
Do Large Foundation Models Improve Time Series Segmentation? An Industrial
Case Study in Oil and Gas Drilling

Imane Khaouja * 1 Amine El Khair * 1 Abdallah Benzine 1 Sebastiaan Buiting 1 Soumyadipta Sengupta 1

Youssef Tamaazousti 1

Abstract
Segmenting time series into meaningful events
is critical in domains like drilling, where accu-
rate activity recognition enables operational opti-
mization and real-time decision-making. Yet, seg-
mentation remains challenging due to noise and
multivariate complexity. Recently, Foundation
Models for Time Series (FM4TS) have emerged
as general-purpose solutions, but their effective-
ness for segmentation is unclear.

In this study, we benchmark popular FM4TS
(both pretrained and trained from scratch) against
a fully convolutional network (FCNN) baseline on
two tasks: a simple univariate and a complex mul-
tivariate segmentation problem. We also assess
how performance scales with data size.

Results show CNNs are strong baselines, often
outperforming or matching FM4TS. Pretraining
offers limited or even negative impact on FM4TS
performance, highlighting challenges in transfer-
ring segment-level features. Interestingly FM4TS
seems to scale better with more data, suggesting
potential advantages in data-rich settings.

1. Introduction
Oil and gas drilling generates vast amounts of multivariate
sensor data that measure critical parameters such as pressure,
hookload, torque, and flow rate. Automatic segmentation of
these data into meaningful operational phases or anomalies
is crucial for safety, operational efficiency, and real-time
decision making. However, accurate segmentation remains
challenging due to noisy signals, irregular patterns, and
complex interactions among multiple sensor channels.

Traditional methods rely heavily on statistical rules or hand-
crafted features (Arnaout et al., 2012; Serapião et al., 2006),
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often failing under realistic drilling conditions due to their
limited adaptability. Deep learning methods improved ac-
curacy by learning temporal representations directly from
the data (Perslev et al., 2019; Lea et al., 2017; Ismail-Fawaz
et al., 2019). Yet, these approaches typically require exten-
sive labeled datasets and custom architectures, limiting their
adoption in industrial environments (Benzine et al., 2024).

Recently, Foundation Models for Time Series (FM4TS)
— including Time-MoE (Shi et al., 2024), Chronos-
Bolt (Ansari et al., 2024), Timer (Liu et al., 2024), Mo-
ment (Goswami et al., 2024), Moirai (Woo et al., 2024), and
GPT4TS (Zhou et al., 2023) — have emerged as general-
purpose models, showing excellent results on forecasting
and classification tasks. However, their performance for
segmentation tasks has not yet been systematically evalu-
ated, leaving uncertainty regarding their suitability for noisy,
complex real-world industrial time series (Buiting et al.,
2024).

In this work, we investigate whether pre-trained FM4TS can
be directly adapted—without architecture modifications to
the segmentation of oil and gas drilling data. Specifically,
we evaluate several FM4TS models by attaching lightweight
classification heads and fine-tuning them end-to-end. We
benchmark their performance against a robust CNN baseline
on two distinct segmentation tasks: a straightforward peri-
odic task (downlinking detection) and a complex, irregular
multivariate anomaly detection task (hookload anomalies).
The two tasks and their difficulty is illustrasted in Figure 1.

Our findings indicate that pretrained weights offer limited
or negative utility for FM4TS in segmentation, suggesting
current pretraining objectives may lack segment-specificity.
Furthermore, confirming results from (Buiting et al., 2024),
simpler CNNs often serve as strong baselines, diminishing
the perceived universal advantage of FM4TS. While these
observations call for task-specific FM4TS and potentially
new pretraining strategies, it is noteworthy that FM4TS
demonstrate better scalability with larger datasets.
2. Methodology
The segmentation task involves assigning a categorical la-
bel to each time step within a given time series sequence.
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Figure 1: Example of segmentations for Downlinking (top
row) and Hookload anomaly (bottom row) tasks.

