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Abstract

Segmenting time series into meaningful events
is critical in domains like drilling, where accu-
rate activity recognition enables operational opti-
mization and real-time decision-making. Yet, seg-
mentation remains challenging due to noise and
multivariate complexity. Recently, Foundation
Models for Time Series (FM4TS) have emerged
as general-purpose solutions, but their effective-
ness for segmentation is unclear.

In this study, we benchmark popular FM4TS
(both pretrained and trained from scratch) against
a fully convolutional network (FCNN) baseline on
two tasks: a simple univariate and a complex mul-
tivariate segmentation problem. We also assess
how performance scales with data size.

Results show CNNs are strong baselines, of-
ten outperforming or matching FM4TS. Pretrain-
ing offers limited or even negative impact on
FM4TS segmentation performance, highlighting
challenges in transferring segment-level features.
Interestingly FM4TS seems to scale better with
more data, suggesting potential advantages in
data-rich settings.

1. Introduction
Oil and gas drilling generates vast amounts of multivariate
sensor data that measure critical parameters such as pressure,
hookload, torque, and flow rate. Automatic segmentation of
these data into meaningful operational phases or anomalies
is crucial for safety, operational efficiency, and real-time
decision making. However, accurate segmentation remains
challenging due to noisy signals, irregular patterns, and
complex interactions among multiple sensor channels.

Traditional methods rely heavily on statistical rules or hand-
crafted features (Arnaout et al., 2012; Serapião et al., 2006),
often failing under realistic drilling conditions due to their
limited adaptability. Deep learning methods improved ac-
curacy by learning temporal representations directly from
the data (Perslev et al., 2019; Lea et al., 2017; Ismail-Fawaz

et al., 2019). Yet, these approaches typically require exten-
sive labeled datasets and custom architectures, limiting their
adoption in industrial environments (Benzine et al., 2024).

Recently, Foundation Models for Time Series (FM4TS)
— including Time-MoE (Shi et al., 2024), Chronos-
Bolt (Ansari et al., 2024), Timer (Liu et al., 2024), Mo-
ment (Goswami et al., 2024), Moirai (Woo et al.), and
GPT4TS (Zhou et al., 2023) — have emerged as general-
purpose models, showing excellent results on forecasting
and classification tasks. However, their performance for
segmentation tasks has not yet been systematically evalu-
ated, leaving uncertainty regarding their suitability for noisy,
complex real-world industrial time series (Buiting et al.).

In this work, we investigate whether pre-trained FM4TS can
be directly adapted—without architecture modifications to
the segmentation of oil and gas drilling data. Specifically,
we evaluate several FM4TS models by attaching lightweight
classification heads and fine-tuning them end-to-end. We
benchmark their performance against a robust CNN baseline
on two distinct segmentation tasks: a straightforward peri-
odic task (downlinking detection) and a complex, irregular
multivariate anomaly detection task (hookload anomalies).
The two tasks and their difficulty is illustrasted Figure 1.
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Figure 1: Example segmentations for Downlinking (top
row) and Hookload anomaly (bottom row) tasks.

Our findings indicate that pretrained weights offer limited
or negative utility for FM4TS in segmentation, suggesting
current pretraining objectives may lack segment-specificity.
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Furthermore, confirming results from (Buiting et al.), sim-
pler CNNs often serve as strong baselines, diminishing the
perceived universal advantage of FM4TS. While these ob-
servations call for task-specific FM4TS and potentially new
pretraining strategies, it is noteworthy that FM4TS demon-
strate better scalability with larger datasets than CNNs.

2. Methodology
The segmentation task involves assigning a categorical la-
bel to each time step within a given time series sequence.
This labeling identifies distinct operational phases or anoma-
lies within drilling data sequences. Specifically, we frame
the problem as a sequence-to-sequence classification task,
where each input sequence consists of sensor readings and
the output is a corresponding sequence of categorical labels
indicating operational status or anomaly presence.

For each window, the model must accurately detect the
onset and offset of operational phases or anomalous events,
effectively delineating segments in a continuous stream of
sensor data. The segmentation task thus requires the model
not only to classify individual points but also to capture
temporal dependencies and transitions between segments.

Two tasks are considered:

Downlinking Segmentation This task focuses on detect-
ing command transmission intervals from the standpipe
pressure signal. The goal is to segment the univariate time
series to precisely identify intervals where downlinking com-
mands are transmitted, characterized by distinct and peri-
odic pressure variations. The first row of Figure 1 illustrates
downlinking segments highlighted in yellow.

