
VICtoR: Learning Hierarchical Vision-Instruction
Correlation Rewards for Long-horizon Manipulation

Kuo-Han Hung1,∗ Pang-Chi Lo1,∗ Jia-Fong Yeh1,∗ Han-Yuan Hsu1

Yi-Ting Chen2 Winston H. Hsu1,3

1National Taiwan University 2National Yang Ming Chiao Tung University
3MobileDrive

Abstract

We study reward models for long-horizon manipulation tasks by learning from
action-free videos and language instructions, which we term the visual-instruction
correlation (VIC) problem. Recent advancements in cross-modality modeling
have highlighted the potential of reward modeling through visual and language
correlations. However, existing VIC methods face challenges in learning rewards
for long-horizon tasks due to their lack of sub-stage awareness, difficulty in mod-
eling task complexities, and inadequate object state estimation. To address these
challenges, we introduce VICtoR, a novel hierarchical VIC reward model capable
of providing effective reward signals for long-horizon manipulation tasks. VICtoR
precisely assesses task progress at various levels through a novel stage detector
and motion progress evaluator, offering insightful guidance for agents learning
the task effectively. To validate the effectiveness of VICtoR, we conducted ex-
tensive experiments in both simulated and real-world environments. The results
suggest that VICtoR outperformed the best existing VIC methods, achieving a 43%
improvement in success rates for long-horizon tasks.

1 Introduction

Reinforcement learning (RL) has been extensively studied for long-horizon manipulation [1, 2, 3].
However, crafting reward functions for these tasks is complex, as it typically requires access to true
states or significant domain expertise. Consequently, there is an urgent need for a robust and accurate
reward model for these tasks. Previous research has explored modeling reward functions via robotic
expert demonstrations [4, 5], goal-images [6, 7], and human demonstrations [8, 7, 9]. Unfortunately,
the required task specification materials, such as goal-images, remain costly and impractical.

Recently, methods that consider the vision-instruction correlation (VIC) as reward signals have
emerged, providing a more accessible way for task specification through language. Specifically, these
VIC methods view the reward modeling as a regression or classification problem and train the reward
model on the given action-free demos and instructions. Pioneer approaches [10, 11, 12, 13, 14]
studied using pre-trained Vision Language Models (VLMs) to generate rewards by assessing the
similarity between visual observations and language goals. Ma et al. [15] explore the possibility of
using human video and language data to pre-train a reward model, later fine-tuned with in-domain
data. However, existing VIC studies are all limited to short-horizon tasks, such as “open a drawer".

Figure 1 illustrates three challenges we observe when applying existing VIC methods to long-horizon
manipulation tasks: (1) No awareness of task decomposition: Failing to divide complex tasks into
manageable parts limits adaptability. (2) Confusion from variance in task difficulties: Training
a reward model on long-horizon tasks impairs the learning of reward signals and fails to generate
suitable progressive rewards. (3) Ambiguity from lacking explicit object state estimates: Relying
on whole-scale image observations can overlook critical environmental changes. For instance, when

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).



Figure 1: Problems in existing VIC methods and VICtoR’s solution. Training long-horizon task
with existing VIC methods commonly suffer from the listed problems. To address these problems,
we propose VICtoR, a hierarchical reward model that can decompose long-horizon tasks and assign
rewards by identifying the stage, motion, and progress of the agent from visual observations.

training for the task “move the block into the closed drawer", previous VIC models would assign
high rewards for moving the block even if the drawer is closed, misleading the learning process.

To this end, we propose VICtoR, a hierarchical VIC reward model for long-horizon manipulation.
Figures 1 and 2 depict its concept and architecture, respectively. VICtoR learns effective rewards
for long-horizon tasks by hierarchically assessing overall progress. Specifically, it decomposes
long-horizon tasks (high-level) into stages (mid-level) and motions and progress (low-level, robot
primitives), determining the reward by considering task progress at different granularities. By treating
each long-horizon task as an arbitrary permutation of available motions, VICtoR, trained only on
action-free motion videos, can be easily adapted to unseen long-horizon tasks.

To achieve this, VICtoR first queries GPT-4 to break down a long-horizon task into stages to acquire
essential task knowledge, including the expected object statuses and required motions for completion
at each stage. Then, a stage detector (a local-scale VLM) retrieves the current object statuses from the
current observation and verifies if they match the condition of a specific stage in the task knowledge
(Challenge #1). Next, from a list of required motions to complete the stage, a motion progress
evaluator (a whole-scale VLM) determines the current motion and assesses the in-motion progress
(Challenges #2 and #3) by evaluating the correlations between visual observations and each motion
instruction. As a result, VICtoR can generate informative rewards to complete long-horizon tasks.

We conducted extensive experiments in both simulated and real-world settings. In the simulation,
we designed ten tasks of varying horizons, including those where each step’s success depends on
the success of the previous stage. For real-world experiments, we used the dataset collected from
XSkill[16]. Compared to the best prior VIC reward model, VICtoR achieved a 25% improvement in
the average success rate across all tasks and a 43% improvement in the more challenging tasks (top
half of tasks considering motion’s number). Additionally, our detailed ablation studies emphasized
the importance of our hierarchical architecture and training objectives. Visualizations of the learned
embedding space and rewards demonstrated that VICtoR effectively assesses task progress.

We summarize our contributions as follows: (1) We are the first to explore the potential of VIC rewards
for long-horizon manipulation tasks. (2) We introduce VICtoR, a novel hierarchical VIC reward
model that assesses task progress by decomposing it into various levels. (3) We present extensive
results from simulated and real-world experiments, ablations, and visualizations to demonstrate
VICtoR’s superiority, outperforming the best prior method by 43% on more challenging tasks.

2 Related Work

Large Pre-trained Models for Robotics. With great ability of reasoning, Large Language Models
(LLMs) have been utilized for robotics in navigation [17], task planning [18, 19], code-completion
for policies [20, 21], and manipulation [22, 23, 24, 25, 26]. These works leverage LLMs’ ability
to translate high-level instructions into actionable sequences and break them down into sub-orders

2



for precise agent control. Additionally, recent advancements have leveraged Vision-Language
Models (VLMs) to enhance environmental understanding for agents. With a profound understanding
of the physical world, VLMs facilitate the works in navigation, robotic control, and monitoring
[27, 28, 29, 30, 31]. Unlike previous methods, for reward modeling, VICtoR uses LLMs to break
down tasks and VLMs to assess visual observation with motion descriptions, allowing our method to
better assess the task’s progress and distinguish it with different granularity.