This labeling identifies distinct operational phases or anoma-
lies within drilling data sequences. Specifically, we frame
the problem as a sequence-to-sequence classification task,
where each input sequence consists of sensor readings and
the output is a corresponding sequence of categorical labels
indicating operational status or anomaly presence.

For each window, the model must accurately detect the
onset and offset of operational phases or anomalous events,
effectively delineating segments in a continuous stream of
sensor data. The segmentation task thus requires the model
not only to classify individual points but also to capture
temporal dependencies and transitions between segments.

Two tasks are considered:

Downlinking Segmentation This task focuses on detect-
ing command transmission intervals from the standpipe
pressure signal. The goal is to segment the univariate time
series to precisely identify intervals where downlinking com-
mands are transmitted, characterized by distinct and peri-
odic pressure variations. The first row of Figure 1 illustrates
downlinking segments highlighted in yellow.

Hookload Anomaly Segmentation This more complex
task involves identifying anomalous patterns in hookload
behavior, crucial for operational safety and performance
monitoring. The second row of Figure 1 shows different
hookload anomaly segments highlighted in yellow. It is
evaluated in two scenarios:

• Univariate Hookload Anomaly: Segmentation based
solely on the hookload signal, focusing on detecting
anomalies from hookload behavior alone.

• Multivariate Hookload Anomaly: Segmentation
based on multiple drilling sensor inputs, including
Block Position, Bit Depth, Hole Depth, Flow Rate, Ro-
tary RPM, Torque, and Standpipe Pressure. This setup
aims to capture anomalies that are contextually depen-
dent on interactions between multiple sensor readings.

We compare two approaches:

Fully Convolutional Neural Network As a baseline, we
use a fully convolutional neural network (FCNN) with an
encoder-decoder structure, previously proven to be a strong
benchmark for drilling-related time series analysis (Buiting
et al., 2024). The encoder applies 1D convolutions and
temporal pooling to capture multi-resolution patterns, while
the decoder upsamples features with skip connections.

Pretrained Foundation Models We evaluate pretrained
FM4TS by adding a simple classification head and then
fine-tuning the entire model for segmentation tasks. For
comparison, we also evaluate these models when trained
entirely from scratch on the same tasks. If the model has
an encoder-decoder architecture (like Chronos), only the
encoder is used. The setup depends on input dimensionality:

• Single-channel input: The FM4TS processes the input
sequence directly. The output embeddings go through
a dense classification layer to predict per-time-step
labels.

• Multi-channel input: We consider two cases:
1. If the FM4TS supports multivariate input (like

Moirai), all channels are processed jointly.
2. If the FM4TS is originally univariate (like Chronos-

Bolt), each channel is passed independently. We
aggregate the resulting embeddings and feed them
into a classification head.

We test Time-Moe (Shi et al., 2024), Chronos (Ansari et al.,
2024), Timer (Liu et al., 2024), Moment (Goswami et al.,
2024), GPT4TS (Zhou et al., 2023), and Moirai (Woo et al.,
2024).

Segmentation Task Let X ∈ RT×C denote a multivari-
ate time series of length T with C sensor channels, where
Xt ∈ RC is the observation at time step t. The goal of seg-
mentation is to learn a function fθ : RT×C → {1, . . . ,K}T
that maps the input sequence to a sequence of discrete labels
y = (y1, . . . , yT ), where each yt ∈ {1, . . . ,K} denotes the
class at time step t, and K is the number of segment classes.

The model fθ is trained to minimize a segmentation loss
over a dataset of N labeled examples {(X(i),y(i))}Ni=1.

3. Experiments
3.1. Tasks and Data

Each task uses a 60/20/20 split for training, validation, and
testing. We applied minimal preprocessing beyond clipping
out-of-range values and linearly interpolating occasional
missing points. All signals are scaled, and sequences are fed
as overlapping windows (length = 512, stride = 128). The
dataset consists of over 370,000 windows extracted from
real drilling operations across multiple rigs. Each window
is labeled with segment boundaries by domain experts. The
labeling process is manual, with experts reviewing multi-
variate sensor patterns to assign accurate segment classes.
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Figure 2: Comparison of the performance of large models for time series on different Drilling related tasks

3.2. Training Setup

All models are trained end-to-end with cross-entropy loss.
For FM4TS, we fine-tune the entire model along with a
lightweight classification head. We use the Adam optimizer
with a learning rate of 2.5e-5 and a batch size of 32. Training
runs for up to 25 epochs with early stopping based on F1-
score on the validation set (patience = 8).

