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Abstract
Fine-tuning pre-trained vision-language models
(VLMs), e.g., CLIP, for the open-world general-
ization has gained increasing popularity due to its
practical value. However, performance advance-
ments are limited when relying solely on intricate
algorithmic designs for a single model, even one
exhibiting strong performance, e.g., CLIP-ViT-
B/16. This paper, for the first time, explores
the collaborative potential of leveraging much
weaker VLMs to enhance the generalization of
a robust single model. The affirmative findings
motivate us to address the generalization problem
from a novel perspective, i.e., ensemble of pre-
trained VLMs. We introduce three customized
ensemble strategies, each tailored to one specific
scenario. Firstly, we introduce the zero-shot en-
semble, automatically adjusting the logits of dif-
ferent models based on their confidence when
only pre-trained VLMs are available. Further-
more, for scenarios with extra few-shot samples,
we propose the training-free and tuning ensem-
ble, offering flexibility based on the availability
of computing resources. The code is available at
https://github.com/zhiheLu/Ensemble VLM.git.

1. Introduction
Pre-trained large-scale vision-language models (VLMs),
e.g., CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021), have demonstrated remarkable recognition perfor-
mance on open-vocabulary downstream tasks even in a zero-
shot evaluation manner. This advancement overcomes the
constraint observed in prior supervised deep models (He
et al., 2016), which are limited to classify seen classes only,
i.e., test set should share the same label space with the
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Figure 1. Comparing existing methods on base-to-new general-
ization. The results indicate that the proposed method outperforms
existing arts on 11 diverse datasets, often by large margins.

training set. Encouraged by the impressive zero-shot gener-
alization of VLMs, recent works (Yu et al., 2023; Li et al.,
2023b; Zhou et al., 2022b;a) have explored how to adapt the
VLMs for better performance on downstream tasks in an
efficient tuning fashion, where only few-shot samples and
limited learnable parameters are used.

For the efficient adaptation of VLMs, prompt learning (Zhou
et al., 2022b) is a popular solution. The concept of prompt
learning was first proposed in natural language processing
(NLP) (Shin et al., 2020; Jiang et al., 2020; Zhong et al.,
2021), which is to learn a prompt that dynamically suits
the downstream tasks instead of prompt engineering. CoOp
(Zhou et al., 2022b) was the first work to introduce prompt
learning for adapting VLMs and it outperforms both hand-
crafted prompts and the linear probe model. However, a
critical problem of CoOp is that the learned prompt on
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Figure 2. Zero-shot evaluation of pre-trained CLIP vision encoders on varying datasets. The bar charts show that the “weak” models
may perform better than strong ones, e.g., RN50 vs. RN101 in (c, d) and RN101 vs. ViT-B/32 in (e, f), encouraging us to leverage diverse
models for enhanced ensemble.

base classes performs poorly when applied to unseen new
classes even under the same data distribution. CoCoOp
(Zhou et al., 2022a) hence has been proposed to improve the
performance of this base-to-new set-up by conditioning the
prompt learning with the image context. To further advance
the base-to-new generalization, recent works have been pro-
posed to leverage multi-modal prompt learning (MaPLe)
(Khattak et al., 2023a), self-regulating constraints (Prompt-
SRC) (Khattak et al., 2023b), or synthesized prompts (SHIP)
(Wang et al., 2023). It is worth noting that the default CLIP
model 1 used in these methods is ViT-B/16 (Dosovitskiy
et al., 2021), one of the strongest CLIP models in Trans-
former structure (Vaswani et al., 2017). However, their per-
formance on new classes is still not satisfactory, e.g., 70.43%
(CoCoOp, CVPR22) → 70.54% (MaPLe, CVPR23) →
70.26% (SHIP, ICCV23) → 70.73% (PromptSRC, ICCV23)
on ImageNet. One possible reason is that with the advanced
algorithms, the knowledge of a single model has already
been fully explored for generalization, thereby leading to
limited improvement. As such, one question naturally arises:
can we leverage the prior knowledge from multiple CLIP
models for better generalization even though some of them
are weaker performers?

To this end, we first investigate the zero-shot performance
of four widely used CLIP models, i.e., RN50, RN101, ViT-
B/32 and ViT-B/16, on 11 diverse datasets as shown in
Table 1. Intuitively, a larger model should yield better per-
formance, but we have observed that this is not always the
case across all datasets. For instance, the “weak” models
may perform better than strong ones, e.g., RN50 vs. RN101
in Figure 2 (c, d) and RN101 vs. ViT-B/32 in Figure 2 (e,
f). This indicates that models with distinct architectures
are inclined to predict different samples correctly, as those
models may develop biases even when trained on the same
dataset. We posit that these biases can be leveraged for
improved generalization in open-world scenarios. Indeed,
zero-shot experiments (see Table 2) demonstrate enhanced
generalization by combining any weaker CLIP model with
CLIP-ViT-B/16 while using all models performs the best.

1CLIP model specifically refers to vision encoder in this paper.

Inspired by the favorable results of a simple ensemble, we
further design three types of ensemble strategies, each tai-
lored for a practical scenario. First, given solely CLIP mod-
els, we introduce the zero-shot ensemble (ZSEn), which
employs confidence-aware weighting for the weaker mod-
els while preserving the dominance of the strongest model.
This confidence-aware weighting dynamically adjusts the
weights of the models’ logits based on their prediction con-
fidences of input samples. Second, in scenarios where addi-
tional few-shot samples (Dtrain) are available but without
training resources, we propose the training-free ensemble
(TFEn). This ensemble method leverages a greedy search
to determine the “optimal” weights for model ensemble,
identified when the accuracy of the ensemble is maximized
on Dtrain. Third, when pre-trained models, Dtrain and
training resources exist simultaneously, the tuning ensem-
ble (TEn) is proposed by learning a sample-aware weight
generator (SWIG). Specifically, the proposed SWIG takes
the visual features of multiple models as input and automat-
ically generates the ensemble weights through optimizing
on the training data.

To assess the proposed methods, we employ ZSEn for zero-
shot generalization, TFEn and TEn for base-to-new gener-
alization on 11 diverse datasets. Additionally, we examine
the effectiveness of TEn on cross-dataset evaluation. On all
tasks, our methods always yield new state-of-the-art perfor-
mance, often surpassing the second best by large margins
(e.g., see the results of base-to-new generalization in Figure
1). More importantly, this work offers a new possibility for
the enhanced generalization of VLMs by overcoming the
limitation of existing works that rely solely on designing
intricate algorithms for a single VLM.

