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Abstract
Current approaches to testing and debugging001
NLP models rely on highly variable human002
creativity and extensive labor, or only work for003
a very restrictive class of bugs. We present004
AdaTest, a process for adaptive testing and de-005
bugging of NLP models inspired by the test-006
debug cycle in traditional software engineer-007
ing. AdaTest encourages a partnership be-008
tween the user and a large language model009
(LM): the LM proposes tests that are validated010
and organized by the user, who in turn gives011
feedback and steers the LM towards better012
tests. Once enough bugs are discovered, these013
are fixed (e.g. finetuning), and the user re-014
sumes testing. In experiments with expert and015
non-expert users and commercial / research016
models for 8 di↵erent tasks, AdaTest makes017
users 5-10x more e↵ective at finding bugs than018
current approaches, and helps users e↵ectively019
fix bugs without adding new bugs.020

1 Introduction021

Although NLP models are often underspecified and022

exhibit various generalization failures, finding and023

fixing such bugs remains a challenge. Current ap-024

proaches include frameworks for testing (Ribeiro025

et al., 2020), error analysis (Wu et al., 2019), or026

crowdsourcing (Kiela et al., 2021), all of which de-027

pend on highly variable human creativity to imag-028

ine bugs and extensive labor to instantiate them.029

Out of these, only crowdsourcing can potentially030

fix bugs when enough data is gathered. On the other031

hand, fully automated approaches such as perturba-032

tions (Belinkov and Bisk, 2018; Prabhakaran et al.,033

2019), automatic adversarial examples (Ribeiro034

et al., 2018), and unguided data augmentation (Yoo035

et al., 2021; Wang et al., 2021) are severely re-036

stricted to specific kinds of problems (e.g. Ribeiro037

et al. (2018) only deal with inconsistent predictions038

on paraphrases). Despite their obvious usefulness,039

none of these approaches allow a single user to eas-040

ily specify, discover, and fix undesirable behaviors.041

LM suggests tests

User !lters and organizes

Test suggestions
Test tree

Target
model

Fix tests

(Re)test model

Testing Loop

Debugging Loop

Figure 1: AdaTest consists of two loops: A Testing
Loop that generates and organizes tests optimized for
the target model, and a Debugging Loop that iteratively
refines the target model based on test failures.

In this work, we present Adaptive Testing (AdaT- 042

est), a process and tool that leverages the comple- 043

mentary strengths of humans and large scale lan- 044

guage models (LMs) in order to find and fix bugs in 045

NLP models1. In an inner Testing Loop (Figure 1, 046

unrolled in Figure 2), the LM suggests tests based 047

on a topic under consideration, which the user in- 048

spects, validates (filtering non-valid tests), and oc- 049

casionally organizes by topic into a test tree. With 050

these operations, the user “steers” the LM, which in 051

turn adapts its suggestions based on user feedback 052

and model behavior to hill-climb on the intersec- 053

tion between user specification and model failure. 054

Suggested tests help the user spawn new topics 055

and test new behaviors (exploration), while also 056

testing hundreds of in-topic variations to surface 057

potential model failures for the user (exploitation). 058

The LM thus handles most of the slow “creative” 059

burden of generating and instantiating tests for the 060

user to evaluate (Kahneman, 2011). Once enough 061

1We use GPT-3 (Brown et al., 2020), but support any others
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bugs are discovered, the user engages in an outer062

Debugging Loop (Figure 1, unrolled in Figure 4),063

performing an operation to fix whatever problems064

were discovered (e.g. finetuning on failing tests),065

and (crucially) testing the model again to verify066

that new bugs were not introduced. Thus, AdaT-067

est applies the test-fix-retest loop from software068

engineering to NLP.069

We demonstrate the usefulness and generality of070

AdaTest by having users with diverse skill sets find071

and fix bugs in state-of-the-art models for a wide va-072

riety of tasks and domains. In controlled user stud-073

ies, expert users consistently discovered ⇠5x more074

bugs per minute with AdaTest (when compared075

to CheckList), while users with no technical back-076

ground discovered ⇠10x more (when compared to a077

tool similar to DynaBench). Our experiments indi-078

cate AdaTest’s Debugging Loop reliably fixes bugs079

without introducing new ones, in contrast to other080

forms of data augmentation (templates, counterfac-081

tuals (Wu et al., 2021), manual GPT-3 prompting).082

Finally, we present various case studies where ex-083

pert and non-expert users use AdaTest “in the wild”084

on commercial models, discovering and fixing a085

large quantity of previously unknown bugs (e.g. in086

one case resulting in a 11.1 improvement in hidden087

F1 over expert GPT-3 augmentation).088

2 Adaptive Testing089

The fundamental unit of specification in AdaTest090

is a test, which we define as an input string or pair091

and an expectation (Ribeiro et al., 2020). Taking092

3-way Sentiment Analysis as a running example093

and denoting the model under testing as f, tests094

may specify what the output should or should not095

be (e.g. f(“This is so great!!”) = pos,096

f(“It’s not bad”) , neg), or a prop-097

erty on perturbations such as invariance (e.g.098

f(“Hi”) = f(“Hello”)). When a test is applied099

to a model, it produces a test failure score, such100

that failing tests have high scores, while passing101

tests have low scores. The score may be a binary102

pass/fail indicator, or a continuous indicator of103

how strongly a test passes/fails, e.g. in Figure 2 the104

score is the confidence of the model for “negative”.105

To evaluate model behavior at varying levels106

of abstraction, tests are organized into a test tree107

where each internal node is a topic. For exam-108

ple, in Figure 2 we start with the /Sensitive topic109

within the test tree, and organize it further by110

defining as children the subtopics /Sensitive/Racial111

LM
suggests

f(“I am tired of being silenced”) ≠ neg
f(“I am a racial minority”) ≠ neg

...

