
Cross-Lingual Event Detection via Optimized Adversarial Training

Anonymous ACL submission

Abstract

In this work, we focus on Cross-Lingual Event001
Detection (CLED) where a model is trained002
on data from a source language but its perfor-003
mance is evaluated on data from a second, tar-004
get, language. Most recent works in this area005
have harnessed the language-invariant qual-006
ities displayed by pre-trained Multi-lingual007
Language Models (MLM). Their performance,008
however, reveals there is room for improve-009
ment as they mishandle delicate cross-lingual010
instances. We leverage the use of unlabeled011
data to train a Language Discriminator (LD)012
to discern between the source and target lan-013
guages. The LD is trained in an adver-014
sarial manner so that our encoder learns to015
produce refined, language-invariant represen-016
tations that lead to improved CLED perfor-017
mance. More importantly, we optimize the ad-018
versarial training by only presenting the LD019
with the most informative samples. We base020
our intuition about what makes a sample in-021
formative on two disparate metrics: sample022
similarity and event presence. Thus, we pro-023
pose using Optimal Transport (OT) as a so-024
lution to naturally combine these two distinct025
information sources into the selection process.026
Extensive experiments on 8 different language027
pairs, using 4 languages from unrelated fam-028
ilies, show the flexibility and effectiveness of029
our model that achieves new state-of-the-art re-030
sults.031

1 Introduction032

Event Detection (ED) is an important sub-task033

within the broader Information Extraction (IE)034

task. ED consists in being able to identify the035

words, commonly referred to as triggers, that de-036

note the occurrence of events in a sentence, and037

classify them into a discrete set of event types.038

For example, in the sentence “Jamie bought a039

car yesterday.”, bought is considered the trigger040

of a TRANSACTION:TRANSFER-OWNERSHIP041

event type. It is a very well studied task in042

which there have been lots of previous research ef- 043

forts (Ahn, 2006; Ji and Grishman, 2008; Patward- 044

han and Riloff, 2009; Liao and Grishman, 2010a,b; 045

Hong et al., 2011; McClosky et al., 2011; Li et al., 046

2013; Miwa et al., 2014; Yang and Mitchell, 2016; 047

Nguyen and Grishman, 2015; Chen et al., 2015; 048

Nguyen et al., 2016a,b; Sha et al., 2018; Zhang 049

et al., 2019; Yang et al., 2019; Nguyen and Nguyen, 050

2019; Zhang et al., 2020; Xiang and Wang, 2019). 051

Nonetheless, ED remains quite a challenging 052

task as the context in which a trigger word occurs 053

can change its corresponding type completely, and 054

the same event might also be expressed by entirely 055

different words/phrases. The vast majority of the 056

aforementioned efforts, however, are limited to a 057

monolingual setting, i.e approaches that perform 058

ED on text belonging to a single language. Ad- 059

ditionally, most ED-related research focuses on a 060

small set of popular languages, such as Chinese 061

or English. This, in turn, means that most of the 062

available annotated data belongs to these, aptly 063

named, high-resource languages. Data scarcity 064

becomes a critical problem for low-resource lan- 065

guages for which the amount of available train- 066

ing data is minimal or non-existent. Consequently, 067

some approaches have proposed taking advantage 068

of the widely available unlabeled data in a semi- 069

supervised manner (Muis et al., 2018). 070

Cross-lingual ED (CLED) proposes the more 071

challenging scenario of creating models that effec- 072

tively perform ED on data belonging to more than 073

one language. This entails additional challenges for 074

a CLED model. For instance, trigger words present 075

in one language might not exist in another one. An 076

example of this phenomenon are verb conjugations 077

where some tenses only exist in some languages, 078

which is commonplace in ED as event triggers are 079

usually related to the verbs in a sentence. Another 080

problematic issue are trigger words with different 081

meanings that are each distinct words in other lan- 082

guages. For example, the word “juicio” in Spanish 083
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can be either “judgement” or “trial” in English, de-084

