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Abstract

In this work, we focus on Cross-Lingual Event
Detection (CLED) where a model is trained
on data from a source language but its perfor-
mance is evaluated on data from a second, tar-
get, language. Most recent works in this area
have harnessed the language-invariant qual-
ities displayed by pre-trained Multi-lingual
Language Models (MLM). Their performance,
however, reveals there is room for improve-
ment as they mishandle delicate cross-lingual
instances. We leverage the use of unlabeled
data to train a Language Discriminator (LD)
to discern between the source and target lan-
guages. The LD is trained in an adver-
sarial manner so that our encoder learns to
produce refined, language-invariant represen-
tations that lead to improved CLED perfor-
mance. More importantly, we optimize the ad-
versarial training by only presenting the LD
with the most informative samples. We base
our intuition about what makes a sample in-
formative on two disparate metrics: sample
similarity and event presence. Thus, we pro-
pose using Optimal Transport (OT) as a so-
lution to naturally combine these two distinct
information sources into the selection process.
Extensive experiments on 8 different language
pairs, using 4 languages from unrelated fam-
ilies, show the flexibility and effectiveness of
our model that achieves new state-of-the-art re-
sults.

1 Introduction

Event Detection (ED) is an important sub-task
within the broader Information Extraction (IE)
task. ED consists in being able to identify the
words, commonly referred to as triggers, that de-
note the occurrence of events in a sentence, and
classify them into a discrete set of event types.
For example, in the sentence “Jamie bought a
car yesterday.”, bought is considered the trigger
of a TRANSACTION:TRANSFER-OWNERSHIP
event type. It is a very well studied task in

which there have been lots of previous research ef-
forts (Ahn, 2006; Ji and Grishman, 2008; Patward-
han and Riloff, 2009; Liao and Grishman, 2010a,b;
Hong et al., 2011; McClosky et al., 2011; Li et al.,
2013; Miwa et al., 2014; Yang and Mitchell, 2016;
Nguyen and Grishman, 2015; Chen et al., 2015;
Nguyen et al., 2016a,b; Sha et al., 2018; Zhang
etal., 2019; Yang et al., 2019; Nguyen and Nguyen,
2019; Zhang et al., 2020; Xiang and Wang, 2019).

Nonetheless, ED remains quite a challenging
task as the context in which a trigger word occurs
can change its corresponding type completely, and
the same event might also be expressed by entirely
different words/phrases. The vast majority of the
aforementioned efforts, however, are limited to a
monolingual setting, i.e approaches that perform
ED on text belonging to a single language. Ad-
ditionally, most ED-related research focuses on a
small set of popular languages, such as Chinese
or English. This, in turn, means that most of the
available annotated data belongs to these, aptly
named, high-resource languages. Data scarcity
becomes a critical problem for low-resource lan-
guages for which the amount of available train-
ing data is minimal or non-existent. Consequently,
some approaches have proposed taking advantage
of the widely available unlabeled data in a semi-
supervised manner (Muis et al., 2018).

Cross-lingual ED (CLED) proposes the more
challenging scenario of creating models that effec-
tively perform ED on data belonging to more than
one language. This entails additional challenges for
a CLED model. For instance, trigger words present
in one language might not exist in another one. An
example of this phenomenon are verb conjugations
where some tenses only exist in some languages,
which is commonplace in ED as event triggers are
usually related to the verbs in a sentence. Another
problematic issue are trigger words with different
meanings that are each distinct words in other lan-
guages. For example, the word “juicio” in Spanish



can be either “judgement” or “trial” in English, de-
pending on the context. These, and other similar,
issues make CLED a challenging task.

A compelling approach to creating a cross-
lingual model is to use transfer learning which
attempts to transfer the performance of a model
trained on a source language onto a second target
language. The general idea is leveraging the exist-
ing high-quality annotated data available for a high-
resource language to train a model in a way that
allows it to learn the language-invariant character-
istics of the task at hand, ED in this case, so that it
also performs effectively on text from a second lan-
guage. Prior work on transfer learning for CLED
has relied on pre-trained Multilingual Language
Models (MLMs), such as mBERT (Devlin et al.,
2019), to take advantage of their innate language-
invariant qualities. Yet, their performance still
shows room for improvement as they are unable
to handle the difficult instances, unique to cross-
lingual settings, mentioned earlier. We identify a
significant shortcoming of previous CLED efforts
in that they do not exploit the abundant supply of
unlabeled data: even though MLMs are trained on
immense amounts of it, unlabeled data is not used
when fine-tuning for the ED task. It is our intuition
that by integrating unlabeled data into the training
process, the model is exposed to more language
context which should help deal with issues such as
verb variation and multiple connotations.

