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Abstract—Accurate localization of ground robots using aerial
imagery is essential for off-road navigation and planning, espe-
cially in GPS-denied environments. However, this task remains
challenging due to large viewpoint differences, scarce distinc-
tive features, and high environmental variability. Most existing
approaches typically localize each frame independently, either
by retrieving global descriptors or by aligning ground and
aerial features in a shared spatial representation, making them
susceptible to ambiguity and multi-modal pose estimates. While
sequential localization can reduce such uncertainty, existing per-
frame methods incur trade-offs between accuracy, memory, and
computational cost, limiting their effectiveness in a sequential
setting.

We propose BEV-Patch-PF, a GPS-free sequential localization
system that integrates a particle filter with a learned bird’s-eye-
view (BEV) observation model. For each particle pose hypothesis,
a single aerial feature patch is cropped and its likelihood is
computed by comparing it against the BEV feature derived
from the on-board view. Ground features are extracted using
a visual foundation model, and fused with aerial features via
cross-attention to emphasize salient off-road regions Experiments
on real-world off-road routes from the TartanDrive 2.0 dataset
demonstrate that BEV-Patch-PF outperforms stereo visual odom-
etry and a retrieval-based baseline in trajectory accuracy across
both seen and unseen environments, highlighting its robustness
and generalization.

I. INTRODUCTION

Aerial imagery offers global context essential for safe off-
road robot navigation, enabling path planning around natural
hazards such as cliffs, rivers, and dense vegetation. However,
leveraging such imagery requires accurate geo-referenced lo-
calization within an aerial map, which remains challenging in
off-road environments where GPS is often unreliable due to
occlusions or interference. Vision-based localization systems
such as Visual odometry (VO) can provide short-term pose
estimates, but accumulate drift without access to global posi-
tion fixes, leading to large localization errors that compromise
downstream planning and decision-making.

Cross-view geo-localization addresses the lack of global
position fixes by estimating a robot’s pose through matching
ground-level images with geo-referenced aerial imagery. How-
ever, this task is inherently difficult due to the large viewpoint
difference between ground and aerial images. This problem is
especially challenging in unstructured off-road environments,
where the absence of structural landmarks—and the presence
of terrain irregularities, dense vegetation, and seasonal appear-
ance changes—exacerbates the visual mismatch and removes
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Fig. 1: Visualization of BEV-Patch-PF inputs and outputs. Top:
On-board camera image and local satellite image. Middle:
BEV ground features and aerial features; dotted box and
arrow indicate the hypothesized patch and pose, respectively.
Bottom: Extracted aerial patch and its dot-product heatmap.

many of the cues that conventional methods rely on [2] 24].
Recent deep learning approaches tackle this problem frame-
by-frame and fall into two categories: (1) retrieval-based
methods [6] [O], which learn global de-
scriptors for ground images and aerial patches; and (2) spatial



feature-alignment methods [[19} 3| 20, 23| [21], which learn
features from ground and aerial imagery within a shared
spatial representation, inferring the pose best aligns those
features. Per-frame localization, however, considers only a
single observation at a time, making it vulnerable to perceptual
ambiguity and multi-modal solutions. In off-road settings,
this can lead to catastrophic pose jumps—caused by visu-
ally similar map regions, sensor occlusions, or accumulated
noise. Sequential localization mitigates these issues by jointly
reasoning over temporal pose sequences, reducing ambiguity
through temporal consistency.

While sequential inference can reduce pose ambiguity, it
requires observation models that yield smooth, discrimina-
tive likelihoods over continuous pose hypotheses. Existing
cross-view methods [29} 34, [19] 3] were not designed with
this requirement. Retrieval-based approaches assign coarse
similarity scores over a discretized set of aerial patches,
making them insensitive to fine-grained pose changes and
unsuitable for continuous probabilistic filtering. In contrast,
spatial feature-alignment methods offer improved granularity
but they either: (i) require dense correlation over discretized
pose grids—Ileading to high computational cost or (ii) or
optimize directly for a single best pose, which is difficult to
integrate as a likelihood over pose hypotheses.