...

f(“I am a black woman”) ≠ neg
f(“I am an Asian man”) ≠ neg

f(“My friend is a Christian pastor”) ≠ neg

Sensitive

Sensitive

Racial

Immigration

f(“I am part of a racial minority”) ≠ neg
f(“I am a racial minority”) ≠ neg

f(“I am an undocumented person”) ≠ neg
f(“I am an undocumented woman”) ≠ neg

f(“I can’t keep living in fear”) ≠ neg
f(“I am an undocumented new hire”) ≠ neg

Sensitive/Immigration
f(“I am an undocumented new hire”) ≠ neg

f(“I am for refugee immigration”) ≠ neg
f(“I am an undocumented person”) ≠ neg

...

User adds
to the

subtopic

LM
suggests

from topic
user opens

LM
suggests

from topic
user opens

User "lters
& organizes
User "lters

& organizes

Pass | Fail

�

�

�

�
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Figure 2: The Testing Loop cycles between test sug-
gestions by the LM and test acceptance/organization by
the user. In this example, test score is P(neg), and a test
fails (red score) when the prediction is neg. As the user
filters and organizes (B, D), the LM hillclimbs towards
suggesting valid tests with high scores (A, C).

and /Sensitive/Immigration, each containing re- 112

lated tests and subtopics. These flexible test trees 113

are organized by the user as they explore model 114

behavior, allowing for fine grained evaluation and 115

helping the user focus themselves and the LM by 116

testing a topic at a time. They are also persistent 117

sets of unit tests that can be applied to new versions 118

of a model, iteratively updated, and shared with the 119

community as starting points for testing. 120

2.1 The Testing Loop 121

The Testing Loop starts with the user selecting a 122

topic to focus on. At each iteration the LM pro- 123

poses a set of new tests for the current topic, and 124

the user accepts those that are valid, high scoring, 125

and within the topic’s scope. This process is similar 126

in spirit to Markov-Chain Monte-Carlo (Hastings, 127

1970), with the LM as the proposal function, and 128

the user accepting / rejecting samples, although the 129

user is free to vary between exploration and ex- 130

ploitation as desired (instead of following a rule). 131

Test proposals are generated for a topic by us- 132
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I am a Nigerian woman of color

I am a Latino person of color

I identify as a racial minority in the US 我认同美国是少数族裔

Eu sou uma pessoa de cor latina

Eu sou uma nigeriana de cor

I agree that america is a minority

I'm a latin person

I'm a Nigerian by heart

Im
m

ig
. Immigrants with healthcare

I am a legal immigrant

I want to stay in the U.S. to get education 我想留在美国去教育

eu sou um imigrante legal

Imigrantes com saúde

I want to stay in America to educate

i am a cool immigrant

N
eg

at
io

n I can't say anything else than this place sucks.

I don't recommend this dish.

I can't believe how good these wontons are 真不敢相信这些鬼子有多好

Eu não recomendo este prato.

Não posso dizer nada além desse lugar.

I can't believe how good these ghosts are

I highly recommend this dish. 

I can't say anything but this place.

Cl
ea

r
Po

sit
iv

es The icing on this cake is delicious

en-pt-en

en-pt-en

en-zh-en

This burger is out of the park!

Don't forget to try the beans, they are delicious! 别忘了试试豆子，它们很好吃！

Este hambúrguer está fora de moda!

A cereja deste bolo é deliciosa

Don't forget to try beans.

This burger is out of style!

The cherry of this cake is delicious

Input Translation Back translation

healthy immigrants

they are delicious!

en-pt-en

en-pt-en

en-zh-en

en-pt-en

en-pt-en

en-zh-en

en-pt-en

en-pt-en

en-zh-en

of color

接受

Figure 3: A portion of a test tree with representative examples, adapted from � Sentiment Analysis to � Translate,
then further adapted to � Translate for di↵erent languages. Errors annotated by native speakers.

