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ABSTRACT

Group-equivariant neural networks have emerged as a data-efficient approach to
solve classification and regression tasks, while respecting the relevant symmetries
of the data. However, little work has been done to extend this paradigm to the
unsupervised and generative domains. Here, we present Holographic-(V)AE (H-
(V)AE), a fully end-to-end SO(3)-equivariant (variational) autoencoder in Fourier
space, suitable for unsupervised learning and generation of data distributed around
a specified origin. H-(V)AE is trained to reconstruct the spherical Fourier encod-
ing of data, learning in the process a latent space with a maximally informative
invariant embedding alongside an equivariant frame describing the orientation of
the data. We extensively test the performance of H-(V)AE on diverse datasets and
show that its latent space efficiently encodes the categorical features of spheri-
cal images and structural features of protein atomic environments. Our work can
further be seen as a case study for equivariant modeling of a data distribution by
reconstructing its Fourier encoding.

1 INTRODUCTION

In supervised learning, the success of state-of-the-art algorithms is often attributed to respecting
known inductive biases of the function they are trying to approximate. One such bias is the in-
variance of the function to certain transformations of the input. For example, image classification is
translationally invariant. To achieve such invariance, conventional techniques use data augmentation
to train an algorithm on many transformed forms of the data. However, this solution is only approx-
imate and increases training time significantly, up to prohibitive scales for high-dimensional and
continuous transformations (~500 augmentations are required to learn 3D rotation-invariant pat-
terns (Geiger & Smidt, [2022)). Alternatively, one could use invariant features of the data (e.g. pair-
wise distance between different features) as input to train any machine learning algorithm (Capecchi
et al.| 20205 \Uhrin} 2021)). However, the choice of these invariants is arbitrary and the resulting net-
work could lack in expressiveness.

Recent advances have developed neural network architectures that are equivariant under actions of
different symmetry groups. These networks can systematically treat and interpret various transfor-
mation in data, and learn models that are agnostic to these transformations. For example, models
equivariant to euclidean transformations have recently advanced the state-of-the-art on tasks over
3D point cloud data (Liao & Smidt, 2022} Musaelian et al., 2022} [Brandstetter et al., [2022). These
models are more flexible and expressive compared to their purely invariant counterparts (Geiger &
Smidt, 2022), and exhibit high data efficiency.

Extending such group invariant and equivariant paradigms to unsupervised learning could map out
compact representations of data that are agnostic to a specified symmetry transformation (e.g. the
global orientation of an object). In recent work |Winter et al.| (2022) proposed a general mathemat-
ical framework for autoencoders that can be applied to data with arbitrary symmetry structures by
learning an invariant latent space and an equivariant factor, related to the elements of the underlying
symmetry group.

Here, we focus on unsupervised learning that is equivariant to rotations around a specified origin in
3D, denoted by the group SO(3). We encode the data in spherical Fourier space and construct holo-
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grams of the data that are conveniently structured for equivariant operations. These data holograms
are inputs to our end-to-end SO(3)-equivariant (variational) autoencoder in spherical Fourier space,
with a fully equivariant encoder-decoder architecture trained to reconstruct the Fourier coefficients
of the input; we term this approach Holographic-(V)AE (H-(V)AE). Similar to[Winter et al.[(2022),
our network learns an SO(3)-equivariant latent space composed of a maximally informative set of
invariants and an equivariant frame describing the orientation of the data.

We extensively test the perfomance of H-(V)AE and demonstrate high accuracy in unsupervised
classification and clustering tasks for spherical images and atomic point clouds within protein struc-
tures. The learned SO(3) invariant and equivariant representations would be useful for many real
world applications in computer vision and structural biology.

2 BACKGROUND

2.1 SPHERICAL HARMONICS AND IRREPS OF SO(3)

We are interested in modeling 3D data (i.e., functions in R?), for which the global orientation of
the data should not impact the inferred model (Einstein, [1916). We consider functions distributed
around a specified origin, which we express by the resulting spherical coordinates (r, 8, ¢) around
the origin. In this case, the set of rotations about the origin define the 3D rotation group SO(3), and
we will consider models that are rotationally equivariant under SO(3).

It is convenient to project data to spherical Fourier space to define equivariant transformations for
rotations.

To map a radially distributed function p(r, 6, ¢) to a spherical Fourier space, we use the Zernike
Fourier Transform (ZFT),

Zn = / p(r.0, ) Yo (60, &) Ry (r) AV (1)

where Yy, (0, ¢) is the spherical harmonics of degree ¢ and order m, where ¢ is a non-negative
integer (¢ > 0) and m is an integer within the interval —¢ < m < ¢. R} (r) is the radial Zernicke
polynomial in 3D (Eq. with radial frequency n > 0 and degree ¢. R} (r) is non-zero only for
even values of n — ¢ > 0. Zernike polynomials - defined as the product Yz,,, (0, ¢) R} (r) - form a
complete orthonormal basis in 3D, and therefore can be used to expand and retrieve 3D shapes, if
large enough ¢ and n values are used; approximations that restrict the series to finite n and ¢ are
often sufficient for shape retrieval, and hence, desirable algorithmically. Thus, in practice, we cap
the resolution of the ZFT to a maximum degree L and a maximum radial frequency V.

The operators that describe how spherical harmonics transform under rotations are called the Wigner
D-matrices. Notably, Wigner-D matrices are the irreducible representations (irreps) of SO(3), which
implies that every element of the SO(3) group acting on any vector space can be represented as a
direct sum of Wigner-D matrices.

As spherical harmonics form a basis for the irreps of SO(3), the SO(3) group acts on spherical
Fourier space via a direct sum of irreps. Specifically, the ZFT encodes a data point into a tensor
composed of a direct sum of features, each associated with a degree ¢ indicating the irrep that it
transforms with under the action of SO(3). We refer to these tensors as SO(3)-steerable tensors
and to the vector spaces they occupy as SO(3)-steerable vector spaces, or simply steerable for short
since we only deal with the SO(3) group in this work. We note that a tensor may contain multiple
features of the same degree ¢, which we generically refer to as distinct channels c. Throughout the
paper, we refer to generic steerable tensors as h and index them by ¢, m and c. We adopt the “hat”
notation for individual entries to remind ourselves of the analogy with Fourier coefficients. See
Figure[T|A for a graphical illustration of a tensor.

2.2  MAPPING BETWEEN SO(3)-STEERABLE VECTOR SPACES

Constructing equivariant operations equates to constructing maps between steerable vector spaces.
There are precise rules constraining the kinds of operations that guarantee a valid SO(3)-steerable
output, the most important one being the Clebsch-Gordan (CG) tensor product ®.4. The CG tensor
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product combines two features of degrees ¢1 and {5 to produce another feature of degree |¢5 — £1| <

by < |ty + ls|. Let hy € R2+1 pe a generic degree { feature, with individual components h[m for
—¢ < m < /. Then, the CG tensor product is given by:

15
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where C(f373) are the Clebsch-Gordan coefficients (Tung, |1985).
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3 HOLOGRAPHIC-(V)AE

3.1 SO(3) EQUIVARIANT LAYERS

Linearity (Lin). We construct linear layers acting on steerable tensors by learning degree-specific
linear operations. Specifically, we learn weight matrices specific to each degree ¢, and use them to
map across degree-/ feature spaces by learning linear combinations of degree-¢ features in the input

tensor (Section [A2.T).

Efficient Tensor Product nonlinearity (ETP). We utilize the CG tensor product to inject
nonlinearity in the network in an equivariant way, as was originally prescribed by [Kondor et al.
(2018) for SO(3)-equivariant convolutional neural networks (CNNs). This type of nonlinearity
enables information flow between features of different degrees, which is necessary for constructing
expressive models, and injects square nonlinearity. To significantly reduce the computational and
memory costs of the tensor products, we leverage some of the modifications proposed by |[Cobb
et al.| (2021). Specifically, we compute tensor products channel-wise, i.e., only between features
belonging to the same channel, and we limit the connections between features of different degrees to
what|Cobb et al.[(2021) calls the MST subset. Notably, the channel-wise computation constrains the
input tensors to have the same number of channels for each feature. We found these modifications
to be necessary to efficiently work with data encoded in large number of channels C' and with large
maximum degree L. See Section[A.2.2]for details, and Table[A.7] for an ablation study showing the
improvement in parameter efficiency provided by the ETP.

Batch Norm (BN). We normalize intermediate tensor representations degree-wise and channel-wise
by the batch-averaged norms of the features, as initially proposed by Kondor et al.| (2018)), and do it
before the ETP; see Figure[IB and Section[A.2.3|for details. We found the use of this layer to speed
up model convergence (Fig

Signal Norm (SN). It is necessary to normalize activations computed by the CG tensor product
to avoid their explosion. We found using batch norm alone often caused activations to explode in
the decoder during evaluation. Thus, we introduce Signal Norm, whereby we divide each steerable
tensor by its fofal norm, defined as the sum of the norms of each of the tensor’s features, and apply
a degree-specific affine transformation (w,) for added flexibility. Formally, the total norm for an
individual tensor h is computed as:

4 _ iLc 2
Ntot _ ; Zc Z;ng_—;ll( Zm,) (3)

and the features are updated as Egm = ﬁjmwg /v/Niot. We note that each pre-affine normalized
tensor has a total norm of 1, thus constraining the values of the individual features. Signal Norm can
be seen as a form of Layer Norm that respects SO(3) equivariance (Ba et al., 2016).

