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Abstract
Reinforcement learning has proven effective for
fine-tuning large language models (LLMs) using
reward models trained on human preference data.
However, collecting such feedback remains expen-
sive, especially in dynamic settings like personal-
ized tutoring, where users’ preferences shift over
time and through past interactions. To address
this, we present AIF-GEN, the first synthetic pref-
erence data generation platform designed for tra-
ditional and lifelong RLHF. We use AIF-GEN to
instantiate 18 synthetic datasets and evaluate its
quality using an LLM. We also perform human
evaluation on a subset of the generated datasets
to further confirm its quality. Our results show
AIF-GEN’s potential to support the development
of traditional and lifelong RLHF algorithms that
align LLMs.

Code: ComplexData-MILA/AIF-Gen

Data: https://huggingface.co/LifelongAlignment

Documentation: aif-gen.readthedocs.io

1. Introduction
Reinforcement learning from human feedback (RLHF) has
emerged as a critical technique for aligning large language
models (LLMs) with human intentions (Christiano et al.,
2017; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022), particularly in tasks requiring nuanced judgments
such as helpfulness, factual accuracy (Sun et al., 2023), and
safety (Dai et al., 2023). Despite its effectiveness, RLHF re-
lies on costly, static human data, limiting its adaptability in
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dynamic settings (Jurenka et al., 2024). Further, large organi-
zations carefully curate private datasets for alignment, which
makes it more challenging for independent researchers to
reproduce and benchmark results on diverse datasets.

To address these limitations, synthetic data generation meth-
ods offer scalable alternatives by using LLM-generated an-
notations to reduce the cost and complexity of human pref-
erence collection, which is then used to align LLMs— an
approach called reinforcement learning from AI feedback
(RLAIF) (Li and Chen, 2023; Zhang et al., 2023).

Large-scale synthetic datasets like Ultra-Feedback (Cui
et al., 2023) highlight the promise of model-generated pref-
erence data for LLM alignment but lack support for non-
stationarity and are not open-sourced. Similarly, frame-
works such as DataDreamer (Patel et al., 2024) and Curator
(Marten et al., 2025) offer flexible data curation tools but
do not explicitly address evolving preferences or provide
quality validation for generated data. These limitation hin-
ders the progress in alignment research, especially lifelong
alignment where models must adapt to distributional drifts.

In this work, we introduce AIF-GEN—the first platform for
scalable synthetic data generation for both traditional and
lifelong RLHF. By parameterizing user-defined objectives,
domains, and preferences, AIF-GEN enables systematic cre-
ation of diverse datasets to support fine-tuning and continual
alignment of LLMs. It combines open-source accessibility,
flexible synthetic data generation, and validation features
with native support for non-stationary prompts and prefer-
ences (see 1). Using the platform, we instantiate 18 syn-
thetic preference datasets totalling roughly 170,000 prompts
and 340,000 preference annotations. Designed to be LLM-
agnostic, scalable, and customizable, AIF-GEN lowers the
barrier to entry for traditional and lifelong RLHF research
and provides a foundation for advancing reproducibility in
adaptive, preference-aligned language models.

Summary of contributions:

1. We introduce AIF-GEN, the first open-sourced synthetic
data generation platform tailored to traditional and life-
long RLHF (§ 3);
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2. Using AIF-GEN, we generate a diverse suite of synthetic
datasets that capture varying types and degrees of non-
stationarity to support controlled experiments(§ 3.3);

3. We validate the quality of our synthetic datasets using
LLM and human evaluations(§ 4.1);

2. Background
The RLHF process begins by fine-tuning a base language
model, π0, via supervised learning to obtain an SFT model,
πSFT . This model is then prompted with inputs x to pro-
duce two responses, (y1, y2), which are evaluated—either
by humans or an automated judge (e.g., in RLAIF). One
response is marked as preferred (e.g., y1) and the other as
rejected (e.g., y2), denoted as y1 ≻ y2 | x. These prefer-
ences are assumed to reflect an underlying reward function
r∗(y, x), often modelled using the Bradley-Terry framework
(Bradley and Terry, 1952). Alternative models include Nash
(Munos et al., 2024; Zhu et al., 2024) and Plackett-Luce
(Plackett, 1975). From these comparisons, a preference
dataset is constructed: D = {xi, yic, y

i
r}Ni=1, where yic and

yir denote the chosen and rejected responses for prompt xi.
A reward model rϕ is trained on this dataset, serving as the
training signal for reinforcement learning. The RL objec-
tive fine-tunes πSFT to maximize reward while penalizing
divergence from the original SFT distribution:

max
πθ

Ex∼D, y∼πθ(·|x)

[
rϕ(y, x)

− β DKL

(
πθ(·|x)

∥∥πSFT (·|x)
) ]

(1)

where β balances reward maximization with alignment
to πSFT . While various RL algorithms can be applied,
PPO(Schulman et al., 2017) remains the most commonly
used in practice.