We summarize our contributions: (i) Having observed the
saturated generalization performance achieved by fully ex-
ploring the knowledge from a single robust VLM, we,
for the first time, propose to advance the generalization
through ensemble learning. (ii) We propose three ensem-
ble strategies, each tailored for a practical situation. First,
in cases where only CLIP models are available, we intro-
duce the confidence-aware weighting based zero-shot en-
semble (ZSEn). Second, when additional few-shot sam-
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ples (Dtrain) are accessible but without extra training re-
sources, we present the training-free ensemble based on
greedy search (TFEn). Third, in scenarios where pre-trained
models, Dtrain, and training resources coexist, we propose
the tuning ensemble (TEn) by incorporating a sample-aware
weight generator (SWIG). (iii) We assess ZSEn for zero-
shot generalization, achieving an average accuracy gain of
2.61% across 11 diverse datasets. Additionally, we evaluate
TEn for base-to-new and cross-dataset generalization, yield-
ing new state-of-the-art performance. (iv) This work estab-
lishes a pathway for improved generalization in VLMs, sur-
passing the limitations of prior methods that depend solely
on crafting intricate algorithms for a single VLM.

2. Related Work
2.1. Vision-Language Models

We mainly focus on language driven visual representation
learning (LDVRL) (Socher et al., 2013; Frome et al., 2013;
Elhoseiny et al., 2013; Lei Ba et al., 2015; Joulin et al.,
2016; Gomez et al., 2017; Li et al., 2017; Anderson et al.,
2018; Sariyildiz et al., 2020; Radford et al., 2021; Desai
& Johnson, 2021). LDVRL based VLMs often adopt two
encoders for language and vision, respectively, and are opti-
mized by tailored matching constraints (Socher et al., 2013;
Gomez et al., 2017). Early works employ varied approaches
for language and vision modeling. For language, they uti-
lize methods like unsupervised pre-trained models (Socher
et al., 2013) or skip-gram text modeling (Frome et al., 2013;
Mikolov et al., 2013a;b). Meanwhile, for vision, these works
explore techniques like sparse coding and vector quantiza-
tion (Coates & Ng, 2011; Socher et al., 2013) or utilize
features such as Classeme (Torresani et al., 2010; Elhoseiny
et al., 2013). In recent works (Radford et al., 2021; Jia et al.,
2021; Li et al., 2021), a common trend is the utilization
of two deep neural networks, e.g., Transformers (Vaswani
et al., 2017; Dosovitskiy et al., 2020; Touvron et al., 2021),
to independently embed language and vision inputs. These
works generally pre-train on million/billion-level image-text
pairs from internet, e.g., ∼400M for CLIP (Radford et al.,
2021) and ∼1B for ALIGN (Jia et al., 2021), employing
a contrastive loss. The resulting pre-trained VLMs show-
case impressive zero-shot generalization across a range of
downstream tasks. In this paper, we endeavor to improve
their zero-shot generalization by effectively leveraging the
knowledge embedded in multiple models.

2.2. Zero-Shot Generalization of VLMs

Zero-shot generalization/learning (ZSG) (Chao et al., 2016;
Xian et al., 2017; Wang et al., 2019; Yi et al., 2022)
aims to recognize novel classes by training only on base
classes. Past ZSG works often learn the compositions of
attributes (Huynh & Elhamifar, 2020) and word embeddings

(Frome et al., 2013; Jiang et al., 2020) on base classes to
tackle “seen-class bias” issue. The advent of large-scale
VLMs introduces novel possibilities for addressing ZSG.
These VLMs, trained to align image-and-text pairs, can be
employed for ZSG on novel classes simply by adopting
prompts of those novel classes for the language encoder.

To further advance the performance of ZSG on downstream
tasks, prompt learning (Zhou et al., 2022b;a) has been pro-
posed to learn a prompt on base classes that exhibits better
generalization on novel classes within the same data distri-
bution. MaPLe (Khattak et al., 2023a) explores multi-model
prompt learning by jointly learning hierarchical prompts at
two branches of CLIP, aiming for improved generalization
performance. Recent works have introduced approaches
leveraging self-regulating constraints (Khattak et al., 2023b)
and synthesized prompts (Wang et al., 2023). Despite the in-
tricate algorithms designed, the performance improvement
on ZSG remains limited. One potential reason is that the
knowledge stored in a single model has been thoroughly
explored, making further improvement challenging. To that
end, we take the initial step in exploring knowledge from
multiple VLMs to enhance generalization.

2.3. Ensemble Learning

Ensemble learning (EL) (Wolpert, 1992; Breiman, 1996;
Freund et al., 1996; LeBlanc & Tibshirani, 1996; Buja &
Stuetzle, 2000; Breiman, 2001; Friedman, 2001; Ha et al.,
2005; Deng et al., 2012; Cortes et al., 2014; Kang et al.,
2020) is a machine learning paradigm where multiple mod-
els, often of diverse types, are combined to improve overall
predictive performance and generalization. Technically, EL
methods can be broadly categorized into three main types:
Bagging (Bootstrap Aggregating) (Breiman, 1996; Buja &
Stuetzle, 2000; Breiman, 2001; Ha et al., 2005), Boosting
(Freund et al., 1996; Friedman, 2001; Cortes et al., 2014)
and Stacking (Wolpert, 1992; LeBlanc & Tibshirani, 1996;
Deng et al., 2012; Kang et al., 2020). Bagging was initially
proposed in 1996 by Breiman (Breiman, 1996). The tech-
nique involves training multiple models of the same struc-
ture on diverse subsets obtained through bootstrap sampling.
Boosting (Freund et al., 1996; Friedman, 2001; Cortes et al.,
2014) is employed in ensemble models to transform several
weak learners into one with improved generalization. In
contrast, Stacking (Wolpert, 1992; LeBlanc & Tibshirani,
1996; Deng et al., 2012; Kang et al., 2020) is an integration
technique where a meta-learning model is used to combine
the outputs of base models. Recently, Cola (Chen et al.,
2024) leverages large language models to coordinate multi-
ple VLMs for visual reasoning. In this paper, without rely-
ing on other strong models, we resort to ensemble learning
for better generalization of VLMs, with a specific empha-
sis on prediction fusion strategies in both training-free and
tuning fashions.
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3. Methodology
In this section, we first briefly introduce the VLM employed
in our method, namely CLIP (Radford et al., 2021). Sub-
sequently, we present three specific ensemble strategies
designed to leverage VLMs. The VLMs employed in this
work are four widely used CLIP models: CLIP-RN50, CLIP-
RN101, CLIP-ViT-B/32, and CLIP-ViT-B/16. Note that the
backbones here mainly refer to the vision encoder.