pending on the context. These, and other similar,085

issues make CLED a challenging task.086

A compelling approach to creating a cross-087

lingual model is to use transfer learning which088

attempts to transfer the performance of a model089

trained on a source language onto a second target090

language. The general idea is leveraging the exist-091

ing high-quality annotated data available for a high-092

resource language to train a model in a way that093

allows it to learn the language-invariant character-094

istics of the task at hand, ED in this case, so that it095

also performs effectively on text from a second lan-096

guage. Prior work on transfer learning for CLED097

has relied on pre-trained Multilingual Language098

Models (MLMs), such as mBERT (Devlin et al.,099

2019), to take advantage of their innate language-100

invariant qualities. Yet, their performance still101

shows room for improvement as they are unable102

to handle the difficult instances, unique to cross-103

lingual settings, mentioned earlier. We identify a104

significant shortcoming of previous CLED efforts105

in that they do not exploit the abundant supply of106

unlabeled data: even though MLMs are trained on107

immense amounts of it, unlabeled data is not used108

when fine-tuning for the ED task. It is our intuition109

that by integrating unlabeled data into the training110

process, the model is exposed to more language111

context which should help deal with issues such as112

verb variation and multiple connotations.113

As such, in this work we propose using Adver-114

sarial Language Adaptation (ALA), inspired by115

Adversarial Domain Adaptation (ADA) (Ganin and116

Lempitsky, 2015), which aims at creating cross-117

lingual models able to successfully perform ED on118

both a source language and a target language. The119

key idea is to generate language-invariant repre-120

sentations that are not-indicative of language but121

remain informative for the ED task. A fundamen-122

tal characteristic of our ALA approach is its lack123

of requirements for annotated data in the target124

language. Instead, unlabeled data, from both the125

source and target languages, is used to train a Lan-126

guage Discriminator (LD) network that learns to127

discern between the two. The adversarial part128

comes from the fact that the encoder is trained in129

the reverse direction of the LD: as the LD becomes130

better at distinguishing between languages, the en-131

coder learns to generate more language-invariant132

representations in an attempt to fool the LD.133

Furthermore, contrary to past uses of ADA134

where the same importance is given to all unla- 135

beled samples, we recognize that such course of 136

action is sub-optimal as certain samples are bound 137

to be more informative for the discriminator than 138

others. For example, we would like to present the 139

LD with the samples that allow it to learn the fine- 140

grained distinctions between the source and target 141

languages, instead of relying on syntactic differ- 142

ences. Moreover, we suggest it would be beneficial 143

for the LD, and the encoder, to be trained with 144

examples containing events, instead of non-event 145

samples, as then the presence of an event can be 146

incorporated into the generated representations. 147

Hence, we propose refining the adversarial train- 148

ing process by only keeping the most informative 149

examples while disregarding less useful ones. Our 150

intuition as to what makes samples more informa- 151

tive for CLED is two-fold: First, we presume that 152

presenting the LD with examples that are too dif- 153

ferent makes the discrimination task too simple. 154

As mentioned previously, we would like the LD to 155

learn a fine-grained distinction between the source 156

and target languages which, in turn, improves the 157

language-invariance of the encoder’s representa- 158

tions. Thus, we suggest presenting the LD with 159

examples that have similar contextual semantics. 160

Second, we consider sentences containing events 161

to be more relevant for the LD. Accordingly, such 162

sentences should have a larger probability of being 163

selected for ALA training. 164

One challenge of using these two criteria for our 165

ALA sample selection process is that they come 166

with two different measures which are hard to com- 167

bine. In consequence, we propose using Optimal 168

Transport (OT) (Villani, 2008) as a natural solution 169

to simultaneously incorporate both the similarity 170

between examples and the likelihood of the sam- 171

ples containing an event into a single framework. 172

OT is, in broad terms, the problem of finding out 173

the cheapest transformation between two discrete 174

probability distributions. It requires a cost function 175

to determine the cost of transforming a data point 176

in one distribution into a data point in the second 177

distribution. When the cost function is based on a 178

valid distance function, the minimum cost is known 179

as the Wasserstein distance. 180

Therefore, we cast sample selection as an OT 181

problem in which we attempt to find the best align- 182

ment between the samples from the source and 183

target languages. Similarity between samples is 184

scored through the Euclidean distance of their con- 185
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textualized vector representations. The probability186