Hookload Anomaly Segmentation This more complex
task involves identifying anomalous patterns in hookload
behavior, crucial for operational safety and performance
monitoring. The second row of Figure 1 shows different
hookload anomaly segments highlighted in yellow. It is
evaluated in two scenarios:

• Univariate Hookload Anomaly: Segmentation based
solely on the hookload signal, focusing on detecting
anomalies from hookload behavior alone.

• Multivariate Hookload Anomaly: Segmentation
based on multiple drilling sensor inputs, including
Block Position, Bit Depth, Hole Depth, Flow Rate, Ro-
tary RPM, Torque, and Standpipe Pressure. This setup
aims to capture anomalies that are contextually depen-
dent on interactions between multiple sensor readings.

We compare two approaches:

Baseline: Fully Convolutional Neural Network As
a baseline, we use a fully convolutional neural network
(FCNN) with an encoder-decoder structure, previously
proven to be a strong benchmark for drilling-related time

series analysis (Buiting et al.). The encoder applies 1D con-
volutions and temporal pooling to capture multi-resolution
patterns, while the decoder upsamples features with skip
connections to preserve temporal details.
Pretrained Foundation Models We evaluate pretrained
Foundation Models for Time Series (FM4TS) by adding a
simple classification head and then fine-tuning the entire
model for segmentation tasks. For comparison, we also
evaluate these models when trained entirely from scratch
on the same tasks. If the model has an encoder-decoder
architecture (like Chronos), only the encoder is used. The
setup depends on input dimensionality:

• Single-channel input: The FM4TS processes the input
sequence directly. The output embeddings go through
a dense classification layer to predict per-time-step
labels.

• Multi-channel input: We consider two cases:
1. If the FM4TS supports multivariate input (like

Moirai), all channels are processed jointly.
2. If the FM4TS is originally univariate (like Chronos-

Bolt), each channel is passed independently. We
aggregate the resulting embeddings and feed them
into a classification head.

We test Time-Moe (Shi et al., 2024), Chronos (Ansari et al.,
2024), Timer (Liu et al., 2024), Moment (Goswami et al.,
2024), GPT4TS (Zhou et al., 2023), and Moirai (Woo et al.).

3. Experiments
3.1. Tasks and Data

Each task uses a 60/20/20 split for training, validation, and
testing. All signals are scaled, and sequences are fed as
overlapping windows (length = 512, stride = 128). We use a
large dataset of 370k labeled windows.

3.2. Training Setup

All models are trained end-to-end with cross-entropy loss.
For FM4TS, we fine-tune the entire model along with a
lightweight classification head. We use the Adam optimizer
with a learning rate of 2.5e-5 and a batch size of 32. Training
runs for up to 25 epochs with early stopping based on F1-
score on the validation set (patience = 8).

Furthermore, we conducted experiments with Frozen
Weights, where pretrained model weights were kept static
during fine-tuning (cf. Appendice A.1).

3.3. Evaluation Metric

We evaluate the performance using an IoU-based F1 score
(Sejak et al., 2025; Redina et al., 2025). Unlike standard
point-wise metrics, this approach accounts for segment
alignment and overlap.
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Figure 2: Comparison of the performance of large models for time series on different Drilling related tasks

For each predicted segment, we compute its Intersection
over Union (IoU) with all ground truth segments of the
same class. A prediction is considered a true positive (TP)
if its IoU with any ground truth segment exceeds 0.5. Un-
matched predictions are counted as false positives (FP), and
unmatched ground truth segments as false negatives (FN).

4. Results
4.1. Performance with the Full Training Set

Figure 2 compares macro–F1 scores and inference times
across all models and tasks with 100% training data.

Downlinking For the Downlinking task, top-performing
models achieve high F1 scores. The FCNN model reaches a
92.1% F1 score with lower inference time, performing just
below Moment-Large (92.8% F1), which incurs a higher in-
ference cost. Increasing model size beyond these generally
offers no significant performance improvement. This sug-
gests that for such pressure-based tasks with abundant data,
a relatively simple convolutional architecture is sufficient.

Hookload, Monovariate. A notable decrease in F1 scores
is observed for all models on this task. Despite this general
trend, the FCNN demonstrates strong performance, achiev-
ing a 12.2% F1 and surpassing nearly all larger transformer
models, coupled with a lower inference cost. While pre-
training provides a modest uplift for certain models like
Moment-Large (e.g., to 12.6% F1) and Moirai Large (to
12.0% F1) compared to their from-scratch counterparts (e.g.,
12.2% and 10.6% respectively), it does not bridge the per-
formance gap to the FCNN considering the inference time.

