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Abstract
Molecular dynamics (MD) is a powerful tech-
nique for studying microscopic phenomena, but
its computational cost has driven significant in-
terest in the development of deep learning-based
surrogate models. We introduce generative mod-
eling of molecular trajectories as a paradigm for
learning flexible multi-task surrogate models of
MD from data. By conditioning on appropriately
chosen frames of the trajectory, we show such
generative models can be adapted to diverse tasks
such as forward simulation, transition path sam-
pling, and trajectory upsampling. By alternatively
conditioning on part of the molecular system and
inpainting the rest, we also demonstrate the first
steps towards dynamics-conditioned molecular
design. We validate the full set of these capabili-
ties on tetrapeptide simulations and show that our
model can produce reasonable ensembles of pro-
tein monomers. Altogether, our work illustrates
how generative modeling can unlock value from
MD data towards diverse downstream tasks that
are not straightforward to address with existing
methods or even MD itself.

1. Introduction
Numerical integration of Newton’s equations of motion at
atomic scales, known as molecular dynamics (MD), is a
widely-used technique for studying diverse molecular phe-
nomena in chemistry, biology, and other molecular sciences
(Alder & Wainwright, 1959; Rahman, 1964; Verlet, 1967;
McCammon et al., 1977). While general and versatile, MD
is computationally demanding due to the large separation
in timescales between integration steps and relevant molec-
ular phenomena. Thus, a vast body of literature spanning
several decades aims to accelerate or enhance the sampling
efficiency of MD simulation algorithms (Ryckaert et al.,
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1977; Darden et al., 1993; Sugita & Okamoto, 1999; Laio &
Parrinello, 2002; Anderson et al., 2008; Shaw et al., 2009).
More recently, learning surrogate models of MD has become
an active area of research in deep generative modeling (Noé
et al., 2019; Zheng et al., 2023; Klein et al., 2024; Schreiner
et al., 2024; Jing et al., 2024). However, existing training
paradigms fail to fully leverage the rich dynamical informa-
tion in MD training data, restricting their applicability to a
limited set of downstream problems.

In this work, we propose MDGEN, a novel paradigm for
fast, general-purpose surrogate modeling of MD based on
direct generative modeling of simulated trajectories. Dif-
ferent from previous works, which learn the autoregressive
transition density or equilibrium distribution of MD, we
formulate end-to-end generative modeling of full trajecto-
ries viewed as time-series of 3D molecular structures. Akin
to how image generative models were extended to videos
(Ho et al., 2022), our framing of the problem augments
single-structure generative models with an additional time
dimension, opening the door to a larger set of forward and
inverse problems to which our model can be applied. When
provided (and conditioned on) the initial “frame” of a given
system, such generative models serve as familiar surrogate
forward simulators of the reference dynamics. However,
by providing other kinds of conditioning, these “molecu-
lar video” generative models also enable highly flexible
applications to a variety of inverse problems not possible
with existing surrogate models. In sum, we formulate and
showcase the following novel capabilities of MDGEN:

• Forward simulation—given the initial frame of a tra-
jectory, we sample a potential time evolution.

• Interpolation—given the frames at the two endpoints
of a trajectory, we sample a plausible path connecting
the two. In chemistry, this is known as transition path
sampling and is important for studying reactions.

• Upsampling—given a trajectory with timestep ∆t be-
tween frames, we upsample the “framerate” to ∆t/M .

• Inpainting—given part of a molecule and its trajectory,
we generate the rest of the molecule (and its time evolu-
tion) to be consistent with the known part of the trajec-
tory. This ability could be applied to design molecules
to scaffold desired dynamics.
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Figure 1. (Left) Tasks: generative modeling of MD trajectories addresses several tasks by conditioning on different parts of a trajectory.
(Right) Method: We tokenize trajectories of T frames and L residues into an (T × L)-array of SE(3)-invariant tokens encoding roto-
translation offsets from key frames and torsion angles. Using stochastic interpolants, we generate such tokens from Gaussian noise.

These tasks are conceptually illustrated in Figure 1. While
the forward simulation task aligns with the typical modeling
paradigm of approximating the data-generating process, the
others represent novel capabilities on scientifically impor-
tant inverse problems not straightforward to address even
with MD itself. As such, our framework presents a new per-
spective on how to unlock value from MD simulation with
machine learning towards diverse downstream objectives.
We highlight further exciting possibilities opened up by our
framework in Section 4.

We evaluate MDGEN on the forward simulation, interpo-
lation, upsampling, and inpainting tasks on tetrapeptides
in a transferable setting (i.e., generalizing to test peptides).
Our model accurately reproduces free energy surfaces and
dynamical content such as torsional relaxation and Markov
state fluxes, provides realistic transition paths between ar-
bitrary pairs of metastable states, and recovers fast dynam-
ical phenomena below the sampling threshold of coarse-
timestep trajectories. In preliminary steps toward dynamics-
scaffolded design, we show that molecular inpainting with
MDGEN obtains much higher sequence recovery than in-
verse folding methods based on one or two static frames.
Finally, we evaluate MDGEN on forward simulation of
protein monomers and find that its ensembles’ statistical
properties surpass the fidelity of ensembles from multiple
sequence alignment (MSA) subsampling with AlphaFold
(Del Alamo et al., 2022).

2. Method
2.1. Tokenizing Molecular Trajectories

For further background on MD and Stochastic Interpolants,
please see Appendix A. Given a chemical specification of
a molecular system with N atoms, our aim is to learn a
generative model over time-series χ ≡ [X1, . . .XT ] of cor-

responding molecular structures Xi ∈ R3N for some trajec-
tory length T . In this work, we specialize to MD trajectories
of short peptides (Sections 3.1–D.1) or single-chain pro-
teins (D.1); thus, our chemical specifications are amino acid
sequences A = {1 . . . 20}L. We adopt a SE(3)-based pa-
rameterization of molecular structures (Jumper et al., 2021;
Yim et al., 2023), such that the all-atom coordinates of
each amino acid residue are described by a roto-translation
(i.e., element of SE(3)) and seven torsion angles χl

t =

((R, t), (ψ, ϕ, ω, χ1 . . . χ4)), χ ∈
([
SE(3)× T7

]L)T
where sub-/superscripts indicate time/residue indices.