Addressing Long-Horizon Tasks. Long-horizon manipulation is a long-standing problem. Tradi-
tional Hierarchical Reinforcement Learning (HRL) methods [32, 33, 2, 34, 35] address this challenge
by decomposing complex tasks into hierarchical levels or sequential orders, where higher-level
policies make decisions that guide the selection of parameters for lower-level policies or pre-trained
actions. Task and Motion Planning (TAMP) methods [36, 37, 38] attempt to assemble and sched-
ule well-trained motions to accomplish long-horizon tasks. Additionally, Long-horizon Imitation
Learning [39] has been proposed to learn long-horizon tasks from expert demonstrations. Unlike
these approaches, VICtoR aims to learn the reward model for long-horizon tasks from action-free
demonstrations and task instructions. Our reward model is designed to be independent of policy
design and can be applied to RL algorithms to learn long-horizon manipulation tasks.

3 Preliminaries

Problem Statements. For a reinforcement learning task µ, we assume the environment follows
a partially observable Markov Decision Process (POMDP), which can be described with the tuple
Mµ := (S,A,O,Ω,P,R, γ), in which the observation o ∈ Ω is derived from the observation
function O(o | s) conditioned on the current state s ∈ S. A is the space of actions; P(s′ | s, a)
denotes the dynamics of the environment; R and γ are the environment’s reward function and discount
factor, respectively. The objective aims to seek a policy π(a | o) that assigns a probability to action a,
given the observation o, which maximizes the accumulated discounted rewards in a rollout.

VIC Reward Model. This work aims to develop a Vision-Instruction Correlation (VIC) reward
model to generate accurate rewards from visual observations and language instructions. We assume an
instruction Lµ for the task µ is accessible, as the instruction is a low-cost resource to collect. Specif-
ically, we seek a reward model R(ot, ot−1, L

µ) computes the reward by evaluating the difference
in correlation between the image observation o and the instruction Lµ. Intuitively, R(ot, ot−1, L

µ)
should generate a higher reward if the ot is moving closer to the task’s goal compared to ot−1.

Stages and Motions. In the context of long-horizon manipulation, we define motion as as the
primitive movement that a robot can make, such as reaching or grasping an object. In addition, stage
refers to a high-level interaction with an object in the environment, requiring the consideration of
complex objects’ status, and can encompass multiple motions. For instance, the stage "open the
drawer" involves the motions "reach the drawer handle" and "pull out the drawer." A comprehensive
list of motions and stages is detailed in Appendix B.1.

4 Method

Overview. VICtoR is a reward model for long-horizon manipulation, relying on visual observations
and language instructions. As depicted in Figure 2, VICtoR employs a hierarchical approach to
assess task progress at various levels, including stage, motion, and motion progress. It consists of
three main components: (1) a Task Knowledge Generator that decomposes the task into stages and
identifies the necessary object states and motions for each stage (Section 4.1); (2) a Stage Detector
that detects object states to determine the current stage based on the generated knowledge (Section
4.2); (3) a Motion Progress Evaluator that assesses motion completion within stages (Section 4.3).
With this information, VICtoR then transforms it into rewards (Section 4.4). Both the Stage Detector
and Motion Progress Evaluator are trained on motion-level videos labeled with object states, which
are autonomously annotated during video collection. This setup enables VICtoR to deliver precise
reward signals for complex, unseen long-horizon tasks composed of these motions in any sequence.

3



Stage Detector
Motion Progress EvaluatorMotion-level Videos with

 Language Instructions
reach the drawer handle

pull out the drawer

reach the blue block

Current 
Observation

…

…

…

VICtoR Inference (Reward Model) 

Motion 
Progress
Evaluator

Stage 
Detector

Task Instruction

“Move the blue block 
to the closed drawer”

Object States
drawer: closed

light: on
block: on the table

Object State Labels
drawer: closed drawer: opened

Current Stage
open the drawer 

Progress
Reward

70%

Stage Reward

Motion Reward

Reward

reach the drawer 
handle

pull out the 
drawer

VICtoR Training 

Candidates Motions
reach the drawer 

handle

pull out the drawer

Current Motion

Task Knowledge Generation

Stage 1 
object states {drawer: closed, light: 
on/off, block: on the table}
motions [ reach the drawer handle, pull 
out the drawer ] 

Stage 2 
object states: {drawer: open , ...}
motions …

Figure 2: Training and inference pipeline of VICtoR. VICtoR is trained using motion-level videos
with language annotations and object state labels. It first decomposes the task into task knowledge for
decomposed stages, conditional object states, and motions. Then, it uses Stage Detector to identify
the stage, and a Motion Progress Evaluator (VLM) to detect the motion and in-motion progress

4.1 Task Knowledge Generation

To make long-horizon tasks more achievable and manageable, we leverage the reasoning ability in
Large Language Models (LLMs) to decompose and analyze the tasks. Previous research [18, 19]
introduced LLMs into policy learning by planning sub-goals or actions for explicit guidance to
enhance long-horizon capabilities. Building upon this foundation, we explore more nuanced usage.
Our goal is to decompose a given training task into distinct sub-stages, define the specific conditions
or states of each object at these stages, and identify the motions required by the agent to advance to
the next stage. To achieve this, we employ GPT-4 to analyze and construct task knowledge. Figure
2 illustrates an example of task knowledge generation for the task “move the block into the closed
drawer.” Details of our prompt design and implementation are provided in Appendix F, and additional
experiments for robustness are described in Appendix A.2.

4.2 Stage Detection

Traditional VIC models, which encode entire visual observations to assess task progress, often
overlook subtle yet critical changes in object states. To address this, we differentiate between
detecting local object state changes and global agent movements (discussed in the next section). In
the previous section, Task Knowledge Generator decomposed long-horizon tasks into sub-stages,
each conditioned on different object states. To detect these stages, we designed Stage Detector, which
detects stage by identifying each object’s state in the environment and comparing these with the
conditioned states of each stage as defined in the task knowledge.

Object State Detection. To detect object states, our Stage Detector first leverages a language-
conditioned object detector D, such as MDETR [40], to identify objects in the image observation
o. Essentially, we crop out the bounding box D(o, c) generated from the detector D based on the
current observation o and the queried object c. Subsequently, these cropped images are fed into our
object state classifier P . The classifier predicts the likelihood of categorical object state for each
cropped image as P (Lc|D(o, c)), where Lc represents the language description of possible object
states for object c. We summarize the training details in Appendix B.2.

Stage Detection. After extracting all the object states in the environment, our Stage Detector can
then determine the current stage by comparing these states with the task knowledge. A stage is
identified if, and only if, all object states align with the task knowledge for a specific stage.

For example, as illustrated in Figure 2, if the drawer is currently closed, we compare this condition
with the states specified in each stage of the task knowledge. Upon finding that the drawer is expected
to be closed only at the first stage, we conclude that the agent is at the first stage. This comparison
should be applied to every conditioned object for the tasks. If the extracted set of object states does
not match any stage, the agent will be considered to be in the initial stage.