2.1. Lifelong RLHF

In lifelong RLHF, the objective is to align the model using
the latest batch of preference data that reflects the current
preferences, while retaining knowledge about the past that
could be useful in future (Zhang et al., 2024b;a; Wu et al.,
2024). The preference data distribution changes when either
the prompt distribution or the preference distribution for the
two responses change over time.

3. AIF-GEN Platform
Human annotation for traditional and lifelong RLHF is
costly and slow. To scale alignment research, and to en-
able standardization while reporting results, we introduce
AIF-GEN, a platform for generating synthetic preference
data across diverse topics for traditional and lifelong RLHF
(§A). Users define sequences of Alignment Tasks in struc-
tured YAML files, specifying evolving objectives, domains,

and preferences (§3.1). These feed into an asynchronous
vLLM-powered engine that produces prompt–response pairs
at scale (Kwon et al., 2023). Prompt templates are managed
by the Prompt Mapper, while the Response Mapper synthe-
sizes candidate completions and formats the final preference
samples (§3.2). Our platform also supports validation, trans-
formation, and dataset publishing via CLI.

3.1. Simulating Non-Stationarity

To enable a systematic study of non-stationarity in RLAIF,
each alignment task in AIF-GEN is decomposed into 3
orthogonal components. This decomposition allows re-
searchers to isolate and manipulate distinct modes of drift:

Objective: the objective is, in principle, fully customizable:
users can define any task that fits their application. However,
in practice, most use cases cluster around a few common
categories like question answering, summarization, and text
generation. To support these, we provide template datasets
for each as open-source examples, which users can readily
adapt to their specific problems.

Domain: the distribution over prompts as a controllable
mechanism for inducing domain shifts. Users specify do-
mains with seed word vocabularies—tokens relevant to
particular topics/subfields (e.g., biology or world history).
These are sampled and injected into templates to simulate
prompt drift.

Preference: the latent reward signal—i.e., the desirable
output given a task and domain. These include styles like
“explain like I’m five” and are critical for simulating shifts in
user intent. Preferences guide the reward modelling process
and influence which responses are ranked as preferred.

Users can simulate diverse non-stationarities by varying
these components across a sequence, such as domain shifts
under a fixed task or evolving stylistic preferences. For ex-
ample, one might hold the objective (Q&A) constant while
progressing from arithmetic to calculus domains, with pref-
erences shifting from “concise” to “detailed explanations”.

3.2. Mapper Internals

Prompt Mapper internals are shown in Figure 2a. For each
sample, domain-specific seed words are randomly drawn to
promote prompt diversity. These vocabularies—published
with our code—are fully configurable, allowing users to
define domains like education with subfields (e.g., astron-
omy, engineering). Seed words are combined with the task
objective (e.g., Q&A) to generate a Meta Prompt, which is
passed to the LLM.

Response Mapper internals are shown in Figure 2b. Each
prompt (e.g., a biology question) is paired with auxiliary
styles (e.g., length, humour) to generate diverse responses.
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Library/Feature HH-RLHF Ultra-Feedback OpenAssistant DataDreamer Curator AIF-GEN (ours)

Open Source × × ✓ ✓ ✓ ✓
Non-Stationarity Support × × × × × ✓
Validation Metrics ✓ ✓ × × × ✓
Human Verified ✓ ✓ ✓ × × ✓
Caching × × ✓ ✓ ✓ ✓
HuggingFace Compatible ✓ ✓ ✓ ✓ ✓ ✓
Customizable Dataset × × × ✓ ✓ ✓

Table 1: AIF-GEN is the first open source synthetic data generation tool offering full prompt and preference customization
with native support for non-stationarity and evolving preferences.
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Figure 1: High-level AIF-GEN design. (1) Users specify RLHF tasks (objectives, preferences, domains) and metadata in
YAML configs. (2) Prompt Mapper generates meta-prompts, which (3) produce sample prompts using an LLM. (4) Response
Mapper pairs these with preferences to create response prompts, which (5) generate chosen and rejected outputs. Samples
are aggregated (6), and optionally validated, transformed (7), or (8) uploaded to HuggingFace.

