ones as in (iii).

6.2 Dealing with Inaccurate Gaps

In order to get a better understanding concerning inaccuracies in the gap, we run a simulation with
different errors.

6.2.1 Experimental Setup

Again, we average over 5000 iterations. In each iteration, we set n = 200, draw arrival times as
before and weights as follows:

(iv) Exponential: Here, all wi ∼ Exp(1).

(v) Exponential with superstar: Here, wi ∼ Exp(1) for n− 1 weights and we add a superstar
element with weight 100 ·maxi wi.

We compare Algorithm 1 to Algorithm 2 both with waiting time τ = 0.2. In addition, Algorithm 2
will drop the gap from the threshold after a time of 1− γ = 0.95, in other words γ = 0.05.

The comparison is done for three different gaps: A small one where k = 2, i.e. the gap between the
largest and second largest element, k = n/2 and k = n, i.e. the gap to the smallest element. Given a
multiplication factor σ for the error, we feed our algorithm with a predicted gap ĉk = σ · ck for σ
going from zero to three in step size of 0.1. In other words, for σ = 1, we get an accurate gap, for
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σ < 1, we underestimate the gap, for σ > 1 we overestimate the gap and for σ = 0, the algorithms
are equivalent to the classical secretary algorithms with waiting time τ .

6.2.2 Experimental Results

For exponentially distributed weights (see Figure 4), we can observe that underestimat-
ing the gap does not cause too many issues. In particular, when highly underestimat-
ing the gap (i.e. σ < 0.5), both algorithms achieve a competitive ratio of approxi-
mately 0.65, similar to an algorithm not knowing any gap. For an accurate gap, σ =
1, larger gaps are more helpful as they block more elements from being considered.

Figure 4: Competitive ratios for weights
based on (iv). The x-axis shows σ, where
the predicted gap ĉk used by the algorithms
satisfies ĉk = σ · ck for σ ∈ [0, 3].

Still, σ > 1 introduces a transition. For σ > 1
and gaps between the best and a small element (e.g.
k = 100 or k = 200), overestimating the gap re-
duces the selection probability of any weight of Al-
gorithm 1 to zero: The predicted gap is simply too
large and even exceeds w1. Still, Algorithm 2 is ro-
bust in a sense that we still achieve a competitive
ratio of approximately 0.15. This constant depends
on our choice of γ. As mentioned before, there is
the natural trade-off: Increasing γ for an improved
robustness and suffer a decrease in the competitive
ratio for σ = 1.

Interestingly, for the gap between the best and second
best element, both algorithms are much more robust.
This can be explained as the gap is small in this case
anyway, so overestimating by a factor of three does
not cause too much issues yet. One would require
to overestimate by a much larger factor here to see
a significant difference in the performance of both
algorithms.

In the full version [Braun and Sarkar, 2024], we show
what happens when shifting our perspective towards the more adversarial setting of exponential
weights with one additional superstar as listed in (v). Here, the drop when overestimating is even
more significant. Still, Algorithm 2 achieves the desired constant competitive ratio even if gaps are
fairly inaccurate. However, the trade-off between consistency and robustness plays a much more
important role in the choices of τ and γ here.

7 Conclusion and Future Directions

As we have seen, a single simple piece of information of the form “There is a gap of c in the instance”
helps to improve the competitive ratio for the secretary problem. In addition, our algorithm can be
made robust against inaccurate predictions without sacrificing too much in the competitive ratio.

Our results directly impose some open questions for future research. First, our guarantees seem to be
not tight. Can we achieve a better competitive ratio for any gap? Or is there a matching hardness
result? As a second open question, the gaps that we consider are of the form w1 −wk for some k. As
a generalization, one could consider arbitrary gaps wi − wj for some 1 ≤ i < j ≤ n. Can we do
something in this regime? (as sketched in the full version [Braun and Sarkar, 2024], we can for e.g.
w2 − w3 = 0).
Also, going beyond the single selection problem is interesting, for example by considering the
multi-selection variant. For this, we give a reasonable starting point in the full version [Braun and
Sarkar, 2024].
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Assumptions are mentioned clearly with the respective statements. Proofs are
provided mainly in the appendix due to space constraints.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all information such that the simulations can easily be
reproduced. Algorithms should be easily implementable within a few lines, sample sizes
and distributions are stated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will make the code and data publicly available after the review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There was no training, neither a testing phase. Simulations only contain
samples from distributions and the performance of our algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: See answer of Question 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Hardware settings are provided as a footnote in the main body of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The goal of our paper is to gain a better understanding of different kinds
of predictions compared to the ones studied in the literature before. There are no further
societal consequences beyond those for algorithms with predictions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose any risks. There are no further consequences beyond
those for theoretical results on algorithms with predictions.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any code or data from previous work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code for the simulations in the paper is straight-forward. We will make a
well-documented version publicly available after the review process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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