Clebsch-Gordan block (CG bl.) We construct equivariant blocks, which we term Clebsch-Gordan
blocks, by stacking together the equivariant layers introduced above, as shown in Figure [IB. Each
block can take a steerable tensor of arbitrary size composed of multiple features of arbitrary degrees,
and can output a steerable tensor of arbitrary size with multiple features of arbitrary degrees, by
following the sparsity of the CG tensor product (|3 — ¢1| < ¢35 < |1 + £2|). Crucially, if the
maximum feature degree in the input tensor is ;,,y, then the maximum feature degree that can be
generated is 20,x, achieved by combining two features of degree ¢;,,x. We employ additive skip
connections, zero-padded when appropriate, to favor better gradient flow.
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3.2 DATA NORMALIZATION

As per standard machine learning practice (Shanker et al.,{1996), we normalize the data. We do this
by dividing each tensor by the average square-root total norm of the training tensors, analogously to
the Signal Norm. This strategy puts the target values on a similar scale as the normalized activations
learned by the network, which we speculate to favor gradient flow.

3.3 MODEL ARCHITECTURE

H-(V)AE has a fully rotationally equivariant architecture, and learns a disentangled latent space
consisting of a maximally informative invariant (¢ = 0) component z of arbitrary size, as well as
three orthonormal vectors (¢/ = 1), which represent the global 3D orientation of the object and
reflect the coordinate frame of the input tensor. Crucially, the disentangled nature of the latent space
is respected at all stages of training, and is guaranteed by the model’s rotational equivariance. The
architecture is shown in Figure [TIC. The encoder takes as input a steerable tensor with maximum
degree ¢.x = L and, via a stack of Clebsch-Gordan blocks, iteratively and equivariantly transfers
information from higher degrees to lower ones, down to the final encoder layer with £,,x = 1. The
frame is constructed by learning two vectors and using Gram-Schmidt to find the corresponding
orthonormal basis (Schmidt, [1907). The third orthonomal basis vector is then calculated as the
cross product of the first two. The decoder learns to reconstruct the input from z and the frame,
iteratively increasing the maximum degree ¢, of the intermediate representations by leveraging
the CG Tensor Product within the Clebsch-Gordan blocks.

An interesting question to ask is: what does the trained decoder’s output look like if the
frame is held constant (e.g. equal to the identity matrix)? We experimentally find that the recon-
structed elements tend to be aligned with each other and hypothesize that the model is implicitly
learning to maximize the overlap between training elements, providing empirical evidence in the
Appendix (Fig. [A.3). We call this frame the canonical frame following the analogy with the
canonical elements in |Winter et al.|(2022)). We note that it is possible to rotate original elements to
the canonical frame thanks to the equivalence between the frame we learn and the rotation matrix
within our implementation.

Within the decoder, the maximum degree (n.p that can be outputted by each block b is
constrained by the sparsity of the CG tensor product. Specifically, {maxp < 2" where b ranges
from 1 (first block) to B (last block). Since we need to reconstruct features up to degree L in the
decoder, we arrive at a lower bound for the number of blocks in the decoder set by lmax.5 > L,
or B > log, L. In our experiments, we set {yaxp = min{2b, L} and do not let £, exceed the
input’s maximum degree L. Relaxing this condition might increase the expressive power of the
network but at a significant increase in runtime and memory. We leave the analysis of this trade-off
to future work. For the encoder and the decoder to have similar expressive power, we construct
them to be symmetric with respect to the latent space (Fig. [T[C). Optionally, we apply a linearity
at the beginning of the encoder and at the end of the decoder; this is required for input data that
does not have the same number of channels per degree since the ETP operates channel-wise. We
empirically verify the equivariance of our model up to numerical errors in Table

For H-VAE, we parameterize the invariant part of the latent space by an isotropic Gaussian,
i.e., we learn two sets of size z invariants, corresponding to means and standard deviations.

3.4 TRAINING OBJECTIVE

We train H-(V)AE to minimize the reconstruction loss L,... between the original and the recon-
structed tensors, and, for H-VAE only, to minimize the KL-divergence of the posterior invariant
latent space distribution ¢(z|x) from the selected prior p(z) (Kingma & Welling, |2013):

L(z, @) = aLrec(®,2) + BDrL(q(2]2)[Ip(2)) )

We use mean square error (MSE) for L., which as we show in Sec.[A.2.4] respects the neces-
sary property of SO(3) pairwise invariance, ensuring that the model remains rotationally equivariant.
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Figure 1: Schematic of the Network architecture. A: Schematic of a steerable tensor with /;,.x = 1
and 4 channels per feature degree. We choose a pyramidal representation that naturally follows
the expansion in size of features of higher degree. B: Schematic of a Clebsch-Gordan Block (CG
bl.), with batch norm (BN), efficient tensor product (ETP), and signal norm (SN), and Linear (Lin)
operations. C: Schematic of the H-AE architecture. We color-code features of different degrees in
the input and in the latent space for clarity. The H-VAE schematic differs only in the latent space,
where two sets of invariants are learned (means and standard deviations of an isotropic Gaussian
distribution).

We cast an isotropic normal prior to the invariant latent space: p(z) = N(0,I). Hyper-
parameters « and [ control the trade-off between reconstruction accuracy and latent space
regularization Higgins et al.| (2022). We find it practical to scale the reconstruction loss by a
dataset-specific scalar o since the MSE loss varies in average magnitude across datasets. When
training H-VAE, we find it beneficial to keep 8 = 0 for a few epochs (Fi.) so that the model can
learn to perform meaningful reconstructions, and then linearly increasing it to the desired value for
Eyarmup €pochs to add structure to the latent space, an approach first used by Bowman et al.| (2016).

3.5 RECONSTRUCTION ASSESSMENT VIA COSINE LOSS

As the scale of MSE depends on the characteristics of the data, e.g. the size of the tensors represent-
ing the data and their irreps (Fig. [A-4), it is difficult to contextualize MSE values across datasets.
It would be desirable to have a dimensionless metric that measures absolute “goodness” of recon-
structions that is comparable across datasets. For this purpose, we propose the metric Cosine loss
which is a normalized dot product generalized to operate on pairs of steerable tensors (akin to cosine
similarity), and modified to be interpreted as a loss:

rOyY

’ ith ® — /®C Ay 5
(zoz)(yoy) " vy ;(” gYe)i=o  (5)

Cosine(x,y) =1 —

The Cosine loss is interpretable across different datasets: it is pairwise invariant, has a minimum
of zero for perfect reconstructions, and has an average value of 1.0 for a pair of random tensors of
any size, with a smaller variance for larger tensors (Sec.[A-4). The interpretability of Cosine loss
comes at the price of ignoring the relative norms of the features that are being compared, making
the measure unable to reconstruct norms and thus not suitable as a training objective. However,
as norms are easier to reconstruct than directions, we still find the Cosine loss useful as a noisy
estimate of the model’s reconstruction ability. Furthermore, Cosine loss correlates almost perfectly
with MSE, especially in the mid-to-low reconstruction quality regime (SpearmanR = 0.99, Fig.[A4]

and Table[AZ6).
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4 RELATED WORK

Group-equivariant neural networks. Group-equivariant neural networks have improved the state-
of-the-art on many supervised tasks, thanks to their data efficiency (Hutchinson et al.,|2021; Bekkers
et al., [2018; Romero & Cordonnier, [2021). Related to our work are 3D Euclidean neural networks,
which are equivariant to (subsets of) the 3D Euclidean group: (Weiler et al.| 2018}; Brandstetter et al.,
2022; [Thomas et al., 2018 | Batzner et al., |2022; [Musaelian et al., 2022 [Satorras et al., [2022; [Fuchs
et al.,2020; Liao & Smidt, |2022) and often use spherical harmonics and tensor products to construct
SO(3) equivariant layers. Seminal work on SO(3) equivariance has been conducted for spherical
images (Cohen et al. 2018; |[Esteves et al., [2020); we were inspired by the fully Fourier approach
of Kondor et al.[(2018)), and leveraged operations proposed by |Cobb et al.| (2021).

Equivariant representations of atomic systems. There is a diverse body of literature on construct-
ing representations of atomic systems that are invariant/equivariant to euclidean symmetries, lever-
aging Fourier transforms and CG tensor products (Drautz, 2019 Musil et al.,|2021). Notably, Uhrin
(2021)) constructs SO(3)-invariant representations of point clouds using the ZFT and CG tensor prod-
uct iterations. Our work can be seen as a data-driven instance of this framework, where we learn a
compact invariant and equivariant latent space from data.

Invariant autoencoders. Several works attempt to learn representations that are invariant to certain
classes of transformations. |Shu et al.[(2018) and [Koneripalli et al| (2020) learn general “shape”
embeddings by learning a separate “deformation” embedding. However, their networks are not
explicitly equivariant to the transformations of interest. Other work proposes to learn an exactly
invariant embedding alongside an approximate (but not equivariant) group action to align the input
and the reconstructed data. For example, [Mehr et al.| (2018)) learns in quotient space by sampling
the group’s orbit and computing the reconstruction loss by taking the infimum over the group. This
approach is best suited for discrete and finite groups, and it is computationally expensive as it is
akin to data augmentation. [Lohit & Trivedi| (2020) construct an SO(3)-invariant autoencoder for
spherical signals by learning an invariant latent space and minimizing a loss which first finds the
rotation that best aligns the true and reconstructed signals, introducing an added optimization step -
potentially very expensive for 3D data - and reconstructing the signals only up to a global rotation.
To our knowledge, the method proposed by [Lohit & Trivedi| (2020) is the only approach to date for
unsupervised learning of non-discretized SO(3)-invariant representations. However, the rotational
invariance is manually imposed by |Lohit & Trivedi| (2020), which is distinct from our approach
that is fully equivariant and only requires simple MSE for reconstruction of data in its original
orientation.