To learn a generative model over this space of roto-
translations and torsion angles, one natural choice is to
employ diffusion or flow-based models for protein struc-
tures explicitly designed for such representations (Yim et al.,
2023; Lin & AlQuraishi, 2023). However, these architec-
tures rely on expensive edge-based and IPA-based updates,
which can be memory-intensive to replicate across a large
number of trajectory frames. Instead, we leverage the fact
that we are concerned with conditional trajectory genera-
tion—meaning that there always exists at least one frame
in the trajectory with un-noised roto-translations which we
do not need to generate and can reference in the modeling
process. Inspired by analogy to video compression, we refer
to such frames as key frames and parameterize the roto-
translations of remaining structures as offsets relative to the
key frames. Specifically, given K key frames i1 . . . iK we
tokenize residue j in frame t as:

χj
t =

(
g−1
i1
gj , . . . , g

−1
iK
gj , τ j

)
∈ (Q̂+ ⊕ R3)K × (S2)7 ⊂ R7K+14

(1)

where gj ∈ SE(3) represents the roto-translation and τ j

the torsion angles of residue j. Namely, we convert the
relative roto-translational offsets g−1

i gj to unit quaternions
with positive real part Q̂+ ⊂ R4 (representing the rota-
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Figure 2. Forward simulation evaluations on test peptides. (A) Torsion angle distributions for the six backbone torsion angles from MD
trajectories (orange) and sampled trajectories (blue). (B, C) Free energy surfaces along the top two TICA components computed from
backbone and sidechain torsion angles. (D) Markov State Model occupancies computed from MD trajectories versus sampled trajectories,
pooled across all test peptides (n = 1000 states total). (E) Wall-clock decorrelation times of the first TICA component under MD versus
our model rollouts. (F) Relaxation times of all torsion angles, pooled across all test peptides (508 backbone and 722 sidechain torsions in
total) computed from MD versus sampled trajectories. (G) Torsion angles in the tetrapeptide AAAA colored by the decorrelation time
computed from MD (top) and from rollout trajectories (bottom).

tions) and translation vectors in R3, and convert torsion
angles to points on the unit circle, obtaining a (7K + 14)-
dimensional token for each residue in every frame. To
untokenize to an all-atom frame Xi ∈ R3N , we read off the
torsion angles from the unit circle and apply the key frame
roto-translations gik to the generated offsets to obtain abso-
lute roto-translations ĝj . The offsets and torsion angles are
SE(3)-invariant; thus, we obtain a representation of molec-
ular trajectories as an (T × L)-array of SE(3)-invariant
tokens: χ ∈ RT×L×(7K+14). This representation allows us
to directly apply a flow model architecture to generate the
tokens (details in Appendix B.1.

2.2. Conditional Generation

We present the precise specifications of conditioning settings
in Table 2. Depending on the task, we choose the key frames
to be the first frame g1 or the first and last frames g1, gT .
Each task is further characterized by providing the ground-
truth tokens of known frames or residues as additional inputs
to the model. Meanwhile, mask tokens are provided for the
unknown frames and residues that the model generates. For
example, in the upsampling setting, we provide ground-truth
tokens every M frames, while mask tokens are provided for
all other frames. We note that in the inpainting setting, the
model accesses the roto-translations g of designed residues
at the trajectory endpoints via the key frames, constituting a
slight departure from the full inpainting setting.

Table 1. JSD between sampled and ground-truth distributions, with
replicate MD as baselines. 100 ns represents oracle performance.

C.V. Ours 10 ns 1 ns 100 ps 100 ns

Torsions (bb) .130 .145 .212 .311 .103
Torsions (sc) .093 .111 .261 .403 .055
Torsions (all) .109 .125 .240 .364 .076

TICA-0 .230 .323 .432 .477 .201
TICA-0,1 joint .316 .424 .568 .643 .268

MSM states .235 .363 .493 .527 .208

Runtime 60s 1067s 107s 11s 3h

3. Experiments
We focus on tetrapeptides as our main molecule class for
evaluation. Additional tasks are in Appendix 3.3—namely,
inpainting for dynamics-conditioned design, long trajecto-
ries with Hyena (Poli et al., 2023), and scaling to simulations
of protein monomers. Separate models are trained for each
experimental setting. To obtain tetrapeptide MD trajectories
for training and evaluation, we run MD for ≈3000 training,
100 validation, and 100 test tetrapeptides for 100 ns. For
proteins, we use the ATLAS dataset (Vander Meersche et al.,
2024), which 300 ns of MD for each of 1390 proteins. Un-
less otherwise specified, models are trained with trajectory
timesteps of ∆t = 10 ps. Our default baselines consist of
replicate MD simulations ranging from 10 ps to 100 ns. Our
experiments make extensive use of Markov State Models
(MSMs), which are a popular and tested coarse-grained
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Figure 3. Transition path sampling results. (Top) Intermediate states of one of the 1-nanosecond interpolated trajectories between
two metastable states for the test peptide IPGD. (Bottom Left) The corresponding trajectory on the 2D free energy surface of the top
two TICA components (more examples in Figure 9). (Bottom Right) Statistics averaged over 100 test peptides and 1000 paths for
each of them. Shown are JSD, fraction of drawn paths that are valid transition paths, and average path likelihood of our discretized
transitions under the reference MSM compared to discrete transitions drawn from the reference MSM or alternative MSMs built from
replica simulations of varying lengths.

representation of MD (Prinz et al., 2011; Noé et al., 2013).
Appendix C provides further details on MSMs with more
results in Appendix D.