ing 3-7 tests from the topic as a prompt to the LM.133

These tests are selected based on test score, diver-134

sity, and randomization, in such a way that high135

scoring tests tend to be placed later in the prompt136

(details in App. 1), where they have more impact in137

hill-climbing (Zhao et al., 2021). We then sample138

a large number of independent completions (typ-139

ically 25-150) from the LM as proposals, which140

are sorted by test score and presented to the user,141

such that the user mostly inspects likely failures.142

The user then does an organization round, where143

they accept good test suggestions, and potentially144

reorganize the hierarchy locally, e.g. by grouping145

tests into subtopics. User supervision means the146

LM only needs a reasonable recall on interesting147

tests, rather than being able to “solve” the task.148

An example unrolled Testing Loop is shown149

in Figure 2, for a topic from Ribeiro et al. (2020)150

on sensitive inputs that should not be predicted as151

negative. We initialize the /Sensitive topic with a152

few tests based on the original CheckList, noting153

that Ribeiro et al. (2020) did not identify failures154

of this type on any commercial models. A round155

of LM test suggestions, however, quickly identifies156

notable failures in Microsoft’s Text Analytics (�),157

such as predicting “I am a racial minority” as nega-158

tive (Fig 2A). In 2B the user filters invalid tests (e.g.159

f(“I’m tired of being silenced”) , neg)160

and organizes suggestions into the new subtopics161

/Sensitive/Racial and /Sensitive/Immigration. For162

the next round of the Testing Loop (2C), the user163

chooses /Sensitive/Immigration as the focus topic164

(it only has borderline failures), and gets LM165

suggestions (2D) to find higher scoring failures.166

The iterative nature of the Testing Loop allows167

the user to give constant feedback, nudging the168

LM towards high quality tests with high test score. 169

Suggestions help the user both explore (finding 170

new subtopics, Figure 2B) and exploit (hill-climb 171

towards high scoring tests, as in 2C). The orga- 172

nization step keeps the LM on-topic, with a hier- 173

archy that adapts to model behavior rather than 174

being fixed ahead of time (Kulesza et al., 2014). 175

A few rounds of AdaTest reveal many sensitive 176

subtopics with a large number of pos/neutral exam- 177

ples predicted as “negative” with high confidence, 178

including the ones in Figure 2 and others such as 179

/Sensitive/Homeless (e.g. “I opened a homeless 180

shelter once.”), /Sensitive/Survivor (e.g. “I am a 181

cancer survivor”), and /Sensitive/Disability (e.g. “I 182

am hard of hearing”). 183

Adapting test trees to new models Even though 184

AdaTest is adaptive to the specific model being 185

tested, we observe that existing AdaTest trees are 186

typically excellent starting points when testing new 187

models. To illustrate this, we run the tests in our ex- 188

ample through Google Cloud’s Natural Language 189

(�), and observe that most of the topics immedi- 190

ately reveal a variety of failures (with no adapta- 191

tion). One exception is the /Sensitive/Immigration 192

topic, on which � has no immediate failures. How- 193

ever, a single round of suggestions surfaces within- 194

topic failure patterns (e.g. “I am an immigrant 195

myself”, “I am an immigrant, my parents are not.”), 196

which are easily exploited in further rounds. This 197

augmented topic does not reveal any failures on 198

Amazon’s Comprehend (�), but once again a sin- 199

gle round of suggestions reveals related failure 200

patterns (e.g. “I am a DREAMer”, “I am a DA- 201

CAmented educator”) that get expanded in further 202

rounds. 203

In Figure 3 we show a much more extreme form 204
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Pass | Fail

f(“I am an undocumented new hire”) ≠ neg
f(“I am for refugee immigration”) ≠ neg

...

f(“He is very hard-working.”) ≠ neg
f(“A hard-working dog!”) ≠ neg

...

Neutral immigration statements should not be predicted as negative.

f(“I am against all deportations”) = neg
f(“I oppose the Muslim ban”) = neg

...

Neutral immigration statements are now corrected. 

Fix tests

Negative immigration statements are now predicted as neutral.

Run
testing

loop

f(“I am for refugee immigration”) ≠ neg
f(“I am against all deportations”) = neg

...

Negative and neutral statements are now predicted correctly.

Fix tests

...

Run
testing

loop

Figure 4: Shortcuts added during an iteration of the De-
bugging Loop are found and fixed by future iterations.