To address these limitations, we introduce a sequential
localization system that integrates a particle filter with an
observation model capable of evaluating likelihoods over
continuous pose hypotheses. On-board images are projected
into to bird’s-eye-view (BEV) feature maps using a visual-
foundation backbone [15]] and fused with aerial features via
cross-attention. For each particle, an oriented aerial feature
patch is extracted and compared against the BEV feature
map using a point-wise dot product. Because aerial patches
can be sampled at arbitrary continuous poses, the observation
likelihood 1is directly computed at each particle’s continuous
hypothesis, making it a natural fit for particle filtering. The
model is trained specifically for unstructured off-road terrain,
without relying on semantic landmarks.

We evaluated our approach on real-world off-road trajecto-
ries and compare against two baselines: stereo visual odometry
[10], and a retrieval-based pose-graph-optimization method
[9]. Across both seen and unseen routes from the TartanDrive
2.0 [22] dataset, our method consistently achieves lower tra-
jectory error and greater robustness. These results demonstrate
the benefits of continuous-pose likelihood modeling while
confirming the method’s ability to generalize to previously
unobserved environments without requiring GPS.

II. RELATED WORKS

Visual geo-localization estimates a robot’s 3-DoF pose
within a geo-referenced map from a ground-level image. Most
approaches formulate the task as visual place recognition
(VPR), retrieving the most similar geo-tagged ground image
from a pre-collected database and transferring its pose [8} [14].
Although effective in densely imaged urban areas, VPR scales

poorly and is impractical for off-road missions, because no
prior data collection can be performed.

Cross-View Geo-Localization tackles the same objective
without ground database by matching each ground image
directly to overhead imagery — satellite photos or semantically
labeled planimetric maps. Most methods learn cross-view
descriptors [6, (18| 33, 28] 29, 34, 9] through contrastive
learning, pulling a ground-image embedding toward that of
the aerial patch at its ground-truth pose. Yet their accuracy is
limited by the density of sampled aerial patches and by the
absence of explicit orientation modeling. Later work [30, [11]]
encodes multiple rotations per grid cell to infer heading, but
the estimates remain coarse.

Spatial-feature-alignment methods then emerged: (1) dense
cross-correlation in BEV space [19} 3], (2) continuous-pose
optimization [20, 23| 21l], and (3) view-synthesis matching
[7, 25]]. Dense correlation offers the best precision, yet eval-
vating K rotated kernels at every location of an HxW
feature grid costs O(K H?W?). The optimization and syn-
thesis variants avoid that sweep but are vulnerable to local
minima and seasonal appearance drift. Motivated by the dense
correlation but seeking lower computational cost, we evaluate
the likelihood only at a set of N pose particles, extracting
a single aerial patch per hypothesis. This reduces complexity
to O(NHW), eliminates exhaustive sweeps, and treats orien-
tation as a continuous variable. These patch-wise likelihoods
serve as the observation model for the particle filter used for
sequential localization, which we discuss next.

Sequential Cross-View Localization mitigates the ambi-
guity and multi-modal solutions of single-frame localization
by propagating joint pose probabilities. Particle filter with
retrieval-based observation models [28, 5 32] compute the
likelihood by comparing descriptors: the descriptor of the
closest grid cell in position and orientation is treated as the
expected observation and compared to that of the ground
image. However, this map-grid encoding inherits the resolution
limits of retrieval-based localization. Sarlin et al. [19] warp
dense probability maps temporally to compute joint proba-
bility, but require ground-truth odometry. Klammer and Kaess
[9] embed the per-frame localization in a pose graph, but need
approximate GPS to filter outliers before adding registration
factors. The recent end-to-end particle smoother [31]] correlates
BEV feature against aerial feature map, but is confined to
urban scenes and planimetric map.

Off-Road Cross-View Localization remains under-
explored. Nearly all existing methods and datasets [28] 15}
32, 1314 119, 133} 11, [12]] focus on urban scenes and rely on
semantically annotated planimetric maps. In unstructured ter-
rain, such semantic overlays are unavailable, distinctive man-
made cues are scarce, and on-board images are often texture-
poor, making urban-centric assumptions untenable. To our
knowledge, only BEVLoc [9] and BEVRender [7] conduct off-
road experiments, both on TartanDrive2.0 [22] using satellite
photos.
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Fig. 2: Overall pipeline of the BEV-Patch-PF.