The task preference (e.g., "explain like I’m five") is prob-
abilistically included (configurable) to influence the Judge
Prompt. This helps calibrate the difficulty of distinguish-
ing preferred responses. Resulting prompts are sent to the
inference engine to produce chosen/rejected pairs.

3.3. Datasets

We used AIF-GEN with GPT-4o-mini to generate our data
with a temperature of 0.99, a maximum prompt length of
1024 tokens, and a response cap of 2048 tokens.

Static Datasets. We generated static datasets—each defined
by an objective (e.g., Q&A, summarization, text generation),
domain (e.g., education, politics, tech/healthcare, tech/-
physics), and stylistic preference (e.g., ELI5, expert, for-

mal, Shakespearean). Prompts were created using domain-
specific seed vocabularies (two seeds per prompt), and re-
sponses were sampled in 3 styles. Each dataset contains
10,000 examples; full templates and preference configura-
tions are provided in the appendix.

Continual Datasets. We built four continual datasets to
study alignment under drift by merging static subsets and
simulating structured transitions in preference, domain, and
objective. The Lipschitz dataset gradually increases prefer-
ence complexity within tech/physics summarization: ELI5
→ high school → expert. Piecewise Preference cycles
through rapper, Shakespearean, and formal styles in po-
litical generation, repeated over three cycles. Piecewise
Q&A alternates between hinted and directed formats (5k
samples each) to vary non-stationarity frequency. The most
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Figure 2: (a) Domains are decomposed into semantic com-
ponents and sampled via seed word vocabularies, combined
with objectives using meta-prompt templates. Metadata
supports custom prompt formatting. (b) Preferences and
prompts are passed to a judge template, with optional auxil-
iary styles to vary response subtlety and difficulty. Metadata
controls preference strength for reward modelling tasks.

complex dataset combines shifts across all axes: education
Q&A (ELI5), education Q&A (expert), political summariza-
tion (ELI5), and tech/healthcare Q&A (expert), serving as a
comprehensive benchmark for lifelong RLHF.

4. Experiments
We validate the quality of generated data using an LLM
judge and humans.

4.1. LLM Validation

Figure 3 compares the quality of datasets generated by
AIF-GEN against prior work, using two key metrics:
Coherence and Diversity. Coherence captures the log-
ical consistency of responses and is scored (0–10) by
GPT-4o-mini acting as an LLM judge. Diversity mea-
sures the variation across responses, computed using the
average pairwise cosine distance of embeddings from
the Salesforce/SFR-Embedding-Mistral model
(Meng et al., 2024) (details in Appendix). For a fair com-
parison, we group datasets into Q&A and summarization
tasks. As shown, AIF-GEN consistently produces higher-
coherence outputs and more diverse prompts and responses.
Because AIF-GEN is LLM-agnostic, coherence and diver-
sity are expected to improve as stronger base models are

(a) Q&A radar plot. (b) Summary radar plot.

Figure 3: AIF-GEN generates higher quality RLHF datasets
for both Q&A and summarization tasks compared to previ-
ous datasets.

Metric Hinted ELI5 Expert

Unanimous Consensus Rate 0.48 0.64 0.62
Fleiss’ Kappa 0.31 0.52 0.49
LLM Judge Agreement 0.64 0.56 0.58
Inter-Human Agreement 0.83 0.88 0.87

Table 2: Education Q&A Human Evaluation

used for generation.

4.2. Human Evaluation
We conducted a targeted evaluation on education Q&A sam-
ples using three stylistic preferences—Hinted, ELI5, and
Expert—chosen for their varying alignment difficulty. For
each, we sampled 50 prompt–response pairs and asked three
annotators to select the better-aligned response or mark both,
neither, and flag incoherent samples.
Table 2 reports four metrics: Unanimous Consensus Rate,
Fleiss’ Kappa, LLM–Human Agreement, and Inter-Human
Agreement, with confidence intervals from 1,000 bootstraps.
Only 5 of 450 samples were flagged as incoherent. We ob-
serve solid agreement (48–64% consensus, Kappa ≈ 0.5 for
ELI5/Expert) and LLM judge accuracy near 60%, consistent
with prior work (Cui et al., 2023). Lower scores for Hinted
reflect its subtler alignment. In Appendix B.2, we plot a
classification heatmap and demonstrate that LLMs align
well with human judgments, with ambiguity concentrated in
both/neither cases—especially for ELI5, which may benefit
from stronger preference conditioning in generation.

4.3. Empirical proof for AIF-Gen Non-stationarities

To better understand how AIF-Gen datasets induce shifts
in the learned reward models, we analyze the sensitivity of
reward distributions to changes in model parameters across
tasks. This provides an approximate characterization of
the degree of non-stationarity present in different dataset
variants and highlights how abrupt or smooth these shifts
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are in parameter space. While these are simple heuristic
measurements, they offer a practical and interpretable way
to compare dataset difficulty in settings where precise quan-
tification is not feasible.