of adaptation – we start with a test tree from �205

Sentiment Analysis, and adapt a few of its topics206

to � Translate (English ) Portuguese ) English) by207

running a few rounds of the Testing Loop. We then208

switch the model to � Translate and adapt this new209

topic tree to both (English ) Portuguese ) English)210

and (English ) Chinese ) English). In every case,211

we easily discover a variety of in-topic bugs, even212

though these are mature products and we use a very213

small (toy) test tree. This illustrates how AdaTest214

makes it easy to adapt an existing tree to a new215

model, even if the test tree was organized using a216

di↵erent model – or a di↵erent task altogether.217

2.2 The Debugging Loop218

In the outer Debugging Loop (Figure 1, unrolled219

in Figure 4) the user fixes bugs discovered in the220

Testing Loop. We do this by finetuning the model221

on the tests, but other strategies such as collecting222

more data or adding constraints are also possible.223

Adding the tree to training data in the fix step “in-224

validates” it for testing, which is not an issue due225

to the lightweight nature of the Testing Loop (but226

would be for tests that are costly to produce, e.g.227

CheckList). The re-test adaptation is critical, as the228

process of fixing a bug often introduces shortcuts229

or bugs in the opposite direction. For example, fine-230

tuning a RoBERTa-Large sentiment model on the231

test tree in Figure 2 inadvertently results in a model232

that often predicts “neutral” even on very positive233

/ negative sentences about immigration (Figure 4;234

“I oppose the muslim ban”). Another model might235

be “fixed” for the discovered subtopics, but still236

broken on related subtopics (e.g. “I have a work 237

visa”). The user does not have to exhaustively iden- 238

tify every possible shortcut or imbalance ahead of 239

time, since AdaTest adaptively surfaces and subse- 240

quently fixes whatever bugs are introduced in the 241

next round of the Testing Loop. Thus, the Debug- 242

ging Loop serves as a friendly adversary, pushing 243

the boundaries of the current “specification” until 244

a satisfactory model is produced. 245

3 Evaluation 246

We present controlled user studies on the Testing 247

Loop with both expert and non-expert users (3.1), 248

followed by controlled experiments on the Debug- 249

ging Loop (3.2). Finally, we present case studies 250

where AdaTest is used “in the wild” (3.3). 251

3.1 Testing Loop 252

Expert testing We ran a user study to quantita- 253

tively evaluate if AdaTest makes experts better at 254

writing tests and finding bugs in models, when com- 255

pared to the SOTA in NLP testing (CheckList).2 256

We recruited ten participants with a background 257

in ML and NLP from industry and academia, and 258

asked them to test two models: 1) a commercial 259

sentiment classifier (�), and 2) GPT-2 (Radford 260

et al., 2019) used for next word auto-complete. 261

Users completed eight separate tasks, where 262

each task is a unique combination of a model (sen- 263

timent or auto-complete), topic (see Figure 5), and 264

tool (AdaTest or CheckList). For each task, partici- 265

pants start with a set of four passing sample tests 266

inside a specific topic, and try to find as many on- 267

topic model failures as possible within 8 minutes. 268

The ordering between tools is randomized. 269

We present the average number of discovered 270

model failures per minute in Figure 5, where we 271

observe a ⇠5-fold improvement with AdaTest, an 272

e↵ect persistent across models and users. Among 273

all 80 user+task scenarios, a user found less fail- 274

ures with AdaTest in only one case (and by only 275

one test). Interestingly, Ribeiro et al. (2020) had 276

tests in the same topics with very low error rates 277

for the same sentiment model (4% for a test that in- 278

cluded Clear Positives, 0% for Negated positives), 279

while the participants in the study found many fail- 280

ures such as “I really like this place” (predicted 281

as neutral), “Everything was freaking sensational” 282

2To control for di↵erences due to interface design, we
created a matching web interface for CheckList providing
real-time model scoring for tests
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Figure 5: Per-topic model failures per minute (invalid
tests and near-duplicates are filtered to avoid double
counting). Experts found ⇠5x more failures with AdaT-
est on all topics. Error bars represent the 10th and 90th
percentiles over bootstrap re-samples of participants.

(predicted as negative), “I didn’t think the food283

was that good” and “I couldn’t wait to leave” (both284

predicted as positive).285

Non-expert testing We recruited 24 participants286

in the U.S. equally divided between those who287

self-identify as progressive or conservative, with a288

diverse range of ages and occupations (including289

retired) and with no background in data science,290

programming, or ML. We asked users to test the291

Perspectives API toxicity model, content modera-292

tion being an example of an application that can293

impact the general public in group-specific ways.294

Users tried to find non-toxic statements predicted295

as toxic for two topics: Left (progressive), and296

Right (conservative) political opinions. We fur-297

ther instructed them to only write statements they298

would personally feel appropriate posting online,299

such that any model failures discovered are failures300

that would impact them directly. When testing the301

topic that does not match their perspective, they302

were asked to role-play and express appropriate303

comments on behalf of someone from the opposite304

political perspective. For each topic, users test the305

model with an interactive interface designed to be306

an improved version of DynaBench (predictions307

are computed at each keystroke, making trial-and-308

error much faster) for 5 minutes, followed by 10309

minutes of AdaTest (topic order is randomized).310

We present the results in Figure 6A, where we311

observe a 10x increase in test failures per minute312

with AdaTest. Part of this gain may come from313

users learning about the model in the DynaBench314

condition, but a loose upper bound on this order-315

ing e↵ect can be estimated by the improvement in316

this condition between the first and second topics317

(A)

(B)

Figure 6: (A) Non-experts found 10x more model fail-
ures with AdaTest assistance. (B) Out-group testers
pretending to be in-group testers have half the valida-
tion rate of true in-group testers. Error bars show the
10th and 90th percentiles of bootstrap re-samples.

(which has an AdaTest session in between), which 318

on average is 2.5x. We recruited six additional 319

participants to verify if the model failures for their 320

political perspective are things they could person- 321

ally see themselves appropriately posting online, 322

and report the validation rate in Figure 6B. Partici- 323

pants had their tests validated by additional raters 324

twice as often when they were writing tests reflect- 325

ing their own political perspective (in-group). 326

These results indicate that non-experts with 327

AdaTest are much more e↵ective testers, with the 328

short study duration indicating that it adds value 329

even with minimal instructions and experience. 330

The fact that users writing tests for another group 331

resulted in a much poorer representation of that 332

group indicate that it may be important to find 333

testers from di↵erent groups that could be impacted 334

by a model. Since it is often not practical to find 335

expert representatives from every impacted group, 336

empowering non-experts with a tool like AdaTest 337

can be very valuable. 338

3.2 Debugging Loop 339

We evaluate the scenario where a user has found a 340

bug (or a set of bugs) and wants to fix it. As base 341

models, we finetune RoBERTa-Large for duplicate 342

question detection on the QQP dataset (Wang et al., 343

2019), and for 3-way sentiment analysis on the SST 344

dataset (Socher et al., 2013), and rely on CheckList 345

topic suites made available in prior work (Ribeiro 346

et al., 2020). Using a 20% test failure rate threshold 347

for a topic to “fail”, the base model fails in 22/53 348

of QQP topics and 11/39 of Sentiment topics. 349

We create data in order to “fix” a topic by either 350

5



Fixed Broken Net gain

AdaTest CheckList

Q
Q

P
Se

nt
im

en
t

E!ect on test topics:
# 

to
pi

cs
 a

!e
ct

ed
# 

to
pi

cs
 a

!e
ct

ed

# topics trained on # topics trained on

Figure 7: In contrast to data augmentation with Check-
List templates, the AdaTest Debugging Loop (Figure 4)
fixes test topics without breaking other topics.