Furthermore, we conducted experiments with Frozen
Weights, where pretrained model weights were kept static
during fine-tuning (cf. Appendice A.1).

3.3. Evaluation Metric

We evaluate the performance using an IoU-based F1 score
(Sejak et al., 2025; Redina et al., 2025). Unlike standard
point-wise metrics, this approach accounts for segment
alignment and overlap.

For each predicted segment, we compute its Intersection
over Union (IoU) with all ground truth segments of the
same class. A prediction is considered a true positive (TP)
if its IoU with any ground truth segment exceeds 0.5. Un-
matched predictions are counted as false positives (FP), and
unmatched ground truth segments as false negatives (FN).

4. Results
4.1. Performance with the Full Training Set

Figure 2 compares macro–F1 scores and inference times
across all models and tasks with 100% training data.
Downlinking For the Downlinking task, top-performing
models achieve high F1 scores. The FCNN model reaches a
92.1% F1 score with lower inference time, performing just
below Moment-Large (92.8% F1), which incurs a higher in-
ference cost. Increasing model size beyond these generally
offers no significant performance improvement. This sug-
gests that for such pressure-based tasks with abundant data,
a relatively simple convolutional architecture is sufficient.

Hookload, Univariate. A notable decrease in F1 scores
is observed for all models on this task. Despite this general

trend, the FCNN demonstrates strong performance, achiev-
ing a 12.2% F1 and surpassing nearly all larger transformer
models, coupled with a lower inference cost. While pre-
training provides a modest uplift for certain models like
Moment-Large (e.g., to 12.6% F1) and Moirai Large (to
12.0% F1) compared to their from-scratch counterparts (e.g.,
12.2% and 10.6% respectively), it does not bridge the per-
formance gap to the FCNN considering the inference time.

Hookload, Multivariate. On the Hookload Multivariate
task, the benefit of additional features is not consistently sub-
stantial. Moment Large pretrained performs best (10.6%),
slightly ahead from-scratch smaller counterpart ( Moment
Base 9.2%). FCNN fails to capture the noisy cross-sensor
patterns in this task. Larger models learn to leverage the
added context, but the gains remain limited.

Model family observations. FCNN is strong on Down-
linking and Hookload Univariate despite its simplicity. Mo-
ment is the most consistent across tasks, with small benefits
from pretraining in the univariate case. Chronos-Bolt ex-
cels on DL but degrades on both hookload setups. Moirai,
GPT4TS, Time-Moe and Timer fall behind across all tasks.
Also, Encoder based models (Moirai, Moment and Chronos-
Bolt) seem to perform better than decoder-only models
(Time-MoE, Timer and GPT4TS) for segmentation.

On Pretraining. Its benefit is inconsistent. It adds 2–3
points on Hookload Univariate and Multivariate for some
models, has no measurable impact on Downlinking.

Key Takeaways. Larger models do not reliably benefit
once enough training data is available.

Task complexity limits performance more than model size.
Pretraining offers limited help, and the FCNN baseline out-
performs or matches large transformers on two out of three
tasks, while being smaller, faster, and easier to deploy.