Group-equivariant autoencoders. A small body of work focuses on developing equivariant au-
toencoders. Several methods construct data and group-specific architectures to auto-encode data
equivariantly, learning an equivariant representation in the process (Hinton et al., 2011} [Kosiorek
et all [2019). Others use supervision to extract class-invariant and class-equivariant representa-
tions (Feigel |2022). A recent theoretical work proposes to train an encoder that encodes elements
into an invariant embedding and an equivariant group action, then using a standard decoder that uses
the invariants to reconstruct the elements in a canonical form, and finally applying the learned group
action to recover the data’s original form (Winter et al.| |2022). Our method in SO(3) is closely
related to this work, with the crucial difference that we use an equivariant decoder and that we learn
to reconstruct the Fourier encoding of data. Furthermore, our model is variational in the invariant
latent space.

5 EXPERIMENTS

5.1 ROTATED MNIST ON THE SPHERE

We extensively test the performance of H-(V)AE on the MNIST-on-the-sphere dataset (Deng, [2012)).
Following (Cohen et al|(2018) we generate a discrete unit sphere using the Driscoll-Healey (DH)
method with a bandwidth (bw) of 30, and project the MNIST dataset onto the lower hemisphere.
We consider two variants, NR/R and R/R, differing in whether the training/test images have been
randomly rotated (R) or not (NR). For each dataset, we map the images to steerable tensors via the
Zernike Fourier Transform (ZFT) with L = 10, and a constant radial function 2}/ = 1, resulting in
tensors with 121 coefficients.
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Figure 2: H-VAE on MINST-on-the-sphere. Evaluation on rotated digits for an H-VAE trained on
non-rotated digits with z = 16. A: Original and reconstructed images in the canonical frame after
inverse transform from Fourier space. The images are projected onto a plane. Distortions at the
edges and flipping are side-effects of the projection. B: visualization of the latent space via 2D
UMAP (Mclnnes et al.| 2020). Data points are colored by digit identity. C: Shown are cherry-picked
images generated by feeding the decoder invariant embeddings sampled from the prior distribution
and the canonical frame. D: Example image trajectory by linearly interpolating through the learned
invariant latent space. We interpolate between the learned invariant embeddings of the Start and the
Target images. Then, we feed each embedding to the decoder alongside the canonical frame.
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We train 8 models with combinations of the following features: training mode (NR vs. R),
invariant latent space size z (16 vs. 120), and model type (AE vs. VAE). In all cases the model
architecture follows from Fig. Ep; see Section m for details. All 8 models achieve very low
reconstruction loss (Table [T) with no significant difference between training modes, indicating
that the models successfully leverage SO(3)-equivariance to generalize to unseen orientations.
Predictably, AE models have lower reconstruction loss than VAE models, and so do models with a
larger latent space. Nonetheless, H-VAE achieves reliable reconstructions, as shown in Fig. 2JA and
Table[T] All 8 models produce an invariant latent space that naturally clusters by digit identity. We
show this qualitatively for one of the models in Fig. 2B, and quantitatively by clustering the data
via K-Means with 10 centroids and computing standard clustering metrics of Purity

and V-measure (Rosenberg & Hirschberg, 2007) in Table [T}

All 8 models achieve much better clustering metrics than Rot-Inv AE (Lohit & Trivedi, 2020),
with VAE models consistently outperforming AE models. We also train a linear classifier (LC)
to predict digit identity from invariant latent space descriptors, achieving comparable accuracy
to Rot-Inv AE with the same latent space size. We do not observe any difference between VAE
and AE models in terms of classification accuracy. Using a KNN classifier instead of LC further
improves performance (Table [A22).

As H-VAE is a generative model, we generate random spherical images by sampling invariant latent
embeddings from the prior distribution, and observing diversity in digit type and style (Fig.2IC and
Fig.[A23). We further assess the quality of the invariant latent space by generating images via linear
interpolation of the invariant embeddings associated with two test images. The interpolated images
present spatially consistent transitions (Fig. 2D and Fig. [AZ6), which is a sign of a semantically
well-structured latent space.

To understand the meaning of the learned frames, we visualize the sum of images in the canonical
frame (i.e. the identity matrix). We hypothesize that H-(V)AE learns to optimally overlap the
training images when in the same frame. Indeed, by visualizing the sum of the training images
in the canonical frame, we can verify that images are well aligned within the same digit type and
with varying degrees across different digit types depending on the content of training data (Fig.[A3).
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Table 1: Performance metrics on MNIST-on-the-sphere and Shrecl7. Reconstruction loss, clus-
tering metrics, classification accuracy in the latent space using a linear classifier, and retrieval metrics
(Shrec17 only) are shown. We only report scores presented in the corresponding papers of origin.

Class.

Dataset | Type Method z bw ‘ Cosine | Purity V-meas. Ace ‘ P@N R@N F1@N mAP NDCG
Supervised (Cobb et al.]2021] NR/R - 30 - - - 0.993
(Lohit & Trivedi]2020) NR/R™ 120 30 - 0.40 0.35 0.894
H-AE NR/R (Ours) 120 30 | 0.017 0.62 0.48 0.877
H-AE R/R (Ours) 120 30 0.018 0.51 0.41 0.881
H-AE NR/R (Ours) 16 30 0.025 0.62 0.51 0.820
MNIST | Unsupervised H-AE R/R (Ours) 16 30 0.024 0.65 0.52 0.833
H-VAE NR/R (Ours) 120 30 | 0.037 0.70 0.59 0.883
H-VAE R/R (Ours) 120 30 | 0.037 0.65 0.53 0.884
H-VAE NR/R (Ours) 16 30 0.057 0.67 0.54 0.812
H-VAE R/R (Ours) 16 30 0.055 0.72 0.57 0.830 - - -
Supervised (Esteves et al.][2020} - 128 - - - - 0.717  0.737 - 0.685 -
(Cobb et al.|[2021) - 128 - - - - 0.719 0.710 0.708 0.679  0.758
Shrec17 (Lohit & Trived1/[2020) 120 30 - 0.41 0.34 0578 10351 0361 0335 0215 0345
Unsupervised H-AE (Ours) 40 90 | 0.130 0.50 0.41 0.654 | 0.548 0.569 0.545 0.500 0.597
H-VAE (Ours) 40 90 | 0.151 0.52 0.42 0.631 | 0512 0.537 0512 0463  0.568
5.2 SHREC17

The Shrec17 dataset consists of 51k colorless 3D models belonging to 55 object classes, with a
70/10/20 train/valid/test split (noa). We use the variant of the dataset where each model is perturbed
by random rotations. Converting 3D shapes into spherical images preserves topological surface
information, while significantly simplifying the representation. We follow |(Cohen et al.| (2018) and
project surface information from each model onto an enclosing DH spherical grid with a bandwidth
of 90 via a ray-casting scheme, generating spherical images with 6 channels. We then apply the
ZFT with L = 14 and a constant radial function R}} = 1 to each channel individually, resulting in
a tensor with 1350 coefficients. We train an AE and a VAE model (Sec. [A.6.3) and evaluate them
similarly to the MNIST dataset and compute the Shrec17 retrieval metrics via the latent space linear
classifier’s predictions. H-AE achieves the best classification and retrieval results for autoencoder-
based models, and is competitive with supervised models despite the lower grid bandwidth and the
small latent space (Table[T). Using KNN classification instead of a linear classifier further improves
performance (Table [A-3). H-VAE achieves slightly worse classification results but better clustering
metrics compared to H-AE. While reconstruction loss is low, there is still significant margin of
improvement. We partially attribute Lohit & Trivedi|(2020)’s low scores to the low grid bandwidth.
However, we note that the size and runtime of our method does not scale with grid bandwidth, since
the size of the reconstructed tensor learned by our method does not depend on it.

5.3 PROTEIN NEIGHBORHOODS

We test H-(V)AE on a challenging
point cloud dataset, comprised of spher-
ical atomic environments surrounding a A B o psheet o aneix loop

residue within a protein structure, which oo 0 % .

we term protein neighborhoods. We use ,r,iag‘*;ilgﬁ?fm&“

ProteinNet (AIQuraishi, 2019) splits to e :”9’;"9

avoid any redundancy in training and test Y.é{ B s AN
sets (Sec. [A.6.3). We consider all atomic o3 %gg'ff }t} R RRNe
neighborhoods within a radius of 12.5A ‘ J?(g © e R

surrounding central residue types CYS,

l()};cllkjbggfgog;g& CEIS )- CW%OEII% Cg)lsa;ig; Figure 3: H-AE on protein neighborhoods. A: An exam-

. > : ple protein neighborhood of backbone atoms: Ca (yel-
eaqh ne’lghborhood centered at the central low), C (gray), N (blue) and O (red). The secondary
res idue’s Ca, we compute the ZFT (Eq.[T) structure of the central residue is shown overlaid in yel-
with L = dand N = 26. We then con- . "g. 51y JMAP visualization of the invariant latent

catenate features of .the same degrqe re- space learned by H-AE, colored by secondary structure
sulting in a tensor with 1240 coefficients. .
of the central residue.