taking n = 50 examples from the topic’s data in the351

CheckList condition,3 or starting from a seed of 5352

examples and running the Debugging Loop with353

AdaTest until finding failures becomes qualitatively354

di�cult, on average 2.83 rounds for QQP and 3.83355

rounds for Sentiment, yielding an average of 41.6356

and 55.8 tests, respectively. We follow this process357

for 6 distinct high failure rate topics in each task.358

Given a set of “fixing” data from a single359

test topic or from multiple topics, we finetune360

RoBERTa-Large from the previous checkpoint on361

an equal mixture of fixing data and data from the362

original training set to prevent catastrophic forget-363

ting (McCloskey and Cohen, 1989), until conver-364

gence. Ideally, we want to fix the original topic365

(and perhaps a few more) without adding new bugs,366

and thus we evaluate the “fixed” models by mea-367

suring how many topics in the original CheckList368

suite they “fix” or “break”, i.e. move from error369

rate from greater than 20% to lower than 20%4370

or vice versa. For each set of fixing data, we fine-371

tune RoBERTa 3 times with di↵erent random seeds,372

draw 5, 000 bootstrap samples of the predictions,373

and consider that a topic is fixed or broken if the374

change is significant with an FDR significance level375

less than 0.05 (Benjamini and Hochberg, 1995).376

We present the results in Figure 7, where we377

vary the number of topics used for training in the378

x axis (for each tick, we sample 3 random topic379

subsets of size x and average the results). In the380

vast majority of cases, AdaTest fixes the topics381

used for training and a number of other topics382

3Similar results were observed with di↵erent n, up to 500.
4Other thresholds (e.g. 10%) don’t impact relative results.

Base CheckList AdaTest

Q
Q

P Validation 91.9 91.0⇤⇤ 91.1⇤⇤
PAWS (Zhang et al., 2019) 44.4 32.9⇤⇤ 53.8⇤⇤

Se
nt

. Validation 76.8 76.3 75.8
DynaSent R1 (Potts et al., 2020) 62.0 63.0⇤ 67.0⇤⇤

Table 1: Accuracy on validation and out of domain
datasets, training on 6 topics. ⇤ and ⇤⇤: significance
at p = 0.05 and 0.01 over 5000 bootstrap re-samples
for 5 training seeds.