Let θi ∈ Rd be the parameters of reward model Mi for
i = 1, 2, 3, and define the “task vectors” T12 = θ2 − θ1 and
T23 = θ3 − θ2 which capture the parameter-space trajecto-
ries between successive tasks. For α ∈ [0, 1], we interpo-
late along these trajectories by setting θ(α) = θ1 + αT12,
loading these weights into a copy of M1, and compute the
reward-score histogram R(α) over our fixed 10 000 prompts.
This procedure gives a smooth parameterized path through
model space, allowing us to monitor how the output distri-
bution evolves under controlled perturbations.

To quantify local sensitivity along this path, we compute the
adjacent Wasserstein distances W

(
R(αi), R(αi+1)

)
, nor-

malize each by (αi+1−αi) ∥T12∥, and take their maximum
to estimate an empirical Lipschitz constant K12; repeating
along T23 yields K23. Intuitively, this constant measures
how sharply the reward distribution changes as we move in
parameter space. On the “AIF-Gen Lipschitz” dataset we
measure max(K12,K23) ≈ 5, indicating relatively smooth
transitions between tasks. In contrast, on the “AIF-Gen
Piecewise Preference Shift” dataset, we observe an empir-
ical lipschitaz estimate of ≈ 10. This indicates that the
piecewise dataset induces larger, more abrupt shifts in the
learned reward distributions, with sharper discontinuities in
model behavior across tasks.

5. Discussion, Limitations, and Conclusion
The success of RL has been driven by open-source sim-
ulators like Atari (Bellemare et al., 2013) and MuJoCo
(Todorov et al., 2012), which enabled rapid progress through
standardized, reproducible experimentation. In contrast,
traditional and lifelong RLHF research is bottlenecked by
the absence of scalable, time-evolving human preference
data. To address this, we introduce AIF-GEN—a synthetic
preference generation platform that plays a similar role for
alignment research, enabling controlled studies of dynamic
tasks and shifting user preferences.

While powerful, AIF-GEN makes several design trade-offs.
Our prompt templates are handcrafted but easily extensible,
allowing users to define new domains and alignment styles.
We focus on GPT-4o-mini for data generation, balancing
quality and cost; however, the platform is model-agnostic
and supports future integration of emerging models. Auto-
mated evaluations use LLM judges that may carry bias, but
targeted human assessments validate overall quality. As a
platform—not a fixed benchmark—AIF-GEN’s adaptabil-
ity ensures its relevance across evolving research objectives.

Rooted in open-source principles, AIF-GEN is designed

to grow with the community. We invite researchers and
practitioners to contribute tasks and suggest new forms of
non-stationarity, building a shared ecosystem for studying
alignment under distribution shift. In doing so, we hope to
establish AIF-GEN as a foundational platform for repro-
ducible, extensible research in lifelong RLHF.

Impact Statement
The research presented in this work aims to significantly
advance alignment methodologies in reinforcement learn-
ing from human (and AI) feedback, especially in dynamic,
evolving settings. AIF-GEN offers the first open-source,
LLM-agnostic platform for generating large-scale synthetic
preference datasets tailored for both traditional and lifelong
RLHF. By enabling fine-grained control over objectives,
domains, and user preferences—including non-stationary
drift—this platform facilitates reproducible experimentation
in alignment, a current bottleneck in the field.

The synthetic datasets and continual learning scenarios
generated with AIF-GEN can democratize access to high-
quality alignment resources, lowering the barrier for re-
searchers and practitioners outside of large tech organiza-
tions. As alignment research becomes increasingly vital
for deploying safe and responsible AI systems, especially
LLMs, tools like AIF-GEN may help establish standardized
benchmarks and promote robust model evaluation across
shifting user needs.

We acknowledge the broader societal implications of LLM
alignment, particularly as models are deployed in sensitive
areas such as education, healthcare, and policy communi-
cation. While AIF-GEN reduces reliance on static human
feedback, care must be taken to ensure synthetic preferences
reflect diverse and representative values. We encourage
community-driven governance, transparency in dataset cre-
ation, and continual validation (including human oversight)
to mitigate potential misalignment or biases introduced by
automation in feedback generation.