The final dataset contains 303k/75k/4.4k
(train/valid/test) tensors. We train an H-
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AE model with an invariant latent space size z of 64 (see Sec.[A.6.5). While the test Cosine loss
has still margins of improvement (~ 0.161) the latent space is meaningfully organized according to
relevant neighborhood statistics, such as the secondary structure of the central residue (~ 87% KNN
classification accuracy - Fig. [B), number of atoms in the neighborhood (Fig.[A.10), and neighbor-
hood’s average Solvent Accessible Surface Area (SASA), which is a proxy value for how buried
the residue is in the protein (Fig. @]) We further benchmark H-(V)AE via extensive ablation
experiments on a simpler point cloud dataset consisting of individual amino acids (Sec.[A.3).

6 USING AN UNCONSTRAINED DECODER

It is possible to merge use our SO(3)-equivariant encoder and fourier-space formulation with Winter,
et al.| (2022))’s framework, in which the learned rotation (i.e. the frame) is applied to the output space
of an unconstrained decoder instead of being fed as input to an equivariant decoder. The resulting
model is theoretically equivalent to ours with regards to respecting equivariance between input and
output. We implement and test a version of this model on the Rotated MNIST-on-the-sphere dataset,
and show that it is slightly worse but comparable to using our fully-equivariant decoder in terms
of speed (1.3x slower) and performance (0.037 vs. 0.025 Cosine loss, Table . Given the sim-
ilarity in performance, we favor the simplicity and elegance of our equivariant decoder, which is
constructed to be symmetric to the encoder, thus automatically endowing it with similar represen-
tational power and without the need to tune an architecture made with different base components.
Implementation details and extended discussion on this matter can be found in Section[A.4]

7  PROPERTIES AND LIMITATIONS

The information content of the latent space is limited by the maximum degree L and radial frequency
N set as cutoff for the spherical Fourier series. Such truncation is necessary for computational
feasibility, but it limits resolution, evident when reconstructing a signal.

Another related limitation is the higher inaccuracy of H-(V)AE in reconstructing features associated
with larger degrees (Fig.[A.12)), resulting in a failure to learn fine-grained details of data. This failure
could explain the network’s troubles on MNIST in differentiating between 4’s and 9’s, which tend
to be hand-drawn similarly.

8 CONCLUSION

In this work, we develop the first end-to-end SO(3)-equivariant (V)AE, suitable for data distributed
around a center. The model learns an invariant embedding describing the data in a “canonical”
orientation alongside an equivariant frame describing the data’s original orientation relative to the
canonical one.

We use the learned invariants to achieve state-of-the-art unsupervised clustering and classification
results on various spherical image datasets, and atomic environments within protein structures. By
making our model variational in its invariant latent space, we enhanced the quality of clustering
quality and made the model generative. Our model is defined fully in spherical Fourier space, and
thus, can reach a desired expressiveness without a need for excessive computational resources.

The example of protein neighborhoods demonstrates that our model can be used to efficiently learn
SO(3) invariant and equivariant representations of high-dimensional data, such as atomic environ-
ments. While in this paper we limit our analysis to backbone atoms within a small protein subspace,
our method can be extended to all-atom representations of the entire protein universe.

Going forward, we expect our method will be useful in devising models for larger units from rep-
resentations learned on smaller building blocks. For example, embeddings learned by H-(V)AE
representing protein neighborhoods can be used to coarse-grain full atom representations of protein
structures to facilitate structure-based predictions. A similar approach, albeit in the sequence do-
main, has been used by Omega-fold (Wu et al., 2022), where representations for amino acids in a
protein from a separate language model are used as inputs to a neural network to learn an MSA-
free model for protein folding. Beyond proteins, our approach could be used for other hierarchical
models in large 3D structures, for which respecting rotational symmetry is desirable.
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A APPENDIX

A.1 EXPANDED BACKGROUND ON SO(3)-EQUIVARIANCE
A.1.1 INVARIANCE AND EQUIVARIANCE

Let f : X — Y be a function between two vector spaces and & a group, where & acts on X
and via representation Dx and on Y via representation Dy . Then, f is said to be &-equivariant
iff f(Dx(g)x) = Dy(g9)f(z),Vx € X AVg € &. We note that invariance is a special case of
equivariance where Dy (g) = I ,Vg € &.

A.1.2 GROUP REPRESENTATIONS AND THE IRREPS OF SO(3)

Groups can concretely act on distinct vector spaces via distinct group representations. Formally, a
group representation defines a set of invertible matrices Dy (g) parameterized by group elements
g € &, which act on vector space X. As an example, two vector spaces that transform differently
under the 3D rotation group SO(3)- and thus have different group representations - are scalars, which
do not change under the action of SO(3), and 3D vectors, which rotate according to the familiar 3D
rotation matrices.

A special kind of representation for any group are the irreducible representations (irreps) which are
provably the “smallest” nontrivial (i.e., they have no nontrivial group-invariant subspaces) represen-
tations. The irreps of a group are special because it can be proven that any finite-dimensional unitary
group representation can be decomposed into a direct sum of irreps (Tung, [1985). This applies to
SO(3) as well, whose irreps are the Wigner-D matrices, which are (2¢ + 1 x 2¢ + 1)-dimensional
matrices, each acting on a (2¢ 4 1)-dimensional vector space:

Dy(g) for £=0,1,2,... (A.1)

Therefore, every element of the SO(3) group acting on any vector space can be represented as a
direct sum of Wigner-D matrices.

A.1.3 STEERABLE FEATURES

A G-steerable vector is a vector # € X that under some transformation group &, transforms via
matrix-vector multiplication Dx (g)x; here, Dx (g) is the group representation of g € &. For
example, a vector in 3D Euclidean space is SO(3)-steerable since it rotates via matrix-vector multi-
plication using a rotation matrix.

However, we can generalize 3D rotations to arbitrary vector spaces by employing the irreps of SO(3).
We start by defining a degree-/ feature as a vector that is SO(3)-steerable by the /! Wigner-D matrix
D,. Given the properties of irreps, we can represent any SO(3)-steerable vector as the direct sum
of two or more independent degree-¢ features, e.g. © = x4, B ¢, B ... ® x,,. The resulting
vector, which we refer to as a tensor to indicate that it is composed of multiple individually-steerable
vectors, is SO(3)-steerable via the direct sum of Wigner-D matrices of corresponding degrees. This
tensor is a block-diagonal matrix with the Wigner-D matrices along the diagonal: D(g) = Dy, (g)®
Dy, (9) ®...® Dy, (g).

A.1.4 SPHERICAL HARMONICS AND THE SPHERICAL FOURIER TRANSFORM

Spherical harmonics are a class of functions that form a complete and orthonormal basis for func-
tions (6, ¢) defined on a unit sphere; 6 and ¢ are the azimuthal and the polar angles in the spherical
coordinate system. In their complex form, spherical harmonics are defined as,

2 1(n—m)! .
Yo (0, ¢) = 4| n4jr— Me“nd’Pg”(cos 0) (A2)

where ¢ is a non-negative integer (0 < ¢) and m is an integer within the interval —¢ < m < /.
P (cos 0) is the Legendre polynomial of degree ¢ and order m, which together with the complex
exponential e!™? define sinusoidal functions over the angles 6 and ¢ in the spherical coordinate
system. Spherical harmonics are used to describe angular momentum in quantum mechanics.
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Notably, spherical harmonics also form a basis for the irreps of SO(3), i.e., the Wigner-D
matrices. Specifically, the SO(3) group acts on the ¢*" spherical harmonic via the /! Wigner-D
matrix:

gESO

Yom (0,6 Z D™ (@) Yem (6, 9) (A3)

m/=—/
Therefore, any data encoded in a spherical harmonics basis is acted upon by the SO(3) group via
a direct sum of the Wigner-D matrices corresponding to the basis functions being used. Using our
nomenclature, any such data encoding constitutes a steerable tensor. We can thus map any function
f(0, ¢) defined on a sphere into a steerable tensor using the Spherical Fourier Transform (SFT):

27 e
fsz/O /0 f(0,0)Ye (0, ¢)sin 6 db do (A4)

The signal can be reconstructed in the real space using the corresponding inverse Fourier transform.
For computational purposes, we truncate Fourier expansions at a maximum angular frequency L,

which results in an approximate reconstruction of the signal f (0, ) up to the angular resolution

allowed by L,
L 0
=" > femYum(6,9) (A.5)

=0 m=—~
Here, fgm are the functions’ Spherical Fourier coefficients.
A.1.5 ZERNIKE POLYNOMIALS AND THE ZERNIKE FOURIER TRANSFORM

To encode a function p(r, 8, ¢) with both radial and angular components, we use Zernike Fourier
transform,

Zn, = / P16, 6) Yim (8, 6)RE(r) AV (A6)

where R} (r) is the radial Zernike polynomial in 3D defined as,

’n+f+3_1
n n—t n—1n+0+3 3
RIr)=(-1)"¢ \/2n+3( . )WQF1 (— 5 ,2;£+2;|7~|2> (A7)

2

Here, o F(+) is an ordinary hypergeometric function, and n is a non-negative integer representing
a radial frequency, controlling the radial resolution of the coefficients. R} (r) is non-zero only for
even values of n — ¢ > 0. Zernike polynomials form a complete orthonormal basis in 3D, and
therefore, can be used within a Fourier transform to expand and retrieve any 3D shape, if large
enough ¢ and n coefficient are used. We refer to the Fourier transform of Eq. as the Zernike
Fourier Trasform (ZFT).