As such, in this work we propose using Adver-
sarial Language Adaptation (ALA), inspired by
Adversarial Domain Adaptation (ADA) (Ganin and
Lempitsky, 2015), which aims at creating cross-
lingual models able to successfully perform ED on
both a source language and a rarget language. The
key idea is to generate language-invariant repre-
sentations that are not-indicative of language but
remain informative for the ED task. A fundamen-
tal characteristic of our ALA approach is its lack
of requirements for annotated data in the target
language. Instead, unlabeled data, from both the
source and target languages, is used to train a Lan-
guage Discriminator (LD) network that learns to
discern between the two. The adversarial part
comes from the fact that the encoder is trained in
the reverse direction of the LD: as the LD becomes
better at distinguishing between languages, the en-
coder learns to generate more language-invariant
representations in an attempt to fool the LD.

Furthermore, contrary to past uses of ADA

where the same importance is given to all unla-
beled samples, we recognize that such course of
action is sub-optimal as certain samples are bound
to be more informative for the discriminator than
others. For example, we would like to present the
LD with the samples that allow it to learn the fine-
grained distinctions between the source and target
languages, instead of relying on syntactic differ-
ences. Moreover, we suggest it would be beneficial
for the LD, and the encoder, to be trained with
examples containing events, instead of non-event
samples, as then the presence of an event can be
incorporated into the generated representations.

Hence, we propose refining the adversarial train-
ing process by only keeping the most informative
examples while disregarding less useful ones. Our
intuition as to what makes samples more informa-
tive for CLED is two-fold: First, we presume that
presenting the LD with examples that are too dif-
ferent makes the discrimination task too simple.
As mentioned previously, we would like the LD to
learn a fine-grained distinction between the source
and target languages which, in turn, improves the
language-invariance of the encoder’s representa-
tions. Thus, we suggest presenting the LD with
examples that have similar contextual semantics.
Second, we consider sentences containing events
to be more relevant for the LD. Accordingly, such
sentences should have a larger probability of being
selected for ALA training.

One challenge of using these two criteria for our
ALA sample selection process is that they come
with two different measures which are hard to com-
bine. In consequence, we propose using Optimal
Transport (OT) (Villani, 2008) as a natural solution
to simultaneously incorporate both the similarity
between examples and the likelihood of the sam-
ples containing an event into a single framework.
OT is, in broad terms, the problem of finding out
the cheapest transformation between two discrete
probability distributions. It requires a cost function
to determine the cost of transforming a data point
in one distribution into a data point in the second
distribution. When the cost function is based on a
valid distance function, the minimum cost is known
as the Wasserstein distance.

Therefore, we cast sample selection as an OT
problem in which we attempt to find the best align-
ment between the samples from the source and
target languages. Similarity between samples is
scored through the Euclidean distance of their con-



textualized vector representations. The probability
distributions are obtained by introducing an Event
Presence (EP) prediction network trained to deter-
mine whether a sentence in the batch contains an
event or not, its normalized outputs are used as
inputs for the OT alignment algorithm.

For our experiments, we focus on the widely
used ACEO5 and ACEO5-ERE datasets (Walker
et al., 2006) which, in conjuction, contain event-
annotations in 4 different languages: English, Span-
ish, Chinese, and Arabic. We work on 8 different
language pairs by selecting different languages as
the source and target. Our proposed model obtains
new state-of-the-art results with considerable per-
formance improvements (+ 2-3% in F1 scores) over
competitive baselines and previously published re-
sults (M’hamdi et al., 2019). These results demon-
strate our model’s efficacy and applicability at cre-
ating CLED systems.

2 Model
2.1 Problem Definition

Following prior works [cite], we treat ED as a
sequence labeling problem. Given a set D of
word sequences w; = {wj1, Wi2, ..., Win—1, Win }
and their corresponding label sequences y; =
{Yi1, Yi2, -, Yin—1, Yin }» We use an encoder net-
work E to obtain a contextualized vector rep-
resentation of the words in the input sequence
hi = E(wl) = {hilahi%m;hinfl,hin}- Then,
we feed the representations h; into a prediction net-
work P to compute a distribution over the set of
possible labels and train it in a supervised manner
using the negative log-likelihood function £ p:
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In the cross-lingual transfer-learning setting, the
data used to train the model and the data on which
the model is tested come from different languages
known as the source and target, respectively. As
such, we deal with two datasets Ds;.. and Dy We
assume that we do not have access to the gold labels
of the target language ¥4, other than to evaluate
our CLED model at testing time.