Hookload, Multivariate. On the Hookload Multivariate
task, the benefit of additional features is not consistently sub-
stantial. Moment Large pretrained performs best (10.6%),
slightly ahead from-scratch smaller counterpart ( Moment
Base 9.2%). FCNN fails to capture the noisy cross-sensor
patterns in this task. Larger models learn to leverage the
added context, but the gains remain limited.

Model family observations. FCNN is strong on Down-
linking and Hookload monovariate despite its simplicity.
Moment is the most consistent across tasks, with small
benefits from pretraining in the univariate case. Chronos-
Bolt excels on DL but degrades on both hookload setups.
Moirai, GPT4TS, Time-Moe and Timer fall behind across
all tasks. Also, Encoder based models(Moirai, Moment and
Chronos-Bolt) seem to perform better than decoder-only
models(Time-MoE, Timer and GPT4ts) for segmentation.

On Pretraining. Its benefit is inconsistent. It adds 2–3
points on Hookload monovariate and multivariate for some
models, has no measurable impact on Downlinking.

Key Takeaways. Larger models do not reliably benefit
once enough training data is available.

Task complexity limits performance more than model size.
Pretraining offers limited help, and the FCNN baseline out-
performs or matches large transformers on two out of three
tasks, while being smaller, faster, and easier to deploy.

4.2. Limited Supervision: Does Pretraining Pay Off?

Table 1: Mean ∆ F1 by Family, Data Proportion, and Task

Family Downlinking - Monovariate Hookload - Monovariate Hookload - Multivariate

10% 50% 100% 10% 50% 100% 10% 50% 100%

Chronos -7.01 -1.99 -1.19 -0.04 -0.84 -1.51 0.14 -0.86 0.30
GPT 55.0 86.3 8.7 1.0 1.6 2.6 1.9 0.9 3.2
Moirai -1.03 0.57 1.13 0.20 1.87 1.37 -0.07 -0.27 1.03
Moment 0.17 1.67 -0.33 -0.73 -0.17 -2.40 -0.70 0.67 0.33
Timer 0.50 -2.40 -2.60 1.10 -3.30 -1.90 -2.40 -5.80 0.00

As shown previously, generic pretraining has a marginal
impact given a full training set. We now use Figure 3 and Ta-
ble 1 to test if a smaller label budget alters this finding. Note
that Figure 3 displays only top-performing models to main-
tain plot readability. Table 1 presents the mean difference
in F1 scores (∆ F1) between pretrained and non-pretrained
models within each FM4TS family, across different data
proportions and tasks. A clear pattern is the general under-
performance or marginal benefit of pretraining.
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Figure 3: Comparison of segmentation performance across models, data sizes, and tasks.

Downlinking. At 10% data the gains are marginal for
pretrained vs non-pretrained: Moment-Small climbs by 0.6
points; Moirai-Small actually drops by six. The clearest
benefit of pretraining for Downlinking, as also suggested by
the positive average ∆ F1 for Moment and Moirai in Table 1
at 50% data: Moment-Large adds 4.1 points (93.1 vs 89.0).
At 100% top performing model is a non pretrained model.

Hookload, Monovariate. The pattern flips. With 10%
data, pretrained Moment-Large falls below its scratch twin
(5.9 vs 6.5), and the same reversal appears for Chronos-
Base. At 50% data, the picture stays mixed; Moirai is the
only family showing a consistent positive average F1 in Ta-
ble 1, with Moirai-Large gaining 2.4 points from pretraining,
while Moment-Large loses 1.7. The FCNN, with no pre-
training, achieves a strong 12.2% F1 score, closely rivaling
the top-performing Moment-Large (pretrained).

Hookload, Multivariate. Using all channels does not sta-
bilize the performance. Moment models pretraining is a
net negative at 10% (−0.7) split. The gain with pretraining
remains very limited. While pretraining offers a significant
performance uplift for Moment Large, its advantages are
otherwise inconsistent or negative for other Moment vari-
ants and data proportions (Table 2). Meanwhile, the FCNN
model struggles with multi-channel data; while its F1 score
reaches 6% at the 10% data split, it fails to exceed 1% at
higher data proportions (50% and 100%).