3.1. Forward Simulation

Distributional similarity. We train a model to sample 10
ns trajectories conditioned on the first frame. By chaining
together successive model rollouts at inference time, we
obtain 100 ns trajectories for each peptide to compare with
ground-truth simulations. We report the Jensen-Shannon
divergence (JSD) between the ground-truth and emulated
trajectories along various collective variables shown in Fig-
ure 2 and Table 2. The first set of these are the individual
torsion angles (backbone and sidechains) in each tetrapep-
tide. The second set of variables are the top independent
components obtained from time-lagged independent com-
ponents analysis (TICA), representing the slowest dynamic
modes of the peptide. By each of these collective variables,
MDGEN demonstrates excellent distributional similarity
to the ground truth, approaching the accuracy of replicate
100-ns simulations. To more stringently assess the ability
to locate and populate modes in the joint distribution over
state space, we build Markov State Models (MSMs) for each
test peptide using the MD trajectory, extract the correspond-
ing metastable states, and compare the ground-truth and
emulated distributions over metastable states. Our model
captures the relative ranking of states (Figure 2D).

Dynamical content. We compute the dynamical properties
of each tetrapeptide in terms of the decorrelation time of

each torsion angle from the MD simulation and from our
sampled trajectory. Intuitively, this assesses if our model
can discriminate between slow- and fast-relaxing torsional
barriers. The correlation between true and predicted re-
laxation timescales is plotted in Figure 2F, showing excel-
lent agreement for sidechain torsions. To assess coarser
but higher-dimensional dynamical content, we compute the
flux matrix between all pairs of distinct metastable states
using ground-truth and sampled trajectories and find sub-
stantial Spearman correlation between their entries (mean
ρ = 0.67± 0.01; Figure 8).

Sampling speed. Averaged across test peptides, our model
samples 100 ns-equivalent trajectories in≈60 GPU-seconds,
compared to ≈3 GPU-hours for MD. To quantify the
speedup more rigorously, we compute the decorrelation
wall-clock times along the slowest independent component
from TICA, capturing how quickly the simulation traverses
the highest barriers in state space. These times are plotted
in Figure 2E, showing that our model achieves an speedup
of 10x–1000x over the MD simulation for 78 out of 100
peptides (the other 22 peptides did not fully decorrelate).

3.2. Interpolation

In the interpolation or transition path sampling setting, we
train a model to sample 1 ns trajectories conditioned on the
first and last frames. For evaluation, we identify the two
most well-separated states (i.e., with the least flux between
them) for each test peptide and sample an ensemble of
1000 transition paths between them. Figure 3 shows an
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Figure 4. Recovery of fast dynamics via trajectory upsampling for peptide GTLM. (Left) Autocorrelations of each torsion angle from
( ) the original 100 fs-timestep trajectory, (•) the subsampled 10 ns-timestep trajectory, and ( . . . ) the reconstructed 100 fs-timestep
trajectory (all length 100 ns). (Right) Dynamical content as a function of timescale from the upsampled vs. ground truth trajectories,
stacked for all torsion angles (same color scheme). The subsampled trajectory contains only the shaded region and our model recovers the
unshaded region. Further examples in Figure 10.

example of such a sampled path, which passes through
several intermediate states on the free energy surface.

To evaluate the accuracy of these sampled transitions, we
cannot directly compare with MD trajectories since, in most
cases, there are zero or very few 1-ns transitions between
the two selected states (by design, the transition is a rare
event). Thus, we instead discretize the trajectory over MSM
metastable states and evaluate the path likelihood under the
transition path distribution from the reference MSM (details
in Appendix C.3). We also report the fraction of non-zero
probability paths and the JSD between the distribution of
visited states from our path distribution versus the transition
path distribution of the reference MSM. For baselines, we
sample transition paths from MSMs constructed from repli-
cate MD simulations of varying lengths and compute the
metrics for their path ensembles under the reference MSM.

As shown in Figure 3, our paths have higher likelihoods than
those sampled from any replicate MD MSM shorter than
100ns, which is the length of the reference MD simulation
itself. Moreover, MDGEN’s ensembles have the best JSDs
to the distribution of visited states of the reference MD
MSM and the highest fraction on valid non-zero probability
paths. Hence, our model enables zero-shot sampling of
trajectories corresponding to arbitrary rare transitions.

3.3. Upsampling

In the upsampling setting, we train MDGEN to upsample
trajectories saved with timestep 10 ps to a finer timestep
of 100 fs, representing a 100x upsampling factor. To eval-
uate if the upsampled trajectories accurately capture the
fastest dynamics, we compute the autocorrelation function
⟨cos(θt − θt+∆t)⟩ of each torsion angle in the test peptides
as a function of lag time ∆t ranging from 100 fs to 100 ps.

Representative examples of ground truth, subsampled, and
reconstructed autocorrelation functions for two test pep-
tides are shown in Figure 4 (further examples in Figure 10).
We further compute the dynamical content as the nega-
tive derivative of the autocorrelation with respect to log-
timescale, which captures the extent of dynamic relaxations
occuring at that timescale (Shaw et al., 2009). These visu-
alizations highlight the significant dynamical information
absent from the subsampled trajectory and which are ac-
curately recovered by our model. In particular, our model
distinctly recovers the oscillations of certain torsion an-
gles as seen in the non-monotonicity of the autocorrelation
function at sub-picosecond timescales; these features are
completely missed at the original sampling frequency.

4. Discussion
Opportunities. Similar to the foundational role of video
generative models for understanding the macroscopic world
(Yang et al., 2024), MD trajectory generation could serve
as a multitask, unifying paradigm for deep learning over
the microscopic world. Interpolation can be more broadly
framed as hypothesis generation for mechanisms of arbi-
trary molecular phenomena, especially when only partial
information about the end states is supplied. Molecular in-
painting could be a general technique to design molecular
machinery by scaffolding more fine-grained and complex
dynamics, for example redesigning proteins to enhance rare
transitions observed only once in a simulation or de novo
design of enzymatic mechanisms and motifs. Other types of
conditioning not explored in this work may lead to further
applications, such as conditioning over textual or experi-
mental descriptors of the trajectory. Future availability of
more ground truth MD trajectory data for diverse chemical
systems could be a chief enabler of such work.
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Noé, F., Wu, H., Prinz, J.-H., and Plattner, N. Projected
and hidden Markov models for calculating kinetics and
metastable states of complex molecules. The Journal of
Chemical Physics, 139(18):184114, 11 2013.