4



4.3 Motion Progress Evaluator

Since a stage may require multiple motions to complete, relying merely on the stage reward is
insufficient for learning complex tasks. To this end, we introduce the Motion Progress Evaluator
(MPE) to provide the reward signals within the stage. As discussed in Section 4.1, each detected stage
comes with a list of motion descriptions in the task knowledge. Building on this, the MPE assesses
the agent’s current motion and progress within the motion, taking into account these descriptions.
This MPE model yields a more detailed reward model that accurately reflects progress within stages.

Architecture. Our MPE model employs the vision encoder EVθ and language encoder ELθ

from CLIP[41], with two additional heads (fully-connected layers) attached to EVθ. Initially, the
vision encoder EVθ generates the base embedding f , which is then transformed into motion-specific
embedding m and progress-specific embedding p through separate heads. As for the language encoder
ELθ, we employ it to generate the language embedding lmo of motion mo without updating its
weights during training. Our goal is to determine the motion class and motion progress by evaluating
the similarity between the embeddings m and p and the language description lmo, respectively.

Objectives. To effectively evaluate progress within a stage, we expect three key capabilities in the
MPE model: (1) the ability to discern the temporal difference of frames extracted from the same video,
(2) the capacity to identify the motion in which the agent is engaged, and (3) the capability to assess
the progress of motion completion. To this end, we introduce objectives based on InfoNCE [42] to
guide our MPE model, focusing on time contrast, motion contrast, and language-frame contrast.

For implementation, we utilize the negative L2 distance as the similarity function S. During each
training iteration, we sample B videos focusing on specific motions and N videos featuring arbitrary
agent movements, from which we randomly select a batch of frame sequences [Fi, Fj>i, Fk>j ].

Time Contrastive Loss. To capture features relevant to physical interaction and sequential decision-
making, we apply the time contrastive loss Ltcn to the base embeddings, as inspired by [43, 44].
Essentially, images that are temporally closer should have more similar representations (embeddings)
than those that are temporally distant or from different videos. The loss Ltcn can be formulated by

Ltcn = −
∑
b∈B

∑
(x,y)∈

{(i,j),(j,k)}

log
eS(fb

x,f
b
y)

eS(fb
x,f

b
y) + eS(fb

i ,f
b
k)

, (1)

where f b
x is the base embedding of the x’th frame.

Motion Contrastive Loss. To differentiate between various motions, we introduce the motion
contrastive loss Lmcn, which aligns each motion’s embedding with its relevant language embedding
and separates it from unrelated language embeddings. Additionally, to reduce reward hacking 1 and
enhance the robustness of our MPE model, we task it with distinguishing frames from motion videos
or meaningless videos that contain arbitrary movements. The loss Lmcn is formulated by

Lmcn = −
∑

b∈{B,N}

∑
x∈

{i,j,k}

log
eS(mb

x,l
b)

eS(mb
x,l

b) + eS(mb
x,l

̸=b)
, (2)

where mb
x is the motion embedding of xth frame, lb is the language annotation of motion in the video

b, and l ̸=b is the instruction for other motion.

Language-Frame Contrastive Loss. To assess progress within the motion, we employ the
language-frame contrastive loss Llfcn. The loss Llfcn aims to bring the progress embeddings
of nearly completed steps closer to the instruction embedding of the motion while distancing the
progress embeddings of frames from earlier steps, which can be stated by

1During RL training, agents may explore areas not covered in demonstrations and exploit reward model
vulnerabilities, leading to high rewards for incorrect actions.

5



Llfcn = −
∑
b∈B

log
eS(pb

k,l
b)

eS(pb
i ,l

b) + eS(pb
j ,l

b) + eS(pb
k,l

b)
, (3)

where pbx is the progress embedding of xth frame, and lb is the motion instruction for the video b.

Total Loss. Finally, we employ the Adam optimizer and the total loss Ltotal to guide our MPE
model, where Ltotal is a weighted combination of the three objectives mentioned above:

Ltotal = λ1Ltcn + λ2Lmcn + λ3Llfcn. (4)

Inference. During inference, along with the stage detected by the Stage Detector, the MPE model
evaluates the current motion from the motion candidates LM within the stage, provided by the
task knowledge from Section 4.1. Specifically, it calculates the similarity scores between the
motion embedding m of current observation and language embeddings lmo of each motion candidate
mo ∈ LM . It then selects the motion with the highest score, as formulated by

motion∗ = argmax
mo∈LM

S(m, lmo). (5)

To determine the confidence level of the MPE model, we further calculate the confidence score by
comparing the similarity difference between the motion embedding m and the language embedding
lmotion∗ of the selected motion, and the language embedding ln of arbitrary agent movements. We
decide whether to choose the selected motion motion∗ or the first motion by

motion =

{
motion∗, if confidence > λc

0, otherwise
, where (6)

confidence =
S(m, lmotion∗)

S(m, lmotion∗) + S(m, ln)
. (7)

Finally, given the determined motion, we assess the progress within the motion by calculating the
similarity score between the progress embedding p and the motion’s language embedding lmotion:

progress =

{
S(p, lmotion), if confidence > λc

0, otherwise
(8)

4.4 Reward Formulation & Policy Learning

Considering all the information acquired from previous sections, we now have knowledge regarding
the current stage of the agent, its ongoing motion within the stage, and the progress within that
motion. We aggregate this information and the task knowledge into a measure of the task’s potential,
representing the overall progress within the task:

ϕ(ot) = λm

(
stage∑
i=0

#motionsi +motion

)
︸ ︷︷ ︸

Total number of preceding motions

+ progress︸ ︷︷ ︸
in-motion progress

(9)

where ϕ(ot) denotes a potential function conditioned on the image observation at timestep t, stage is
the number of the detected stage in the task. #motionsi is an integer indicating the total number of
different motions within stage i, motion is the integer representing the number of the detected motion
in the stage, and λm is a constant near the maximum of progress, ensuring ϕ(ot) increases across
motions and stages. Additionally, progress is a float determined by the MPE model. Note that the
number of stage, #motionsi, motion correspond to the sequence provided in the task knowledge.
Using the potential, we implemented potential-based shaping rewards R(ot, ot−1) = ϕ(ot)−ϕ(ot−1)
from [45] to guide the agent’s behavior based on potential changes.

6



5 Experiments

Our experiments aim to answer the following questions: (1) Does VICtoR provide effective rewards
for long-horizon tasks? (2) Is VICtoR able to generate dense rewards from real-world videos? (3)
Are all reward signals for stage, motion, and progress indispensable for learning effective rewards in
long-horizon manipulation tasks, and do they capture accurate information?