Our goal is to define a model able to generate
language-invariant word representations that are
refined enough so that cross-lingual issues, such
as the ones described previously, are properly han-
dled.

2.2 Baseline Model

Here we briefly describe the BERT-CRF
model (M’hamdi et al., 2019) which was the
previous state-of-the-art and serves as our baseline.
As its name implies, BERT-CRF uses mBERT (De-
vlin et al., 2019) as its encoder which generates
robust, contextualized representations for words
from different languages. For words that are
split into multiple word-pieces, the average of
the representation vectors for all comprising
sub-pieces is used as the representation of the full
word.

For classification purposes, instead of assigning
the labels of each token independently, BERT-CRF
leverages using a Conditional Random Field (CRF)
layer on top of the prediction network to better cap-
ture the interactions between the label sequences.
As such, the representation vectors h; of the words
in the sequence are fed to a CRF layer which finds
the optimal label sequence.

2.3 Adversarial Language Adaptation

The pre-trained versions of MLMs like mBERT or
XLM-RoBERTa generate contextualized represen-
tations with a certain degree of language-invariance.
This can be confirmed by their successful appli-
cation in cross-lingual settings (M’hamdi et al.,
2019). However, a problem with these works is
that they are unable to learn the nuances of the
target language such as verb variations that do not
exist in the source language used to train them.
It is our intuition, nonetheless, that refining these
representations to achieve an even greater level of
language-invariance would be ultimately beneficial
in a cross-lingual system.

As such, we propose Adversarial Language
Adaptation (ALA), a technique inspired by Ad-
versarial Domain Adaptation (ADA) (Ganin and
Lempitsky, 2015) which is used to create domain-
invariant models. With ALA, we aim to refine
our multilingual transformer encoder so that its
obtained representations display better language-
invariant qualities. Our ALA framework consists
in including an additional module called the Lan-
guage Discriminator whose purpose is to learn
language-dependant features and be able to differ-
entiate between the samples from either the source
or the target languages.

Given that annotated events are not needed
to train the LD, we can use data from both
Dgrc and Dyg. An auxiliary dataset Dy, =



{(w1,11), ..., (wam,lom)} is created where w; is
a text sequence from either Dy, or D;g, and [;
is a language label. The cardinality of Dy is
|Dauz| = 2m, where m is equal to the batch
size. Text samples wj ... wy € Dsre, and sam-
ples Wy, 41 ... w2m € Digs. As described earlier,
the encoder E receives the text sequences and pro-
duces a sequence of contextualized representations
E(wz) = hz‘ = {hig, hil; hig, ey hm} where hiO
is the representation of the [CLS] token added at
the beginning of every input sequence.

In our work, the LD is a a simple Multi-Layer
Perceptron(MLP) network that takes h;p as input
and produces a single sigmoid output. It’s trained
with the usual binary cross-entropy loss function
objective:

LDyyss = arg filgl L(LD(hi), ;) 2)

As the LD learns to distinguish between the
source and target languages, we want to concur-
rently train the encoder to “fool” the discriminator.
In other words, the encoder must learn to generate
representations that are language-invariant enough
that the LD is unable to classify them while still re-
maining predictive for event-trigger classification.
We optimize the following loss:

i):Yij)) = AL(LD(hio, 1))

n
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Where C refers to the CRF-based classifier net-
work and A is a hyperparameter.

Equation 3 is implemented by using a Gradient-
Reversal Layer (GRL)(Ganin and Lempitsky,
2015) which acts as the identity during the forward
pass, but reverses the direction of the gradients dur-
ing the backward pass. The first term in Equation 3
can, of course, only be applied for annotated data
from the source language.

The GRL is applied to the input vectors, h;g,
of the LD. This way, the LD is being trained to
differentiate between the two languages while the
encoder is trained in the opposite direction, i.e. to
generate sequence representations that are harder
to discriminate.

2.4 Adversarial Training Optimization

ADA has already been shown to be effective at gen-
erating domain-invariant models(Naik and Rose,

2020). However, in regular ADA training, all sam-
ples in a batch, from both the source and target
domains, are treated equally. That is, all samples
are used as examples for the discriminator to learn
how to better discern between the two domains.
We propose that ADA effectiveness can be further
improved by carefully selecting the samples with
which to train the discriminator. We argue that
some samples might be more informative than oth-
ers and that, by only using such informative sam-
ples during training, better adaptation results can
be achieved.