Pande, V. S., Beauchamp, K., and Bowman, G. R. Every-
thing you wanted to know about markov state models but
were afraid to ask. Methods, 52(1):99–105, 2010.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.
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A. Background
Molecular dynamics. At a high level, the aim of molecular dynamics is the integrate the equations of motion Miẍi =
−∇xiU(x1 . . .xN ) for each particle i in a molecular configuration (x1 . . .xN ) ∈ R3N , where Mi is the mass and U is the
potential energy function (or force field) U : R3N → R. However, these equations of motion are often modified to include a
thermostat in order to model contact with surroundings at a given temperature. For example, the widely-used Langevin
thermostat transforms the equations of motion into a stochastic diffusion process of the equations dxi = pi/Mi dt and
dpi = −∇xi

U dt−γpi dt+
√
2MiγkT dw, where pi are the momenta. By design, this process converges to the Boltzmann

distribution of the system p(x1 . . .xN ) ∝ e−U/kT . To incorporate interactions with solvent molecules—ubiquitous in
biochemistry—one includes a box of surrounding solvent molecules as part of the molecular system (explicit solvent) or
modifies the force field U to model their effects (implicit solvent). In either case, only the positions xi of non-solvent atoms
are of interest, and their time evolution constitutes (for our purposes) the MD trajectory. Thus, MD can be mathematically
described as a partially observed Markovian diffusion process.

Deep learning for MD. An emerging body of work seeks to approximate the distributions over configurations X =
(x1 . . .xN ) arising from MD with deep generative models. Fu et al. (2023), Timewarp (Klein et al., 2024), and ITO
(Schreiner et al., 2024) learn the transition density p(Xt+∆t | Xt) and emulate MD trajectories via simulation rollouts
of the learned model. On the other hand, Boltzmann generators (Noé et al., 2019; Köhler et al., 2021; Garcia Satorras
et al., 2021; Midgley et al., 2022; 2024) directly approximate the stationary Boltzmann distribution, forgoing any explicit
modeling of dynamics. In particular, Boltzmann-targeting diffusion models trained with frames from MD trajectories have
demonstrated promising scalability and generalization to protein systems (Zheng et al., 2023; Jing et al., 2024). However,
these works have focused exclusively on forward simulation and have not explored joint modeling of entire trajectories
(Xt . . .Xt+N∆t) or the inverse problems accessible under such a formulation.

Stochastic interpolants. We build our MD trajectory generative model under the stochastic interpolants framework:
Given a continuous distribution p1 ≡ pdata over Rn, stochastic interpolants (Albergo & Vanden-Eijnden, 2022; Albergo et al.,
2023; Lipman et al., 2022; Liu et al., 2022), provide a method for learning continuous flow-based models dx = vθ(x, t) dt
transporting a prior distribution p0 (e.g., p0 ≡ N (0, I)) to the data p1. To do so, one defines intermediate distributions
xt ∼ pt, t ∈ (0, 1) via xt = αtx1 + σtx0 where x0 ∼ p0 and x1 ∼ p1 and the interpolation path satisfies α0 = σ1 = 0
and α1 = σ0 = 1. A neural network vθ : Rn × [0, 1] → Rn is trained to approximate the time-evolving flow field
vθ(xt, t) ≈ v(xt, t) ≡ Ex0,x1|xt

[α̇tx1 + σ̇tx0] which satisfies the transport equation ∂pt/∂t+∇ · (ptvt) = 0. Hence, at
convergence, noisy samples x0 ∼ p0 can be evolved under vθ to obtain data samples x1 ∼ p1. When parameterized with
transformers (Vaswani et al., 2017), stochastic interpolants are state-of-the-art in image generation (Esser et al., 2024). In
particular, we adopt the notation, architecture, and training framework of Scalable Interpolant Transformer (SiT) (Ma et al.,
2024), to which we refer to for further exposition.

B. Method Details
B.1. Flow Model Architecture

Our base modeling task is to generate a distribution over RT×L×(7K+14) conditioned on roto-translations of one or more key
frames gi1 . . . giK , and (in most settings) amino acid identities A. To do so, we learn a flow-based model via the stochastic
interpolant framework described in SiT (Ma et al., 2024) and parameterize a velocity network vθ(· | gi1 . . . giK , A) :
RT×L×(7K+14) × [0, 1]→ RT×L×(7K+14). To condition on the key frames and amino acids, we first provide the sequence
embedding to several IPA layers (Jumper et al., 2021) that embed the key frame roto-translations; these conditioning
representations (which are SE(3)-invariant) are broadcast across the time axis and added to the input embeddings. The main
trunk of the network consists of alternating attention blocks across the residue index and across time, with the construction
of each block closely resembling DiT (Peebles & Xie, 2023). Sidechain torsions and roto-translation offsets, when available,
are directly provided to the model as conditioning tokens.

In the molecular inpainting setting where we also generate the amino acid identities, we additionally require a generative
framework over these discrete variables. While several formulations of discrete diffusion or flow-matching are available
(Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; 2024), we select Dirichlet flow matching (Stark et al.,
2024) as it is most compatible with the continuous-space, continuous-time stochastic interpolant framework used for the
positions. Specifically, we place the amino acid identities on the 20-dimensional probability simplex (one per amino acid),
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augment the token representations with these variables, and regress against a T × L× (7K + 14 + 20)-dimensional vector
field. Further details in Appendix B.2.

Table 2. Conditional generation settings. g: roto-translations, τ : torsions, A: residue identities M : upsampling factor. Superscripts
indicate residue index and subscripts indicate frame index. For inpainting, we find excluding identities and torsions to reduce overfitting.

Setting Key frames Generate Conditioned on Token dim.