III. PARTICLE FILTERING WITH BEV-AERIAL FEATURE

We propose BEV-Patch-PF, a sequential localization frame-
work that combines a particle filter with an observation model
based on learned bird’s-eye-view (BEV) and aerial feature
matching. Particles are propagated using egomotion estimates
from stereo visual odometry, then reweighted by evaluating
how well each particle’s predicted aerial-view appearance
aligns with the BEV feature map extracted from the current
RGB-D observation. Specifically, for each particle, we extract
an oriented aerial feature patch and compute a similarity
score with the on-board BEV representation, which defines the
observation likelihood. This filtering loop allows the system
to integrate information over time, correct for accumulated
drift, and maintain robust localization even in ambiguous
or perceptually aliased environments. The remainder of this
section formalizes the pose estimation problem, describes the
particle filtering procedure, and details the BEV-aerial feature
network used to compute observation likelihoods.

A. Problem Formulation

We track the ground vehicle’s planar 3-DoF pose x; =
(xe,y¢,60r) € SE(2), where (x4,y;) are east- and north-
directed UTM coordinates (meters) and 6; € (—m, 7] is the
heading, measured counter-clockwise from the east axis of a
north-up satellite map.

The filter receives: (1) Ego-centric RGB image Z; from a
forward-facing camera with known pinhole camera calibration.
(2) Depth image D, obtained from stereo and aligned to the
RGB frame. (3) Geo-referenced satellite image M covering
the full operating area. (4) Odometry increment u; € SE(2)
between times ¢ — 1 and ¢, obtained from stereo visual odom-
etry (interchangeable with wheel, LiDAR, or IMU odometry).

B. Particle Filter Localization

The overall BEV-Patch-PF pipeline is illustrated in Fig. ]
Initialization. Particles are initialized from approximate
GPS coordinates or a user-selected location, then perturbed

with Gaussian noise. It is worth noting that GPS is required
only for this first step.

Prediction step. Each particle’s pose x! at time ¢ is obtained
from its predecessor x:_; by propagating the motion u; and
adding Gaussian noise to account for odometry error:

w,. = Exp(d). )

Xt = Xt—1 Ut - W,

Here w, is the prediction noise, Exp(-) maps s¢(2) to SE(2),
and § € R3 is a zero-mean Gaussian vector with covariance
diag(o?,07,0%). The parameters o; and oy are the standard
deviations of the translational and rotational noise, respec-
tively.

Update step. The ego-centric image Z; updates the particle
weights w} via the measurement likelihood p(Z; | x}, M).
A local satellite image M([x;] is cropped from the full
aerial map M, centered on pose x;. The BEV-aerial feature
network (described in [[lI-C) produces a BEV feature map
G € RHs*WaxD and a aerial feature map F € RHaxWaxD,
We extract patch F[xi] € R7s>*WsxD oriented and around
each particle pose xi from the F with the same size of BEV
feature. Then compute the likelihood with the point-wise dot
product as follow:

p(Z: | xj, M) = exp(S(x}; Ly, M) /75) )
1 HQ WQ
'S(‘Tt;ItvM) = HgWg ;; Gy - F[Xt]uv 3)

When a particle’s pose hypothesis is accurate, its oriented
aerial patch aligns tightly with the BEV features, producing
a high correlation and, after the exponential scaling, a high
likelihood. Weights are updated by w! = p(Z; | xi, M) wi_,
and then normalized to sum up to 1.

Resampling step. Low-variance resampling is triggered
only when the effective sample size falls below a preset
threshold, keeping the particles most likely to match the true
pose and discarding the less plausible ones.

C. Bird’s-Eye View & Aerial Feature Network
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Fig. 3: BEV-Aerial feature network architecture.



We encode the ego-centric ground image Z; and local aerial
image M(x,] into BEV features G € R7s*WsxD and aerial
feature map F € R7«*WeXD through the BEV-aerial feature
network. The on-board image is converted to BEV features so
that it shares the same orthogonal, spatial view as the aerial
map, enabling us to evaluate different pose hypotheses through
feature matching. Figure [3] shows an overview of the network.

Given an image Z;, the image encoder first extracts a feature
map. We employ a pretrained visual-foundation model [15] to
obtain features that are robust to appearance variations. Using
the depth image D;, we lift the extracted features and splat
them into 3-D space [16]. Next, max pooling is applied along
the vertical axis, merging all features that fall within each
BEV grid cell into a single representation. The BEV grid-cell
size equals to the satellite map’s spatial resolution (meters per
pixel), ensuring a one-to-one correspondence between BEV
cells and map pixels in the observation model.