4.2. Limited Supervision: Does Pretraining Pay Off?

As shown previously, generic pretraining has a marginal
impact given a full training set. We now use Figure 3 and Ta-
ble 1 to test if a smaller label budget alters this finding. Note
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Figure 3: Comparison of segmentation performance across models, data sizes, and tasks.
Table 1: Mean ∆ F1 by Family, Data Proportion, and Task.
Values are averaged across all model sizes within each
family. (Performance gains are color-coded: green for posi-
tive, red for negative, and orange for marginal gain)

Family Downlinking - Univariate Hookload - Univariate Hookload - Multivariate

10% 50% 100% 10% 50% 100% 10% 50% 100%

Chronos -7.01 -1.99 -1.19 -0.04 -0.84 -1.51 0.14 -0.86 0.30
GPT 55.0 86.3 8.7 1.0 1.6 2.6 1.9 0.9 3.2
Moirai -1.03 0.57 1.13 0.20 1.87 1.37 -0.07 -0.27 1.03
Moment 0.17 1.67 -0.33 -0.73 -0.17 -2.40 -0.70 0.67 0.33
Timer 0.50 -2.40 -2.60 1.10 -3.30 -1.90 -2.40 -5.80 0.00

that Figure 3 displays only top-performing models to main-
tain plot readability. Table 1 presents the mean difference
in F1 scores (∆ F1) between pretrained and non-pretrained
models within each FM4TS family, across different data
proportions and tasks. A clear pattern emerges for self-
supervised pretraining on time series data, which generally
shows underperformance or marginal benefit, distinguish-
ing it from models like GPT that leverage weights from
pretraining on other modalities like natural language.
Downlinking. At 10% data the gains are marginal for
pretrained vs non-pretrained: Moment-Small climbs by 0.6
points; Moirai-Small actually drops by six. The clearest
benefit of pretraining for Downlinking, as also suggested by
the positive average ∆ F1 for Moment and Moirai in Table 1
at 50% data: Moment-Large adds 4.1 points (93.1 vs 89.0).
At 100% top performing model is a non pretrained model.
Hookload, Univariate. The pattern flips. With 10% data,
pretrained Moment-Large falls below its scratch twin (5.9
vs 6.5), and the same reversal appears for Chronos-Base. At
50% data, the picture stays mixed; Moirai is the only family
showing a consistent positive average F1 in Table 1, with
Moirai-Large gaining 2.4 points from pretraining, while
Moment-Large loses 1.7. The FCNN, with no pretraining,
achieves a strong 12.2% F1 score, closely rivaling the top-
performing Moment-Large (pretrained).

Hookload, Multivariate. Using all channels does not sta-
bilize the performance. Moment models pretraining is a

net negative at 10% (−0.7) split. The gain with pretraining
remains very limited. While pretraining offers a significant
performance uplift for Moment Large, its advantages are
otherwise inconsistent or negative for other Moment vari-
ants and data proportions (Table 2). Meanwhile, the FCNN
model struggles with multi-channel data; while its F1 score
reaches 6% at the 10% data split, it fails to exceed 1% at
higher data proportions (50% and 100%).

Key Takeaways. While pretraining offers a moderate
boost (up to four) on the easiest task with mid-scale data, its
effect on noisier hookload problems remains inconsistent.
Even at 100% data, the benefits of pretraining are often neg-
ligible. In fact, in 9 of the 15 settings in Table 1, pretraining
either degrades performance or yields a marginal gain of
no more than 0.4%, reinforcing that sufficient labeled data
and careful inductive bias can match or outperform large
pretrained checkpoints. However, FM4TS exhibit a key dis-
tinction in data scaling, appearing to leverage larger datasets
more effectively than CNNs, which suggests their potential
advantage in data-rich scenarios.

5. Discussion and Conclusion
We benchmarked pretrained Foundation Models for Time
Series (FM4TS) on drilling segmentation tasks and com-
pared them to a simple CNN. Pretraining showed limited or
inconsistent benefits. In many cases, the CNN matched or
outperformed FM4TS despite being smaller and faster.

These findings have practical implications. For real-time
deployment—where latency, compute, and reliability mat-
ter—lightweight CNNs are a better fit. FM4TS, while
promising at scale, may be too costly for edge environments
unless task-specific pretraining is introduced.

Overall, segmentation still benefits more from inductive bi-
ases and labeled data than from generic pretraining. Future
work should explore efficient pretraining objectives, and hy-
brid strategies that balance scalability with field constraints.
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A. Appendix
A.1. Segmentation Performance Analysis with Frozen Pretrained Weights

This section details the experimental results when fine-tuning the models with their pretrained backbone weights frozen,
only training a new classification head. The corresponding F1 scores are presented in Table 2.