Forward simulation g1 g1···T , τ 1···T g1, τ 1, A 21
Interpolation g1, gT g1···T , τ 1···T g1,T , τ 1,T , A 28
Upsampling g1 g1···T , τ 1···T g1+{1,2,··· }M , τ 1+{1,2,··· }M , A 21
Inpainting g1, gT g1···T , A gknown

1···T 7 (+20)

Notation. Here, as in the main text, we use the following notation:

• T : number of trajectory frames

• L: number of amino acids

• K: number of key frames, with indicies i1 . . . iK

In Algorithms 1–3 below, we modify the architectures of DiffusionTransformerAttentionLayer and
DiffusionTransformerFinalLayer from DiT (Peebles & Xie, 2023). Elements from these layers are also then
incorporated into our custom InvariantPointAttentionLayer.

Algorithm 1 Velocity network

Input: noisy tokens χ ∈ RT×L×(7K+14), conditioning tokens χcond ∈ RT×L×(7K+14), key frame roto-
translations gi1 . . . giK ∈

(
SE(3)L

)K
, flow matching time t, amino acid identities A ∈ {1, . . . 20}L, conditioning

mask m ∈ {0, 1}T×L×(7K+14)

Output: flow velocity v ∈ RT×L×(7K+14)

t← Embed(t)
for k← 1 to K do
xk = Embed(A) +

∑
k′ Linear(g

−1
ik
gik′ )

for l← 1 to num ipa layers do
xk = InvariantPointAttentionLayer(x, gk, t)

end for
end for
x =

∑
k xk + Linear(χ) + Linear(χcond ⊙m) + Embed(m)

for l← 1 to num transformer layers do
x = DiffusionTransformerAttentionLayer(x, t)

end for
return DiffusionTransformerFinalLayer(x, t)

Algorithm 2 DiffusionTransformerAttentionLayer

Input: x ∈ RT×L×C , time conditioning t
(α, β, γ)t,ℓ,f = Linear(t)
x += gℓ ⊙AttentionWithRoPE(γℓ ⊙ LayerNorm(x) + βℓ, dim = 1)
x += gt ⊙AttentionWithRoPE(γt ⊙ LayerNorm(x) + βt, dim = 0)
x += gm ⊙MLP(γm ⊙ LayerNorm(x) + βm)
return x
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Algorithm 3 InvariantPointAttentionLayer

Input: x ∈ RL×C , time conditioning t, roto-translations g ∈ SE(3)L

(α, β, γ)ℓ,f = Linear(t)
x += InvariantPointAttention(LayerNorm(x), g)
x += gℓ ⊙AttentionWithRoPE(γℓ ⊙ LayerNorm(x) + βℓ)
x += gm ⊙MLP(γm ⊙ LayerNorm(x) + βm)
return x

B.2. Integrating Dirichlet Flow Matching

To additionally generate amino acid identities along with the trajectory dynamics, we integrate our SiT flow matching
framework with Dirichlet flow matching (Stark et al., 2024). Specifically, we now parameterize a velocity network
vθ :

(
R7K ⊕ R20

)T×L × [0, 1]→
(
R7K ⊕ R20

)T×L
. No architecture modifications are necessary other than augmenting

the tokens with one-hot tokens of residue identity, broadcasted across time. At training time, we sample from the Dirichlet
probability path (rather than the Gaussian path) for those token elements. However, the parameterization is subtle as
Dirichlet FM trains with cross-entropy loss, contrary to the standard flow-matching MSE loss. Thus, during training time
we minimize the loss

L = E
[
∥vθ[...,:-20]− ut(χt | χ1)∥2 +CrossEntropy(Softmax(vθ[...,-20:]), A)

]
(2)

That is, we interpret the last 20 outputs in the channel dimension as logits over the 20 residue types. At inference time, on
the other hand, we convert these logits to the Dirichlet FM flow field:

v′θ = Concat

(
vθ[...,:-20],

∑
i

Softmax(vθ[...,-20:])i · uDFM(· | x1 = i)

)
(3)

where uDFM is the appropriate Dirichlet vector field from Stark et al. (2024).

B.3. Conditional Generation

We control the conditional generation settings by simply setting appropriate entries of the conditioning mask m in
Algorithm 1 to 1 or 0. Specifically,

• For the forward simulation setting, m[t, ℓ, c] =

{
1 t = 1

0 t ̸= 1

• For the inpainting setting, m[t, ℓ, c] =

{
1 t ∈ {1, T}
0 t /∈ {1, T}

• For the upsampling setting, m[t, ℓ, c] =

{
1 t%M = 1

0 t%M ̸= 1
where M is the upsampling factor.

• For the inpainting setting, m[t, ℓ, c] =

{
1 ℓ ∈ Sknown

0 ℓ /∈ Sknown
where Sknown is the set of residues in the known part of the

trajectory.

We use 1 indexing to be consistent with the main text. In practice, in the inpainting setting we also mask out all torsion
angles and withhold the amino acid identities for all residues. Further, we do not train the model to generate the torsions
as all, such that the tokenization yields χ ∈ RT×L×7K . These interventions were observed to be necessary to prevent
overfitting.
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C. Experimental Details
C.1. Markov State Models

A Markov State Model (MSM) is a representation of a system’s dynamics discretized into r states s ∈ {1 . . . r} and a
discrete timesteps separated by time lag τ such that the dynamics are approximately Markovian (Husic & Pande, 2018;
Chodera & Noé, 2014; Pande et al., 2010). An MSM is parameterized with a vector π that assigns each state a stationary
probability and a matrix T containing the probabilities for transitioning from state st to st+1 after one timestep, i.e.,
Ti,j = p(st+1 = j | st = i).