To represent point clouds, a common choice for the function p(r) = p(r,0,) is the sum of
Dirac-d functions centered at each point:

> S(p(ri) — p(r)) (A.8)

1Epoints
This choice is powerful because the forward transform has a closed-form solution that does not
require a discretization of 3D space for numerical computation. Specifically, the ZFT of a point

cloud follows: R
Zpy= > RL:)Yem(0:, 1) (A9)
i €points
Similar to SFT, we can reconstruct the data using inverse ZFT and define approximations by trun-
cating the angular and radial frequencies at L and N, respectively,

p(r,0,¢) Z Z Z Z8 RN Yem(0, @) (A.10)
{=0m=—4 n
The use of other radial bases is possible within our framework, as long as they are complete. Or-

thonormality is also desirable as it ensures that each basis encodes different information, resulting
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in a more efficient encoding of the coefficients. We use Zernike polynomials following [Boyd
& Yu| (2011), which demonstrates that encoding with Zernike polynomials result in a faster con-
vergence compared to the radial basis functions localized at different radii, as well as most other
orthogonal harmonic bases, with the exception of Logan-Shepp. “Faster convergence” indicates that
fewer frequencies are required to encode the same information. [Uhrin| (2021) also uses Zernike to
construct invariant descriptors of atomic environments. Other equivariant methods use Bessel func-
tions (Musaelian et al., [2022), though, according to|[Boyd & Yu|(2011), Zernike encoding results in
faster convergence.

A.2 DETAILS OF H-(V)AE COMPONENTS
A.2.1 LINEARITY

Let us consider a feature h, containing C features of the same degree ¢. h, can be represented as a
C X (2¢+ 1) matrix where each row constitutes an individual feature. Then, we learn weight matrix

W, € RE*K that linearly maps hy to hy € REX (2041

he=W/hy (A.11)

A.2.2 EFFICIENT TENSOR PRODUCT (ETP)

Channel-wise tensor product nonlinearity. We effectively compute C' tensor products, each
between features belonging to the same channel ¢, and concatenate all output features of the
same degree. In other words, features belonging to different channels are not mixed in the
nonlinearity; the across-channel mixing is instead done in the linear layer. This procedure reduces
the computational time and the output size of the nonlinear layers with respect to the number of
channels C, from O(C?) for a “fully-connected” tensor product down to O(C). The number
of learnable parameters in a linear layer are proportional to the size of the output space in the
preceding nonlinear layer. Therefore, reducing the size of the nonlinear output substantially reduces
the complexity of the model and the number of model parameters. This procedure also forces the
input tensor to have the same number of channels for all degrees. We refer the reader to|Cobb et al.
(2021)) for further details and for a nice visualization of this procedure.

Minimum Spanning Tree (MST) subset for degree mixing. To compute features of the
same degree /3 using the CG Tensor Product, pairs of features of varying degrees may be used, up
to the rules of the CG Tensor Product. Specifically, pairs of features with any degree pair (¢1, ¢2)
may be used to produce a feature of degree ¢35 as long as |¢1 — £o| < ¢35 < {1 + (5. Features of the
same degree are then concatenated to produce the final equivariant (steerable) output tensor.

Since each produced feature (often referred to as a “fragment” in the literature Kondor et al.| (2018));
Cobb et al.| (2021)) is independently equivariant, computing only a subset of them still results in
an equivariant output, albeit with lower representational power. Reducing the number of computed
fragments is desirable since their computation cannot be easily parallelized. In other words, to
reduce complexity we should identify a small subset of fragments that can still offer sufficient
representational power. In this work we adopt the “MST subset” solution proposed by |Cobb et al.
(2021), which adopts the following strategy: when computing features of the same degree /s,
exclude the degree pair (g, ¢5) if the (o, ¢1) and the ({1, ¢3) pairs have already been computed.
The underlying assumption behind this solution is that the last two pairs already contain some
information about the first pair, thus making its computation redundant.

The resulting subset of pairs can be efficiently computed via the Minimum Spanning Tree of
the graph describing the possible pairs used to generate features of a single degree /3, given the
maximum desired degree /... As multiple such trees exist, we choose the one minimizing the
computational complexity by weighting each edge (i.e. each pair) in the graph accordingly (edge
(01, L) gets weight (2¢1 + 1)(2¢5 4 1)). The subset is also augmented to contain all the pairs with
same degree to inject more nonlinearity. This procedure reduces the complexity in number of pairs
with respect to £, from O(£2,.) - when all possible pairs are used - down to O (fpax). We refer

max
the reader to|Cobb et al.| (2021) for more details and for a nice visualization.
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A.2.3 BATCH NORM

Let us consider a batch of steerable tensors h which we index by batch b, degree ¢, order m and
channel c. During training, we compute a batch-averaged norm for each degree ¢ and each channel

c as,
¢

B
1 1 .
Ni=—=)Y) —— hgo,)? A.12
L B ; 20+ 1 m;[( lm) ( )
Similar to standard batch normalization, we also keep a running estimate of the training norms
N, () ysing momentum &, set to 0.1 in all our experiments:

N[e,tr(i) _ §Ngc + (1 _ g)Nlc,tr(ifl) (Al3)

We then update the features of the steerable tensor using the real batch-averaged norms during
training, and the running batch-averaged norms during testing, together with a learned affine trans-
formation:

- heb i o
het = ‘}:]”C wy training (A.14)
¢
- ile
hgh = %wg evaluation (A.15)
c,tr(e
N,

A.2.4 PAIRWISE INVARIANT RECONSTRUCTION LOSS

To reconstruct a signal within an equivariant model it is desirable to have a pairwise invariant
reconstruction loss, i.e., a loss L. such that L,...(x,y) = Lrec(D(g)x, D(g)y) where D is the
representation of the group element g acting on the space that = and y inhabit (e.g. a rotation matrix
if  and y are vectors in Euclidean 3D space, or a degree-¢ wigner-D matrix if  and y are degree-£
vectors). This property is necessary for the model to remain equivariant, i.e., given that the network
is agnostic to the transformation of the input under group operation x — D(g)x by producing a
similarly transformed output y — D(g)y, we want the reconstruction loss to be agnostic to the
same kind of transformation as well

The MSE loss is pairwise invariant for any degree-¢ feature on which SO(3) acts via the ¢’s
Wigner-D matrix. Consider two degree-¢ features x, and y, acted upon by a Wigner-D matrix
Dy(g) parameterized by rotation g (we drop the g and ¢ indexing for clarity):

MSE(Dz, Dy) = (Dx — Dy)” (Dx — Dy)
= (D(z - y))"(D(x —y))
=(x—y)"D'D(x - y)
=(x—y)(x—y) since Wigner-D matrices are unitary
= MSE(z,y)
(A.16)

Since the MSE loss is pairwise invariant for every pair of degree-¢ features, it is thus pairwise
invariant for pairs of steerable tensors composed via direct products of steerable features.

A.2.5 COSINE LOSS

Proof that Cosine loss is pairwise invariant. The generalized dot product ® from Eq_.[3]is pairwise
invariant in the same way that the dot product between two 3D vectors depends only on their relative
orientations but not the global orientation of the whole two-vector system. Therefore, the whole
Cosine loss expression is pairwise invariant, since all of its components are pairwise invariant.

On the use case of Cosine loss. We introduce the Cosine loss as a measure of reconstruction that is
both interpretable and comparable across datasets— the two characteristics that MSE does not have.
A measure with these characteristics is practically useful for training of a networkd because it pro-
vides an estimate for how much better the reconstructions can get if the network’s hyperparameters
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were to be further optimized. For example, looking at the Cosine loss in Table[A.6] we see that our
model trained on Shrec17 (best Cosine = 0.130) is not as well optimized as our model tra}ined on
MNIST (best Cosine = 0.017). Using MSE, the trend is reversed (1.8 x1073 vs. 6.7x1073), since

the scale of MSE depends on the size of the irreps of the data (Fig.[A.4).

A.3 Toy AMINO-ACIDS

We train H-(V)AE on single amino acids
represented as atomic point clouds, ex-
tracted from structures in the Protein
Data Bank (PDB) (Berman et al., |2000).
We collect atomic point clouds of 50k
residues from PDB evenly distributed
across residue types and apply a 40/40/20
train/valid/test split. Residues of the same
type have different conformations and nat-
urally have noisy coordinates, making
this problem a natural benchmark for our
method.

We consider atom-type-specific clouds (C,
O, N and S; we exclude H) centered at the
residue’s Ca and compute the ZFT (Eq.[I))
with L = 4 and N = 20 within a radius of
10A from the residue’s Ca, and concate-
nate features of the same degree, resulting
in a tensor with 940 coefficients. We train
several H-AE and H-VAE models, all with
z = 2; see Sec.[A.6.4]for details.