3.1. Preliminaries

The CLIP model is pre-trained on ∼400M image-text pairs
with the objective of aligning two modalities within a uni-
fied embedding space using a contrastive learning loss. This
pre-training enables CLIP to effectively capture broad visual
concepts and learn general visual representations. During
inference, a given image can be classified into a pre-defined
category by computing the similarity between the image
feature f extracted from the vision encoder and the tex-
tual embeddings {ci|i ∈ {1, . . . ,K}} from the language
encoder. The inputs to the language encoder are textual
prompts for K categories, composed of a template, e.g., “a
photo of a {class}”, and category names. This classifica-
tion approach allows CLIP to be directly applied to a new
recognition task with only the category names of interest.
We formulate the inference process as follows:

Logiti =
exp(cos(f , ci)/τ)∑K
j=1 exp(cos(f , ci)/τ)

(1)

, where cos(·, ·) is the cosine similarity function and τ is
the learned temperature parameter.

3.2. Zero-shot Ensemble

The proposed zero-shot ensemble (ZSEn) aims to enhance
the generalization capability of VLMs using solely pre-
trained CLIP models as shown in Figure 3. Specifically, our
ensemble strategy is designed with two key perspectives: (i)
maintaining the dominance of the best-performing model,
i.e., CLIP-ViT-B/16; (ii) dynamically assigning weights to
individual models based on their confidence for the given
samples. The first consideration is grounded in the fact that
CLIP-ViT-B/16, with inputting large patches and advanced
Transformer architecture, can capture superior visual repre-
sentations, leading to heightened transferability on down-
stream tasks. This is evidenced by the substantial zero-shot
performance gaps observed between CLIP-ViT-B/16 and
other variants. Consequently, preserving the dominance
of CLIP-ViT-B/16 is deemed essential. To automate the
weight generation for model ensemble, we propose to use
confidence-aware weights by dynamically adjusting the con-
tribution of individual models’ logits based on their pre-
diction confidences on input samples. The formulation of

above process is defined as

pi = max(Logiti : {p1, p2, . . . , pK}) (2)

ωi =
exp(pi)∑n−1

j=1 exp(pj)
(3)

Logite =

n−1∑
i=1

ωi · Logiti + Logitn (4)

, where pi is the maximum prob of Logiti, Logiti is the
logit from the i-th VLM for an input image, Logitn is the
strongest VLM of n ensemble VLMs. It is worth noting
that our ZSEn enhances the overall generalization capability
of VLMs without the need for additional training data or
computing resources.
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Figure 3. Illustration of our zero-shot ensemble (ZSEn). We
assign a weight 1.0 to the best performing model, i.e., CLIP-ViT-
B/16, and use the confidence-aware weights for other VLMs.

3.3. Training-free Ensemble

We propose a training-free ensemble (see Figure 4) to further
enhance the generalization of VLMs in scenarios where ad-
ditional few-shot samples Dtrain are available but there are
constraints on computing resources for training. Note that
the classes in Dtrain are disjoint from those in Dtest dur-
ing inference, rendering this set-up both more challenging
and practical. Specifically, we implement the training-free
ensemble by employing greedy search to find the optimal
accuracy on a training set. The desired weights {ωi} are
then determined when the optimal accuracy is achieved.
The rationale behind this approach is that samples within
the same data distribution can be utilized to search for op-
timal parameters for classifying new classes, aligning with
methodologies for base-to-new generalization (Zhou et al.,
2022a; Khattak et al., 2023a;b). To be specific, we formulate
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the above process as follows:

{ωi} = argmax
{ωi}

(
1

N

N∑
j=1

δ(yi, ŷi)|Dtrain) (5)

ŷi = argmax(

n−1∑
j=1

ωi · Logiti + Logitn) (6)

, where N is the total number of samples in Dtrain, yi is the
true label of the i-th sample, ŷi is the predicted label of the
i-th sample, δ(·, ·) is the Kronecker delta function, which is
equal to 1 if yi = ŷi and 0 otherwise.
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Figure 4. Illustration of our training-free ensemble (TFEn). We
assign a weight 1.0 to the best performing model, i.e., CLIP-ViT-
B/16, and determine the weights of other VLMs by greedy search-
ing on a given “training” set without training.

3.4. Tuning Ensemble

Following the set-up of previous works (Zhou et al., 2022a;
Khattak et al., 2023a;b), we introduce the tuning ensemble
as illustrated in Figure 5. This ensemble method employs
a meta-model, sample-aware weight generator (SWIG), to
learn the generation of weights on the training set Dtrain.
The advantage of the tuning ensemble, in comparison to
the training-free version, lies in our SWIG’s capability to
dynamically generate weights for each sample based on the
features of ensemble models. This facilitates test-sample-
aware weight generation, with the corresponding features
serving as inputs.

Concretely, to implement this tuning ensemble, we initially
obtain the features {I1f , . . . , Inf } of the input image by pass-
ing it through the vision encoders of the employed VLMs.
Subsequently, these features are concatenated and used as
the input to our proposed SWIG, which generates weights
{ω1, . . . , ωn} for the ensemble of VLMs. These dynami-
cally generated weights serve as a form of sample-specific
attention, allowing the ensemble to adapt to the charac-
teristics of each input image. This personalized weight
assignment enhances the tuning ensemble’s ability to tai-

lor its predictions based on the unique features of the test
samples, thereby contributing to improved generalization
performance. The aforementioned process can be formu-
lated with the following equations:

I1f , I
2
f , . . . , I

n
f = E1

I (x), E
2
I (x), . . . , E

n
I (x) (7)

{ω1, . . . , ωn} = ΘSWIG(concat({I1f , . . . , Inf })) (8)

Logite =

n∑
i=1

ωi · Logiti (9)

, where Ei
I is the vision encoder of the i-th VLM, x is

the input image and ΘSWIG is our sample-aware weight
generator.
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Figure 5. Illustration of our tuning ensemble (TEn). The pro-
posed sample-aware weight generator (SWIG) takes sample fea-
tures as input to generate sample-aware weights, which are then
used for weighted prediction.