To build a Markov state model, we use PyEMMA (Scherer et al., 2015; Wehmeyer et al.) and its accompanying tutorials.
Briefly, we first featurize molecular trajectories with all torsion angles as points on the unit circle, obtaining a 2m-dimensional
invariant trajectory where m is the number of torsion angles. We run TICA on these trajectories with kinetic scaling and then
run k-means clustering with k = 100 over the first few (5–10 chosen by PyEMMA) TICA coordinates. We then estimate
an MSM over these 100 states and use PCCA+ spectral clustering (Röblitz & Weber, 2013) to further group these into 10
metastable states. Our final MSM is built from the discrete trajectory over these 10 metastable states. In all cases we use
timelag τ = 100 ps.

Unconditionally sampling an MSM. To unconditionally sample a trajectory of length N from an MSM, we first sample the
start state from the stationary distribution, i.e., s1 ∼ π. We then iteratively sample each subsequent state as st+1 ∼ Tst,:.

Sampling an MSM conditioned on a start state. To sample a trajectory of length N conditioned on a starting state s1, we
iteratively sample each subsequent state as st+1 ∼ Tst,:.

Sampling an MSM conditioned on a start and end state. For our transition path sampling evaluations in Section 3.2, we
employ replica transition paths sampled from an MSM by conditioning on a start state s1 and end state sN . To do so, we
iteratively sample each state between the conditioning states by utilizing the probability

p(st+1 = j | st = i, sN = k) =
p(sN = k | st+1 = j, st = i)p(st+1 = j | st = i)

p(sN = k | st = i)
. (4)

Firstly, the term p(st+1 = j | st = i) is available in out transition matrix as Ti,j . Secondly, we obtain p(sN = k | st = i) as
an entry of the (N − t)th matrix exponential of the transition matrix. Specifically p(sN = k | st = i) = T

(N−t)
i,k where the

superscript denotes a matrix exponential. Lastly, we obtain the term p(sN = k | st+1 = j, st = i) by realizing that under the
Markov assumption p(sN = k | st+1 = j, st = i) = p(sN = k | st+1 = j). Further, p(sN = k | st+1 = j) = T

(N−t)−1
j,k .

Replacing the terms in Equation 4 results in

p(st+1 = j | st = i, sN = k) =
T

(N−t−1)
j,k Ti,j

T
(N−t)
i,k

. (5)

Thus, we sample states s2 . . . sN−1 iteratively as

st+1 ∼
T

(N−t−1)
:,sN Tst,:

T
(N−t)
st,sN

. (6)

C.2. Tetrapeptide Molecular Dynamics

We run all-atom molecular dynamics simulations in OpenMM (Eastman et al., 2017) using the amber14 force field
parameters with gbn2 implicit solvent or tip3pfb water model. Initial structures are generated with PyMOL, prepared
with pdbfixer, and protonated at neutral pH. For explicit solvent, we prepare a solvent box with 10 Å padding and
neutralize the system with sodium or chloride ions. All simulations are integrated with Langevin thermostat at 350K with
hydrogen bond constraints, timestep 2 fs, and friction coefficient 0.3 ps−1 (explicit) or 0.1 ps−1 (implicit). For explicit
solvent, nonbonded interactions are cut off at 10 Å with long-range particle-mesh Ewald. We first minimize the energy with
L-BFGS and then equilibrate the system in the NVT ensemble for 20 ps. We then run 100 ns of production simulation in the
NVT ensemble (implicit) or NPT ensemble with Monte Carlo barostat at 1 bar (explicit). We write heavy atom positions
every 100 fs.
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For explicit-solvent settings (forward simulation, interpolation, inpainting), we run simulations for 3109 training, 100
validation, and 100 test peptides. For implicit-solvent settings (upsampling), we run simulations for 2646 training, 100
validation, and 100 test peptides. All peptides are randomly chosen and split. Additionally, 5195 training and 100 validation
implicit solvent simulations are run for the pentapeptide MDGEN.

C.3. Evaluation Details

Trajectory Featurization We featurize trajectories by selecting the sine and cosine of all torsion angles as the collective
variables. Specifically, we featurize ψ, ϕ backbone angles and all χ sidechain torsion angles for each peptide. We then
reduce dimensionality with Time-lagged Independent Components Analysis (TICA) (Pérez-Hernández et al., 2013) in
PyEMMA (Scherer et al., 2015).

Jensen-Shannon Divergence We compute the JSD as implemented in scipy, i.e.,√
D(p | m) +D(q | m)

2
(7)

where m = (p+ q)/2. For the 1-dimenional JSD over torsion angles, we discretize the range [−π, π] into 100 bins. For the
1-dimensional JSD over TIC-0, we discretize the range spanning the maximum and minimum values into 100 bins. For the
2-dimensional JSD over TIC-0,1 we discretize the space into 50× 50 bins.

Autocorrelation The autocorrelation of torsion angle θ at time lag ∆t is defined as ⟨cos(θt − θt+∆t)⟩, corresponding
to the inner product of θt, θt+∆t on the unit circle. To compute the decorrelation time of a torsion angle, we subtract
the baseline inner product ⟨cos θ⟩2 + ⟨sin θ⟩2, this is analogous to removing the mean of a real-valued time series before
computing the autocorrelation. The decorrelation time is then defined as the time required for the autocorrelation to fall
below 1/e of its initial value (which is always unity), with the subtracted baseline computed from the reference trajectory.
In a small number of cases (21 torsions), the MDGEN trajectory did not decorrelate within 1000 frames (10 ns), and we
exclude the angle from Figure 2F.

To compute the decorrelation time for TIC-0, we now define the autocorrelation as

E[(yt − µ)(yt+∆t − µ)]/σ2 (8)

where µ, σ are computed from the reference trajectory. Hence, when computed for a sampled MDGEN trajectory, the
autocorrelation may not start at unity and may not decay to zero. We report a decorrelation time if starts above and falls
below 0.5 within 1000 frames (10 ns), which happens in 74 out of 100 cases as shown in Figure 2E.

Interpolation In our interpolation or transition path sampling experiments, we sample 1000 trajectories of length 1ns for
each of our 100 test tetrapeptides. We first select a start state s1 and an end state sN that exhibits non-trivial transitions. To
do so, we consider a reference MD simulation of 100 ns for the tetrapeptide and obtain an MSM as described in Appendix
C.1. From the MSM’s transition matrix T and stationary distribution π, we compute the flux matrix F = T ⊙ Pi where Pi
is the square matrix with π in each column. The chosen start and end state is the row and column index of the smallest
non-zero entry in F .