We consistently find that the latent space
clusters by amino acid conformations
(Fig.[A.T), with sharper cluster separations
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Figure A.1: H-VAE on amino acids. H-VAE was trained
on 1,000 residues with 5 = 0.025 and z = 2. The
invariant latent space clusters by amino acid confor-
mations. The highlighted clusters for PHE and TYR
contain residue pairs with similar conformations; TYR
and PHE differ by one oxygen at the end of their ben-
zene rings. We compare conformations by plotting
each residue in the standard backbone frame (right);
x and y axes are set by the orthonormalized Ca-N and
Ca-C vectors, and z axis is their cross product.

as more training data is added (Fig.

and[A.9). We find that test reconstruction loss decreases with more training data but the reconstruc-
tion is accurate even with little training data (from 0.153 Cosine loss with 400 training residues to
0.034 with 20,000); Table A similar trend is observed for KNN-based classification accuracy
of residues (from 0.842 with 400 training residues to 0.972 with 20,000); (Table @ Notably, an
untrained model, while achieving random reconstruction loss, still produces an informative invari-
ant latent space (0.629 residue type accuracy), suggesting that the forced SO(3)-invariance grants a
“warm start” to the encoder. We do not find significant improvements in latent space classification
by training with a variational objective, and present ablation results in Table[A.5]

A.4 USING A NON-EQUIVARIANT DECODER: EXTENDED DISCUSSION

Winter et al.| (2022)) propose to construct group-equivariant autoencoders by using an equivariant
encoder that learns an invariant embedding and a group element, and an unconstrained decoder
which uses the invariants alone to reconstruct each datapoint in the “canonical” form, before
applying the learned group action in the output space. By contrast, for SO(3) we propose to use
an equivariant decoder, whereby the learned group element is fed as input to the decoder. Such
“unconstrained decoder” procedure can in principle be merged with our equivariant encoder and
Fourier-space approach in two ways. For each, we argue in favor of using our equivariant decoder.

1) Reconstructing the Fourier coefficients of the data. To apply the learned group ele-
ment on the decoder’s output, the Wigner-D matrices for the data’s irreps need to be computed from
the group element. Then, the Wigner-D matrices can be used to “rotate” the tensor. This has to be
done on-the-fly, and it can be done quickly using functions provided in the e3nn package (Geiger
& Smidt, 2022) and by smartly vectorizing operations. We implemented this procedure by using a
simple Multi-Layer Perceptron with SiLU non-linearities as a decoder. By using e3nn to compute
Wigner-D matrices in batches, and by clever construction of tensor multiplications such that runtime
scales linearly with ¢,,,, and is constant with regards to number of channels and batch size, we
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achieve models that run with comparable speed to those using our equivariant decoder, and have
comparable performance on MNIST (Table [A.T). Given the empirical similarities we observe,
though on a limited use case, we favor the simplicity and elegance of our equivariant decoder.
“Simplicity” because we construct the decoder to be symmetric to the encoder, thus endowing it
automatically with similar representational power and without the need to tune an architecture made
with different base components. Furthermore, we highlight that our method generates intermediate
equivariant representations in the decoder, rather than intermediate invariant representations. These
intermediate equivariant representations may be of interest to study in and of themselves.

2) Reconstructing the data in real space. In this case, we do not have to compute Wigner-
D matrices on-the-fly, since the learned frame can be used directly in the output space as a
rotation matrix. However, since the encoder only sees a truncated Fourier representation of the
data, which is by construction lossy, while the loss is computed over fine-grained real-space, this
model might be too difficult to train. We suspect this would make the model akin to a denoising
autoencoder (Vincent et al., 2008) and it might be interesting to analyze, but that would be beyond
the scope of this paper. To avoid the denoising effect, we could learn to reconstruct data in real
space after an Inverse Fourier Transform (IFT). However, computing the IFT on-the-fly is very
expensive and requires a discretization of the input space, to the point of being prohibitive for point
clouds. This is not a bottleneck for the Forward Fourier Transform if the cloud is parameterized by
Dirac-Delta distributions, i.e., for point clouds, as the integral can be computed exactly (Eq.[A.9).

Table A.1: Performance comparison between our H-(V)AE and H-(V)AE with [Winter et al.
(2022)’s non-equivariant decoder formulation, on the MNIST-on-the-sphere dataset. The non-
equivariant decoders are constructed as simple MLPs with SiLU non-linearities, with the following
hidden layer sizes: [32,64,128,160,256]. We keep the number of parameters approximately the same
to make model comparison fair, but we do not tune the architecture of the invariant decoders. All
other training details are kept the same (Sec.[A.6).

Method z | Speed ‘ MSE Cosine | Purity V-meas. LCAClass. KNN Class.
cc. Acc.
H-AE NR/R 16 1.0 9.3 x10°% 0.025 0.62 0.51 0.820 0.862
H-AE unconst. decoder NR/R 16 1.3 1.3x 1073 0.037 0.61 0.48 0.802 0.856
H-VAE NR/R 16 1.0 1.4x10°%  0.057 0.67 0.54 0.812 0.848
H-VAE unconst. decoder NR/R 16 1.3 2.1x 1073 0.057 0.62 0.51 0.781 0.853

A.5 IMPLEMENTATION DETAILS

Without loss of generality, we use real spherical harmonics for implementation of H-(V)AE. We
leverage e3nn |Geiger & Smidt| (2022), using their computation of the real spherical harmonics and
their Clebsch-Gordan coefficients.

In our code, we offer the option to use the Full Tensor Product instead of the ETP. Specif-
ically, at each block we allow the users to specify whether to compute the Tensor Product
channel-wise or fully-connected across channels, and whether to compute using efficient or fully
connected degree mixing.

A.6 EXPERIMENTAL DETAILS
A.6.1 ARCHITECTURE SPECIFICATION

We describe model architectures as follows. We specify the number of blocks B, which is the same
for the encoder and the decoder. We specify two lists, (i) DegreesList which contains the maximum
degree £y, of the output of each block b, and (ii) ChannelsList, containing the channel sizes Cj,
of each block b. These lists are in the order as they appear in the encoder, and are reversed for the
decoder. When it applies, we specify the number of output channels of the initial linear projection
Chnit. As noted in the main text, we use a fixed formula to determine £,,,45 5, but we specity it for
clarity.
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A.6.2 MNIST ON THE SPHERE

Model architectures. For models with invariant latent space size z = 16, we use 6 blocks,
DegreesList = [10, 10, 8,4, 2, 1] and ChannelsList = [16, 16, 16, 16, 16, 16], with a total of 227k
parameters.

For models with invariant latent space size z = 120, we use 6 blocks, DegreesList =
[10,10,8,4,2,1] and ChannelsList = [16,16,16,32,64,120], with a total of 453k parame-
ters.

Training details. We keep the learning schedule as similar as possible for all models. We
use @ = 50. We train all models for 80 epochs using the Adam optimizer (Kingma & Bal [2017)
with default parameters, a batch size of 100, and an initial learning rate of 0.001, which we decrease
exponentially by one order of magnitude over 25 epochs. For VAE models, we use § = 0.2,
Erec = 25 and Eyamup = 35. We utilize the model with the lowest loss on validation data, only after
the end of the warmup epochs for VAE models. Training took ~ 4.5 hours on a single NVIDIA
A40 GPU for each model.

A.6.3 SHREC17

Model architectures. Both AE and VAE models have z = 40, 7 blocks, DegreesList =
[14,14,14,8, 4,2, 1], ChannelsList = [12,12, 12,20, 24, 32,40], Cj,;y = 12, with a total of 518k
parameters.

Training details. We keep the learning schedule as similar as possible for all models. We
use o = 1000. We train all models for 120 epochs using the Adam optimizer with default parame-
ters, a batch size of 100, and an initial learning rate of 0.0025, which we decrease exponentially by
two orders of magnitude over the entire 120 epochs. For VAE models, we use 5 = 0.2, Fr. = 25
and Fyamuyp = 10. We utilize the model with the lowest loss on validation data, only after the end
of the warmup epochs for VAE models. Training took ~ 11 hours on a single NVIDIA A40 GPU
for each model.

A.6.4 ToOY AMINO ACIDS

Pre-processing of protein structures. We sample residues from the set of training structures pre-
processed as described in Sec.

Fourier projection. We set the maximum radial frequency to N = 20 as it corresponds to a radial
resolution matching the minimum inter-atomic distances after rescaling the atomic neighborhoods
of radius 10.0A to fit within a sphere of radius 1.0, necessary for Zernike transform.

The channel composition of the data tensors can be described in a notation - analogous to that
used by e3nn but without parity specifications - which specifies the number of channels C' for each
feature of degree ¢ in single units C'x¢: 44x0 + 40x1 + 40x2 + 36x3 + 36x4.

Model architectures. All models have z = 2, 6 blocks, DegreesList = [4,4,4,4,2, 1],
ChannelsList = [60, 40, 24, 16, 16, 8], Cinix = 48, with a total of 495k parameters. We note that the
initial projection is necessary since the number of channels differs across feature degrees in the data
tensors.

Training details. We keep the learning schedule as similar as possible for all models. We
use o = 400. We train all models for 80 epochs using the Adam optimizer with default parameters
and an initial learning rate of 0.005, which we decrease exponentially by by one order of magnitude
over 25 epochs. For VAE models, we use Fr. = 25 and Fyamep = 10. We utilize the model with
the lowest loss on validation data, only after the end of the warmup epochs for VAE models.

We vary the batch size according to the size of the training and the validation datasets. We use the
following (dataset_size-batch_size) pairs: (400-4), (1,000-10), (2,000-20), (5,000-50), (20,000-20).
Training took ~ 45 minutes on a single NVIDIA A40 GPU for each model.

Evaluation. We perform our data ablations by considering training and validation datasets

of the following sizes: 400, 1,000, 2,000, 5,000 and 20,000. We keep relative proportions of residue
types even in all datasets. We perform the data ablation with H-AE as well as H-VAE models with
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5 =0.025 and 0.1.
We further perform a [ ablation using the full (20,000) dataset, over the following choices of 5:
[0(AE), 0.025,0.05,0.1,0.25,0.5].

For robust results, we train 3 versions of each model and compute averages of quantitative
metrics of reconstruction loss and classification accuracy.