5.1 Experiment Settings
Experiments Environment

Example

(a) Simulated Environment

31 2

4

(b) Real World Environment

1

4
3

2

1. light
2. drawer
3. blue block
4. box

1. drawer
2. light
3. red cloth
4. oven

Environment Tasks Total Demos Dataset Type

Simulated 9 2300 Machine Demos

Real World (XSkill) 8 360 Machine Demos

Task are generated from permutations of 
actions on interactable objects. (a) drawer: 
open, close (b) light: open, close (c) block: 
reach, pick, move (d) cloth: pick, move (e) 
oven: open 

Figure 3: Environment information.
Tasks are generated from permuta-
tions of actions on interactable objects
shown in the figure.

Evaluation Settings. Most existing manipulation bench-
marks [46, 47, 48] do not support long-horizon tasks where
the success of each step depends on the outcomes of previ-
ous steps. While Calvin [49] addresses the aforementioned
issue, the tasks and action spaces (e.g., rotate) are too chal-
lenging for VIC reward models trained on action-free videos.
Consequently, we developed a new environment to test dif-
ferent VIC reward models for long-horizon manipulation.
For policy training in this environment, we use a ground-
truth object detector to speed up the process because we
need to run multiple tasks with multiple seeds and we have
found that using ground truth and a trained detector yields
similar results. For real-world experiments, we train and test
reward models using the XSkill [16] dataset. Details of the
environment, and data are in Appendix B.1 and Figure 3.

Baselines. We compare VICtoR with the following baselines: (1) Sparse Reward: A binary
reward function assigns a reward only when the task succeeds. (2) Stage Reward: A reward function
that assigns a reward equal to the stage number when the agent reaches a new stage. (3) LOReL
[50]: A language-conditioned reward model that learns a classifier fθ(o0, ot, l) to evaluate whether
the progression between the o0 and ot aligns with the task instruction l. Note that, we replaced
the backbone of LOReL to CLIP for a fair comparison with VICtoR and LIV. (4) LIV [15]: A
vision-language representation for robotics that can be utilized as a reward model by finetuning on
target-domain data. We apply the same reward shaping method for LIV and LOReL as discussed in
Section 4.4. (5) VICtoR (task): A baseline for VICtoR trains on task-level data, using the same
MPE objective but with demonstrations of tasks not divided into stages or motions. Note that the
training demos for VICtoR are action-free videos with text instructions; therefore, we do not compare
our method with other works requiring action data, such as language-conditioned imitation learning.

5.2 Policy Learning with VIC Rewards

In this section, we train the Proximal Policy Optimization algorithm [51] using various reward
functions. We utilize a sparse reward as a signal for task success and shape the reward function
using different reward models. Our experiments are divided into two sets: initially, we train on
3 single-stage tasks with varying numbers of motions, and subsequently, on 7 tasks with varying
numbers of stages. As shown in Tables 1 and 2, VICtoR consistently outperforms current baselines,
achieving a 25% average performance gain. This advantage increases to 43% in harder tasks with
more than three motions, highlighting VICtoR’s effectiveness in training for long-horizon tasks. The
significant benefits of the motion design are also evident when compared to the task-level baseline,
especially in more complex tasks. Furthermore, as Table 1 demonstrates, even at the task level,
VICtoR outperforms other baselines, showcasing the effectiveness of our training objective detailed
in Section 4.3. Training details and curves are provided in Appendix B.5, and the qualitative analyses
for challenges outlined in Figure 1 are also provided in Appendix A.1.

5.3 Ablation Studies

To better understand how each reward signal in VICtoR contributes to policy learning, we conducted
an ablation study on the “open box then pick blue block" task to evaluate the effectiveness of VICtoR’s
stage determination, motion determination, and progress assessment as introduced in Section 4. Based
on the findings presented in Table 3, we observe that injecting reward signals at each level proves

7



Table 1: Experiment of tasks with one stage but different numbers of motions. The table presents
the success rate [↑] of the learned policy using different reward functions across three tasks that have
one stage but vary in the number of motions. It shows that the differences between VICtoR and other
baselines become larger as the number of motions in the tasks increases. This indicates that when
a stage requires more detailed actions to complete, it becomes necessary to decompose the task to
assess progress. Results are averaged over three different seeds.

#motions 1 2 4

Task reach block pick block move block

Sparse 99.8% 0.0% 0.0%
LIV [15] 99.9% 98.6% 0.0%

LOReL [50] 100.0% 88.8% 0.0%
VICtoR(task) 99.9% 94.2% 36.8%

VICtoR 99.9% 98.8% 58.9%

Table 2: Experiment of tasks with different numbers of stages and motions. Extending from 1,
this table includes seven additional tasks with varying numbers of stages and motions. It shows that
VICtoR outperforms prior methods, and the differences become larger as the complexity of the tasks
increases, demonstrating the effectiveness of our design of stage and motion rewards. Results are
averaged over three different seeds.

#stages 1 1 2 2 2 3 3
#motions 2 2 3 4 6 4 5

Task open box open drawer open drawer +
open light

open box +
pick block

open drawer +
move block

open light +
open drawer +

reach block

open box +
open light +
pick block

Sparse 100.0% 79.5% 0.0% 0.0% 0.0% 0.0% 0.0%
Stage 100.0% 79.5% 26.0% 0.0% 0.0% 0.0% 0.0%

LIV [15] 99.9% 66.7% 0.0% 0.0% 0.0% 0.0% 0.0%
LOReL [50] 100.0% 100.0% 33.1% 35.1% 0.0% 35.0% 28.9%

VICtoR 99.9% 100.0% 66.1% 96.4% 30.6% 70.9% 57.7%

beneficial for policy learning. Furthermore, our analysis indicates that reward signals at the “progress"
level notably enhance performance. This underscores the importance of nuanced reward signals,
particularly in tasks with longer horizons, thereby supporting our claims. Ultimately, the combination
of these three levels of reward signals enables the policy to achieve peak performance.

Table 3: Ablation study. This table illustrates the effectiveness of each level of reward signals in
VICtoR for policy learning. Results are averaged over three different seeds.

Ablation Settings Success RateStage Motion Progress

- - - 0.0%
✓ - - 22.8%
✓ ✓ - 29.7%
✓ ✓ ✓ 96.4%

5.4 Real World Experiments

To demonstrate VICtoR’s practical efficacy, we visualized the potential curves ϕ(ot) for two scenarios:
one with videos that match the corresponding instructions, and another with incorrect videos using
the same instructions. As illustrated in Figure 4, for the correct actions, the potential curves show that
VICtoR effectively identifies task progress in real-world scenarios by increasing the potential as the
agent completes tasks, a capability not matched by previous VIC reward models. For the incorrect
actions, as the agent moves from the right to the left side to close the drawer, VICtoR‘s visualization
shows an initial increase in potential. This increase is logical as these movements approach the light,
aligning with the first stage of the instruction, “open the light.” However, as the agent continues
toward the drawer, VICtoR recognizes the incorrect task and begins to decrease the reward, effectively
deterring the agent’s movement. This highlights VICtoR’s ability to analyze agent movement and
task progress accurately. Additional visualizations for various tasks are provided in Appendix E.