Remark The choice of using image features, rather than
logits, as the input to our SWIG is motivated by the unique
prediction mechanism of VLMs. VLMs calculate the cosine
similarity between the image feature and textual embed-
dings to generate logits. If logits were used as the input for
SWIG, the generated weights might be biased towards the
textual embeddings of base classes. This bias is undesir-
able for generalization to novel classes. By utilizing image
features as the input for SWIG, we can effectively avoid
this drawback. This approach ensures that SWIG remains
sample-aware and generalizes well.

4. Experiments
In this section, we introduce the datasets and evaluation on
zero-shot, base-to-new and cross-dataset generalization. All
experiments are conducted on 11 diverse datasets, and the
quantitative evaluation metric is classification accuracy. We
also provide additional experimental results in the Appendix
– A section.
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Table 1. Zero-shot generalization. All compared methods are
implemneted on the pre-trained CLIP (Radford et al., 2021) models
without further training. Absolute gains over baseline are shown
in blue.

Dataset CLIP CLIP CLIP CLIP ZSEn ∆
RN50 RN101 ViT-B/32 ViT-B/16 Ours

Average 58.71 59.52 61.87 65.27 67.88 +2.61

ImageNet 58.23 61.26 62.04 66.72 70.66 +3.94

Caltech101 85.96 89.66 91.12 92.94 93.79 +0.85

OxfordPets 85.80 86.89 87.49 89.07 90.57 +1.50

Stanford Cars 55.57 63.16 60.37 65.29 70.76 +5.47

Flowers102 65.98 63.95 66.95 71.30 73.16 +1.86

Food101 77.32 80.54 80.47 86.11 86.78 +0.67

FGVC Aircraft 17.16 18.18 19.20 24.87 25.68 +0.81

SUN397 58.53 58.96 62.00 62.62 65.91 +3.29

DTD 42.38 38.48 43.79 44.56 49.35 +4.79

EuroSAT 37.42 32.62 45.12 47.69 50.20 +2.51

UCF101 61.43 61.04 62.07 66.77 69.84 +3.07

Table 2. The ensemble of the CLIP-ViT-B/16 model with other
weaker variants on ImageNet.

CLIP CLIP CLIP CLIP Acc ∆ViT-B/16 RN50 RN101 ViT-B/32

✓ 66.72 +0.00
✓ ✓ 67.75 +1.03
✓ ✓ ✓ 68.34 +1.62
✓ ✓ ✓ ✓ 68.76 +2.04

4.1. Datasets

Following prior research (Zhou et al., 2022b;a; Khattak et al.,
2023a;b), we employ a set of 11 diverse datasets, covering
a large range of recognition tasks. Specifically, the bench-
mark comprises the following datasets: (i) ImageNet (Deng
et al., 2009) and Caltech101 (Fei-Fei et al., 2004) for generic
object classification; (ii) OxfordPets (Parkhi et al., 2012),
StanfordCars (Krause et al., 2013), Flowers102 (Nilsback
& Zisserman, 2008), Food101 (Bossard et al., 2014), and
FGVCAircraft (Maji et al., 2013) for fine-grained classifica-
tion; (iii) SUN397 (Xiao et al., 2010) for scene recognition;
(iv) UCF101 (Soomro et al., 2012) for action recognition;
(v) DTD (Cimpoi et al., 2014) for texture classification; (vi)
EuroSAT (Helber et al., 2019) for satellite imagery recogni-
tion.

4.2. Implementation Details

In our experiments, we utilize four widely used CLIP
models for ensemble learning: CLIP-RN50, CLIP-RN101,
CLIP-ViT-B/32, and CLIP-ViT-B/16, with CLIP-ViT-B/16
being the best performer. In all three ensemble strategies,

Table 3. Evaluating confidence-aware weighting (CAW) in dif-
ferent manners on ImageNet. Baseline uses the mean of the
logits from four models as the final prediction.

Method Acc ∆

CLIP ViT-B/16 66.72 +0.00

Baseline 68.76 +2.04
CAW of 3 models (w/o RN50) 70.01 +3.29
CAW of 4 models 70.19 +3.47
CLIP ViT-B/16 + CAW of 3 other models 70.66 +3.94

the Logit is computed by applying the softmax function
to a model’s prediction. For the training-free ensemble, the
weight search space is fixed at {0.1, 0.2, . . . , 1.0} for each
VLM, excluding CLIP-ViT-B/16. For the tuning ensem-
ble, we set the initial learning rate to 5e− 3 and utilize the
same adjusting scheduler as in (Zhou et al., 2022a; Khattak
et al., 2023a;b). The sample-aware weight generator is a two-
layer MLP (fdim → fdim/32 and fdim/32 → numweight),
which is trained for 5 epochs with a batch size of 128. The
tuning ensemble is applied to both pre-trained CLIP models
and existing baseline methods.

4.3. Evaluation Metrics

For zero-shot generalization, only the original test set of
each dataset is used for computing accuracy since no train-
ing is needed. In the base-to-new generalization setup, we
follow (Zhou et al., 2022b;a; Khattak et al., 2023a;b) to
equally split the classes into two groups, i.e., base and new
classes, and then randomly sample a 16-shot training set
from base classes. The learned model is then evaluated on
both base and new classes from test set. We report three
accuracy metrics: accuracy on base classes, accuracy on
new classes and the harmonic mean (HM) of these two
accuracies (Lu et al., 2023). In contrast, for cross-dataset
generalization, a model is trained on ImageNet (Deng et al.,
2009) and then conducted cross-validation on the remaining
datasets. Note that the presented results are averaged over
three runs, except for zero-shot generalization.

4.4. Zero-shot Generalization

We employ our zero-shot ensemble ZSEn for zero-shot
generalization as neither additional training nor extra data
is needed. The experimental results are shown in Table 1.
Overall, the proposed ZSEn can always surpass the best
performing single model, i.e., CLIP-ViT-B/16, with the
averaged performance gain 2.61% over 11 diverse datasets.
In addition, two other interesting observations can be made.