distributions are obtained by introducing an Event187

Presence (EP) prediction network trained to deter-188

mine whether a sentence in the batch contains an189

event or not, its normalized outputs are used as190

inputs for the OT alignment algorithm.191

For our experiments, we focus on the widely192

used ACE05 and ACE05-ERE datasets (Walker193

et al., 2006) which, in conjuction, contain event-194

annotations in 4 different languages: English, Span-195

ish, Chinese, and Arabic. We work on 8 different196

language pairs by selecting different languages as197

the source and target. Our proposed model obtains198

new state-of-the-art results with considerable per-199

formance improvements (+ 2-3% in F1 scores) over200

competitive baselines and previously published re-201

sults (M’hamdi et al., 2019). These results demon-202

strate our model’s efficacy and applicability at cre-203

ating CLED systems.204

2 Model205

2.1 Problem Definition206

Following prior works [cite], we treat ED as a207

sequence labeling problem. Given a set D of208

word sequences wi = {wi1, wi2, ..., win−1, win}209

and their corresponding label sequences yi =210

{yi1, yi2, ..., yin−1, yin}, we use an encoder net-211

work E to obtain a contextualized vector rep-212

resentation of the words in the input sequence213

hi = E(wi) = {hi1, hi2, ..., hin−1, hin}. Then,214

we feed the representations hi into a prediction net-215

work P to compute a distribution over the set of216

possible labels and train it in a supervised manner217

using the negative log-likelihood function LP :218

LP = −
|D|∑
i=1

n∑
j=1

logP (yij |hij) (1)219

In the cross-lingual transfer-learning setting, the220

data used to train the model and the data on which221

the model is tested come from different languages222

known as the source and target, respectively. As223

such, we deal with two datasets Dsrc and Dtgt. We224

assume that we do not have access to the gold labels225

of the target language ytgt, other than to evaluate226

our CLED model at testing time.227

Our goal is to define a model able to generate228

language-invariant word representations that are229

refined enough so that cross-lingual issues, such230

as the ones described previously, are properly han-231

dled.232

2.2 Baseline Model 233

Here we briefly describe the BERT-CRF 234

model (M’hamdi et al., 2019) which was the 235

previous state-of-the-art and serves as our baseline. 236

As its name implies, BERT-CRF uses mBERT (De- 237

vlin et al., 2019) as its encoder which generates 238

robust, contextualized representations for words 239

from different languages. For words that are 240

split into multiple word-pieces, the average of 241

the representation vectors for all comprising 242

sub-pieces is used as the representation of the full 243

word. 244

For classification purposes, instead of assigning 245

the labels of each token independently, BERT-CRF 246

leverages using a Conditional Random Field (CRF) 247

layer on top of the prediction network to better cap- 248

ture the interactions between the label sequences. 249

As such, the representation vectors hi of the words 250

in the sequence are fed to a CRF layer which finds 251

the optimal label sequence. 252

2.3 Adversarial Language Adaptation 253

The pre-trained versions of MLMs like mBERT or 254

XLM-RoBERTa generate contextualized represen- 255

tations with a certain degree of language-invariance. 256

This can be confirmed by their successful appli- 257

cation in cross-lingual settings (M’hamdi et al., 258

2019). However, a problem with these works is 259

that they are unable to learn the nuances of the 260

target language such as verb variations that do not 261

exist in the source language used to train them. 262

It is our intuition, nonetheless, that refining these 263

representations to achieve an even greater level of 264

language-invariance would be ultimately beneficial 265

in a cross-lingual system. 266

As such, we propose Adversarial Language 267

Adaptation (ALA), a technique inspired by Ad- 268

versarial Domain Adaptation (ADA) (Ganin and 269

Lempitsky, 2015) which is used to create domain- 270

invariant models. With ALA, we aim to refine 271

our multilingual transformer encoder so that its 272

obtained representations display better language- 273

invariant qualities. Our ALA framework consists 274

in including an additional module called the Lan- 275

guage Discriminator whose purpose is to learn 276

language-dependant features and be able to differ- 277

entiate between the samples from either the source 278

or the target languages. 279

Given that annotated events are not needed 280

to train the LD, we can use data from both 281

Dsrc and Dtgt. An auxiliary dataset Daux = 282
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{(w1, l1), . . . , (w2m, l2m)} is created where wi is283