With the start state s1 and end state sN selected, we sample 1000 start frames x1 and end frames xN from the states. The
1000 start frames are sampled from all frames in the reference MD simulation that belong to state s1. Analogously, the
end frames are sampled from all frames belonging to state sN . Using the 1000 pairs of start and end frames, we condition
MDGEN on them and generate trajectories of 100 frames (1 ns). For evaluation, we discretize these trajectories under the
10-state clustering determined by the MSM of the reference MD simulation as described in Appendix C.1. Note that with
the MSM lag time of 100 ps, these discrete trajectories are of length 10.

MD baselines. To sample transition paths of 1 ns between our selected start and end states, we employ MSMs built from
replica MD simulations of varying lengths. For instance, for a replica MD simulation of 100ns, we first discretize its
trajectory with the cluster assignments of the reference MD simulation (the same cluster assignments as we use to discretize
the MDGEN ensemble and that we use for evaluation). Next, we estimate an MSM from the discretized trajectory. We then
proceed to sample 1000 transition paths from the MSM as described in C.1 where the path is conditioned on an end and
start state. In the event that the replica MSM has zero transition probability for transitioning out of the start state or zero
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probability for transitioning into the end state (this occurs if the replica MD simulation never visited the start or end state),
we treat all 1000 paths of the replica MD as having zero probability for our evaluation metrics which are further detailed in
the following.

Computing TPS metrics. As described above, we obtain ensembles of 1000 discretized 1ns paths of 100 frames for both
MDGEN and the replica MD simulations. For these, in Figure 3, we show a JSD, the rate of valid paths, and the average
path probability. These metrics are computed with respect to the MSM of the reference MD simulation of length 100 ns.

• To compute the JSD, we draw 1000 discrete transition paths from the reference MD simulation and compute the
probability of visiting each state from the frequency with which each state is visited. We do the same for the transition
path ensemble of MDGEN (or the baseline) and compute the JSD between the categorical distributions as described
above.

• The average path probability for an ensemble is the average of its paths’ probabilities for transitioning from the start to
the end state under the reference MSM. This probability can be computed as described in Appendix C.1.

• The valid path rate is the fraction of paths that have a non-zero probability.

Inpainting In our inpainting experiments, we set out to design tetrapeptides that transition between two states. Considering
the residue indices 1, 2, 3 and 4, we call the residues 1, 4 the flanking residues which we condition on and 2, 3 the inner
residues which we aim to design. Specifically, we condition MDGEN on the trajectory of the flanking residues’ backbone
coordinates and generate the residue identities of the inner two residues. To carry out this design for a single tetrapeptide,
we draw 1000 samples from MDGEN to estimate the mode of its joint distribution over the inner two residues.

The conditioning information (the trajectories of the outer two residues’ backbone coordinates) is different for the two
evaluation settings of designing transitions with high flux or for designing arbitrary transitions. However, for both of
them, the start and end frames are provided as conditioning information via the key frames. In the high flux setting, the
conditioning information is obtained by sampling 1000 paths from the reference MD simulation of length 10 ps with 100
frames that start and end in the desired states. These states are determined as those with the maximum flux between them
(see the paths about interpolation above for a description of flux). When designing residues that give rise to arbitrary random
paths, the trajectories are randomly sampled from the reference simulation.

After sampling 1000 pairs of residues for the inner two residues, we select the most frequently occurring pair as the final
design. For this design, we report the sequence recovery (the fraction of residues that match the original sequence of the
MD simulations from which the conditioning information was sampled).

Inpainting Baselines. We aim to assess the benefit that is obtained by the trajectory-based inference of MDGEN over a
baseline that only takes the start frame or the start and end frame as input for designing residues that transition between
two states. Thus, we construct DYNMPNN and S-MPNN. These baselines use the same architecture as MDGEN in the
inpainting setting, but DYNMPNN only obtains the start and end frames as key frames and via their roto-translation offsets
for the first and last frames. S-MPNN is the analog with only the first frame.

Notably, in the inpainting setting, MDGen and the baselines do not treat torsion angles, and all torsion angle entries of the
SE(3)-invariant tokens are set to 0. Furthermore, the model does not take the amino acids of the flanking residues as input.
We make this choice of withholding all information about amino acid identities since otherwise, the models overfit on the
arbitrary identities of the flanking residues and do not generalize to the test set.

Protein Simulations For training and evaluation on proteins, we use trajectories from the ATLAS dataset (Vander Meersche
et al., 2024), which includes 3 replicates of 100 ns explicit-solvent, all-atom simulations for each of 1390 non-membrane
protein monomers. The proteins are chosen from the PDB as representatives of all available ECOD domains and are thus
structurally non-redundant. We split the dataset into 1265 training, 39 validation, and 82 test proteins by PDB release date
following Jing et al. (2024). At training time, we randomly select a protein, select one of the three replicates, subsample
every 40 frames, obtaining a training target with 250 frames. We train with random crops of up to 256 residues, but draw
samples for the full protein at inference time. To compute statistical similarity of the MDGEN ensembles with the ground
truth MD ensembles, we compare the 250 frames with 30k pooled frames from all three trajectories. Baseline metrics and
runtimes for AlphaFlow and MSA subsampling are taken directly from Jing et al. (2024). Analysis and visualization code
for Table 4 and Figure 6 are provided courtesy of Jing et al. (2024).
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Runtime MD runtimes in Table 1 are tabulated on a NVIDIA T4 GPU. All MDGEN experiments are carried out on
NVIDIA A6000 GPUs. AlphaFlow and MSA subsampling runtimes in Table 4 are tabulated on NVIDIA A100 GPUs by
Jing et al. (2024).
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Table 3. Sequence recovery for the inner two peptides when conditioning on the partial trajectory (MDGEN), the two terminal frames
(DynMPNN), or a single frame (S-MPNN).