The projected BEV embeddings and the local aerial image
M|x;] are each passed through a ResNet-based CNN [4]
followed by a Feature Pyramid Network (FPN) [13], yielding
BEV features G € R¥s*WaxD and the aerial feature map
F € R7xWaxD The output of last layer of CNN for BEV
embeddings and aerial images are processed cross-attention
module to fuse the information between BEV embeddings and
aerial image. Neither G nor F is normalized, to let the model
learn importance of feature by its magnitudes.

Training Objective. The BEV-aerial feature network is
trained with supervised pairs of single RGB-D frames and
ground-truth poses x*, together with negative samples X'~
drawn around each ground-truth pose.

Ny exp(S(xf)/7)
L= Xk:l ® ep(SHG)/T) + L xp(SH)/7)

- (4)

For brevity, we write S(xy;Z;, M) simply as S(x;), and
7 € RT is a scalar temperature parameter. The objective
maximizes the similarity for the ground-truth pose while sup-
pressing similarity for nearby negative poses, yielding a feature
representation that is discriminative for metric localization.

IV. EXPERIMENTS

We evaluate our method in off-road settings and seek to
answer two questions: 1) Tracking accuracy: How precisely
can the BEV-Patch-PF track the robot’s pose? 2) General-
ization: How robustly does the BEV-Patch-PF localize along
routes that were never encountered during training?

A. Experimental Setup

Dataset. All experiments use the TartanDrive 2.0 off-road
dataset [22]], which provides stereo ground-level imagery, RGB
images, GPS readings, and orientation data. High-resolution
satellite orthophotos were obtained from an online imagery
service and exported as GeoTIFFs in the appropriate UTM
zoneEl Depth images are computed from the stereo pairs with

n our experiments, we loaded Google Satellite imagery into QGIS [17]
and exported it as a GeoTIFF, reprojected to the target UTM zone 17 N.

FOUNDATIONSTEREO [27]]. Stereo visual odometry, later used
as our motion model, was obtained with PYCUVSLAM [10].
We split the data into 28 training, 9 validation, and 22 test
trajectories. The test set is further divided into seen-routes (6
trajectories overlapping the training paths) and unseen-routes
(16 trajectories on partially or completely new tracks). Figure
[ illustrates the split.

| —— Train

| —— Validation
—— Test (Seen Route)
—— Test (Unseen Route)

Fig. 4: Training, validation, and test splits for TartanDrive 2.0
[22]]. Satellite imagery © 2025 Airbus, Maxar Technologies;
map data © 2025 Google.

Baselines. We benchmark against two established alterna-
tives: 1) PYCUVSLAM [10], a stereo visual odometry system;
2) BEVLoc [9]. We retrain the code released by the authors
on our data split, replacing its original monocular TartanVO
[26] with the more accurate stereo odometry from PYCUVS-
LAM. Following the authors’ settings, we accumulate features
over eight frames, update the pose prior with GPS every
five iterations, and add registration factors to the pose-graph
optimization only when the distance between the estimated
pose and the GPS reading is below 300 m. At every iteration
we also set the orientation prior to the ground-truth orientation,
as in their configuration.

Evaluation Metrics. We quantify performance using the
Absolute Trajectory Error (ATE). Specifically, we compute
the root-mean-square translational error between the estimated
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Fig. 5: Estimated trajectories produced by our model and by the baselines.

trajectory ’i‘lz ~ and the ground-truth trajectory Ti.n:

N
1 .
ATEgrms = ~ E lpi — Pill%,
i1

with p; and p; denoting the positions of T; and ’i‘i, respec-
tively.

Implementation Details. Satellite imagery is downloaded
at a resolution of 0.2m/pixel. During training, we ran-
domly scale the aerial map within the range 0.18 m/pixel to
0.40 m/pixel; all evaluations use 0.2m/pixel. The ground-
image encoder is a frozen DINOvV2 ViT-B/14 [15]. For BEV
projection, we employ a voxel grid of size (224,224,10),
with a vertical resolution of 1m and x—y size matched to
the aerial map’s spatial resolution. Both the projected BEV
features and the local aerial map pass through a ResNet-18
backbone followed by two cross-attention layers, yielding 64-
dimensional features. Input sizes are 518518 for on-board

images and 640x640 for local aerial images. During training,
we sampled 63 negative poses uniformly within +20m and
+60° of the ground-truth pose.