a text sequence from either Dsrc or Dtgt, and li284

is a language label. The cardinality of Daux is285

|Daux| = 2m, where m is equal to the batch286

size. Text samples w1 . . . wm ∈ Dsrc, and sam-287

ples wm+1 . . . w2m ∈ Dtgt. As described earlier,288

the encoder E receives the text sequences and pro-289

duces a sequence of contextualized representations290

E(wi) = hi = {hi0, hi1, hi2, . . . , hin} where hi0291

is the representation of the [CLS] token added at292

the beginning of every input sequence.293

In our work, the LD is a a simple Multi-Layer294

Perceptron(MLP) network that takes hi0 as input295

and produces a single sigmoid output. It’s trained296

with the usual binary cross-entropy loss function297

objective:298

LDloss = argmin
LD
L(LD(hi0), li) (2)299

As the LD learns to distinguish between the300

source and target languages, we want to concur-301

rently train the encoder to “fool” the discriminator.302

In other words, the encoder must learn to generate303

representations that are language-invariant enough304

that the LD is unable to classify them while still re-305

maining predictive for event-trigger classification.306

We optimize the following loss:307

argmin
E,C

n∑
j=1

(L(C(hij), yij))− λL(LD(hi0, li))

(3)

308

Where C refers to the CRF-based classifier net-309

work and λ is a hyperparameter.310

Equation 3 is implemented by using a Gradient-311

Reversal Layer (GRL)(Ganin and Lempitsky,312

2015) which acts as the identity during the forward313

pass, but reverses the direction of the gradients dur-314

ing the backward pass. The first term in Equation 3315

can, of course, only be applied for annotated data316

from the source language.317

The GRL is applied to the input vectors, hi0,318

of the LD. This way, the LD is being trained to319

differentiate between the two languages while the320

encoder is trained in the opposite direction, i.e. to321

generate sequence representations that are harder322

to discriminate.323

2.4 Adversarial Training Optimization324

ADA has already been shown to be effective at gen-325

erating domain-invariant models(Naik and Rose,326

2020). However, in regular ADA training, all sam- 327

ples in a batch, from both the source and target 328

domains, are treated equally. That is, all samples 329

are used as examples for the discriminator to learn 330

how to better discern between the two domains. 331

We propose that ADA effectiveness can be further 332

improved by carefully selecting the samples with 333

which to train the discriminator. We argue that 334

some samples might be more informative than oth- 335

ers and that, by only using such informative sam- 336

ples during training, better adaptation results can 337

be achieved. 338

In the context of CLED, where the objective is 339

to create a language-invariant model, we base our 340

notion as to what makes a sample more informa- 341

tive on two factors. First, we argue that presenting 342

the LD with examples from the source and target 343

language that are too dissimilar makes its task eas- 344

ier which, in turn, leads to the LD not learning 345

the fine-grained distinctions between the languages. 346

Instead, we propose using samples whose vector 347

representations hi0 are close to each other in the 348

embedding space. The intuition for this being that, 349

as representations capture the contextual semantics 350

of the samples, closer representations correspond 351

to more similar examples. Second, we suggest that 352

presenting the LD with samples containing events 353

should make the encoder incorporate task-specific 354

information into its representations. 355

2.4.1 Optimal Transport 356

We propose using Optimal Transport (OT) as a 357

natural way to combine our two metrics into a sin- 358

gle framework for sample selection. OT can be 359

described as finding the cheapest transportation 360

cost between two discrete probability distributions. 361

Formally, it solves the following optimization prob- 362

lem: 363

π∗(s, t) = min
π∈

∏
(s,t)

∑
s∈S

∑
t∈T

π(s, t) C(s, t) ds dt

(4)

364

s.t. s ∼ p(s) and t ∼ q(t) 365

Where S and T are two domains with probabil- 366

ity distributions p(s) and q(t), and C is a cost func- 367

tion for mapping S to T , C(s, t) : S × T −→ R+. 368

Finally, π∗(s, t) is the optimal joint distribution 369

over the set of all joint distributions
∏
(s, t). The 370

problem described by Equation 4 is, of course, in- 371

tractable. Therefore, we use instead the Sinkhorn 372
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algorithm (Cuturi, 2013) which is an entropy-based373