In the context of CLED, where the objective is
to create a language-invariant model, we base our
notion as to what makes a sample more informa-
tive on two factors. First, we argue that presenting
the LD with examples from the source and target
language that are too dissimilar makes its task eas-
ier which, in turn, leads to the LD not learning
the fine-grained distinctions between the languages.
Instead, we propose using samples whose vector
representations h;y are close to each other in the
embedding space. The intuition for this being that,
as representations capture the contextual semantics
of the samples, closer representations correspond
to more similar examples. Second, we suggest that
presenting the LD with samples containing events
should make the encoder incorporate task-specific
information into its representations.

2.4.1 Optimal Transport

We propose using Optimal Transport (OT) as a
natural way to combine our two metrics into a sin-
gle framework for sample selection. OT can be
described as finding the cheapest transportation
cost between two discrete probability distributions.
Formally, it solves the following optimization prob-
lem:

(s, t) ) ds dt

WEIII}[H;t ZZ S t
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s.t. s ~ p(s)and t ~ q(t)

Where S and 7 are two domains with probabil-
ity distributions p(s) and ¢(¢), and C'is a cost func-
tion for mapping S to 7, C(s,t) : S x T — Ry
Finally, 7*(s,t) is the optimal joint distribution
over the set of all joint distributions [ [(s,t). The
problem described by Equation 4 is, of course, in-
tractable. Therefore, we use instead the Sinkhorn



algorithm (Cuturi, 2013) which is an entropy-based
relaxation of the discrete OT problem.

2.4.2 Problem Formulation

We formulate the OT problem as follows: the do-
mains S and 7 are defined as the representation
vectors of the text samples in either the source hj,
or the target h§'0 languages. We use the L2 distance
between these representations as the cost function:

C(ho, hz'o) = |[hip — h;’OH% &)

To define the marginal probability distributions
p(s) and ¢(t) for the S and 7 domains, we pro-
pose including an Event-Presence (EP) prediction
module and use its normalized likelihood scores as
the probability distributions for S and 7. Thus,
the auxiliary dataset D,,, is augmented to in-
clude an event-presence label e; for each sample,
Daur = {(wl, ll, 61), ey (’U)Qm, lgm, €2m)}7 and
the EP module is trained to optimize the following
loss:

E]Dloss = arg %gl E(EP(hZO); ei) (6)

The probability distributions p(s) and p(t) are
the computed as follows:

p(s) = Softmax(EP(hy) | li==3s) (7)
p(t) = Softmax(EP(hy) | l; ==1t)  (8)

2.4.3 Sample Selection

We use the OT solution matrix 7*, where an entry
7*(s, t) represents the optimal cost of transforming
data point s € S into t € T, to compute an the
overall similarity score v; of a sample h;g € S to
the samples in the target domain 7 by using the
average distance:

™o (hS Rl
v; = Z] ( 20 jO) (9)

m

Correspondingly, we compute an overall similar-
ity score v; of each sample h ;o € T to the samples
in the source domain S:

M o* (RS 7ht,
v = Zz ( 10 jO) (10)

m

Lastly, we select a fraction, hyperparameter -y, of
samples with the best similarity scores from both
the source and target languages, and only use these
selected samples during ALA training.

2.5 OACLED Model

We train our Optimized Adversarial Cross-Lingual
Event Detection (OACLED) model end-to-end
with the following loss objective:

qull = CRFpss + aLDjyss + BEPss  (11)

where o and 3 are trade-off hyperparameters.

3 Experiments

3.1 Datasets

We evaluate our model on the ACEO5 (Walker
et al., 2006) dataset which includes annotated event-
trigger data in 3 languages: English, Chinese and
Arabic. To include an additional language in our
experiments, we also evaluate on the ERE ver-
sion of ACEO5 which has annotated data in En-
glish and Spanish. The ACEO5 and ACEO5-ERE
versions, however, do not share the same label
set: ACEOQ5 involves 33 distinct event types while
ACEOS5-ERE involves 38 event types. Dataset char-
acteristics can be found in Appendix A. We follow
the same data pre-processing and splits as in pre-
vious work(M’hamdi et al., 2019) to ensure a fair
comparison.

3.2 Main Results

In our experiments, we work with 8 distinct
language pairs by selecting each of the avail-
able languages as either the source or target lan-
guage: English-Chinese, Chinese-English, English-
Arabic, Arabic-English, Chinese-Arabic, Arabic-
Chinese, English-Spanish, and Spanish-English.
The Chinese-Spanish, Spanish-Chinese, Arabic-
Spanish, and Spanish-Arabic language combina-
tions are unavailable due the previously mentioned
incompatibility between the event type sets in
ACEO5 and ACEO5-ERE.