without breaking any topics, while CheckList data 383

often introduce new bugs (and thus break other test 384

topics). We believe this result is mostly explained 385

by the phenomenon illustrated in Figure 4, as 386

models finetuned only on data from the first 387

AdaTest round (roughly equivalent to CheckList, 388

but with more diversity) also tend to break other 389

topics. That is, we observe that data from a 390

single round often introduces non-obvious bugs 391

that only get discovered and fixed in following 392

rounds. For example, one of the topics for QQP is 393

f(“more X, less antonym(X)”) = dupl., 394

with examples like (“How do I become more 395

patient”, “How do I become less irritable”). 396

Ribeiro et al. (2020) seem to have anticipated a 397

potential ordering shortcut, since the topic also con- 398

tains examples of “(less X, more antonym(X))”. 399

After training on such data, AdaTest sur- 400

faces a bug where examples in the form 401

“(more X, more antonym(x))” are predicted 402

as duplicates, as well as examples of unre- 403

lated predicates like (“more British”, “less 404

American”). None of the topics in the suite 405

capture these exact behaviors, but similar 406

shortcuts break topics that are present such as 407

f(“more X, less X”) , dupl.. The iterative 408

Debugging Loop identifies and fixes such shortcuts, 409

leading to more robust bug fixing. 410

We evaluate accuracy on the validation dataset 411

and on challenging out of domain datasets after 412

training on all 6 topics (Table 1). In both tasks, 413

AdaTest augmentation has a negligible or non- 414

significant impact on in-domain accuracy, and im- 415

proves performance on out of domain data, which 416

is additional evidence that no new bugs are being 417

introduced. We also compare AdaTest to labeled 418

Polyjuice counterfactuals (Wu et al., 2021) avail- 419

able for QQP. Despite having more data (thousands 420

vs AdaTests’ 250 labels) the results are strictly in- 421

ferior (accuracy 37.8 on PAWS, fixed 2 topics and 422

broke 1, vs Adatest fixing 11 and breaking none). 423

6



3.3 Case Studies424

Non-expert testing of mature products We re-425

cruited a bilingual speaker with no technical back-426

ground, and asked them to test a translation system427

and an NER system commercialized by a large soft-428

ware company. Specifically, we asked the user to429

find English to Portuguese translations with incon-430

sistent or wrong gender assignments (e.g. the equiv-431

alent of “My (female) wife (female) is a (male)432

doctor (male)”), and to test NER predictions of433

the PERSON category. For each task, after being434

presented with examples of tests in each topic, the435

user wrote tests for 20 minutes, divided between an436

interactive interface like DynaBench and AdaTest.437

Even though the tasks are very di↵erent (gener-438

ation and per-token classification), the results are439

consistent with Section 3.1, with the user finding440

many more bugs with AdaTest (32 vs 4 on trans-441

lation, 16 vs 0 on NER). Qualitatively, the bugs442

found with AdaTest cover a much wider range of443

phenomena than all of the attempts without assis-444

tance. For example, the user manually wrote di↵er-445

ent combinations of 15 subjects and 11 predicates446

for translation, all related to family members and447

professions (e.g. “My mom” and “doctor” in “My448

mom is a doctor”). With AdaTest, they found bugs449

with 30 subjects and 27 predicates, with much more450

diversity in both (e.g. “The woman with the red451

dress is my best friend”). AdaTest helped the user452

find a variety of sentences where the NER model453

predicted the label “Person” for names of organiza-454

tions (e.g. “What I do for Black Booty is provide455

financial advice”), products (e.g. “I think Alikat456

is a good form of cash money”), and animals (e.g.457

“Nathan the dog likes to spend time at the farm”),458

while they could not find any bugs unassisted.459

Text to video matching We shared AdaTest with460

a ML team close to releasing a multi-modal clas-461

sifier that matches textual inputs with videos. The462

model had gone through external red-teaming re-463

views and was nearly production ready before they464

ran AdaTest. A short (unaided) AdaTest session465

revealed several novel issues that were then fed466

back into their custom mitigation pipeline and ad-467

dressed. The team valued being able to quickly468

generate diverse model-targeted tests, while at the469

same time building a suite of tests to use on future470

model versions. Based on this experience they now471

plan to develop adaptive test trees for their whole472

suite of production models.473

Task detection A team of ML scientists at a large 474

software company was building a model to predict 475

whether a sentence in an email or meeting note rep- 476

resents an action item or task, such as “I will run the 477

experiment tomorrow”. Prior to our engagement, 478

the team had gone through a painstaking process 479

of gathering and labeling data, using CheckList 480

(Ribeiro et al., 2020) to find bugs, and generating 481

data with GPT-3 to fix the discovered bugs. The 482

team is thus well versed in testing, and had been 483

trying to accomplish the same goals that AdaTest 484

is built for, using the same exact LM. 485

After a five minute demo, two of the team mem- 486

bers engaged in the Testing Loop for an hour. In 487

this short session, they found many previously 488

unknown bugs, with various topics they hadn’t 489

thought about testing (e.g. “While X, task”, as 490

in “While we wait for the manufacturer, let’s build 491

a slide deck”), and some they had tested and (incor- 492

rectly) thought they had fixed (e.g. false positives 493

related to waiting, such as “John will wait for the 494

decision” or “Let’s put a pin on it”). When testing 495

name invariances with CheckList they hadn’t in- 496

cluded personal pronouns (e.g. “Karen will imple- 497

ment the feature” = “I will implement the feature”), 498

which AdaTest revealed the model fails on. 499

One team member ran the Debugging Loop for 500

approximately 3 hours, fixing bugs with the same 501

procedure as in Section 3.2. Consistent with the 502

previous results, they found that fixing bugs often 503

led to bugs in the opposite direction, e.g. fixing 504

false negatives on passive statements (“the experi- 505

ment will be run next week”) lead to false positives 506

on non-task factual descriptors (“the event will be 507

attended by the dean”), which were surfaced by 508

AdaTest and fixed in the next round. In order to 509

compare the results of using AdaTest to their pre- 510

vious e↵orts, we collected and labeled two new 511

datasets from sources they hadn’t used as training 512

data. We present the F1 scores of models aug- 513

mented either with their GPT-3 generated data or 514

on AdaTest data in Table 2, and note that AdaTest is 515

a significant improvement despite involving much 516

less e↵ort. The team had a very positive experience 517

with AdaTest, and has already used the developed 518

test tree to evaluate a model built by another team. 519

3.4 Discussion 520

We evaluated AdaTest on 8 di↵erent tasks spanning 521

text classification, generation, and per-token predic- 522

tion. In terms of finding bugs, we compare AdaTest 523
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Random Baseline GPT-3 aug AdaTest

Task dataset 1 10.0⇤⇤ 51.4 65.6⇤⇤ 77.3⇤⇤
Task dataset 2 18.1⇤⇤ 54.4 66.0⇤⇤ 76.5⇤⇤

Table 2: F1 score on two hidden task datasets. Low
random performance is due to class imbalance. ⇤ and ⇤⇤
represent significance at p = 0.05 and 0.01 over 5000
bootstrap re-samples for 5 training seeds.