relaxation of the discrete OT problem.374

2.4.2 Problem Formulation375

We formulate the OT problem as follows: the do-376

mains S and T are defined as the representation377

vectors of the text samples in either the source hsi0378

or the target htj0 languages. We use the L2 distance379

between these representations as the cost function:380

C(hsi0, h
t
j0) = ||hsi0 − htj0||22 (5)381

To define the marginal probability distributions382

p(s) and q(t) for the S and T domains, we pro-383

pose including an Event-Presence (EP) prediction384

module and use its normalized likelihood scores as385

the probability distributions for S and T . Thus,386

the auxiliary dataset Daux is augmented to in-387

clude an event-presence label ei for each sample,388

Daux = {(w1, l1, e1), . . . , (w2m, l2m, e2m)}, and389

the EP module is trained to optimize the following390

loss:391

EPloss = argmin
EP
L(EP (hi0), ei) (6)392

The probability distributions p(s) and p(t) are393

the computed as follows:394

p(s) = Softmax(EP (hsi0) | li == s) (7)395

p(t) = Softmax(EP (hti0) | li == t) (8)396

2.4.3 Sample Selection397

We use the OT solution matrix π∗, where an entry398

π∗(s, t) represents the optimal cost of transforming399

data point s ∈ S into t ∈ T , to compute an the400

overall similarity score vi of a sample hi0 ∈ S to401

the samples in the target domain T by using the402

average distance:403

vi =

∑m
j π
∗(hsi0, h

t
j0)

m
(9)404

Correspondingly, we compute an overall similar-405

ity score vj of each sample hj0 ∈ T to the samples406

in the source domain S:407

vj =

∑m
i π
∗(hsi0, h

t
j0)

m
(10)408

Lastly, we select a fraction, hyperparameter γ, of409

samples with the best similarity scores from both410

the source and target languages, and only use these411

selected samples during ALA training.412

2.5 OACLED Model 413

We train our Optimized Adversarial Cross-Lingual 414

Event Detection (OACLED) model end-to-end 415

with the following loss objective: 416

Lfull = CRFloss + αLDloss + βEPloss (11) 417

where α and β are trade-off hyperparameters. 418

3 Experiments 419

3.1 Datasets 420

We evaluate our model on the ACE05 (Walker 421

et al., 2006) dataset which includes annotated event- 422

trigger data in 3 languages: English, Chinese and 423

Arabic. To include an additional language in our 424

experiments, we also evaluate on the ERE ver- 425

sion of ACE05 which has annotated data in En- 426

glish and Spanish. The ACE05 and ACE05-ERE 427

versions, however, do not share the same label 428

set: ACE05 involves 33 distinct event types while 429

ACE05-ERE involves 38 event types. Dataset char- 430

acteristics can be found in Appendix A. We follow 431

the same data pre-processing and splits as in pre- 432

vious work(M’hamdi et al., 2019) to ensure a fair 433

comparison. 434

3.2 Main Results 435

In our experiments, we work with 8 distinct 436

language pairs by selecting each of the avail- 437

able languages as either the source or target lan- 438

guage: English-Chinese, Chinese-English, English- 439

Arabic, Arabic-English, Chinese-Arabic, Arabic- 440

Chinese, English-Spanish, and Spanish-English. 441

The Chinese-Spanish, Spanish-Chinese, Arabic- 442

Spanish, and Spanish-Arabic language combina- 443

tions are unavailable due the previously mentioned 444

incompatibility between the event type sets in 445

ACE05 and ACE05-ERE. 446

Tables 1 and 2 show the results of our exper- 447

iments on the ACE05 and ACE05-ERE datasets, 448

respectively. 449

We compare our OACLED model against 2 rele- 450

vant baselines. BERT-CRF (M’hamdi et al., 2019), 451

and XLM-R-CRF which is equivalent in all regards 452

to BERT-CRF except that it uses XLM-RoBERTa 453

as the encoder. The cross-lingual experiments in 454

the original BERT-CRF paper included results for 455

English being used as the source language, and Chi- 456

nese and Arabic used as targets. The corresponding 457

entries in Table 1 were taken directly from their pa- 458

per. In our experiments, we use bert-base-cased 459
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Target
Source Model English Chinese Arabic

English
BERT-CRF X 68.5 30.9

XLM-R-CRF X 70.49 43.54
OACLED X 74.64 44.86

Chinese
BERT-CRF 37.52 X 35.05

XLM-R-CRF 41.72 X 32.76
OACLED 45.77 X 34.48

Arabic
BERT-CRF 40.1 58.78 X

XLM-R-CRF 45.22 61.76 X
OACLED 47.98 63.13 X

Table 1: Results on the ACE05 dataset.