Tables 1 and 2 show the results of our exper-
iments on the ACEO5 and ACEO5-ERE datasets,
respectively.

We compare our OACLED model against 2 rele-
vant baselines. BERT-CRF (M’hamdi et al., 2019),
and XLM-R-CRF which is equivalent in all regards
to BERT-CRF except that it uses XLM-RoBERTa
as the encoder. The cross-lingual experiments in
the original BERT-CREF paper included results for
English being used as the source language, and Chi-
nese and Arabic used as targets. The corresponding
entries in Table 1 were taken directly from their pa-
per. In our experiments, we use bert-base-cased



Target
Source Model English | Chinese | Arabic
BERT-CRF X 68.5 30.9
English | XLM-R-CRF X 70.49 43.54
OACLED X 74.64 44.86
BERT-CRF 37.52 X 35.05
Chinese | XLM-R-CRF | 41.72 X 32.76
OACLED 45.77 X 34.48
BERT-CRF 40.1 58.78 X
Arabic | XLM-R-CRF | 4522 61.76 X
OACLED 47.98 63.13 X

Table 1: Results on the ACEQ5 dataset.

Target
Source Model English | Spanish
BERT-CRF X 43.28
English | XLM-R-CRF X 46.79
OACLED X 47.69
BERT-CRF 39.8 X
Spanish | XLM-R-CRF | 45.61 X
OACLED 47.5 X

Table 2: Results on ACEO5-ERE dataset.

and xIm-roberta-base for the encoders, parameters
are tuned on the development data of the source
language, and all entries are the average of five
runs.

From Tables 1 and 2, we can observe a substan-
tial performance increase by performing the trivial
change of replacing BERT with XLM-RoBERTa
as the encoder. Furthermore, our OACLED model
clearly and consistently outperforms the baselines
for all language pairings, with the exception of
the Chinese-Arabic pair. We attribute this to the
impaired performance of XLM-RoBERTa as the en-
coder for that specific pair as can be confirmed by
the poor performance of the XLM-R-CRF baseline
on the same configuration. Most importantly, OA-
CLED’s improvement over the XLM-R-CRF base-
line is present in every configuration, which con-
firms the effectiveness of our optimized approach
to ALA training.

3.3 Ablation Study

We identify 2 main components in our approach:
using ALA to create refined language-invariant rep-
resentations, and optimizing the adversarial train-
ing process by selecting a subset of samples cho-
sen with OT to incorporate our measures of infor-
mativeness into the sample selection process. Of
course, removing ALA training entirely restores
the model to the baseline. However, adversarial
training optimization via OT has various aspects

to it. In order to understand the contribution of
these aspects, we explore four different models:
OACLED-OT presents the effects of removing sam-
ple selection entirely and using all available sam-
ples to train the LD; OACLED-L2 uses a constant
distance between the unlabeled samples instead the
standard L2 distance used in the Sinkhorn algo-
rithm; OACLED-EP completely removes the EP
module and a uniform distribution is used as the
probability distributions for both languages; finally,
OACLED-ED-Loss keeps the EP module, but re-
moves its F P4 term from Equation 11. The per-
formance results of these models is presented in
Table 3. Due to space limitations, we present the
results of experiments using English as the sole
source language. We, however, found consistency
in the displayed effects for different source/target
language configurations.

Model version Target Language
English Chinese | Arabic | Spanish
OACLED-OT 70.94 40.55 44.96
OACLED-L2 71.35 41.79 44.39
OACLED-EP 73.08 42.81 46.99
OACLED-EP-Loss | 72.93 434 46.35
OACLED 74.64 44.86 47.69

Table 3: Ablation experiment results

As expected, removing the sample selection
through OT leads to the worst performance drop.
This highlights the importance of selecting informa-
tive examples for the LD. Furthermore, removing
the cost function also hurts performance greatly,
which shows that a proper distance function is
needed for the OT algorithm to work effectively.
While the effects of removing the EP module and
its corresponding loss term are not of the same
magnitude, they are still significant. These results
support our claim for the need and utility of all the
components in our approach, showing that their
inclusion is crucial in achieving state-of-the-art per-
formance.

3.4 Language Model Finetuning

The key contribution of our approach is to exploit
unlabeled data in the target language, which is usu-
ally abundant, by introducing it into the training
process to improve our model’s language-invariant
qualities.

To confirm the utility of our approach, Table 4
contrasts our model’s performance against a base-
line whose encoder has been finetuned with the



same unlabeled data using the standard masked
language model objective.