Key Takeaways. While pretraining offers a moderate
boost (up to four) on the easiest task with mid-scale data, its
effect on noisier hookload problems remains inconsistent.
Even at 100% data, models trained from scratch, including
the architecturally-suited FCNN, frequently remain top per-
formers, reinforcing that sufficient labeled data and careful
inductive bias can outperform large pretrained checkpoints.
However, FM4TS exhibit a key distinction in data scaling,
appearing to leverage larger datasets more effectively than

CNNs, which suggests their potential advantage in data-rich
scenarios.

5. Discussion and Conclusion
This paper systematically evaluated the effectiveness of pre-
trained Foundation Models for Time Series (FM4TS) on
practical segmentation tasks within the oil and gas drilling
domain. We benchmarked several FM4TS (Chronos-Bolt,
Moment, GPT4TS and Moirai) against a robust CNN base-
line across two representative tasks: a simpler univariate
downlinking detection and a complex, multivariate hook-
load anomaly segmentation.

Our results highlight several key insights:

• Pretraining FM4TS for segmentation tasks generally
offers limited to no performance improvement and, in
many cases, degrades results compared to training from
scratch.

• Simpler CNN architectures serve as remarkably strong
baselines for segmentation, often matching or outper-
forming FM4TS, questioning the immediate benefits
of the latter for these tasks.

• Despite current limitations, FM4TS demonstrate a no-
table advantage in their ability to scale performance
more effectively with increasing training data volumes
compared to CNNs.

This study was limited by evaluating only two segmenta-
tion tasks in a single domain and using a straightforward
fine-tuning approach. Future work plans to investigate im-
proved FM4TS adaptation methods like segment-aware pre-
training, adapters, or attention-based fusion. Additionally,
benchmarking FM4TS on broader segmentation tasks across
diverse industries would further clarify their utility and limi-
tations.
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Table 2: Comparison of F1 scores for various models across different training strategies (Pretrained Weights, From Scratch,
Frozen Weights) and data availability rates (10%, 50%, 100%). Tasks include Downlinking (DL), Hookload Multivariate
(HL ALL), and Hookload Monovariate (HL ONLY). Bold values indicate the best performance in each column.

PRETRAINED WEIGHTS FROM SCRATCH FROZEN WEIGHTS

DL HL (ALL) HL (ONLY) DL HL (ALL) HL (ONLY) DL HL (ALL) HL (ONLY)

Model 10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

10
%

50
%

10
0%

FCNN (Baseline) - - - - - - - - - 82.4 86.1 92.1 6.0 0.8 0.0 6.5 10.6 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chronos-Bolt Tiny 56.6 74.6 87.7 1.6 0.2 1.1 2.5 4.2 2.5 65.9 81.3 87.7 1.6 1.0 2.3 2.8 3.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chronos-Bolt Mini 65.4 85.6 92.4 1.7 0.7 1.1 3.9 2.1 1.8 83.8 88.2 91.3 2.0 1.9 0.2 2.3 3.9 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chronos-Bolt Small 79.5 90.7 90.1 2.2 0.8 1.1 2.7 5.6 3.6 83.7 90.2 92.2 1.0 2.7 1.6 3.8 6.4 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Chronos-Bolt Base 85.7 92.0 88.3 5.1 1.4 1.4 6.6 6.2 4.1 81.4 91.2 91.5 1.1 2.3 3.7 3.7 5.7 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Moment Small 86.3 92.0 92.0 2.9 5.6 5.3 4.7 7.0 5.9 85.7 90.8 92.4 3.2 5.6 6.4 4.7 6.8 10.1 0.0 0.0 40.7 0.0 0.0 3.2 3.4 3.5 4.2
Moment Base 84.9 90.0 92.7 2.5 5.3 6.8 4.1 7.9 7.1 84.7 90.3 92.4 3.5 6.9 9.2 5.7 6.9 10.5 0.0 0.0 55.9 0.0 0.0 1.9 2.8 3.2 5.1
Moment Large 87.8 93.1 92.8 3.2 9.2 10.6 5.9 9.1 12.6 88.1 91.2 93.7 4 5.9 6.1 6.5 10.8 12.2 0.0 0.0 85.3 0.0 0.0 0.0 4.8 3.8 2.4
Moirai Small 64.4 82.0 86.6 1.1 2.6 6.7 4.7 6.7 7.8 70.4 81.7 85.9 2.1 2.3 5.0 3.1 6.3 7.1 1.9 0.0 1.5 0.0 0.0 0.0 0.4 0.0 0.0
Moirai Base 74.2 84.0 87.1 2.2 2.2 6.4 3.8 9.2 9.7 73.6 84.0 86.7 1.7 3.0 5.0 3.8 6.4 7.7 1.6 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
Moirai Large 76.4 86.2 88.8 2.7 3.6 7.2 4.2 7.2 12.0 74.1 84.8 86.5 2.4 3.9 7.2 5.2 4.8 10.6 5.8 0.3 0.2 1.6 0.0 0.0 2.5 0.09 0.0
Timer 75.2 79.6 80.9 0.0 0.0 0.0 4.5 4.4 5.3 74.7 72.2 83.5 2.4 5.8 0.0 3.4 7.7 7.2 0.0 0.0 52.9 0.0 0.0 0.0 3.4 3.4 2.7
GPT4TS 55.0 86.3 89.9 4.7 4.8 7.3 2.5 3.2 3.8 0.0 0.0 81.2 2.8 3.9 4.1 1.5 1.6 1.2 0.0 72.5 80.9 3.3 4.2 4.5 0.0 0.0 0.0
TimeMOE 80.4 82.7 91.0 1.2 2.5 4.2 0.9 3.6 3.6 85.9 88.8 92.5 1.1 2.2 2.6 3.7 3.5 5.6 0.0 0.0 0.9 0.5 0.0 0.0 0.4 0.4 0.2