Overall, AIF-GEN provides infrastructure to accelerate re-
search in dynamic alignment settings, helping move the field
toward safer, more adaptive AI systems.
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Figure 4: Non-stationarities in RLHF: (a-c) modes of drift and (d-e) types of drift. (a) Only the prompt distribution changes.
(b) Only the preference distribution changes. (c) Both the prompt and the preference distributions change. (d) Piecewise
non-stationarity. (e) Lipschitz non-stationarity.

Appendix

A. Lifelong RLHF
In section 2, we outlined the RLHF procedure to align LLMs using a preference dataset. The procedure assumes that the
prompt distribution and preferences generated by humans (or AI) are static; however, in practice, the prompt distribution and
preferences of individuals change over time. For instance, in the LLM tutoring application, the difficulty of the questions (or
the nature of hints) generated by the LLM tutor varies as the student learns the subject. In such cases, the LLM agent must
continually adapt to reflect the latest preferences of an individual: lifelong RLHF.

In lifelong RLHF, the goal at each time step, t = 0, 1, 2, . . . , is to align the LLM using a new preference dataset batch,
Dt = {xi, yic, y

i
r}

Nt
i=1, while retaining useful prior knowledge to accelerate future adaptation. This introduces the possibility

of incorporating a KL term into the Lifelong RLHF objective, βDKL(πθt(·|x)||πθt−1
(·|x)), akin to (Zhang et al., 2024b),

with the key distinction that this divergence need not be enforced when human preferences undergo significant shifts. At
each step, prompts are drawn from a time-dependent distribution pt, and preferences are generated via a reward function
r∗t (y, x). Nt is the number of preference samples at time t.

From one time step to another, the prompt distribution, the underlying reward function, or both can change, modes of drift:

• Prompt drift: The prompt distribution changes, pt ̸= pt′ ;

• Preference drift: The underlying reward function from which the preferences are generated changes, r∗t (y, x) ̸=
r∗t′(y, x);

• Combined drift: Both the prompt distribution and the underlying reward function change.

Following the literature on lifelong RL (Khetarpal et al., 2022; Abel et al., 2023), we consider two ways in which various
modes of drift can evolve over time, types of drift:

• Piecewise non-stationarity: When the change is sudden in one of the three modes of drift. For example, piecewise
preference drift is:

r∗t (y, x) =


r0(y, x), 0 ≤ t ≤ t0,

r1(y, x), t0 < t ≤ t1,
...

• Lipschitz non-stationarity: When the change is gradual in any of the three modes of drift. The Lipschitz preference
drift is: ∣∣r∗t (y, x)− r∗t′(y, x)

∣∣ ≤ C |t− t′|, ∀x, y, t, t′,

where C > 0 is the Lipschitz constant that determines the rate of change

Figure 4 shows the three modes and the two types of drift discussed here. Although there are several other types of drift, we
restrict our study to piecewise and Lipschitz non-stationarities due to their simplicity and broad applicability. We next show
how previously introduced lifelong RLHF problems can be viewed as special cases of our framework.
Remark 1. The lifelong RLHF problem introduced by Zhang et al. (2024b) for CPPO is prompt drift under piecewise
non-stationary.

Proof. In CPPO, a task from a sequence has two datasets: a human feedback dataset containing information about the chosen
and the rejected responses, and a prompt dataset. Since their objective function, maxπθ

∑T
t=1 Ex∼pt(x),y∼πθ(·|x)[rt(y, x)],
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maximizes all rewards from the past, preferences are implicitly static (TL;DR summarization). So, only the prompt
distribution changes from one task to another, implying prompt drift. Since the datasets for the two consecutive tasks are
disjunct (different subreddits) and can be arbitrarily different, we can classify it as piecewise non-stationarity.

A.1. Pseudocode

Algorithm 1 Lifelong RLHF

1: Initialize policy πθ ← πSFT

2: for each time step t = 1, 2, . . . do
3: Collect data batch Dt (e.g., via Algorithm 1)
4: Train reward model rϕ,t on Dt

5: Update policy πθ using an RL algorithm (e.g., PPO)
6: end for

Algorithm 1 outlines the high-level pseudocode for the Lifelong RLHF training loop. We begin by initializing the LLM
policy weights with a supervised fine-tuned (SFT) model, πθ ← πSFT . At each time step t, we iteratively collect preference
data and update the policy. Specifically, we generate a dataset Dt using the procedure described in Algorithm 2, which
captures preferences over model outputs in the current task context. A reward model rϕ,t is then trained onDt to model these
preferences. Using rϕ,t, we update the parameters θ of an LLM by optimizing the objective of your favourite algorithm.