Model Version Target Language
English Chinese | Arabic | Spanish
Finetuned XLM-R | 71.06 43.71 47.82
OACLED 74.64 44.86 47.69

Table 4: OACLED performance versus a baseline using
an encoder finetuned with unlabeled data.

It can be observed that our model outperforms
the finetuned baseline in two out of the three target
languages. Additionally, the difference in perfor-
mance in those two instances is considerably larger
(3.58% and 1.15%), than the setting in which the
baseline performs better (0.13%).

3.5 Analysis

3.5.1 Learned Representation Distances

First, we look at the distance between the sentence-
level representations h;g generated by the encoder
for different source/target language pairs. Figure 1

shows a plot of such distances using cosine distance
as the distance function.

English Chinese Arabig,_g
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Figure 1: Distance between sentence representations
for different language pairs.

When computing the correlation with the per-
formance results in Table 1, we obtain a score
R = —0.6616, meaning there is moderate nega-
tive correlation between the distance of the rep-
resentations and model performance, i.e. closer
representations lead to better performance.

Similarly, Table 5 shows a comparison of the
distances between the representations generated by
OACLED and those obtained by the XLM-R-CRF
baseline.

We observe that OACLED representations are
closer, by several orders of magnitude, than those
obtained by the baseline. This supports our claim
that our model’s encoder generates more refined

Cosine Distance
Source/Target | Baseline | OACLED
English/Chinese | 3.64e-3 3.93e-6
English/Arabic | 7.71e-2 2.08e-5
English/Spanish | 5.4e-3 5.3e-6
Chinese/English | 3.62e-3 3.87e-6
Arabic/English | 4.16e-2 1.02e-5
Spanish/English | 6.87e-3 1.49e-5

Table 5: Comparison of representation-vector distances
for language pairs between our model and the baseline.

language-invariant representations than those ob-
tained by the default version of XLM-RoBERTa.

3.5.2 Access to Labeled Target Data

Previously, we discussed how a key feature of our
approach is that it does not require annotated data
in the target language and, instead, leverages the
use of unlabeled data which is readily available.
Nonetheless, we also explore the performance of
our model in the event that there exists a small
amount of annotated target data available for train-
ing. Figure 2 shows the results of our experiments
when using different amounts of labeled target data
during training.
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Figure 2: Model performance when training on small
quantities of labeled target data. The X axis presents
the percentage (0 - 10%) of data used out of the entire
training set of the target language.

It can be observed that OACLED consistently



outperforms the baseline even when there is some
availability of annotated data. Additionally, perfor-
mance steadily increases as more and more data
is used. This conforms to expectations, and con-
firms that having labeled data in the target language
available for training is ultimately beneficial to the
model’s performance.

3.5.3 Case Study

Next, we look into our model’s predictions and
analyse instances where it outperforms the base-
line to exemplify the advantages of dealing with
optimized language-invariant representations. We
identify two important patterns.

First, our model is able to better classify events
in the target language that involve trigger words
that have distinct connotations that depend on con-
text. Specially those that are two distinct words
in the source language. For example, the Span-
ish word “juicio” can have two distinct meanings
that are different words in English: “trial” and
“judgement”. Our model correctly classifies it as a
JUSTICE:TRIAL-HEARING-type trigger in the
sentence “Dos llamados a juicio fueron hechos
por un jurado federal investigador”, meanwhile
the baseline fails to even recognize it as a trigger.
Another example is the word “detenido”, an adjec-
tive that can mean both “detained”, in a criminal
context, and “stopped”, as in halted. Our model
correctly classifies it in the sentence “Padilla no
deberia permanecer detenido durante meses ale-
jado de otros reos” as a JUSTICE:ARREST-JAIL
trigger while the baseline fails to detect the event.

Second, our model can correctly classify differ-
ent verb conjugation variants that do not exist in
the source language. For instance, our model cor-
rectly recognizes the words “venderlos”, “vender”,
“vendes”, and “vendedor” (variants of the
verb “to buy”) as TRANSACTION:TRANSFER-
OWNERSHIP triggers whereas the baseline
incorrectly classifies them as being of the
TRANSACTION:TRANSFER-MONEY type. A
similar example are the trigger words “matar”,
“mato”, “homicidio”, “asesinato”, all of which re-
fer to the act of killing or murdering. Our model
correctly tags them as LIFE:DIE events while
the baseline incorrectly classifies them as CON-
FLICT:ATTACK.

These findings illustrate how, by introducing ad-
ditional context in the form of unlabeled data, our
model is able to learn fine-grained word representa-
tions that better capture the semantics of the words

in the target language, and successfully deals with
difficult cross-lingual issues.