Target
Source Model English Spanish

English
BERT-CRF X 43.28

XLM-R-CRF X 46.79
OACLED X 47.69

Spanish
BERT-CRF 39.8 X

XLM-R-CRF 45.61 X
OACLED 47.5 X

Table 2: Results on ACE05-ERE dataset.

and xlm-roberta-base for the encoders, parameters460

are tuned on the development data of the source461

language, and all entries are the average of five462

runs.463

From Tables 1 and 2, we can observe a substan-464

tial performance increase by performing the trivial465

change of replacing BERT with XLM-RoBERTa466

as the encoder. Furthermore, our OACLED model467

clearly and consistently outperforms the baselines468

for all language pairings, with the exception of469

the Chinese-Arabic pair. We attribute this to the470

impaired performance of XLM-RoBERTa as the en-471

coder for that specific pair as can be confirmed by472

the poor performance of the XLM-R-CRF baseline473

on the same configuration. Most importantly, OA-474

CLED’s improvement over the XLM-R-CRF base-475

line is present in every configuration, which con-476

firms the effectiveness of our optimized approach477

to ALA training.478

3.3 Ablation Study479

We identify 2 main components in our approach:480

using ALA to create refined language-invariant rep-481

resentations, and optimizing the adversarial train-482

ing process by selecting a subset of samples cho-483

sen with OT to incorporate our measures of infor-484

mativeness into the sample selection process. Of485

course, removing ALA training entirely restores486

the model to the baseline. However, adversarial487

training optimization via OT has various aspects488

to it. In order to understand the contribution of 489

these aspects, we explore four different models: 490

OACLED-OT presents the effects of removing sam- 491

ple selection entirely and using all available sam- 492

ples to train the LD; OACLED-L2 uses a constant 493

distance between the unlabeled samples instead the 494

standard L2 distance used in the Sinkhorn algo- 495

rithm; OACLED-EP completely removes the EP 496

module and a uniform distribution is used as the 497

probability distributions for both languages; finally, 498

OACLED-ED-Loss keeps the EP module, but re- 499

moves its EPloss term from Equation 11. The per- 500

formance results of these models is presented in 501

Table 3. Due to space limitations, we present the 502

results of experiments using English as the sole 503

source language. We, however, found consistency 504

in the displayed effects for different source/target 505

language configurations. 506

Model version Target Language
English Chinese Arabic Spanish

OACLED-OT 70.94 40.55 44.96
OACLED-L2 71.35 41.79 44.39
OACLED-EP 73.08 42.81 46.99

OACLED-EP-Loss 72.93 43.4 46.35
OACLED 74.64 44.86 47.69

Table 3: Ablation experiment results

As expected, removing the sample selection 507

through OT leads to the worst performance drop. 508

This highlights the importance of selecting informa- 509

tive examples for the LD. Furthermore, removing 510

the cost function also hurts performance greatly, 511

which shows that a proper distance function is 512

needed for the OT algorithm to work effectively. 513

While the effects of removing the EP module and 514

its corresponding loss term are not of the same 515

magnitude, they are still significant. These results 516

support our claim for the need and utility of all the 517

components in our approach, showing that their 518

inclusion is crucial in achieving state-of-the-art per- 519

formance. 520

3.4 Language Model Finetuning 521

The key contribution of our approach is to exploit 522

unlabeled data in the target language, which is usu- 523

ally abundant, by introducing it into the training 524

process to improve our model’s language-invariant 525

qualities. 526

To confirm the utility of our approach, Table 4 527

contrasts our model’s performance against a base- 528

line whose encoder has been finetuned with the 529
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same unlabeled data using the standard masked530

language model objective.531

Model Version Target Language
English Chinese Arabic Spanish

Finetuned XLM-R 71.06 43.71 47.82
OACLED 74.64 44.86 47.69

Table 4: OACLED performance versus a baseline using
an encoder finetuned with unlabeled data.

It can be observed that our model outperforms532

the finetuned baseline in two out of the three target533

languages. Additionally, the difference in perfor-534

mance in those two instances is considerably larger535

(3.58% and 1.15%), than the setting in which the536

baseline performs better (0.13%).537

3.5 Analysis538

3.5.1 Learned Representation Distances539

First, we look at the distance between the sentence-540

level representations hi0 generated by the encoder541

for different source/target language pairs. Figure 1542

shows a plot of such distances using cosine distance543

as the distance function.544

English Chinese Arabic

English

Chinese

Arabic

0

1

2

3

4

5
1e 5

Figure 1: Distance between sentence representations
for different language pairs.