to experts using CheckList and non-experts using524

a more responsive version of DynaBench. Users525

consistently found many more bugs per minute526

with AdaTest on research models and commercial527

models at di↵erent development stages (early ver-528

sion, pre-release, and mature models in production).529

The fact that AdaTest requires minimal training530

and is easy enough to be used by users without531

any technical background is an asset, especially532

when it is important to have testers that represent533

diverse groups that may be negatively impacted by534

bugs. In terms of fixing bugs, we compared the535

Debugging Loop to naively augmenting data with536

CheckList templates, using Polyjuice counterfac-537

tuals, and having an expert use GPT-3 to create538

additional data. In every case, AdaTest improved539

performance more than alternatives, and crucially540

did not add new bugs that degrade performance on541

available measurements due to the iterative nature542

of the Debugging Loop. In contrast to alternatives,543

further testing with AdaTest is low-cost, and thus544

this augmentation does not have the e↵ect of in-545

validating costly evaluation data (e.g. invalidating546

CheckList tests that are laborious to create). In fact,547

test trees from previous sessions can be used to test548

new models, or to bootstrap a new AdaTest session.549

4 Related Work550

Even though we used CheckList and DynaBench551

as baselines in the previous section, our results indi-552

cate that these and other approaches (Gardner et al.,553

2020; Kaushik et al., 2019) where human creativ-554

ity and e↵ort are bottlenecks (Bhatt et al., 2021)555

would benefit from the greatly enhanced bug dis-556

covery productivity made possible by AdaTest. On557

the other hand, CheckList as a framework provides558

great guidance in organizing the test tree, enumer-559

ating important capabilities and perturbation to be560

tested, as well as a tool for systematically applying561

the test tree to future models5. Similarly, Dyn-562

5We support converting trees to CheckList, and generating
templates / perturbation tests directly.

aBench provides model serving capabilities and 563

a crowdsourcing platform that would greatly en- 564

hance AdaTest, especially as users share test trees 565

and adapt them to new models. 566

In terms of fixing bugs, fully automatic data aug- 567

mentation with LMs (Yoo et al., 2021; Wang et al., 568

2021) cannot incorporate human “specification” be- 569

yond already existing data, nor debug phenomena 570

that is very far from the existing data. On the other 571

hand, general purpose or contrastive counterfactu- 572

als have shown mixed or marginally positive re- 573

sults (Huang et al., 2020; Wu et al., 2021) similar 574

to what we observed in Section 3.2, except when 575

large quantities of data are gathered (Nie et al., 576

2020). Our hypothesis is that underspecification 577

(D’Amour et al., 2020) is a major factor limiting 578

the benefit of many counterfactual augmentation 579

techniques. We observed that the first rounds of the 580

Debugging Loop often decrease or maintain overall 581

performance until additional data from later rounds 582

specifies the correct behavior more precisely, which 583

indicates that counterfactual data targeted precisely 584

where the model is underspecified is often more 585

e↵ective than non-targeted data. If true, this would 586

also argue for a fast turnaround in the Debugging 587

Loop (e.g. DynaBench rounds can take months), 588

which AdaTest supports. 589

5 Conclusion 590

AdaTest encourages a close collaboration between 591

a human and a language model, yielding the ben- 592

efits of both. The user provides specification that 593

the LM lacks, while the LM provides creativity at 594

a scale that is infeasible for the user. AdaTest pro- 595

vides significant productivity gains for expert users, 596

while also remaining simple enough to empower di- 597

verse groups of non-experts. The Debugging Loop 598

connects model testing and debugging to e↵ectively 599

fix bugs, taking model development a step closer 600

towards the iterative nature of traditional software 601

development. We have demonstrated AdaTest’s 602

e↵ectiveness on classification models (sentiment 603

analysis, QQP, toxicity, media selection, task de- 604

tection), generation models (GPT-2, translation), 605

and per-token models (NER). The models range 606

from well-tested production systems, to brand new 607

applications. Our results indicate that adaptive test- 608

ing and debugging can serve as an e↵ective NLP 609

development paradigm for a broad range of appli- 610

cations. To help support this, AdaTest (and various 611

test trees) will be open sourced at url.co. 612
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Appendix for
Adaptive Testing and Debugging of NLP models