First, the strategy of “weak helps strong” is employed suc-
cessfully in our method, where models with weaker per-
formance contribute to the ensemble, even when there are
significant performance gaps between them, such as 58.71%
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Table 4. Comparison with state-of-the-art methods on base-to-new generalization. All compared methods use the ViT-B/16 as the
vision encoder. When employing our TEn, four of CoCoOp models, i.e., RN50, RN101, ViT-B/32 and ViT-B/16, are utilized, while only
two ViT-based models for PromptSRC as it is explicitly designed for ViT. †: reproduced by the official code. The best accuracy is in bold.

Average ImageNet Caltech101 OxfordPets
Base New HM Base New HM Base New HM Base New HM

CLIP (Radford et al., 2021) 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp (Zhou et al., 2022b) 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47
CoCoOp (Zhou et al., 2022a) 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
CoCoOp† (Zhou et al., 2022a) 80.14 71.55 75.60 76.05 70.61 73.23 97.91 93.99 95.91 95.41 97.54 96.46
ProDA (Lu et al., 2022) 81.56 72.30 76.65 75.40 70.23 72.72 98.27 93.23 95.68 95.43 97.83 96.62
MaPLe (Khattak et al., 2023a) 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
Tip-Adapter + SHIP (Wang et al., 2023) 83.80 76.42 79.94 77.53 70.26 73.71 98.32 94.43 96.34 94.95 97.09 96.01
PromptSRC (Khattak et al., 2023b) 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30
PromptSRC† (Khattak et al., 2023b) 83.81 75.69 79.54 77.57 70.22 73.71 98.06 93.96 95.97 94.59 97.15 95.85

TFEn 72.12 77.37 74.65 76.05 72.25 74.10 96.84 94.98 95.90 93.62 97.67 95.60
TEn 72.56 77.72 75.05 76.22 72.47 74.30 97.26 95.27 96.25 93.89 97.76 95.79
CoCoOp + TEn 83.56 75.27 79.20 78.39 72.79 75.49 98.32 95.74 97.01 95.69 98.27 96.96
PromptSRC + TEn 85.48 77.17 81.11 78.74 71.68 75.04 98.58 95.74 97.14 95.96 97.71 96.83

StanfordCars Flowers102 Food101 FGVCAircraft
Base New HM Base New HM Base New HM Base New HM

CLIP (Radford et al., 2021) 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp (Zhou et al., 2022b) 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp (Zhou et al., 2022a) 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
CoCoOp† (Zhou et al., 2022a) 71.01 73.81 72.38 93.86 72.03 81.51 90.55 91.32 90.93 33.43 24.71 28.42
ProDA (Lu et al., 2022) 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46
MaPLe (Khattak et al., 2023a) 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
Tip-Adapter + SHIP (Wang et al., 2023) 79.91 74.62 77.18 95.35 77.87 85.73 90.63 91.51 91.07 42.62 35.93 38.99
PromptSRC (Khattak et al., 2023b) 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15
PromptSRC† (Khattak et al., 2023b) 79.19 75.45 77.27 97.63 77.07 86.14 90.35 91.46 90.90 42.73 35.63 38.86

TFEn 70.57 79.94 74.96 75.15 78.96 77.01 90.04 91.10 90.57 29.21 36.53 32.46
TEn 71.05 80.21 75.35 75.31 79.15 77.18 90.55 91.60 91.07 29.71 37.25 33.06
CoCoOp + TEn 78.69 78.73 78.71 97.82 77.23 86.31 90.93 92.03 91.48 36.51 30.17 33.04
PromptSRC + TEn 81.26 78.48 79.85 98.77 77.52 86.86 90.75 91.70 91.22 43.22 36.47 39.56

SUN397 DTD EuroSAT UCF101
Base New HM Base New HM Base New HM Base New HM

CLIP (Radford et al., 2021) 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp (Zhou et al., 2022b) 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46
CoCoOp (Zhou et al., 2022a) 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
CoCoOp† (Zhou et al., 2022a) 79.46 77.24 78.33 76.01 54.99 63.81 86.10 56.49 68.22 81.73 74.27 77.82
ProDA (Lu et al., 2022) 78.67 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04
MaPLe (Khattak et al., 2023a) 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
Tip-Adapter + SHIP (Wang et al., 2023) 81.32 77.64 79.43 81.83 61.47 70.21 93.38 81.67 87.13 85.99 78.10 81.85
PromptSRC (Khattak et al., 2023b) 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74
PromptSRC† (Khattak et al., 2023b) 82.37 78.91 80.60 81.56 61.35 70.03 90.96 73.90 81.55 86.92 77.50 81.94

TFEn 72.90 77.08 74.93 58.72 64.82 61.62 56.60 77.85 65.55 73.63 79.86 76.62
TEn 73.18 77.49 75.27 59.26 65.10 62.04 57.69 78.60 66.54 74.03 80.03 76.91
CoCoOp + TEn 81.96 80.63 81.29 81.37 62.01 70.38 94.38 64.18 76.40 85.13 76.15 80.39
PromptSRC + TEn 83.88 80.86 82.34 84.72 63.16 72.37 95.52 76.41 84.90 88.83 79.10 83.68

(CLIP-RN50) vs. 65.27% (CLIP-ViT-B/16). This is a de-
parture from conventional ensemble methods that typically
involve models with similar performance. The effectiveness
of weaker CLIP models contributing to the ensemble and
aiding stronger ones can be attributed to the diverse struc-
tures and training on a large number of image-text pairs.
While weaker models may have lower individual perfor-
mance, they capture unique aspects of the data distribution
and provide complementary information. The ensemble
leverages this diversity, allowing the collective strength of
the models to cover a broader range of patterns and features
present in the data, thereby enhancing overall generalization
performance.