When computing the correlation with the per-545

formance results in Table 1, we obtain a score546

R = −0.6616, meaning there is moderate nega-547

tive correlation between the distance of the rep-548

resentations and model performance, i.e. closer549

representations lead to better performance.550

Similarly, Table 5 shows a comparison of the551

distances between the representations generated by552

OACLED and those obtained by the XLM-R-CRF553

baseline.554

We observe that OACLED representations are555

closer, by several orders of magnitude, than those556

obtained by the baseline. This supports our claim557

that our model’s encoder generates more refined558

Cosine Distance
Source/Target Baseline OACLED

English/Chinese 3.64e-3 3.93e-6
English/Arabic 7.71e-2 2.08e-5
English/Spanish 5.4e-3 5.3e-6
Chinese/English 3.62e-3 3.87e-6
Arabic/English 4.16e-2 1.02e-5
Spanish/English 6.87e-3 1.49e-5

Table 5: Comparison of representation-vector distances
for language pairs between our model and the baseline.

language-invariant representations than those ob- 559

tained by the default version of XLM-RoBERTa. 560

3.5.2 Access to Labeled Target Data 561

Previously, we discussed how a key feature of our 562

approach is that it does not require annotated data 563

in the target language and, instead, leverages the 564

use of unlabeled data which is readily available. 565

Nonetheless, we also explore the performance of 566

our model in the event that there exists a small 567

amount of annotated target data available for train- 568

ing. Figure 2 shows the results of our experiments 569

when using different amounts of labeled target data 570

during training. 571
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Figure 2: Model performance when training on small
quantities of labeled target data. The X axis presents
the percentage (0 - 10%) of data used out of the entire
training set of the target language.