For a fair comparison across models with varying amounts of training and validation data,
we perform a 5-fold cross-validation-like procedure over the 10k test residues, where the classifier
is trained over 4 folds of the test data and evaluated on the fifth one. If validation data is needed for
model selection (e.g. for LC), we use 10% of the training data.

A.6.5 PROTEIN NEIGHBORHOODS

Pre-processing of protein structures. We model protein neighborhoods extracted from tertiary
protein structures from the Protein Data Bank (PDB) (Berman et al.l 2000). We use ProteinNet’s
splittings for training and validation sets to avoid redundancy, e.g. due to similarities in homologous
protein domains (AlQuraishi, [2019). Since PDB ids were only provided for the training and valida-
tion sets, we used ProteinNet’s training set as both our training and validation set and ProteinNet’s
validation set as our testing set. Specifically, we make a [80%, 20%)] split in the ProteinNet’s
training data to define our training and validation sets. This splitting resulted in 10,957 training
structures, 2,730 validation structures, and 212 testing structures. We use pyRosetta (Chaudhury
et al.,[2010) to assign Solvent Accessible Surface Area (SASA) to every atom.

Projection details. We set the maximum radial frequency to N = 26 as it corresponds to a
radial resolution matching the minimum inter-atomic distances after rescaling the atomic neighbor-
hoods of radius 12.5A to fit within a sphere of radius 1.0, necessary for Zernike transform.

Model architectures. All models have z = 64, 6 blocks, DegreesList = [4,4,4,4,2,1],
ChannelsList = [128, 128, 96, 96, 64, 64], Ciyix = 64, with a total of 3.5M parameters. We note that
the initial projection is necessary since the number of channels differs across feature degrees in the
data tensors.

Training details. We keep the learning schedule as similar as possible for all models. We
use o = 400. We train all models for 120 epochs using the Adam optimizer with default parame-
ters, a batch size of 256, and an initial learning rate of 0.002, which we decrease exponentially by
one order of magnitude over 40 epochs. For VAE models, we use Ec = 40 and Eyamp = 40. We
utilize the model with the lowest loss on validation data, only after the end of the warmup epochs
for VAE models. Training took ~ 10 hours on a single NVIDIA A40 GPU for each model.

A.6.6 LATENT SPACE CLASSIFICATION

Linear classifier. We implement the linear classifier as a one-layer fully connected neural network
with input size equal to the invariant embedding of size z, and output size equal to the number of
desired classes. We use cross entropy loss with logits as training objective, which we minimize for
250 epochs using the Adam optimizer with batch size 100, and initial learning rate of 0.01. We
reduce the learning rate by one order of magnitude every time the loss on validation data stops
improving for 10 epochs (if validation data is not provided, the training data is used). At evaluation
time, we select the class with the highest probability value. We use PyTorch for our implementation.

KNN Classifier We use the sklearn (Pedregosa et al.,[2011) implementation with default param-
eters. At evaluation time, we select the class with the highest probability value.

A.6.7 CLUSTERING METRICS

Purity (Aldenderfer & Blashfield,1984). We first assign a class to each cluster based on the most
prevalent class in it. Purity is computed as the sum of correctly classified items divided by the total
number of items. Purity measures classification accuracy, and ranges between 0 (worst) and 1 (best).
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V-measure (Rosenberg & Hirschberg, 2007). This common clustering metric strikes a bal-
ance between favoring homogeneous (high homogeneity score) and complete (high completeness
score) clusters. Clusters are defined as homogeneous when all elements in the same cluster belong
to the same class (akin to a precision). Clusters are defined as complete when all elements belonging
to the same class are put in the same cluster (akin to a recall). The V-measure is computed as the
harmonic mean of homogeneity and completeness in a given clustering.

A.6.8 ON THE COMPLEMENTARY NATURE OF CLASSIFICATION ACCURACY AND
CLUSTERING METRICS

The clustering metrics “purity” and ““V-measure” and the supervised metric “classification accu-
racy” characterize different qualities of the latent space, and, while partly correlated, they are
complementary to each other.

Both classes of metrics are computed by comparing the ground truth labels to the predicted
labels, and they mainly differ by how the predicted labels are assigned; the clustering metrics use an
unsupervised clustering algorithm, while the classification metric uses a supervised classification
algorithm to do so. As a result, these metrics focus on different features of the latent space. For
example, the clustering metrics are largest when the test data naturally forms clusters with all data
points of the same label. While this case can result in a high supervised classification accuracy,
clustering is not a necessary condition for high classification accuracy. Indeed, the supervised signal
could make the predicted labels depend more heavily on a subset of the latent space features, instead
of relying on all of them equally, which is what the clustering algorithm naturally does. Therefore,
it is reasonable to conclude that having higher clustering metrics and a lower classification accuracy
is a sign that class-related information is more evenly distributed across the latent space dimensions.
Overall, the complementary aspect of these metrics makes it necessary to use all of them when
comparing the performance of different models in each task.
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Table A.2: Evaluation of network performances for MNIST-on-the-sphere using a KNN classifier
instead of linear classifier in the latent space. Results are significantly better than when using a linear
classifier for models with smaller (z = 16) latent space, comparable for the other models.

Type Method z bw | LCAcc. KNN Acc.
H-AE NR/R 120 30 0.877 0.875
H-AE R/R 120 30 0.881 0.886
H-AE NR/R 16 30 0.820 0.862

Unsupervised H-AE R/R 16 30 0.833 0.876
H-VAENR/R 120 30 0.883 0.879
H-VAE R/R 120 30 0.884 0.895
H-VAENR/R 16 30 0.812 0.848
H-VAE R/R 16 30 0.830 0.874

Table A.3: QEvaluation of network performances for Shrec17 using a KNN classifier instead of
linear classifier in the latent space. Results are better than when using a linear classifier.

Type Method z bw (Xi‘z& P@N R@N FI@N mAP NDCG
Unsumervised s L FFAE_ 40 90 [ 0.654 | 0548 0569 0545 0500 0597
p H-VAE 40 90 | 0.631 | 0512 0537 0512 0463 0.568
Unsuvervised + kNN FFAE_ 40 00 | 0.672 | 0560 0572 0555 0501 0599
Supervis H-VAE 40 90 | 0.658 | 0.541 0558 0539 0487 0.591

Table A.4: Quantitative data ablation results on the Toy amino acids dataset. A random-guessing
classifier has an expected accuracy of 0.050.

H-AE H-VAE (5 = 0.025) H-VAE (8 =0.1)

# train MSE Cosineloss LC Acc. KNN Acc. MSE Cosineloss LC Acc. KNN Acc. MSE Cosineloss LC Acc. KNN Acc.
0 1.3 %1077 1.015 0.409 0.629 1.5 x 10~ 0.981 0.424 0.656 1.5 x 10~ 0.981 0.424 0.656
400 9.4 x 1074 0.153 0.586 0.842 9.8 x 1074 0.160 0.616 0.848 1.0 x 1073 0.163 0.558 0.780
1,000 | 5.9x107* 0.099 0.583 0.856 6.3 x 1074 0.101 0.569 0.854 6.9 x 1074 0.113 0.564 0.844
2,000 | 4.5x 1074 0.073 0.560 0.900 4.9 x 1074 0.081 0.554 0.905 5.5 x 1074 0.092 0.593 0.890
5,000 | 3.3x107* 0.053 0.629 0.940 3.3 x 107 0.053 0.638 0.961 4.3 x 107 0.072 0.588 0.921
20,000 | 2.2 x 104 0.034 0.578 0.972 2.4 %1074 0.037 0.667 0.971 2.9 x 1074 0.047 0.662 0.966
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Table A.5: Quantitative data ablation results on the Toy amino acids dataset. Models were trained
on the full dataset (# train = 20,000).

8 MSE Cosine LC Acc. KNN Acc.
0(AE) | 22x10~%  0.034 0.580 0.972
0.025 | 2.4x10~* 0.037 0.666 0.971
0.05 2.5 x107*  0.039 0.669 0.968
0.1 2.9x107%  0.047 0.661 0.966
0.25 6.8 x 1074 0.132 0.597 0.854
0.5 1.1 x 1073  0.203 0.467 0.722

Table A.6: Test MSE and Cosine loss for H-(V)AE models trained on MNIST, Shrec17 and
Protein Neighborhoods. MSE and Cosine values are strongly correlated within datasets but not
across datasets.

Dataset Method z bw| MSE Cosine

H-AENR/R 120 30 [ 6.2x10~% 0.017
H-AE R/R 120 30 | 6.8 x10~* 0.018
H-AE NR/R 16 30 | 9.3x10~* 0.025
MNIST H-AE R/R 16 30 | 89x10~* 0.024
H-VAENR/R 120 30 | 1.4x 1072 0.037
H-VAE R/R 120 30 | 1.4x 1073  0.037
H-VAENR/R 16 30 | 22x10~2% 0.057
H-VAE R/R 16 30 | 21x1073  0.055

Shrecl7 H-AE 40 90 | 1.8 x10°%* 0.130
H-VAE 40 90 | 22x107* 0.151
Protein Neighborhoods H-AE 40 90 [ 6.1x10°% 0.161

Table A.7: Training speed and reconstruction ablations of H-(V)AE models with different Ten-
sor Product rules. To make comparison fair, models were trained using the same training hy-
perparameters as described in and all models were constructed to have comparable number
of parameters. Speed was computed as training time and divided by the time of the model using
ETP within each dataset. Models with the ETP consistently generates better reconstructions and are
usually the fastest. The speed and performance gains of the ETP are most apparent on the Protein
Neighborhoods task.