Second, we found that the zero-shot performance of CLIP
models with ResNet-based backbones does not consistently
adhere to the expectation that larger models outperform
smaller ones. On 5 out of 11 datasets, CLIP-RN101 per-
forms either worse or comparably to CLIP-RN50. This trend
contrasts with the behavior of Transformer-based models,
which consistently improve with larger patch sizes. The
discrepancy may be attributed to two main factors: (i) the
ResNet-based vision encoder might not synergize effectively
with the Transformer-based language encoder, hindering the
capability of larger ResNet backbones. (ii) the ResNet-based
structure might naturally exhibit weaker generalization ca-
pabilities compared to Transformer-based architectures.
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Table 5. Cross-dataset evaluation. Our tuning ensemble TEn achieves the overall best performance.
Source Target
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CLIP (Radford et al., 2021) 66.72 92.94 89.07 65.29 71.30 86.11 24.87 62.62 44.56 47.69 66.77 65.12
CoOp (Zhou et al., 2022b) 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp (Zhou et al., 2022a) 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe (Khattak et al., 2023a) 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PromptSRC (Khattak et al., 2023b) 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81

TEn 70.88 93.91 90.72 71.94 72.59 86.68 26.03 66.07 49.31 48.18 69.14 67.46

Table 6. Ablation Study of our SWIG in terms of the number of output weights, input type and downsampling scales of middle layer on
ImageNet.

Acc # Output Weights Input Type Downsampling Scale

3 4 Logits Features 4 8 16 32 64

Base 76.11 76.22 75.45 76.22 76.16 76.18 76.16 76.22 76.18
New 72.38 72.47 71.54 72.47 72.36 72.37 72.42 72.47 72.34
HM 74.20 74.30 73.44 74.30 74.21 74.23 74.24 74.30 74.21

Ensemble of CLIP Models Table 2 presents the results
of an ablation study on ensemble learning by incremen-
tally adding a weak CLIP model to the strongest one. The
adopted ensemble strategy involves the simple averaging of
logits from the utilized models. The results reinforce the ob-
servation that weaker CLIP models contribute positively to
the overall performance, supporting the “weak helps strong”
phenomenon discussed earlier.

Effect of Confidence-aware Weighting The effective-
ness of the proposed confidence-aware weighting (CAW) is
evaluated in Table 3. We compare three different ways of us-
ing CAW for model ensemble: (i) applying CAW to the three
strongest models, (ii) applying CAW to all four models, and
(iii) applying CAW to the three weakest models combined
with CLIP ViT-B/16 (ours). Our experiments demonstrate
that all three approaches of using CAW can improve the
performance of the ensemble, with our approach achieving
the best results. This indicates that CAW is an effective
technique for model ensemble, and that it is important to
preserve the dominance of the best-performing model when
large performance gaps exist among the ensemble models.

4.5. Base-to-New Generalization

We evaluate our training-free ensemble TFEn and tuning
ensemble TEn on base-to-new generalization in Table 4.
All baseline methods use ViT-B/16 as the default vision
encoder. When employing TEn on baseline methods, we
first train them with various backbones. Note that CoCoOp
is trained with four backbones,i.e., RN50, RN101, ViT-B/32
and ViT-B/16 while PromptSRC is trained with two ViT-
based backbones as it is specifically designed for ViT. Given

the baseline models with diverse backbones, we then only
train our TEn for dynamic ensemble learning.

Overall, our ensemble strategies consistently demonstrate
significant performance enhancements over baseline meth-
ods. For instance, TFEn and TEn improve zero-shot CLIP
by 2.95% and 3.35%, respectively. CoCoOp + TEn exhibits
a performance gain of 3.60%, while PromptSRC + TEn

achieves a gain of 1.57%. Another interesting finding is
that our TEn obtains the overall best performance on novel
classes across 11 datasets. This can be attributed to two
reasons: (i) the pre-trained CLIP models inherently cap-
ture generalized representations, and leveraging this knowl-
edge effectively allows for superior performance on unseen
classes; (ii) existing training methods often tend to overfit
on base classes without effective constraints.
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Figure 6. Comparing our ensemble strategies to baseline in
terms of performance and inference time. Baseline uses the
mean of the logits from four models as the final prediction.

Further Analysis

Ensemble Strategies In Figure 6, we compare the per-
formance and inference FPS with two baselines: zero-shot
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Table 7. Comparison with existing methods in domain generalization set-up. Our CoCoOp + TEn shows the best performance on all
target datasets.

Source Target

ImageNet -V2 -S -A -R Avg.

CLIP (Radford et al., 2021) 66.73 60.83 46.15 47.77 73.96 57.18
CoOp (Zhou et al., 2022b) 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp (Zhou et al., 2022a) 71.02 64.07 48.75 50.63 76.18 59.91
MaPLe (Khattak et al., 2023a) 70.72 64.07 49.15 50.90 76.98 60.28
PromptSRC (Khattak et al., 2023b) 71.27 64.35 49.55 50.90 77.80 60.65

CLIP + TEn 70.88 62.87 48.97 49.97 75.98 59.45
CoCoOp + TEn 73.25 65.73 50.70 52.11 78.11 61.66

CLIP-ViT-B/16 (CLIP) and mean of the logits from four
CLIP models (Baseline). We found that both our TFEn and
TEn can outperform Baseline with the comparable infer-
ence FPS, while achieving significant improvement over
CLIP without sacrificing much inference time.

Ablation Study of SWIG We conduct comprehensive
ablation studies of our SWIG in Table 6. First, we adjust
the number of SWIG’s outputs to three, representing the
weights for three weak VLMs, while assigning a weight
of 1.0 to CLIP-ViT-B/16. The performance was slightly
inferior to using four weights. This suggests that tuning our
SWIG on a given dataset can generate reasonable weights
for the four models, with performance comparable to main-
taining the dominance of CLIP-ViT-B/16. Second, we take
the concatenated logits of four models as the input for our
SWIG, but the performance is much worse as the SWIG is
too biased on base classes as discussed in Sec 3.4. Finally,
since SWIG consists of two linear layers: fdim → fdim/ds,
fdim/ds → numweight, we ablate the downsampling scale
ds and found that our SWIG is not sensitive to ds.

4.6. Cross-dataset Evaluation

Table 5 presents the results of cross-dataset evaluation for
state-of-the-art methods. In general, our tuning ensemble
demonstrates the best overall performance, surpassing other
methods on 8 out of 10 datasets. Several noteworthy obser-
vations are discussed below. First, we observe that previous
methods with intricate designs tend to overfit on the train-
ing dataset, leading to sub-optimal performance on other
datasets. For instance, CoOp achieves the highest perfor-
mance on ImageNet yet the lowest averaged accuracy over
10 datasets. Second, the zero-shot CLIP model, trained on a
million-level paired data, already achieves impressive per-
formance on diverse datasets, which is slightly worse than
existing SOTA methods.