4 Related Work

Feature-based methods were the basis of early ED
approaches (Ahn, 2006; Ji and Grishman, 2008;
Patwardhan and Riloff, 2009; Liao and Grish-
man, 2010a,b; Hong et al., 2011; McClosky et al.,
2011; Li et al., 2013; Miwa et al., 2014; Yang and
Mitchell, 2016). More recent efforts have primarily
made use of deep learning techniques (Nguyen and
Grishman, 2015; Chen et al., 2015; Nguyen et al.,
2016a,b; Sha et al., 2018; Zhang et al., 2019; Yang
et al., 2019; Nguyen and Nguyen, 2019; Zhang
et al., 2020),

Works on CLED generally make use of cross-
lingual resources employed to address the differ-
ences between languages such as bilingual dictio-
naries or parallel corpora (Muis et al., 2018; Liu
et al., 2019) and, more recently, pre-trained MLMs
(M’hamdi et al., 2019; Hambardzumyan et al.,
2020). Unlike these approaches, our method lever-
ages using unlabeled data to hone the language-
invariant qualities of the pre-trained MLMs.

Additional examples of downstream applica-
tions of Cross-lingual Learning (CLL) are docu-
ment classification (Holger and Xian, 2018), named
entity recognition (Xie et al., 2018) and part-of-
speech tagging (Cohen et al., 2011). For a thorough
review on CLL, we refer the reader to (Pikuliak
et al., 2021).

Finally, our ALA approach was inspired by mod-
els in domain adaptation research (Ganin and Lem-
pitsky, 2015; Naik and Rose, 2020). Our method
improves upon these approaches optimizing the
adversarial training process by selecting the most
informative examples from the unlabeled data.

5 Conclusion

In this work we present OACLED, a new model
for cross-lingual event detection that leverages the
use of ADA and OT to achieve new state-of-the-
art performance. Our experiments on 8 different
language pairs demonstrate OACLED’s robustness
and effectiveness at generating refined language-
invariant representations that allow for better event
detection results. Our analysis of its intermediate
outputs and predictions confirm that OACLED’s
representations are indeed closer to each other and
that this proximity translates into better handling
of difficult cross-lingual instances.



References

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and
Reasoning about Time and Events.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Shay B. Cohen, Dipanjan Das, and Noah Smith. 2011.
Unsupervised structure prediction with nonparallel
multilingual guidance. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Proceedings
of the 26th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’13,
page 2292-2300, Red Hook, NY, USA. Curran As-
sociates Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 1180-1189,
Lille, France. PMLR.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2020. The role of alignment of
multilingual contextualized embeddings in zero-shot
cross-lingual transfer for event extraction. In Collab-
orative Technologies and Data Science in Artificial
Intelligence Applications.

Schwenk Holger and Li Xian. 2018. A corpus for mul-
tiligual document classification in eight languages.
In Proceedings of the Eleventh International Con-

ference on Language Resources and Evaluation
(LREC).

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Shasha Liao and Ralph Grishman. 2010a. Filtered
ranking for bootstrapping in event extraction. In
Proceedings of the International Conference on
Computational Linguistics (COLING).

Shasha Liao and Ralph Grishman. 2010b. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the Annual Meet-

ing of the Association for Computational Linguistics
(ACL).

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2019.
Neural cross-lingual event detection with minimal
parallel resources. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 738-748, Hong Kong, China. As-
sociation for Computational Linguistics.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing. In BioNLP Shared Task Workshop.

Meryem M’hamdi, Marjorie Freedman, and Jonathan
May. 2019. Contextualized cross-lingual event trig-
ger extraction with minimal resources. In Proceed-
ings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), pages 656—665,
Hong Kong, China. Association for Computational
Linguistics.

Makoto Miwa, Paul Thompson, Ioannis Korkontzelos,
and Sophia Ananiadou. 2014. Comparable study
of event extraction in newswire and biomedical do-
mains. In Proceedings of the International Confer-
ence on Computational Linguistics (COLING).

Aldrian Obaja Muis, Naoki Otani, Nidhi Vyas,
Ruochen Xu, Yiming Yang, Teruko Mitamura, and
Eduard Hovy. 2018. Low-resource cross-lingual
event type detection via distant supervision with
minimal effort. In Proceedings of the 27th Interna-
tional Conference on Computational Linguistics.