Method High Random
Flux Path

MDGen 52.1% 62.0%
DynMPNN 17.4% 24.5%
S-MPNN 16.3% 13.5%
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Figure 5. Autocorrelation functions of MDGEN sidechain torsion angles computed from a single MD trajectory (left) versus a single model
sample with Hyena (right), capturing dynamical timescales spanning four orders of magnitude.

D. Additional Results
D.1. Additional Tasks

Inpainting Design. We aim to sample trajectories conditioned on the dynamics of the two flanking residues of the
tetrapeptide; in particular, the model determines the identities and dynamics of the two inner residues. We focus on dynamics
scaffolding as one possible higher-level objective of inpainting: given the conformational transition of the observed residues,
we hope to design peptides that support flux between the corresponding Markov states.

Thus, for each test peptide, we select a 100-ps transition between the two most well-connected Markov states, mask out the
inner residue identities and dynamics, and inpaint them with our model. To evaluate the designs, we compute the fraction of
generated residue types that are identical to the tetrapeptide in which the target transition is known to occur. We compare
MDGEN with a bespoke inverse folding baseline that is provided the two terminal states (i.e., two fully observed MD
frames), and thus designs peptides that support the two modes (rather than additionally a partially-observed transition
between them). We call this baseline DYNMPNN, and it otherwise has the same architecture and settings as MDGEN. We
find (Table 3) that MDGEN recovers the ground-truth peptide substantially more often than DynMPNN when conditioned
on a high-flux path or (as a sanity check) a random path from the reference simulatiom.

Scaling to Long Trajectories. Although Section 3.1 showed that our model can emulate long trajectories, this was limited
to rollouts of 1000 frames at a time with coarse 10 ps timesteps, potentially missing faster dynamics or disrupting slower
dynamics. Thus, we investigate generating extremely long consistent trajectories that capture timescales spanning several
orders of magnitude within a single model sample. To do so, we replace the time attention in our baseline SiT architecture
with a non-causal Hyena operator (Poli et al., 2023), which has O(N logN) rather than O(N2) overhead. We overfit on
100k-frame, 10-ns trajectories of the pentapeptide MDGEN and compare the torsional autocorrelation functions computed
from a single generated trajectory with a single ground truth trajectory (Figure 5). Although not yet comparable to the
main set of forward simulation experiments due to data availability and architectural expressivity reasons, these results
demonstrate proof-of-concept for longer context lengths in future work.

Protein Simulation. To demonstrate the applicability of our method for larger systems such as proteins, we train a model
to emulate explicit-solvent, all-atom simulations of proteins from the ATLAS dataset (Vander Meersche et al., 2024)
conditioned on the first frame (i.e., forward simulation). We follow the same splits as Jing et al. (2024). Due to the much
larger number of residues, we generate samples with 250 frames and 400 ps timestep, such that a single sample emulates
the 100 ns ATLAS reference trajectory. The difficulty of running fully equilibrated trajectories for proteins prevents the
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Table 4. Median results on test protein ensembles (n = 82). Runtimes are reported per sample structure or frame.
MDGEN AlphaFlow MSA sub.

Pairwise RMSD r ↑ 0.48 0.48 0.22
Global RMSF r ↑ 0.50 0.60 0.29
Per-target RMSF r ↑ 0.71 0.85 0.55
Root mean W2 dist. ↓ 2.69 2.61 3.62
MD PCA W2 dist. ↓ 1.89 1.52 1.88
% PC-sim ≥ 0.5 ↑ 10 44 21
Weak contacts J ↑ 0.51 0.62 0.40
Exposed residue J ↑ 0.29 0.41 0.27

Runtime (s) 0.2 70 4

MD Ours

0

2

Figure 6. MD vs generated ensembles for 6uof A, with Cα RMSFs plotted by residue index (Pearson r = 0.74).

construction of Markov state models used in our main evaluations. Instead, we compare statistical properties of forward
simulation ensembles following Jing et al. (2024). Our ensembles successfully emulate the ground-truth ensembles at a
level of accuracy between AlphaFlow and MSA subsampling while being orders of magnitude faster per generated structure
than either (Table 4).
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D.2. Forward Simulation
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Figure 7. Additional backbone torsion angle distributions (orange from MD, blue from samples) and free energy surfaces along the top
two TICA components for 10 randomly chosen test peptides.

LIRH = 0.40 LIFE = 0.80 MAFM = 0.68 EHEV = 0.65 ESIC = 0.54

IVMA = 0.79 FLRH = 0.64 VDRN = 0.40 WSAQ = 0.47 CSYR = 0.60

Figure 8. Flux matrices between MSM metastable states computed from reference MD trajectories (upper right) and MDGEN trajectories
(bottom left) for 10 random test peptides (the matrices are symmetric). Cells are colored by the square root of the flux, with darker
indicating high flux. The Spearman correlation between the entries is shown.
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D.3. Interpolation

Figure 9. Four of 1000 transition paths of MDGEN for several tetrapeptides in the test set.
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D.4. Upsampling
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Figure 10. Recovery of fast dynamics via trajectory upsampling for random test peptides. (Left) Autocorrelations of each torsion angle
from ( ) the original 100 fs-timestep trajectory, (•) the subsampled 10 ns-timestep trajectory, and ( . . . ) the reconstructed 100 fs-timestep
trajectory (all length 100 ns). (Right) Dynamical content as a function of timescale from the upsampled vs. ground truth trajectories,
stacked for all torsion angles (same color scheme). The subsampled trajectory contains only the shaded region and our model recovers the
unshaded region.
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D.5. Inpainting
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Figure 11. For six tetrapeptides, we show the states that we chose in our design experiments when designing transitions between the
highest flux states. Column 1 shows the flux matrix with zeros on the diagonal. Column 2, the free energy surface of a 100 ns simulation
and the selected start and end states based on the highest flux in the flux matrix. Column 3, the MSM that was built from the MD
simulation.
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