4.7. Domain Generalization

We provide the comparison results of existing methods on
domain generalization in Table 7. Overall, the best perfor-

mance is achieved by using our tuning ensemble TEn on Co-
CoOp, with the accuracy gain 1.75%. This further indicates
the importance of ensemble learning on enhanced general-
ization of pre-trained vision-language models. Moreover,
we found that CLIP + TEn shows much better performance
than CLIP only, but is worse than other state-of-the-art gen-
eralization methods. This differs from the finding in the
cross-dataset generalization, where CLIP + TEn surpasses
other SOTA methods by large margins. The reason is that
domain and cross-dataset generalization evaluate the model
in distinct aspects. Concretely, cross-dataset generaliza-
tion is more challenging as it requires the model trained on
one dataset to perform well on other datasets with unseen
classes and domains, while domain generalization considers
domain transfer only. Another interesting observation is that
our method can perform consistently better on both source
and target domains. This stands in stark contrast to prior
methods, which often excel in the source domain but exhibit
a notable decline in performance when applied to the target
domain. For instance, methods like CoOp may outperform
others in the source domain but degrade when confronted
with the target domain.

5. Conclusion
This paper represents the pioneering exploration of leverag-
ing much weaker Vision-Language Models (VLMs) collab-
oratively to enhance the performance of a single robust one.
Three tailored ensemble strategies are introduced, address-
ing distinct scenarios. Firstly, the proposed zero-shot ensem-
ble dynamically adjusts logits based on model confidence
when relying solely on pre-trained VLMs. Furthermore,
for scenarios with additional few-shot samples, we propose
both training-free and tuning ensembles, providing flexi-
bility based on computing resource availability. Extensive
experiments demonstrate the superiority of the proposed en-
sembles in diverse tasks including zero-shot evaluation and
base-to-new generalization. Importantly, this work estab-
lishes a novel pathway for improved generalization in VLMs
through ensemble learning, serving as a positive inspiration
for future research endeavors.
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A. Appendix
We provide additional content to enhance the understanding of our method, which is listed as follows:

• Section A.1 offers more experimental results, including the effect of our tuning ensemble on state-of-the-art methods,
evaluation on other VLMs, ensembel learning with random augmentations, parameter comparison and weight pattern
analysis.

• Section A.2 shows the limitations of our method, inspiring the future works.

Table 8. Effect of using tuning ensemble TEn on state-of-the-art methods. When employing our TEn, four of CoCoOp models, i.e.,
RN50, RN101, ViT-B/32 and ViT-B/16, are utilized, while only two ViT-based models for PromptSRC as it is explicitly designed for ViT.
†: reproduced by the official code. MeanEn: averaging the predictions of individual models. The best accuracy is in bold.

Average ImageNet Caltech101 OxfordPets
Base New HM Base New HM Base New HM Base New HM

CoCoOp† (Zhou et al., 2022a) 80.14 71.55 75.60 76.05 70.61 73.23 97.91 93.99 95.91 95.41 97.54 96.46
CoCoOp + MeanEn 83.20 74.42 78.57 77.57 72.20 74.79 98.13 95.49 96.79 95.43 98.04 96.72
CoCoOp + TEn 83.56 75.27 79.20 78.39 72.79 75.49 98.32 95.74 97.01 95.69 98.27 96.96

PromptSRC† (Khattak et al., 2023b) 83.81 75.69 79.54 77.57 70.22 73.71 98.06 93.96 95.97 94.59 97.15 95.85
PromptSRC + MeanEn 85.12 76.63 80.65 78.14 71.42 74.63 98.45 95.25 96.82 95.55 97.62 96.57
PromptSRC + TEn 85.48 77.17 81.11 78.74 71.68 75.04 98.58 95.74 97.14 95.96 97.71 96.83

StanfordCars Flowers102 Food101 FGVCAircraft
Base New HM Base New HM Base New HM Base New HM

CoCoOp† (Zhou et al., 2022a) 71.01 73.81 72.38 93.86 72.03 81.51 90.55 91.32 90.93 33.43 24.71 28.42
CoCoOp + MeanEn 78.23 78.46 78.34 97.69 75.93 85.45 90.85 91.89 91.37 36.39 27.05 31.03
CoCoOp + TEn 78.69 78.73 78.71 97.82 77.23 86.31 90.93 92.03 91.48 36.51 30.17 33.04

PromptSRC† (Khattak et al., 2023b) 79.19 75.45 77.27 97.63 77.07 86.14 90.35 91.46 90.90 42.73 35.63 38.86
PromptSRC + MeanEn 80.80 78.31 79.54 98.74 77.07 86.57 90.56 91.55 91.05 42.50 34.17 37.88
PromptSRC + TEn 81.26 78.48 79.85 98.77 77.52 86.86 90.75 91.70 91.22 43.22 36.47 39.56

SUN397 DTD EuroSAT UCF101
Base New HM Base New HM Base New HM Base New HM

CoCoOp† (Zhou et al., 2022a) 79.46 77.24 78.33 76.01 54.99 63.81 86.10 56.49 68.22 81.73 74.27 77.82
CoCoOp + MeanEn 81.61 80.41 81.01 81.02 61.15 69.70 93.77 62.15 74.75 84.54 75.88 79.98
CoCoOp + TEn 81.96 80.63 81.29 81.37 62.01 70.38 94.38 64.18 76.40 85.13 76.15 80.39

PromptSRC† (Khattak et al., 2023b) 82.37 78.91 80.60 81.56 61.35 70.03 90.96 73.90 81.55 86.92 77.50 81.94
PromptSRC + MeanEn 83.65 80.36 81.97 84.38 62.72 71.96 95.09 76.02 84.49 88.42 78.46 83.14
PromptSRC + TEn 83.88 80.86 82.34 84.72 63.16 72.37 95.52 76.41 84.90 88.83 79.10 83.68

Table 9. Zero-shot evaluation of Zero-Shot Ensemble (ZSEn) with BLIP, BLIP2 and CLIP-ViT-B/32 on ImageNet.