Aakanksha Naik and Carolyn Rose. 2020. Towards
open domain event trigger identification using ad-
versarial domain adaptation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7618-7624, Online. As-
sociation for Computational Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016a. Joint event extraction via recurrent neu-
ral networks. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural
networks. In Proceedings of the 1st ACL Workshop
on Representation Learning for NLP (RepL4NLP).


https://doi.org/10.18653/v1/D19-1068
https://doi.org/10.18653/v1/D19-1068
https://doi.org/10.18653/v1/D19-1068
https://doi.org/10.18653/v1/K19-1061
https://doi.org/10.18653/v1/K19-1061
https://doi.org/10.18653/v1/K19-1061
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681
https://doi.org/10.18653/v1/2020.acl-main.681

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics

(ACL).

Trung Minh Nguyen and Thien Huu Nguyen. 2019.
One for all: Neural joint modeling of entities and
events. In AAAL

Siddharth Patwardhan and Ellen Riloff. 2009. A uni-
fied model of phrasal and sentential evidence for
information extraction. In Proceedings of the Con-

ference on Empirical Methods in Natural Language
Processing (EMNLP).

Matuas Pikuliak, Marian §imko, and Maria Bielikova.
2021.  Cross-lingual learning for text process-
ing: A survey. Expert Systems with Applications,
165:113765.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In Proceedings of the Associ-
ation for the Advancement of Artificial Intelligence
(AAAI).

C. Villani. 2008. Optimal Transport: Old and New.
Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus. In Technical report, Linguistic Data
Consortium.

Wei Xiang and Bang Wang. 2019. A survey of event ex-
traction from text. IEEE Access, 7:173111-173137.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.
Smith, and Jaime G. Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document con-
text. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan,
and Dongsheng Li. 2019. Exploring pre-trained lan-
guage models for event extraction and generation. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Junchi Zhang, Yanxia Qin, Yue Zhang, Mengchi Liu,
and Donghong Ji. 2019. Extracting entities and
events as a single task using a transition-based neu-
ral model. In IJCAL

10

Yunyan Zhang, Guangluan Xu, Yang Wang, Daoyu
Lin, Feng Li, Chenglong Wu, Jingyuan Zhang, and
Tinglei Huang. 2020. A question answering-based
framework for one-step event argument extraction.
In IEEE Access, vol 8, 65420-65431.


https://doi.org/https://doi.org/10.1016/j.eswa.2020.113765
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113765
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113765
https://books.google.com/books?id=hV8o5R7_5tkC
https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.1109/ACCESS.2019.2956831

A  Appendix A

A.1 Dataset Characteristics

Dataset Language | Split | Sentences | Events
Train 19,240 4,419
English Dev 902 468
Test 676 424
Train 6,841 2,926
ACE05 Chinese | Dev 526 217
Test 547 190
Train 2,555 1,793
Arabic Dev 301 230
Test 262 247
Train 14,219 6,419
English Dev 1,162 552
Test 1,129 559
ACE(S-ERE Train | 7,067 3272
Spanish | Dev 556 210
Test 546 269

Table 6: Dataset statistics.

B Reproducibility Checklist

* Source Code: Upon the acceptance, we will
release the source code via a public GitHub
repository.

¢ Computing Infrastructure: In this work, we
use a single Tesla V100-SXM2 GPU with
32GB memory operated by Red Hat Enter-
prise Linux Server 7.8 (Maipo). PyTorch 1.4.0
is used to implement the models.

Evaluation Metric: We report F1 for trigger
classification computed using the seqeval !
framework for sequence labeling evaluation
based on the CoNLL-2000 shared task, com-
plying with previous work (M’hamdi et al.,
2019). The reported results are the average
performance of 5 model runs with different
random seeds.

(Hyper-)parameters: Our full model has
278.5M parameters. However, the vast ma-
jority of these come from the XLM-Roberta
transformer (278M parameters), the rest of
our model accounts for < 500K parameters.

We fine-tune the hyper-parameters for our OA-
CLED model using the development data. We
suggest the following values for fine-tuning:

— AdamW as the optimizer.

— Using 5 warm up epochs.

"https://github.com/chakki-works/seqeval

11

— A learning rate of le™> for the trans-

former parameters and of le~* for the
rest of the parameters. We arrived
at this values after searching among
[1e76,3e7 6, 1e7°, 372, 1e74, 3e74].
A batch size of 16, chosen between
[8,10, 16,24, 32].

300 for the dimensionality of the layers
in feed-forwards networks, chosen from
[100, 200, 300, 400, 500].

A ~ = 0.5 for the percentage of samples
used in adversarial training.

A X = 0.001 as the scaling factor of the
GRL layer.

Ana = 1and 8 = 0.001 as the trade-off
parameters of the LD loss and ED loss,
respectively.

A dropout of 10% for added regulariza-
tion during training.