Algorithm 2 Synthetic Preference Generation for Task Tt

1: Input: LLMM; budget Nt; templates τprompt, τresponse, and τjudge
2: Initialize dataset Dt ← ∅
3: for i = 1 to Nt do
4: Generate prompt x ∼M(· | τprompt)
5: Generate responses y1, y2 ∼M(· | x, τresponse)
6: Generate preference label yc, yr ∼M(· | x, y1, y2, τjudge)
7: Append (x, yc, yr) to Dt

8: end for
9: Return Dt

Algorithm 2 outlines the procedure for generating synthetic preference data at each temporal phase of continual learning.
We assume access to an LLMM, which generates prompts and corresponding responses. While separate models could be
employed for prompt and response generation, we assume a single model for simplicity. At each time step t, the objective is
to construct a dataset Dt of synthetic preference samples, given a (latent) prompt distribution pt(x) and a compute budget of
Nt queries. We also assume access to LLM templates: τprompt for prompt generation, τresponse for response generation, and
τjudge for preference selection—each specified via configuration files.

We initialize Dt as empty and iterate Nt times. Since the true distribution pt(x) is inaccessible, we approximate it using
the prompt templates τprompt, which encode domain and task-specific characteristics. In each iteration, the LLMM is
conditioned on τprompt to generate a sample prompt x, then queried again to sample two responses y1, y2 ∼M(· | x, τresponse).
A final inference step applies the judge templates τjudge to select the preferred and rejected responses, denoted yc and yr. The
resulting preference-labeled tuple ⟨x, yc, yr⟩ is added to Dt. Although this procedure produces binary preference data, it can
be extended to more expressive preference formats, such as listwise comparisons or multi-response rankings.

B. Additional Experiments
B.1. AIF-Gen Datasets Statistics

In this appendix, we provide detailed statistics for the synthetic datasets generated using AIF-GEN, complementing the
quality analysis presented in Figure 3 of the main paper. Tables 3, 4, and 5 break down sample counts, prompt entropy,
response entropy (chosen and rejected), and coherence scores across individual datasets categorized by objective, preference,
and domain. While each dataset was designed to contain 10,000 examples, the final counts are slightly lower due to filtering
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steps that excluded samples affected by API failures (e.g., VLLM or OpenAI), token limit violations, or parsing errors
during structured binding. These tables offer a granular view of the data diversity and quality underpinning our lifelong
RLHF benchmarks.

Table 3: Validation statistics for Generate tasks.

Politics

Statistic Formal Rapper Shakespeare

Sample Count 9992 9985 9975
Prompt Entropy 6.977 6.977 6.980
Chosen Entropy 7.353 7.583 7.701
Rejected Entropy 7.424 7.590 7.617
Coherence Chosen 8.785 8.616 8.606
Coherence Rejected 8.744 8.632 8.612

As expected, we observe greater variation across datasets defined by different objectives, reflecting the diversity of generation
tasks in AIF-GEN. Interestingly, coherence and entropy also vary slightly across stylistic preferences. For example, in
generation tasks, responses generated with the rapper style exhibit lower coherence scores (8.616 and 8.632) compared to the
formal style (8.785 and 8.744), while also showing higher token entropy—suggesting broader vocabulary usage and greater
linguistic variability. Similarly, rapper and Shakespeare preferences tend to produce responses with more lexical diversity.
In summarization tasks, the expert preference consistently yields a higher coherence score than its eli5 counterpart across
domains, a trend also observed in Q&A datasets. Notably, hinted and direct preferences yield nearly identical coherence
metrics, indicating that AIF-GEN maintains consistent quality across subtly different instructional styles.

Table 4: Validation statistics for Summary tasks.

Education Politics Tech Physics Eli5 Physics Expert Physics Highschool

Statistic Eli5 Expert Eli5 Expert Eli5 Expert Eli5 Expert Eli5 Expert Eli5 Expert

Sample Count 9996 9995 9996 9995 9996 9995 9997 9997 9999 9999 9996 9996
Prompt Entropy 7.121 7.124 6.938 7.340 7.012 6.732 7.014 7.014 7.012 7.340 7.012 7.014
Chosen Entropy 7.411 7.440 7.297 7.319 7.319 7.174 7.297 7.297 7.297 7.319 7.319 7.297
Rejected Entropy 7.448 7.478 7.329 7.388 7.362 7.249 7.351 7.351 7.362 7.388 7.362 7.351
Coherence Chosen 8.864 8.983 8.543 8.574 8.643 8.889 8.866 8.866 8.643 8.574 8.643 8.866
Coherence Rejected 8.944 8.972 8.640 8.659 8.792 8.870 8.888 8.888 8.792 8.659 8.792 8.888

Table 5: Validation statistics for Q&A tasks.