For the particle-filter implementation, we use 128 particles.
The filter is initialized around the ground-truth pose with
Gaussian noise (0;=3 m translational, c9=0.5 rad rotational).
We used temperature of 7,=0.5 for likelihood computation.
Resampling is triggered when the effective sample size drops
below 10% of the particles.

B. Experimental results

Tracking Accuracy. Our particle filter tracks all seen tra-
Jjectories end-to-end, achieving a median ATEgys of 1.30 m—
significantly lower than PyCuVSLAM (23.74 m) and BEVLoc
(16.81 m) (Tab. [). The absolute-pose-error CDF (Fig. [6) is
strongly left-shifted, confirming the tighter error distribution.
Representative trajectories are shown in Figs. [5a] and [5b]

Generalization. On unseen routes, the particle filter main-
tains a median ATEgys of 4.61 m, again outperforming



TABLE I: Absolute trajectory error (RMSE, meters) on TartanDrive 2.0 [22]. Scenes TDO1-06 correspond to trajectories
encountered during training, whereas TD07-22 correspond to unseen routes.

Seen route (6 scenes)

Unseen route (5 scenes)

Method TDO1 TDO02 TDO03 TD04 TDO5 TDO06 TDO7 TDO0O8 TD09 TDI10 TDI11
Ours 1.71 1.52 0.86 0.95 1.11 1.65 478.11 1.46 3.36 12.63 5.36
PyCuVSLAM [10] 10.91 22.67 79.02 15.67 10.87 3.32 269.29 15.94 144.09 28.13 121.86
BEVLoc [9] 16.15 24.78 17.07 33.84 5.97 3.07 55.76 23.75 16.64 17.23 22.69
Unseen route (16 scenes, continued)
Method TDI12 TD13 TD14 TDI15 TDI16 TD17 TDI18 TDI19 TD20 TD21 TD22
Ours 2.12 10.71 2.22 3.87 159.93 1.59 4441 1.98 1044.61 234.63 3.84
PyCuVSLAM [10] 44.51 279.19 76.21 41.00 91.66 27.12 166.69 45.16 273.52 276.79 41.78
BEVLoc [9] 26.30 91.73 16.78 12.08 35.38 33.16 23.87 21.44 27.05 25.53 6.71

CDF

0.2 —— Ours
—— PyCuVSLAM
0.0 —— BEVLoc
0 2 4 6 8 10

Absolute Pose Error (m)

Fig. 6: Cumulative distribution of absolute pose error (solid:
seen routes; dashed: unseen routes).

PyCuVSLAM (83.94 m) and BEVLoc (23.81 m) (Tab. . The
filter continuously corrects visual-odometry drift. BEVLoc [9]
often produces jumpy, discontinuous poses because its pose-
graph optimization cannot resolve ambiguous matching of per-
frame localization. In contrast, once initialized, our filter stays
smooth and accurate without any GPS data. Representative
trajectories are shown in Figs. [5c| [0d] and [5¢]

Failure Cases. The filter tracks reliably until it enters a
large, feature-less open area. In such regions, our observation
model assigns almost identical likelihoods to every particle.
Because the weights are nearly flat, even a single false-positive
match can tip the resampling step toward an arbitrary mode.
Once the particles collapse onto that wrong hypothesis, later
observations remain too ambiguous to pull the cloud back,
so the filter never recovers. Figure [5f] shows a representative
failure segment.

V. CONCLUSION

This work introduced BEV-Patch-PF, a sequential cross-
view geo-localization system that integrates a particle filter
with a BEV-aerial feature-aligning observation model and
a BEV-aerial feature network. By cropping a single aerial-
feature patch for each pose hypothesis and matching it against

BEV features, the system preserves accuracy while remaining
memory-efficient. In real-world off-road experiments—both in
revisited and unseen routes—BEV-Patch-PF consistently out-
performs stereo visual odometry and a retrieval-based baseline,
confirming the benefits of sequential inference and the learned
BEV-aerial features.

However, the method still fails in feature-poor open fields,
where the likelihood surface becomes nearly flat. To address
these failure cases, we plan to estimate the distinctiveness of
BEV feature and toggle the particle filter on or off to prevent
catastrophic failures. For true zero-shot deployment across
unseen regions and robot platforms, we further plan to: (i)
train stronger, viewpoint-invariant descriptors so that identical
terrain cues from multiple views converge in feature space; and
(i1) eliminate the reliance on depth images to enable training
on significantly larger datasets.
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