Freezing the pretrained weights and only training a classification head leads to a drastic reduction in performance across
almost all models, tasks, and data portions compared to end-to-end fine-tuning or even training from scratch in some cases.

Specifically for the Downlinking (DL) task: Most models, including all Chronos-Bolt variants (Tiny, Mini, Small, and
Base), exhibit extremely poor performance, often resulting in F1 scores of 0.0, especially with 10% and 50% data under the
frozen weights setting. This indicates that the generic features learned during pretraining, without further adaptation of the
backbone, are insufficient for this task. Moment models (Small, Base, Large), Timer, and GPT4TS show some capability
when 100% of the training data is available, achieving F1 scores such as 40.7% (Moment Small), 55.9% (Moment Base),
85.3% (Moment Large), 52.9% (Timer), and 80.9% (GPT4TS). However, these scores are still generally lower than their
counterparts fine-tuned end-to-end. For instance, Moment Large (DL, 100%) drops from 92.8% (Pretrained Weights) to
85.3% (Frozen Weights). GPT4TS shows some resilience with 50% data (72.5% F1), but its performance at 10% is 0.0.
The TimeMOE model also scores 0.0 at 10% and 50% data, reaching only 0.9% with 100% data under frozen weights for
Downlinking. Moirai models (Small, Base, Large) also struggle significantly with frozen weights, with F1 scores remaining
very low (e.g., Moirai Large at 5.8% with 100% data).

For the Hookload Multivariate (HL ALL) and Hookload Univariate (HL ONLY) tasks with frozen weights: The performance
degradation is even more pronounced. Nearly all models, including the entire Moment family (Small, Base, and Large),
yield F1 scores at or near 0.0 across all data rates (10%, 50%, 100%) for the Hookload Multivariate (HL ALL) task when
weights are frozen. For instance, even with 100% data, Moment Small scores only 3.2%, Moment Base 1.9%, and Moment
Large 0.0% for HL ALL with frozen weights. This is a stark contrast to scenarios with full fine-tuning; for example,
Moment Large (HL ALL, 100%) drops from 10.6% (Pretrained Weights) or 6.1% (From Scratch) to 0.0% (Frozen Weights).
Chronos-Bolt variants, FCNN, Moirai, and Timer models consistently score at or near 0.0 for both Hookload tasks with
frozen weights. GPT4TS also fails on Hookload tasks with frozen weights, scoring 0.0 on Hookload Univariate and low
single digits (e.g., 4.5% at 100% data) on Hookload Multivariate. TimeMOE similarly performs poorly on Hookload tasks
with frozen weights, with scores near zero.

These results suggest that for the evaluated downstream tasks (Downlinking, Hookload Multivariate, and Hookload
Univariate), the features learned by the pretrained foundation models are not directly transferable. Effective adaptation
requires fine-tuning the entire model, allowing the pretrained representations to be adjusted for the specific nuances of the
target task and dataset. The frozen weight strategy proves largely ineffective, highlighting the importance of end-to-end
fine-tuning for achieving optimal performance in segmentation.
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Table 2: Comparison of F1 scores for various models across different training strategies (Pretrained, From Scratch, Frozen)
and data availability rates. Tasks include Downlinking (DL), Hookload Multivariate (HL ALL), and Hookload Univariate
(HL ONLY). Bold values indicate the best performance in each column.