8



P
ot

en
tia

l

Time

 tested video:  open light then open oven door then close the drawer
instruction: open light then open oven door then close the drawer

VICtoR

LIV

 tested video:  close the drawer
instruction: open light then open oven door then close the drawer

Time

LIV

P
ot

en
tia

l

VICtoR

With the right actions With the wrong actions

Figure 4: VICtoR on real world data. This figure displays LIV [15] and VICtoR’s potential
visualizations for long-horizon tasks from XSkill with correct and incorrect test videos.

5.5 Visualizations

Embedding Visualization. To verify the effectiveness of the contrastive objectives we designed to
boost understanding of task progress, we present a t-SNE analysis on motion embeddings m across
every motion in our simulated environment. From Figure 5, we observe that the learned embeddings
of identical motion are clustered, indicating high discriminative capability. This attribute is crucial
for enhancing the accuracy and efficiency of our reward model, particularly in long-horizon tasks.

Reward Visualization. To assess VICtoR’s ability to differentiate motions and assess progress
within a motion, we visualize motion determination per timestep and measure the embedding z’s
distance between motion descriptions and frame embeddings. As shown in Figure 5, VICtoR
accurately switches motions at the appropriate timestep and decreases the embedding distance of the
determined motion as the agent approaches each motion’s goal.

Figure 5: Visualization. (a) t-SNE analysis for different motion frames, and (b) analysis of negative
embedding distances and determined motions in a demonstration video.

6 Conclusion
We have presented VICtoR, a Hierarchical Vision-Instruction Correlation Reward Model for Long-
horizon Robotic Manipulation. Using only language instructions, VICtoR is able to provide effective
rewards to the reinforcement learning agent. Having been trained solely on modular short-horizon
demonstration videos, VICtoR outperforms state-of-the-art approaches trained on targeted long-
horizon tasks and successfully operates in both simulated and real-world environments.

Future works and limitations VICtoR can provide rewards for unseen long-horizon tasks com-
posed of seen motions. However, similar to previous works, the limitation of VICtoR is that it cannot
be applied to tasks involving unseen motions. Therefore, a future direction for this project will be
training with a diverse range of motion data to explore its zero-shot capabilities on unseen motions.

Acknowledgements
This work is supported by National Science and Technology Council, Taiwan, under Grant NSTC
112-2634-F-002-006.

9



References
[1] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming

exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[2] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[3] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement learning:
A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

[4] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, page 663–670, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[5] Pieter Abbeel and Andrew Ng. Apprenticeship learning via inverse reinforcement learning. Proceedings,
Twenty-First International Conference on Machine Learning, ICML 2004, 09 2004.

[6] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

[7] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang.
Vip: Towards universal visual reward and representation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022.

[8] Annie S. Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from
"in-the-wild" human videos. ArXiv, abs/2103.16817, 2021.

[9] Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and Cordelia Schmid. Learning
reward functions for robotic manipulation by observing humans, 2023.

[10] Xuzhe Dang, Stefan Edelkamp, and Nicolas Ribault. Clip-motion: Learning reward functions for robotic
actions using consecutive observations, 2023.

[11] Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. Zero-shot reward specification via grounded
natural language. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 14743–14752. PMLR, 17–23 Jul 2022.

[12] Sumedh A Sontakke, Jesse Zhang, Sébastien MR Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: one demonstration is enough to learn robot policies. arXiv
preprint arXiv:2310.07899, 2023.

[13] Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit Sharma, Jeannette Bohg, and Chelsea Finn. Robot
fine-tuning made easy: Pre-training rewards and policies for autonomous real-world reinforcement learning.
In Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition @ CoRL2023, 2023.

[14] Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-language
models are zero-shot reward models for reinforcement learning, 2023.

[15] Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang, Osbert Bastani, and
Dinesh Jayaraman. Liv: Language-image representations and rewards for robotic control. arXiv preprint
arXiv:2306.00958, 2023.

[16] Mengda Xu, Zhenjia Xu, Cheng Chi, Manuela Veloso, and Shuran Song. XSkill: Cross embodiment skill
discovery. In 7th Annual Conference on Robot Learning, 2023.

[17] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. In Conference on Robot Learning, pages 492–504. PMLR, 2023.

[18] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2998–3009, 2023.

[19] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pages 9118–9147. PMLR, 2022.

10



[20] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. Code as policies: Language model programs for embodied control, 2023.

[21] Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. IEEE Access, 2024.

[22] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning through planning
with language models, 2022.

[23] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion: From
natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

[24] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding language in robotic
affordances. In Conference on Robot Learning, pages 287–318. PMLR, 2023.

[25] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic manipula-
tion. In Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Proceedings of the 5th Conference
on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages 894–906. PMLR,
08–11 Nov 2022.

[26] Vivek Myers, Andre He, Kuan Fang, Homer Walke, Philippe Hansen-Estruch, Ching-An Cheng, Mihai
Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal representations for instruction
following: A semi-supervised language interface to control. arXiv preprint arXiv:2307.00117, 2023.

[27] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-grounded
navigation instructions in real environments, 2018.

[28] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic navigation with large
pre-trained models of language, vision, and action, 2022.

[29] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff,
Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model, 2023.

[30] Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar Dabeer.
Winclip: Zero-/few-shot anomaly classification and segmentation, 2023.

[31] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gonzalez
Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander Herzog, Jasmine Hsu, Brian
Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa
Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor Mordatch, Karl Pertsch,
Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar
Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan
Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic control, 2023.

[32] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of the
AAAI conference on artificial intelligence, volume 31, 2017.

[33] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver,
and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning, 2017.

[34] Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2019.

[35] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. In International Conference on Machine Learning, pages 1430–1440. PMLR, 2021.

[36] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter Abbeel.
Combined task and motion planning through an extensible planner-independent interface layer. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages 639–646, 2014.

11



[37] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Integrated task and motion planning, 2020.

[38] Shuo Cheng and Danfei Xu. League: Guided skill learning and abstraction for long-horizon manipulation,
2023.

[39] Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu, and Anima
Anandkumar. Mimicplay: Long-horizon imitation learning by watching human play, 2023.

[40] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
Mdetr-modulated detection for end-to-end multi-modal understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1780–1790, 2021.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision, 2021.

[42] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[43] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and Sergey Levine.
Time-contrastive networks: Self-supervised learning from video. 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1134–1141, 2017.