A. Appendix
A.1. Segmentation Performance Analysis with Frozen Pretrained Weights

This section details the experimental results when fine-tuning the models with their pretrained backbone weights frozen,
only training a new classification head. The corresponding F1 scores are presented in Table 2.

Freezing the pretrained weights and only training a classification head leads to a drastic reduction in performance across
almost all models, tasks, and data portions compared to end-to-end fine-tuning or even training from scratch in some cases.

Specifically for the Downlinking (DL) task: Most models, including all Chronos-Bolt variants (Tiny, Mini, Small, and
Base), exhibit extremely poor performance, often resulting in F1 scores of 0.0, especially with 10% and 50% data under the
frozen weights setting. This indicates that the generic features learned during pretraining, without further adaptation of the
backbone, are insufficient for this task. Moment models (Small, Base, Large), Timer, and GPT4TS show some capability
when 100% of the training data is available, achieving F1 scores such as 40.7% (Moment Small), 55.9% (Moment Base),
85.3% (Moment Large), 52.9% (Timer), and 80.9% (GPT4TS). However, these scores are still generally lower than their
counterparts fine-tuned end-to-end. For instance, Moment Large (DL, 100%) drops from 92.8% (Pretrained Weights) to
85.3% (Frozen Weights). GPT4TS shows some resilience with 50% data (72.5% F1), but its performance at 10% is 0.0.
The TimeMOE model also scores 0.0 at 10% and 50% data, reaching only 0.9% with 100% data under frozen weights for
Downlinking. Moirai models (Small, Base, Large) also struggle significantly with frozen weights, with F1 scores remaining
very low (e.g., Moirai Large at 5.8% with 100% data).

For the Hookload Multivariate (HL ALL) and Hookload Monovariate (HL ONLY) tasks with frozen weights: The
performance degradation is even more pronounced. Nearly all models, including the entire Moment family (Small, Base,
and Large), yield F1 scores at or near 0.0 across all data rates (10%, 50%, 100%) for the Hookload Multivariate (HL ALL)
task when weights are frozen. For instance, even with 100% data, Moment Small scores only 3.2%, Moment Base 1.9%,
and Moment Large 0.0% for HL ALL with frozen weights. This is a stark contrast to scenarios with full fine-tuning; for
example, Moment Large (HL ALL, 100%) drops from 10.6% (Pretrained Weights) or 6.1% (From Scratch) to 0.0% (Frozen
Weights). Chronos-Bolt variants, FCNN, Moirai, and Timer models consistently score at or near 0.0 for both Hookload tasks
with frozen weights. GPT4TS also fails on Hookload tasks with frozen weights, scoring 0.0 on Hookload Monovariate and
low single digits (e.g., 4.5% at 100% data) on Hookload Multivariate. TimeMOE similarly performs poorly on Hookload
tasks with frozen weights, with scores near zero.

These results suggest that for the evaluated downstream tasks (Downlinking, Hookload Multivariate, and Hookload
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Monovariate), the features learned by the pretrained foundation models are not directly transferable. Effective adaptation
requires fine-tuning the entire model, allowing the pretrained representations to be adjusted for the specific nuances of the
target task and dataset. The frozen weight strategy proves largely ineffective, highlighting the importance of end-to-end
fine-tuning for achieving optimal performance in segmentation.
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