Dataset Method TP-type Cinit Clt IsList DegreesList # Params \ Speed \ MSE Cosine
H-AE ETP None [16,16,16,16,16,16] [10,10,8,4,2,1] 227k 1.0 9.3 x10~%  0.025
MNIST H-AE Full-TP  None [7,6,6,6,16] [10,8,4,2,1] 229k 1.1 1.6 x 1073 0.044
H-AE Full-TP  None [5,5,5,5,7,16] [10,10,8,4,2,1] 227k 1.7 1.5 %1073 0.041
Shrece17 H-AE ETP 12 [12,12,12,20,24,32,40] [14,14,14,8,4,2,1] 518k 1.0 1.8 x10°%  0.130
H-AE Full-TP  None [5,5,5,8,40] [14,8,4,2,1] 518k 0.9 1.9x107*  0.137
H-AE Full-TP  None [4,3,3,6,6,6,40] [14,14,14,8,4,2,1] 513k 1.9 2.0x107%  0.142
H-AE ETP 64 [128,128,96,96,64,64] [4,4,4,4.2,1] 3.5M 1.0 6.1 x 107 0.161
Protein NBs  H-AE Full-TP  None [17,24,64] [4,2,1] 3.5M 1.3 7.3x107%  0.199
H-AE Full-TP 56 [17,17,64] [4,2,1] 3.6M 2.8 7.5x107%  0.207
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Table A.8: Mean equivariance error for some of our trained H-(V)AE models. Errors were
computed over 2,000 randomly sampled spherical tensors, each with a randomly sampled rotation.
Standard deviation is shown alongside the mean. We also show the mean and standard deviation
of the absolute value of the output coefficients, to enable contextualization of the measured equiv-
ariance error. The equivariance error due to numerical error (absolute difference in coefficients by
rotating input vs. output tensor) is consistently three orders of magnitude lower than the typical
absolute value of the coefficients, indicating that equivariance is preserved. The same trend occurs
for untrained models (not shown here for simplicity).

Dataset Method z #train | Equiv. Error Abs. Value
MNIST H-AE NR/R 16 - 23£27)x107% (1.0£0.9)x107 !
H-VAE NR/R 16 - 25+1.9)x107% (1.3+1.8)x107!
Shrecl7 H-AE 40 - (14+24)x107° (04 £ 1.1)x1072
H-VAE 40 - (14+3.5)%x107°% (0.4 +2.2)x1072
H-AE 2 1,000 | (47 £37)x107° (2.6 £4.1)x1072
Tov Aminoacids H-VAE g =0.025 2 1,000 | (5.4 £39)x107° (2.8 £4.0)x1072
y H-AE 2 20,000 | (9.3+64)x107° (3.54+4.7)x1072
H-VAE 3 =0.025 2 20,000 | (9.0 +4.7)x107° (3.0 £4.3)x1072
Protein Neighborhoods H-AE 64 - (1.8 £2.0)x10~> 1.0+ 1.7)x107?
H-AE
0.7
—— Yes Batch Norm
0.6 —— No Batch Norm
0.5
A 0.4
o
—
0.3
0.2
0.1
0 10 20 30 40 50 60 70 80
Epoch

Figure A.2: Training loss trace of H-AE, with and without Batch Norm, on MNIST-on-the-
sphere. Models were trained with the (NR/R; z = 16; AE) specification. The loss on validation data
follows the same trend, but it is not shown for simplicity.
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Figure A.3: Empirical tests to show H-(V)AE learns a canonical frame in the MNIST-on-the-
sphere. For each of the 4 models with z = 16, we train a version using only images containing 1s
and 7s. For each of the resulting 8 models, we visualize the sum of training images of digits 1 and 7,
when rotated to the canonical frame. To achieve the canonical frame we rotate each image such that
the frame learned by the encoder is the same for all images, and specifically, we make it correspond
to the 3 x 3 identity matrix. We compute the sums of images with the same digit, and overlay them
with different colors for ease of visualization. We test the hypothesis as whether H-(V)AE learns
frames that align the training images such that they maximally overlap; we do so in two ways.
First, if the hypothesis were true, all canonical images of the same digit should maximally or near-
maximally overlap - since they have very similar shape - and thus, their overlays would look like a
“smooth” version of that digit. Indeed, we find this statement to be true for all models irrespective
of their training strategy.

Second, we consider the alignment of images of different digits. We take 1s and 7s as examples
given their similarity in shape. If the hypothesis were true, models trained with only 1s and 7s
should align canonical 1s along the long side of canonical 7s; indeed we find this to be consistently
the case. The same alignment between 1s and 7s, however, does not necessarily hold for models
trained with all digits. This is because maximizing overlap across a set of diverse shapes does not
necessarily maximize the overlap within any independent pair of such shapes. Indeed, we find that
canonical 1s and canonical 7s do not overlap optimally with each other for models trained with all
digits.

We note that these tests do not provide proof, but rather empirical evidence of the characteristics of
frames learned by H-(V)AE on the MNIST-on-the-sphere task.
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Figure A.4: Correlation between Cosine loss and MSE values between pairs of random tensors.
For each dataset, we sample a batch of N = 1000 tensors with dataset-specific feature degrees
and channel sizes, where each coefficient is sampled from a normal distribution. We mimic the
normalization step performed in the real experiment and normalize each tensor by the average total
norm of the batch. We then generate a “noisy” version of each tensor by adding (normalized)
Gaussian noise to each coefficient with standard deviation sampled from a uniform distribution
between 0 and some maximum noise level (10 in these plots). This procedure results in N pairs of
tensors with varying degrees of similarity between them. We compute the MSE and Cosine loss for
all NV pairs of tensors and visualize them. The two loss values are well correlated in rank as measured
by Spearman Correlation. The correlation is significantly stronger in the regime of reconstruction
loss below a Cosine loss of 0.5 (SpearmanR ~ 0.99), a value well above the maximum Cosine loss
achieved by H-(V)AE in all our experiments. All the p-values for the Spearman Correlations shown
in the plot are significant (< 0.05).

27



Under review as a conference paper at ICLR 2023

' Q
Figure A.5: Random samples generated by the (NR/R; z = 16; VAE) MNIST-on-the-sphere
model. We sample invariant latent embeddings from the prior distribution (isotropic normal) and

feed them to the decoder alongside the canonical frame to generate tensors. We then compute the

inverse SFT to map the generated tensor to images in real space. The samples show a wide range of
diversity in digit and style.
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Figure A.6: Trajectories across the latent space for the (NR/R; z = 16; VAE) MNIST-on-the-
sphere model. We compute pairs of invariant latent embeddings using the model’s encoder, and
linearly interpolate between them through the latent space. We then feed the interpolated embed-
dings into the decoder, together with the canonical frame, and compute the inverse SFT to get the
image in real space. The left and right columns show the original images (after forward and inverse
SFT) rotated to be placed in the learned canonical frame, whereas the center rows show the inter-
polated images. We can see that all trajectories are smooth, respecting spatial consistency, sign of a
well structured latent space.

--i = - —

Figure A.7: 2D visualization via UMAP of the invariant latent embeddings of Shrec17 test data
learned by H-(V)AE. Left: H-AE, Right: H-VAE. Points are colored by class (55 classes).
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20,000

Figure A.8: Amino acid latent space learned by H-AE. Visualization of the test data’s invariant la-
tent space learned by H-AE trained with varying amounts of the training data. As more training data
is added, the separation of clusters containing residues with most similar conformations becomes
more distinct. Notably, even with no training data, conformation clusters can be identified.

Figure A.9: Amino acid latent space learned by H-VAE. Visualization of the test data’s invariant
latent space learned by H-VAE (5 = 0.025) trained with varying amounts of training data.
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Figure A.10: Protein neighborhood latent space learned by H-AE annotated by the constituent
atoms. 2D UMAP visualization of the 64-dimensional invariant latent space learned by H-AE,
colored by number of the atoms in the neighborhood is shown. A clear gradient can be seen from
the bottom of the plot to the top.

Average
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Figure A.11: Protein neighborhood latent space learned by H-AE annotated by SASA 2D
UMAP visualization of the 64-dimensional invariant latent space learned by H-AE, colored by the
average Solvent Accessible Surface Area (SASA) computed for all atoms in each neighborhood is
shown. A larger average SASA indicates that a larger proportion of the neighborhood is at the pro-
tein’s surface. The surface neighborhoods are concentrated in the lower-left side of the map, and
the buried neighborhoods are concentrated at the top. Predictably, there is an inverse correlation
between the number of atoms (Fig. @) and closeness to the surface, as we do not represent a
protein’s surrounding environment.
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Figure A.12: Reconstruction loss as a function of feature degree ¢. Test reconstruction loss
(MSE) of H-VAE split by feature degree ¢, for the MNIST-on-the-sphere (left) and Toy amino acids
dataset (right). In both cases, features of larger degrees are harder to reconstruct accurately. The
increase in loss is more steep for smaller degrees.
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Figure A.13: Visual proof of the disentanglement in the latent space of MNIST-on-the-sphere.
For each row, the invariant embedding z is held fixed, and a different frame (i.e., the rotation matrix)
is used. Frames are sampled randomly and differ across rows, with the exception of the first column,
which is always the identity frame. Then, z and the frame are fed to the decoder and the Inverse
Fourier Transform is used to generate the reconstructed spherical image, which is projected onto
a plane for the ease of visualization. Modulo the distortions given by projecting the image onto a
plane, it is clear that the invariant embedding contains all semantic information, and the frame solely
determines the orientation of the image.
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