Education Politics Tech

Direct Eli5 Expert Hinted Eli5 Expert Healthcare Eli5 Healthcare Expert

Sample Count 9996 9991 9996 9991 9977 9982 9997 9991
Prompt Entropy 6.166 6.154 6.149 6.158 5.614 5.606 5.627 5.613
Chosen Entropy 7.620 7.584 7.755 7.539 7.329 7.528 7.456 7.626
Rejected Entropy 7.693 7.596 7.688 7.565 7.325 7.439 7.460 7.527
Coherence Chosen 8.995 8.827 9.046 8.837 8.642 8.828 8.846 9.057
Coherence Rejected 8.916 8.845 9.007 8.937 8.672 8.776 8.861 9.017

B.2. Human Evaluation Heatmap

Classification heatmap (see Figure 5) shows that LLMs align well with human judgments, with ambiguity concentrated in
both/neither cases—especially for ELI5, which may benefit from stronger preference conditioning in generation.
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Figure 5: Confusion matrix comparing LLM (response 0 or 1) with human annotations (response 0, 1, both, neither). Most
samples show agreement. When humans label both or neither, the LLM’s predictions become more evenly split.

C. AIF-GEN Command-Line Interface (CLI)
AIF-Gen is primarily meant to be used as a command-line tool when generating and manipulating synthetic continual RLHF
datasets. The tool is invoked using:

$ aif --help

Available commands:

• generate – Generate a new ContinualAlignmentDataset.

• merge – Interactively merge multiple datasets.

• preview – Interactively preview dataset samples.

• sample – Downsample datasets by ratio or count.

• transform – Apply dataset transformations.

• validate – Run dataset validation checks.

For usage examples, refer to: https://aif-gen.readthedocs.io/en/latest/cli

For installation instructions, please consult: https://aif-gen.readthedocs.io/en/latest

Global Options

-log_file FILE Optional log file path (default: aif_gen.log)
-help Show help message and exit

generate

Generates a new continual dataset using a vLLM-compatible model.

-data_config_name Path to the dataset configuration file
-model Name of vLLM model for generation
-output_file Output path for the generated dataset
-random_seed Random seed for reproducibility (default: 0)
-dry_run Simulate generation a dry run (default: False)
-temperature LLM Sampling temperature (default: 0.99)
-hf_repo_id (Optional) Save to Hugging Face repository
-max_tokens_prompt_response Token limit for prompts (default: 1024)
-max_tokens_chosen_rejected_response Token limit for responses (default: 2048)
-max_concurrency Max number of concurrent inference requests to send to the

vLLM server (default: 256)
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merge

Interactively merges multiple datasets via terminal prompts.

(No additional flags; operates interactively.)

preview

Preview a dataset interactively by cycling through examples.

-input_data_file Path to the input dataset
-shuffle Whether to shuffle samples before display (default: True)
-hf_repo_id (Optional) Load from Hugging Face repository

sample

Downsample a dataset by ratio or absolute sample count.

-input_data_file Path to the input dataset
-keep_ratio_train Fraction of training data to retain
-keep_ratio_test Fraction of test data to retain
-output_data_file Path to write the transformed dataset
-random_seed Seed for reproducibility (default: 0)
-keep_amount_train (Optional) Absolute number of training samples to retain
-keep_amount_test (Optional) Absolute number of test samples to retain
-hf_repo_id (Optional) Load from Hugging Face repository
-hf_repo_id_out (Optional) Save to Hugging Face repository

transform

Transform a ContinualAlignmentDataset.

preference_swap Swap ’chosen’ and ’rejected’ responses probabilistically.

-input_data_file Path to the input dataset
-output_data_file Path to write the transformed dataset
-p Swap probability (default: 1)
-random_seed Seed for reproducibility (default: 0)
-hf_repo_id (Optional) Load from Hugging Face repository
-hf_repo_id_out (Optional) Save to Hugging Face repository

split Split dataset into train and test partitions.