PRETRAINED WEIGHTS FROM SCRATCH FROZEN WEIGHTS

Model Data DL HL ALL HL ONLY DL HL ALL HL ONLY DL HL ALL HL ONLY

FCNN (Baseline)
10% - - - 82.4 6.0 6.5 0.0 0.0 0.0
50% - - - 86.1 0.8 10.6 0.0 0.0 0.0
100% - - - 92.1 0.0 12.2 0.0 0.0 0.0

Chronos-Bolt Tiny
10% 56.6 1.6 2.5 65.9 1.6 2.8 0.0 0.0 0.0
50% 74.6 0.2 4.2 81.3 1.0 3.8 0.0 0.0 0.0
100% 87.7 1.1 2.5 87.7 2.3 3.0 0.0 0.0 0.0

Chronos-Bolt Mini
10% 65.4 1.7 3.9 83.8 2.0 2.3 0.0 0.0 0.0
50% 85.6 0.7 2.1 88.2 1.9 3.9 0.0 0.0 0.0
100% 92.4 1.1 1.8 91.3 0.2 5.4 0.0 0.0 0.0

Chronos-Bolt Small
10% 79.5 2.2 2.7 83.7 1.0 3.8 0.0 0.0 0.0
50% 90.7 0.8 5.6 90.2 2.7 6.4 0.0 0.0 0.0
100% 90.1 1.1 3.6 92.2 1.6 5.4 0.0 0.0 0.0

Chronos-Bolt Base
10% 85.7 5.1 6.6 81.4 1.1 3.7 0.0 0.0 0.0
50% 92.0 1.4 6.2 91.2 2.3 5.7 0.0 0.0 0.0
100% 88.3 1.4 4.1 91.5 3.7 4.3 0.0 0.0 0.0

Moment Small
10% 86.3 2.9 4.7 85.7 3.2 4.7 0.0 0.0 3.4
50% 92.0 5.6 7.0 90.8 5.6 6.8 0.0 0.0 3.5
100% 92.0 5.3 5.9 92.4 6.4 10.1 40.7 3.2 4.2

Moment Base
10% 84.9 2.5 4.1 84.7 3.5 5.7 0.0 0.0 2.8
50% 90.0 5.3 7.9 90.3 6.9 6.9 0.0 0.0 3.2
100% 92.7 6.8 7.1 92.4 9.2 10.5 55.9 1.9 5.1

Moment Large
10% 87.8 3.2 5.9 88.1 4.0 6.5 0.0 0.0 4.8
50% 93.1 9.2 9.1 91.2 5.9 10.8 0.0 0.0 3.8
100% 92.8 10.6 12.6 93.7 6.1 12.2 85.3 0.0 2.4

Moirai Small
10% 64.4 1.1 4.7 70.4 2.1 3.1 1.9 0.0 0.4
50% 82.0 2.6 6.7 81.7 2.3 6.3 0.0 0.0 0.0
100% 86.6 6.7 7.8 85.9 5.0 7.1 1.5 0.0 0.0

Moirai Base
10% 74.2 2.2 3.8 73.6 1.7 3.8 1.6 0.0 0.4
50% 84.0 2.2 9.2 84.0 3.0 6.4 0.0 0.0 0.0
100% 87.1 6.4 9.7 86.7 5.0 7.7 0.0 0.0 0.0

Moirai Large
10% 76.4 2.7 4.2 74.1 2.4 5.2 5.8 1.6 2.5
50% 86.2 3.6 7.2 84.8 3.9 4.8 0.3 0.0 0.09
100% 88.8 7.2 12.0 86.5 7.2 10.6 0.2 0.0 0.0

Timer
10% 75.2 0.0 4.5 74.7 2.4 3.4 0.0 0.0 3.4
50% 79.6 0.0 4.4 72.2 5.8 7.7 0.0 0.0 3.4
100% 80.9 0.0 5.3 83.5 0.0 7.2 52.9 0.0 2.7

GPT4TS
10% 55.0 4.7 2.5 0.0 2.8 1.5 0.0 3.3 0.0
50% 86.3 4.8 3.2 0.0 3.9 1.6 72.5 4.2 0.0
100% 89.9 7.3 3.8 81.2 4.1 1.2 80.9 4.5 0.0

TimeMOE
10% 80.4 1.2 0.9 85.9 1.1 3.7 0.0 0.5 0.4
50% 82.7 2.5 3.6 88.8 2.2 3.5 0.0 0.0 0.4
100% 91.0 4.2 3.6 92.5 2.6 5.6 0.9 0.0 0.2

7