[44] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[45] A. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory and
application to reward shaping. In International Conference on Machine Learning, 1999.

[46] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on Robot Learning (CoRL), 2019.

[47] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot learning
benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[48] Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, and Xin Wang. Vlmbench: A compositional
benchmark for vision-and-language manipulation. Advances in Neural Information Processing Systems,
35:665–678, 2022.

[49] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks, 2022.

[50] Suraj Nair, Eric Mitchell, Kevin Chen, brian ichter, Silvio Savarese, and Chelsea Finn. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation. In Aleksandra Faust, David
Hsu, and Gerhard Neumann, editors, Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pages 1303–1315. PMLR, 08–11 Nov 2022.

[51] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[52] Coppelia Robotics. Coppeliasim software. https://www.coppeliarobotics.com/.

[53] Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

[54] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[55] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1–8, 2021.

[56] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

12

https://www.coppeliarobotics.com/


Appendix

A Additional Experiments

A.1 Qualitative Analysis

To further analyze different reward models, we also examine the potential curves for various reward
models to substantiate our statement shown in Figure 1. In the qualitative analysis, we aim to
demonstrate our statement regarding (1) confusion arising from varying task difficulties, and (2) the
lack of explicit object state estimation.

For statement (1), we plot out the potential curves from 3 different reward models on 4 tasks within
variant task complexities. The result in Figure 6 reveals that VICtoR is capable of generating effective
reward curves on composed and complex tasks as other baseline models fail to provide progressive
signals for agents when the task horizon grows.

To demonstrate statement (2), we visualize the reward by giving text goals for long-horizon tasks
(open light then open drawer then reach blue block) on misordered action (reach blue block) videos
to see the difference in reward models. The result in Figure 7 indicates that VICtoR is capable of
determining the current state of environmental objects to decide the level of potential while LIV
simply generates progressive signals on each task.

(a) open drawer (c) open box then open light then 
pick blue block

(d) open light then open 
drawer then reach blue block

(b) pick blue block

LIV

LOReL

(a) open drawer (c) open box then open light then 
pick blue block

(d) open light then open 
drawer then reach blue block

(b) pick blue block

(a) open drawer (c) open box then open light then 
pick blue block

(d) open light then open 
drawer then reach blue block

(b) pick blue block

VICtoR

Figure 6: Potential comparison across different tasks: We compare the potential generated by
different reward models. In these comparisons, we can see that VICtoR provides the most progressive
and near-strictly increasing potential function, especially as the horizon increases. This demonstrates
its ability to provide fine-grained rewards for long-horizon tasks.

13



(a) LIV (b) VICtoR

(a) LIV (b) VICtoR

Figure 7: Potential Visualization on Misordered Action: We visualize the rewards given for
long-horizon tasks (open light, then open drawer, then reach blue block) in videos with misordered
actions (reach blue block) to compare different reward models. The figure shows that VICtoR can
determine the current state of environmental objects to decide the level of potential, while LIV simply
generates progressive signals for each task without penalizing incorrect actions, which may lead to
poor learning outcomes.

A.2 Accuracy of Task Knowledge Generation

To validate the robustness of LLMs for task knowledge generation, we conducted an additional
experiment testing the accuracy of LLM outputs. We tested our model by randomly selecting tasks,
which could involve 1 to 4 stages. We then used GPT-4 to translate these tasks into human-like queries.
With these queries, we tested the task knowledge generation model by comparing its output against
the ground truth. After randomly sampling 50 different tasks with varying free-form instructions, we
observed that GPT-4 achieved an accuracy of 96% in decomposing tasks into stages, motions, and
conditional object states, confirming its robustness for this application.

B Detailed Settings for the Experiment

B.1 Details about our simulated environment and tasks

Details about the environment Our environment was developed using Coppeliasim [52], with
Pyrep [53] serving as the coding interface, as shown in Figure 3. In this environment, there are four
interactable objects: a light, a drawer, a blue block, and a box, each associated with different stages
as detailed in B.1. The tested tasks can be any permutation of these stages.

List of Stages and Motions. We treated the motions as the action primitives for agents to implement.
Definitions of the motions in each stage in our experiments are detailed as shown in Table 4. The
definition of motions of stages could be initiated by either humans or GPT.

Training Tasks Details. The detailed success conditions, training timesteps, and the running
machines for each task are shown in Table 5.

Training Data Details. To train the reward models for VICtoR and other baselines, we collected
a dataset in our environment. Note that VICtoR requires only motion-level data for training, while
other baselines need full-length videos. Therefore, the data used to train VICtoR and other baselines
differ in type but are comparable in total amount per motion or stage. For VICtoR, we provide only

14



Table 4: Description of Separated Motions for Each Stage

Stage Motion 1 Motion 2 Motion 3 Motion 4
reach blue block reach the blue

block
- - -

pick blue block reach the blue
block

lift the grasped
blue block

- -

move blue block to
drawer

reach the blue
block

lift the grasped
blue block

move the blue
block to the top of
the drawer

place the blue
block down to the
drawer

open drawer reach the closed
drawer handle top

pull the drawer out - -

close drawer reach the opened
drawer handle top

push the drawer
forward

- -

open box reach the box
holder back

slide the box
holder forward

- -

close box reach the box
holder front

slide the box
holder backward

- -

open light reach and push
down the button

- - -

close light reach and push
down the button

- - -

the motion-level demos, with each motion accompanied by 100 demos and corresponding motion
descriptions. For training other baseline models, such as LIV [15] and LOReL [50], we provide the
full-length demo videos, each paired with task descriptions and consisting of 100 demos per task.

B.2 Details of Stage Detector and Training Details of Motion Progress Evaluator

We provide details of the Stage Detector and Training Details of the Motion Progress Evaluator in
Table 6 and Table 7. For the hyperparameter selection of λ1,2,3, we tried various combinations but
found that the model is not sensitive to these hyperparameters. Therefore, we have chosen to set them
all to the same values.

B.3 Details of MPE’s Inference and Reward Formulation

We organize our reward function parameters of Section 4.3 in Table 8, For the selection of λm, we
tried to find the biggest range of the progress (embedding distance from language to motion), in order
to make the proceeding motion’s potential higher than the previous one. For the selection of λc, we
have tested it with different numbers and found out that when the λc is in the range of 0.1 to 0.4, the
model has similar results, and if it is less than 0.1, it cannot avoid reward hacking. Once it is larger
than 0.4, the model cannot provide enough signal for the agent to learn.

B.4 Training Details of Baseline Models

We provide details of other baselines in Table 9.