-input_data_file Path to the input dataset
-output_data_file Path to write the transformed dataset
-test_sample_ratio Ratio for the test split (default: 0.15)
-random_seed Seed for reproducibility (default: 0)
-hf_repo_id (Optional) Load from Hugging Face repository
-hf_repo_id_out (Optional) Save to Hugging Face repository

validate

Run dataset validation with several configurable checks.
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-input_data_file Path to the input dataset
-output_data_file Path to write the validation results
-validate_count Enable count-based checks
-validate_entropy Enable entropy-based evaluation
-validate_llm_judge Enable LLM judgment scoring
-validate_embedding_diversity Enable embedding diversity checks
-model LLM model name for judgment
-embedding_model Embedding model name
-embedding_batch_size Batch size for embedding calculation (default: 256)
-max_tokens_judge_response Token limit for LLM judgment response (default: 128)
-random_seed Random seed for reproducibility (default: 0)
-dry_run Simulate LLM judge with a dry run (default: False)
-hf_repo_id (Optional) Load dataset from Hugging Face repository
-max_concurrency Max number of concurrent inference requests to send to the vLLM server

(default: 256)

D. Prompt Templates
In this section, we provide the templates with which AIF-Gen datasets were created. As described in the main text,
the framework utilizes a prompt and response mapper internally for the generation task given external data generation
configuration YAML files provided by the user; which can all be found in the GitHub repository. Appendix D.1, D.2, and
D.3 display the prompts used respectively.

D.1. Prompt Mapper

The following prompt template is used to generate task-specific prompts for our alignment tasks:

Generate a text that fulfills the objective below.
Do exactly what the objective says: [OBJECTIVE].
The description must include the following seed words: [SEED_WORDS].
Do not include any meta commentary, instructions, or extra text
(e.g., avoid phrases like "User asks" or additional context).
The output should be clear and self-contained.
You don’t need to start by saying "prompt:".
Ensure that the generated response adheres to ethical practices,
avoids biases, and respects the target audience’s needs.

where [OBJECTIVE] is the specific alignment task objective, and [SEED_WORDS] are domain-specific terms sampled
from task components to contextualize the generation.

D.2. Response Mapper

Generate a ‘chosen’ and ‘rejected’ response pair to the following
prompt: [TASK_PROMPT].
The ’chosen’ response should respond to the prompt according to the
following preference: [PREFERENCE].
The ‘rejected’ response should still respond to the prompt according
to the preference but negligibly worse in its quality, however still
close to the chosen response so it confuses the reader which one is
actually better.
Consider exactly the same style and lengths for the chosen and
rejected please.
You don’t need to start your response by saying "here is the response"
nor to give any meta-explanation. Just provide the response.
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where [TASK_PROMPT] is the previously generated task prompt, and [PREFERENCE] represents the specific preference
criteria from the alignment task.

D.3. Data Generation Configurations

We show a representative sample of our configurations here. Our full set is available on HuggingFace and GitHub.

education_qna_eli5

Ask a non-trivial math (you choose randomly what topic in math) or social sciences or physics or chemistry
question. The prompt is merely a literal question and nothing else please.
Explain the answer to the question at a level that could be understood by a five year old.

education

education_qna_expert

Ask a non-trivial math (you choose randomly what topic in math) or social sciences or physics or chemistry
question. The prompt is merely a literal question and nothing else please.
Explain the answer to the question at an expert level. Draw from technical literature when necessary, and add
complex examples to further support the student learning.

education

education_qna_hinted

Ask a non-trivial math (you choose randomly what topic in math) or social sciences or physics or chemistry
question. The prompt is merely a literal question and nothing else please.
Do not directly reveal the answer to the question. Instead, guide the student with a relevant hint.

education

politics_generate_rapper

Generate a body of text on a political topic (you choose randomly what topic in politics) that would be found
in a blog article.
Continue the story but in the style of a rapper.

politics

politics_generate_shakespeare

Generate a body of text on a political topic (you choose randomly what topic in politics) that would be found
in a blog article.
Continue the story but in the style of Shakespeare.

politics

politics_summary_expert

Generate a body of text on the topic of politics(you choose randomly what topic in politics) that would be
found in an article written by an expert in the field.
Summarize the body of text at an expert level. Draw from technical literature when necessary.

politics
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tech_physics_summary_eli5

Generate an article on the topic of healthcare (you choose the exact detailed topic in health sciences ) or
technology (you choose randomly what topic related to technology) that would be written by a professor or a
pioneering expert in the field.
Summarize the body of text at a level that could be understood by a five year old.

Technology and Physics

tech_physics_summary_expert

Generate a body of text on the topic of healthcare (you choose randomly what topic in health sciences) or
technology (you choose randomly what topic related to technology) that would be found in a blog article
written by an expert in the field.
Summarize the body of text at an expert level. Draw from technical literature when necessary.

Technology and Physics

tech_physics_summary_highschool

Generate an article on the topic of healthcare (you choose the exact detailed topic in health sciences ) or
technology (you choose randomly what topic related to technology) that would be written by a professor or a
pioneering expert in the field.
Summarize the body of text at a level that could be understood by a regular high school student.

Technology and Physics
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