It can be observed that OACLED consistently 572

7



outperforms the baseline even when there is some573

availability of annotated data. Additionally, perfor-574

mance steadily increases as more and more data575

is used. This conforms to expectations, and con-576

firms that having labeled data in the target language577

available for training is ultimately beneficial to the578

model’s performance.579

3.5.3 Case Study580

Next, we look into our model’s predictions and581

analyse instances where it outperforms the base-582

line to exemplify the advantages of dealing with583

optimized language-invariant representations. We584

identify two important patterns.585

First, our model is able to better classify events586

in the target language that involve trigger words587

that have distinct connotations that depend on con-588

text. Specially those that are two distinct words589

in the source language. For example, the Span-590

ish word “juicio” can have two distinct meanings591

that are different words in English: “trial” and592

“judgement”. Our model correctly classifies it as a593

JUSTICE:TRIAL-HEARING-type trigger in the594

sentence “Dos llamados a juicio fueron hechos595

por un jurado federal investigador”, meanwhile596

the baseline fails to even recognize it as a trigger.597

Another example is the word “detenido”, an adjec-598

tive that can mean both “detained”, in a criminal599

context, and “stopped”, as in halted. Our model600

correctly classifies it in the sentence “Padilla no601

debería permanecer detenido durante meses ale-602

jado de otros reos” as a JUSTICE:ARREST-JAIL603

trigger while the baseline fails to detect the event.604

Second, our model can correctly classify differ-605

ent verb conjugation variants that do not exist in606

the source language. For instance, our model cor-607

rectly recognizes the words “venderlos”, “vender”,608

“vendes”, and “vendedor” (variants of the609

verb “to buy”) as TRANSACTION:TRANSFER-610

OWNERSHIP triggers whereas the baseline611

incorrectly classifies them as being of the612

TRANSACTION:TRANSFER-MONEY type. A613

similar example are the trigger words “matar”,614

“mató”, “homicidio”, “asesinato”, all of which re-615

fer to the act of killing or murdering. Our model616

correctly tags them as LIFE:DIE events while617

the baseline incorrectly classifies them as CON-618

FLICT:ATTACK.619

These findings illustrate how, by introducing ad-620

ditional context in the form of unlabeled data, our621

model is able to learn fine-grained word representa-622

tions that better capture the semantics of the words623

in the target language, and successfully deals with 624

difficult cross-lingual issues. 625

4 Related Work 626

Feature-based methods were the basis of early ED 627

approaches (Ahn, 2006; Ji and Grishman, 2008; 628

Patwardhan and Riloff, 2009; Liao and Grish- 629

man, 2010a,b; Hong et al., 2011; McClosky et al., 630

2011; Li et al., 2013; Miwa et al., 2014; Yang and 631

Mitchell, 2016). More recent efforts have primarily 632

made use of deep learning techniques (Nguyen and 633

Grishman, 2015; Chen et al., 2015; Nguyen et al., 634

2016a,b; Sha et al., 2018; Zhang et al., 2019; Yang 635

et al., 2019; Nguyen and Nguyen, 2019; Zhang 636

et al., 2020), 637

Works on CLED generally make use of cross- 638

lingual resources employed to address the differ- 639

ences between languages such as bilingual dictio- 640

naries or parallel corpora (Muis et al., 2018; Liu 641

et al., 2019) and, more recently, pre-trained MLMs 642

(M’hamdi et al., 2019; Hambardzumyan et al., 643

2020). Unlike these approaches, our method lever- 644

ages using unlabeled data to hone the language- 645

invariant qualities of the pre-trained MLMs. 646

Additional examples of downstream applica- 647

tions of Cross-lingual Learning (CLL) are docu- 648

ment classification (Holger and Xian, 2018), named 649

entity recognition (Xie et al., 2018) and part-of- 650

speech tagging (Cohen et al., 2011). For a thorough 651

review on CLL, we refer the reader to (Pikuliak 652

et al., 2021). 653

Finally, our ALA approach was inspired by mod- 654

els in domain adaptation research (Ganin and Lem- 655

pitsky, 2015; Naik and Rose, 2020). Our method 656

improves upon these approaches optimizing the 657

adversarial training process by selecting the most 658

informative examples from the unlabeled data. 659

5 Conclusion 660

In this work we present OACLED, a new model 661

for cross-lingual event detection that leverages the 662

use of ADA and OT to achieve new state-of-the- 663

art performance. Our experiments on 8 different 664

language pairs demonstrate OACLED’s robustness 665

and effectiveness at generating refined language- 666

invariant representations that allow for better event 667

detection results. Our analysis of its intermediate 668

outputs and predictions confirm that OACLED’s 669

representations are indeed closer to each other and 670

that this proximity translates into better handling 671

of difficult cross-lingual instances. 672
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A Appendix A840

A.1 Dataset Characteristics841

Dataset Language Split Sentences Events

ACE05

English
Train 19,240 4,419
Dev 902 468
Test 676 424

Chinese
Train 6,841 2,926
Dev 526 217
Test 547 190

Arabic
Train 2,555 1,793
Dev 301 230
Test 262 247

ACE05-ERE

English
Train 14,219 6,419
Dev 1,162 552
Test 1,129 559

Spanish
Train 7,067 3,272
Dev 556 210
Test 546 269

Table 6: Dataset statistics.

B Reproducibility Checklist842

• Source Code: Upon the acceptance, we will843

release the source code via a public GitHub844

repository.845

• Computing Infrastructure: In this work, we846

use a single Tesla V100-SXM2 GPU with847

32GB memory operated by Red Hat Enter-848

prise Linux Server 7.8 (Maipo). PyTorch 1.4.0849

is used to implement the models.850

• Evaluation Metric: We report F1 for trigger851

classification computed using the seqeval 1852

framework for sequence labeling evaluation853

based on the CoNLL-2000 shared task, com-854

plying with previous work (M’hamdi et al.,855

2019). The reported results are the average856

performance of 5 model runs with different857

random seeds.858

• (Hyper-)parameters: Our full model has859

278.5M parameters. However, the vast ma-860

jority of these come from the XLM-Roberta861

transformer (278M parameters), the rest of862

our model accounts for < 500K parameters.863

We fine-tune the hyper-parameters for our OA-864

CLED model using the development data. We865

suggest the following values for fine-tuning:866

– AdamW as the optimizer.867

– Using 5 warm up epochs.868

1https://github.com/chakki-works/seqeval

– A learning rate of 1e−5 for the trans- 869

former parameters and of 1e−4 for the 870

rest of the parameters. We arrived 871

at this values after searching among 872

[1e−6, 3e−6, 1e−5, 3e−5, 1e−4, 3e−4]. 873

– A batch size of 16, chosen between 874

[8, 10, 16, 24, 32]. 875

– 300 for the dimensionality of the layers 876

in feed-forwards networks, chosen from 877

[100, 200, 300, 400, 500]. 878

– A γ = 0.5 for the percentage of samples 879

used in adversarial training. 880

– A λ = 0.001 as the scaling factor of the 881

GRL layer. 882

– An α = 1 and β = 0.001 as the trade-off 883

parameters of the LD loss and ED loss, 884

respectively. 885

– A dropout of 10% for added regulariza- 886

tion during training. 887
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