Method Acc (%)

Zero-shot BLIP (Li et al., 2022) 49.14
Zero-shot BLIP2 (Li et al., 2023a) 36.41
Zero-shot CLIP-ViT-B/32 (Radford et al., 2021) 62.04

(BLIP, BLIP2) with Mean 51.39
(BLIP, BLIP2) with ZSEn 56.38

(BLIP, BLIP2, CLIP-ViT-B/32) with Mean 65.44
(BLIP, BLIP2, CLIP-ViT-B/32) with ZSEn 67.88

A.1. More Experiments

Effect of Tuning Ensemble Since we have analyzed the effect of using tuning ensemble TEn on CLIP in main text, we
further show its effect on other state-of-the-art methods in Table 8, namely CoCoOp (CVPR22) (Zhou et al., 2022a) and
PromptSRC (ICCV23) (Khattak et al., 2023b). In general, our TEn consistently demonstrates superior performance when
compared to both the baseline model and its naı̈ve ensemble counterpart. This trend underscores the efficacy of our method
in effectively harnessing knowledge from multiple models. We also found that CoCoOp + TEn outperforms PromptSRC +
TEn in some cases, e.g., 75.49% vs. 75.04% on ImageNet. This is attributed to the advantage of employing more ensemble
models, showcasing the effectiveness of our TEn in leveraging the collective power of multiple models.
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Evaluation on Other VLMs We have expanded our experimental analysis to include CLIP-ViT-B/32, BLIP (Li et al.,
2022) and BLIP2 (Li et al., 2023a) models, applying our Zero-Shot Ensemble (ZSEn) on ImageNet, as detailed in Table 9.
It’s important to clarify that this experiment does not presume prior knowledge of the best-performing model; instead, we
implement confidence-aware weighting across both models indiscriminately. The results indicate a substantial enhancement
in performance through our method, surpassing the results achieved by a simple mean ensemble.

Table 10. Base-to-new generalization of Training-free Ensemble (TFEn) and Tuning Ensemble (TEn) with BLIP, BLIP2 and CLIP-ViT-
B/32 on ImageNet.

Method Base Acc (%) New Acc (%) HM Acc (%)

Zero-shot BLIP (Li et al., 2022) 50.54 55.75 53.02
Zero-shot BLIP2 (Li et al., 2023a) 29.41 51.98 37.57
Zero-shot CLIP-ViT-B/32 (Radford et al., 2021) 67.45 64.02 65.69

(BLIP, BLIP2) with Mean 50.47 61.36 55.38
(BLIP, BLIP2) with TFEn 52.65 63.23 57.46
(BLIP, BLIP2) with TEn 54.74 66.83 60.18

(BLIP, BLIP2, CLIP-ViT-B/32) with Mean 68.86 70.00 69.43
(BLIP, BLIP2, CLIP-ViT-B/32) with TFEn 70.10 71.50 70.79
(BLIP, BLIP2, CLIP-ViT-B/32) with TEn 71.04 73.92 72.45

Table 11. Parameter comparison among various methods.
Method CoOp CoCoOp MaPLe PromptSRC CoCoOp + TEn PromptSRC + TEn

# Param 2048 34K 3.55M 46K 336K 292K
Acc (%) 71.66 75.60 78.55 79.54 79.20 81.11

Table 12. The weights searched by Training-Free Ensemble (TFEn) on diverse datasets.

Dataset WRN50 (ZS Acc %) WRN101 (ZS Acc %) WV iT−B/32 (ZS Acc %)

ImageNet 0.1 (58.23) 0.5 ( 61.26) 0.4 (62.04)
Caltech101 0.1 (85.96) 0.3 (89.66) 0.4 (91.12)
OxfordPets 0.4 (85.80) 0.4 (86.89) 0.6 (87.49)
StanfordCars 0.3 (55.57) 0.8 (63.16) 0.4 (60.37)
Flowers102 0.3 (65.98) 0.8 (63.95) 0.9 (66.95)
Food101 0.2 (77.32) 0.3 (80.54) 0.2 (80.47)
FGVCAircraft 0.1(17.16) 0.7 (18.18) 0.2 (19.20)
SUN397 0.4 (58.53) 0.1 (58.96) 0.7 (62.00)
DTD 0.6 (42.38) 0.6 (38.48) 0.5 (43.79)
EuroSAT 0.8 (37.42) 0.5 (32.62) 0.1 (45.12)
UCF101 0.1 (61.43) 0.5 (61.04) 0.8 (62.07)

Our TFEn and TEn methods were further assessed on CLIP-ViT-B/32, BLIP and BLIP2 models, with a focus on base-to-new
generalization on ImageNet. The results, detailed in Table 10, underscore the efficacy of TFEn and TEn across various
types of VLMs.

Ensemble Learning with Random Augmentations We have carried out experiments with the highest performing single
model, ViT-B/16, applying four distinct random augmentations on the ImageNet. The augmentations are set to include
“RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0))” and “RandomHorizontalFlip(p=0.5)”, applied four times to
each image. These augmented images served as inputs for the model to do emsemble learning, resulting in an accuracy
of 66.81%. This result slightly improves upon the baseline accuracy of 66.72% but falls significantly short of our ZSEn

method’s 70.66% accuracy. The limited performance enhancement using a single model, despite varied augmentations,
suggests that a singular model may not adequately capture the multifaceted aspects of an image.
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Parameter Comparison We list the parameters and accuracy of baseline methods in Table 11. From the numbers, we can
see that our method achieves superior performance while preserving the nature of parameter efficiency.

Weight Pattern Analysis We have shown the searched weights of Training-Free Ensemble (TFEn) in Table 12. Note
that the weight for ViT-B/16 is the constant 1.0. We found that the searching scheme tends to assign higher weights to the
models with better zero-shot performance, evidenced on 8 out of 11 datasets. For models with similar performance, the
weights assigned are also close.

A.2. Limitations

In this work, we take the initial stride towards incorporating ensemble learning into the generalization of VLMs. Our focus
is on delineating potential avenues for leveraging ensemble strategies to enhance the performance of VLMs in generalized
scenarios. However, it is essential to note that our exploration, at this juncture, only scratches the surface of the capabilities
that ensemble learning might offer. Fully harnessing the power of ensemble learning in the context of VLM generalization
represents a promising avenue for future investigation.
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