B.5 Training Details of Policy Training

Training details. We trained the policy under the SubprocVecEnv from stable-baseline3 [55] with
reward normalization by VecNormalize. For online interactable environment, we built a simulation
environment with Coppeliasim [52] and Pyrep [53] and wrapped the environment for policy learning
under the framework of OpenAI Gym [56]. Training time is about 3 hours for 10000 steps. Training
Details of training of each task are listed in Table 5.

C Learning Curves of Policy Learning

We evaluate the policies trained from different reward functions with the success rate in Figure 8, the
shadows show the standard deviation.

15



Table 5: Training Details for each task

Reach blue block
Task Goal Reach the blue block

Success Condition The distance between the end-effector and the blue block
Max Training Step 30000

GPU NVIDIA RTX 4090
Pick blue block

Task Goal Grasp the blue block and lift it up
Success Condition The blue block is lifted higher than 0.62
Max Training Step 100000

GPU NVIDIA RTX 4090
Move blue block to drawer

Task Goal Pick up the blue block and place it into the drawer
Success Condition The position of the blue block (if it is in drawer or not)
Max Training Step 300000

GPU NVIDIA RTX 4090
Open drawer

Task Goal Pull out the drawer
Success Condition The position of the drawer
Max Training Step 50000

GPU NVIDIA RTX 4090
Open box

Task Goal Push the lid of the box to open the box
Success Condition The position of the box lid
Max Training Step 50000

GPU NVIDIA RTX 4090
Open drawer then open light

Task Goal Pull out the drawer and then press the button to open the light
Success Condition The position of the drawer and the color of the light
Max Training Step 200000

GPU NVIDIA RTX 3090
Open box then pick blue block

Task Goal Push the lid of the box to open it and pick up the blue block
Success Condition The position of the box lid and the height of the blue block
Max Training Step 200000

GPU NVIDIA RTX 3090
Open drawer then move blue block to drawer

Task Goal Pull out the drawer and then pick up the blue block and place it into the drawer
Success Condition The position of the blue block (if it is in drawer or not)
Max Training Step 400000

GPU NVIDIA RTX 3090
Open light then open drawer then reach blue block

Task Goal Press the button to open the light, then pull out the drawer, and reach the blue block
Success Condition The color of the light, the position of the drawer, and the distance

between the end-effector and the blue block
Max Training Step 400000

GPU NVIDIA RTX 3090
Open box then open light then pick the blue block

Task Goal Push the lid of the box to open it and press the button
to turn on the light then pick up the blue block

Success Condition The position of the box lid, the color of the light, and the height of the blue block
Max Training Step 400000

GPU NVIDIA RTX 3090
Open box then open light then open drawer then then reach the blue block

Task Goal Push the lid of the box to open it and press the button
to turn on the light and open the drawer then reach the blue block

Success Condition The position of the box lid, the color of the light, the position of the drawer,
and the distance between the end-effector and the blue block

Max Training Step 500000
GPU NVIDIA RTX 3090

16



Table 6: MDETR configuration in VICtoR

Object Detector - MDETR [40]
Backbone Resnet101

Table 7: Details of VICtoR Motion Reward Model and Stage Determinator Training

Motion Progress Evaluator
Language Encoder CLIPTextModel

Image Encoder CLIPVisionModel
CLIP Model openai/clip-vit-base-patch32

Learning Rate 0.000001
Batch Size 32

Training Steps 20000
Optimizer Adam [54]

Loss Function Equation 4
Parameters in Equation 4 λ1 = 1, λ2 = 1, λ3 = 1

Stage Determinator
Language Encoder CLIPTextModel

Image Encoder CLIPVisionModel
CLIP Model openai/clip-vit-base-patch32

Learning Rate 0.00001
Batch Size 32

Training Steps 40000
Oprimizer Adam

Loss Function Binary Cross Entropy Loss

Table 8: Reward formulation and MPE model parameters of VICtoR

λc λm

0.2 36

Table 9: Details of Baseline Reward Models Training

LIV
CLIP Backbone Resnet50
Learning Config pretrain

Batch Size 32
Train Steps 70000

Learning Rate 0.00001
Weight Decay 0.001

LOReL
Language Encoder CLIPTextModel

Image Encoder CLIPVisionModel
CLIP Model openai/clip-vit-base-patch32
Batch Size 32
Train Steps 20000

Learning Rate 0.00001
Flipped Negative True

alpha 0.25

D Additional Comparisons between VICtoR and Other Solutions to Robotic
Policy Learning

Imitation Learning. Prior works have attempted to solve the robot manipulation tasks via imitation
learning from either robot demonstrations or human videos. However, in our setting, we do not use

17



Table 10: Details of policy training

Policy PPO [51]
Learning Rate 0.003
Policy Model MlpPolicy

Discount factor (γ) 0.99
Reward Normalization True

action sequences from demonstrations to train VICtoR. Thus, the line of imitation learning works
is not considered as our baseline. Our objective is to learn a reward model solely from vision and
language inputs, without relying on action or observation vectors. This distinction sets our approach
apart from imitation learning and other similar methods, which typically require action information
to clone a behavior. Therefore, our method addresses a unique problem space that is not directly
comparable to imitation learning.

Task and Motion Planning (TAMP). Prior works investigated through accomplishing long-horizon
robot manipulation tasks via arranging trained skills. While TAMP methods require a predefined and
well-trained skill set and put more emphasis on planning for the execution sequence of these trained
skills, our model aims to provide reward signals directly toward policy learning to guide the agent
to learn a long-horizon policy from scratch with reinforcement algorithms. Therefore, we do not
consider TAMP methods as baselines for VICtoR.

18



(a) reach blue block (b) open box (c) open drawer

(d) pick blue block (e) open box then pick blue block (f) move blue block to drawer

(g) open drawer then open light (h) open light then open drawer then 
reach blue block

(i) open box then open light then 
pick blue block

(j) open drawer then move block to drawer

Figure 8: Training Curve Visualization: We visualize the success rate across various training
episodes and display the success rate curves for different methods in different tasks. The figure
demonstrates that VICtoR effectively guides the RL agent to learn quickly and achieve the highest
success rate in the fewest episodes, highlighting the effectiveness of the rewards generated by VICtoR.

E More Potential Visualization for Composed Tasks in XSkill

The visualization results are shown in Figure 9 and Figure 10.

19



(a) close the drawer then move the cloth into the sink then open the light

(b) close the drawer then move the cloth into the sink then open the oven door

(a) close the drawer then move the cloth into the sink then open the light

(b) close the drawer then move the cloth into the sink then open the oven door

(c) close the drawer then open the light then move the cloth into the sink

(d) close the drawer then open the light then open the oven door

(c) close the drawer then open the light then move the cloth into the sink

(d) close the drawer then open the light then open the oven door

Figure 9: Potential Visualization on XSkill: Evaluation of the potential curve across multiple test
videos on different tasks for XSkill.

20



(e) open the light then close the drawer then move the cloth into the sink

(f) open the light then move the cloth into the sink then open the oven door

(e) open the light then close the drawer then move the cloth into the sink

(f) open the light then move the cloth into the sink then open the oven door

(g) open the light then open the oven door then close the drawer

(h) open the oven door then open the light then move the cloth into the sink

(g) open the light then open the oven door then close the drawer

(h) open the oven door then open the light then move the cloth into the sink

Figure 10: Potential Visualization on XSkill: Evaluation of the potential curve across multiple test
videos on different tasks for XSkill.

21



F Prompts for Task Knowledge Generation

You are a task splitter. Given a task , you should split it into
↪→ stages and motions. Also , during transitions between stages ,
↪→ you must provide the environment status.

## Possible Motions

### drawer
- reach the open drawer holder top
- push the drawer forward
- reach the closed drawer holder top
- pull the drawer out

### box (slide forward to open , slide backward to close)
- reach the box holder back
- slide the box holder forward
- reach the box holder front
- slide the box holder backward

### light
- reach and push down the button

### blue_block
- reach the blue block
- lift the grasped blue block
- move the blue block to the top of the drawer
- move the blue block to the top of the table
- place the blue block down to the drawer
- place the blue block down to the table

## Environment Objects and States

The environment contains these objects: [" blue_block", "box", "drawer
↪→ ", "light "]

### Possible Environment Status Sets for Each Object
- drawer: ["The drawer is closed", "The drawer is open"]
- box: ["The box is closed", "The box is open"]
- light: ["The light is closed", "The light is open"]
- blue_block: ["The blue block is in the drawer", "The blue block is

↪→ on the table", "The blue block is in the box"]

## Output Format

Output should be in this JSON format:

‘‘‘json
{

"interact_objects ": ["", ...],
"stages ": [

{
"name": "",

"interacted_object ": ""
"environment ": {

// list all the interacted object environment
↪→ statuses

},
"motions ": [

"...", // should be the motion of the
↪→ interact_objects

"..."
],

},

22



{
"name": "",

"interacted_object ": ""
"environment ": {

// list all the interacted object environment
↪→ statuses

},
"environment ": {

// list all the interacted object environment
↪→ statuses

},
"motions ": [

"...",
"..."

],
},
...

]
}
‘‘‘

## Guidelines

For every task , you should split the task into stages , motions , and
↪→ also provide the environment status during stages if there are
↪→ two or more stages.

### Notices
- This task involves a robot arm that is initially far from all the

↪→ objects.
- Therefore , unless mentioned in the task goal , the first phase

↪→ should be "reach xxx."
- The definition of a stage is: Complete interaction with an object.

- If the task has interacted with multiple objects , the stage will
↪→ only change during the transition between interacted objects

- Only perform behaviors that are mentioned in the task.
- In the environment for each stage , list the initial environment

↪→ status for each object in that stage.
- The listed of "environment" object for each stage should be all of

↪→ the objects
- "interact_objects" should only contain the object that will be

↪→ interacted
- The adjacent interact_object should be different
- The motion in each stage can only be subset of the

↪→ interacted_object ’s motion list

Example:
Task: open the drawer then open the box then move the blue block to

↪→ the table
Initial environment:
- drawer: "The drawer is closed"
- box: "The box is closed"
- light: "The light is closed"
- blue_block: "The blue block is in the drawer"
Output:
‘‘‘json
{

"interact_objects ": [" drawer", "box", "blue_block "],
"stages ": [

{
"name": "open the drawer",
"interated_object ": "drawer"
"environment ": {

"drawer ": "The drawer is closed",
"box": "The box is closed",

23



"light": "The light is closed",
"blue_block ": "The blue block is in

↪→ the drawer"
}
"motions ": [

"reach the closed drawer holder top",
"pull the drawer out"

],
},
{

"name": "open the box",
"interated_object ": "box"
"environment ": {

"drawer ": "The drawer is open",
"box": "The box is closed",
"light": "The light is closed",
"blue_block ": "The blue block is in

↪→ the drawer"
}
"motions ": [

"reach the box holder back",
"slide the box holder forward"

],
},
{

"name": "move the blue block to the table",
"interated_object ": "blue_block"
"environment ": {

"drawer ": "The drawer is open",
"box": "The box is open",
"light": "The light is closed",
"blue_block ": "The blue block is in

↪→ the drawer"
},
"motions ": [

"reach the blue block",
"lift the grasped blue block",
"move the blue block to the top of

↪→ the table"
"place the blue block down to the

↪→ table"
]

}
]

}
‘‘‘

Task: move the blue block to the table
Initial environment:
- drawer: "The drawer is open"
- box: "The box is open"
- light: "The light is open"
- blue_block: "The blue block is in the drawer"
Output:
‘‘‘json
{

"interact_objects ": [" blue_block "],
"stages ": [

{
"name": "move the blue block to the table",
"interated_object ": "blue_block"
"environment ": {

"drawer ": "The drawer is open",
"box": "The box is open",
"light": "The light is open",

24



"blue_block ": "The blue block is in
↪→ the drawer"

},
"motions ": [

"reach the blue block",
"lift the grasped blue block",
"move the blue block to the top of

↪→ the table"
"place the blue block down to the

↪→ table"
]

}
]

}
‘‘‘

=====

Task: {{ task_name }}
Initial environment:
- drawer: {{ initial_drawer }}
- box: {{ initial_box }}
- light: {{ initial_light }}
- blue_block: {{ initial_block }}
Output:

Listing 1: Prompt for Task Knowledge Generation

Broader Impact

Our research is focused on developing a reward model for manipulation tasks, aiming to accelerate
the adoption of robotic applications in complex settings. While we haven’t identified any immediate
negative impacts or ethical concerns, it’s crucial that we remain vigilant and continuously assess any
potential societal implications as our work evolves.

25


	Introduction
	Related Work
	Preliminaries
	Method
	Task Knowledge Generation
	Stage Detection
	Motion Progress Evaluator
	Reward Formulation & Policy Learning

	Experiments
	Experiment Settings
	Policy Learning with VIC Rewards
	Ablation Studies
	Real World Experiments
	Visualizations

	Conclusion
	Additional Experiments
	Qualitative Analysis
	Accuracy of Task Knowledge Generation

	Detailed Settings for the Experiment
	Details about our simulated environment and tasks
	Details of Stage Detector and Training Details of Motion Progress Evaluator
	Details of MPE's Inference and Reward Formulation
	Training Details of Baseline Models
	Training Details of Policy Training

	Learning Curves of Policy Learning
	Additional Comparisons between VICtoR and Other Solutions to Robotic Policy Learning
	More Potential Visualization for Composed Tasks in XSkill
	Prompts for Task Knowledge Generation