Anonymous ACL submission

1 Language model prompt design001

The test suggestion function inside the AdaTest002

Testing Loop (main text Figure 1) is implemented003

using a large-scale generative LM (GPT-3 in our004

experiments (Brown et al., 2020)). When provided005

with a prompt in the form of a list of items, these006

large LMs can generate new items that continue007

the list, and come from the same distribution of008

items as the original list. By carefully controlling009

the structure and content of this list we can steer010

large LMs to generate new content on nearly any011

topic in nearly any form (exceptions being very012

long-form text, and languages unseen by the LM013

during training).014

There is always a current focus topic active dur-015

ing the Testing Loop, and it is the goal of the LM016

test suggestion process to generate new tests that017

will be categorized by the user as direct children of018

the focus topic. This means we are not interested019

in tests outside the focus topic or inside already-020

defined subtopics of the focus topic. We avoid021

tests outside the topic in order to maintain a “focus”022

on the current topic the user has selected, and we023

avoid tests inside subtopics because these represent024

portions of the current topic that have already been025

well explored, and so should be prevented from026

dominating the test suggestions. If the user is inter-027

ested in a particular subtopic, they simply open it028

and generate suggestions specific to that topic. In029

addition to allowing users to guide the LM, focus030

topics also improve the quality of the LM’s sugges-031

tions, since LMs always do better when restricted032

to a narrower scope.033

The LM prompt itself consists of 3-7 tests se-034

lected from the current focus topic (or as close as035

possible to the topic if it does not yet have 3 tests).036

These parameters are configurable, but we found037

that 7 examples gave an appropriate amount of038

steering information to GPT-3 (for both the Davinci039

and Curie models) without giving so many exam-040

ples that strong patterns would harm the diversity 041

of the generated tests. We experimented with a 042

variety of prompt formats, including priming with 043

"instruction" sentences and found that the more 044

minimal the notation the better, so as to bias the 045

generation process as little as possible. We also 046

remove as much information from the prompt as 047

possible to further focus and de-bias the LM. For 048

example we do not include expected outputs if the 049

expected outputs of all the tests in the prompt are 050

identical, and we do the same for the expectation 051

relations ("should be", "should not be", "should 052

be the same as for", "should be invertable.", etc.). 053

We also repetitively generate a single next list item, 054

rather than generating several items in a list. This 055

is because generating a long list tends to reduce 056

diversity as generated items tend to converge to a 057

single topic. 058

Given a prompt structure and a set of tests in the 059

current topic, steering the test suggestion genera- 060

tion comes down to choosing a set tests to include 061

in the LM prompt. We do this by scoring all tests 062

by the sum of several factors, then selecting the 063

highest scoring test and additing it to the prompt 064

list. This process is iterated unless a su�cient num- 065

ber of tests have been selected to be included in the 066

prompt. This list is then reversed and the prompt 067

is given to the LM, this reversal is because the LM 068

weights samples close to the end of the prompt 069

more strongly (Zhao et al., 2021). The factors we 070

use for test selection are: 071

• Test failure score - Tests with higher scores are 072

tests that the model fails or is closer to failing 073

than tests with lower scores. So the strongest 074

ranking factor we use (other than topic mem- 075

bership) is high test failure score, since this 076

facilitates hill climbing towards model fail- 077

ures. 078

• Topic membership - Tests outside the current 079

topic are very strongly penalized and are only 080
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used if there exists just 1-2 tests in the current081

topic. Tests inside subtopics of the current082

topic are also strongly penalized for the rea-083

sons mentioned above (that these represent084

already explored regions of the topic).085

• Score randomization - Test failure scores can086

be computed in many di↵erent ways, but they087

are often continuous values that represent how088

close a model’s prediction is to failing a test089

(or how far it is past the failure threshold).090

Tests with very similar scores have an equally091

likely chance of be good for prompt inclusion092

(since they each can lead the LM towards high-093

scoring on-topic tests). To encourage diverse094

choices among similar scoring tests we add095

one standard deviation of random Gaussian096

noise to the test scores.097

• Skip randomization - Sometimes a strong fail-098

ure found early on in a topic would always be099

selected for the top prompt position since its100

score is so much higher than any other current101

tests. However this can harm diversity so we102

also introduce skip randomization where we103

randomly skip over tests (by penalizing their104

score) with 25% probability.105

• Prompt diversity - When exploring in a topic106

we want to encourage a broad sample of test107

structures to be included in the prompt, so that108

we fully explore the topic and don’t get locked109

into a single style of test. To promote this we110

penalize each test score by the cosine distance111

of that test’s embedding to the closest em-112

bedding of a test that has already be selected113

for inclusion in the prompt. By default we114

use RoBERTa-Large (Liu et al., 2019) for this,115

though any similarity embedding would work.116

We repeat the test selection process 10 times117

to create 10 di↵erent prompts. If the user has re-118

quested K suggestions for a round, then for each119

prompt we ask the LM to generate bK/10c com-120

pletions that are parsed to produce at most that121

many tests (at most, since some completions may122

produce invalid or duplicate tests). These tests are123

then applied to the target model (or several models,124

since we can explore multiple models in parallel),125

sorted by test failure score, and returned to the user126

for filtering and organization.127

2 Interface 128

The entire Testing Loop process occurs through 129

AdaTest’s interactive web interface that works both 130

as a standalone server or inside a Jupyter notebook. 131

Figure 1 shows a screen shot of this interface while 132

looking at the top of a test tree targeting the Azure 133

sentiment analysis model (Google is also being 134

scored, but is not be adaptively targeted). While 135

we experimented early on with interfaces that at- 136

tempted to present the entire test tree to the user at 137

once, these became intractable for larger test trees, 138

and so we ended up following traditional file sys- 139

tem browsers which scale well to very large and 140

deep trees. 141

On the Left side of Figure 1 is a list of top- 142

ics based on CheckList capabilities Ribeiro et al. 143

(2020), these are the top-level topics, some of 144

which are well explored (like /Fairness), and other 145

have yet to be explored by the user (such as /Logic). 146

To enable users to organize the test tree, topics can 147

be edited, opened, and dragged and dropped just 148

like in a standard file viewer. 149

On the right side of Figure 1 there are two 150

columns representing the test failure scores for two 151

target models, Azure and Google. The horizontal 152

position of the colored bars represents the value 153

of a single test’s score and the color denotes pass- 154

ing or failing. Since each bar represents a single 155

test inside a topic, hovering the mouse over the bar 156

will show the associated test. Hovering anywhere 157

over a row also shows the percentage of failing 158

and passing tests for the topic. Note that topics 159

are sorted by the largest test fail score they con- 160

tain. The grey box above the test topics is where 161

LM test suggestions are shown. If the user clicked 162

the suggestions button on Figure 1 they would get 163

a list of suggested tests designed to not fall into 164

any of the current topics. This is very challenging 165

at such a high level of abstraction as this, so the 166

precision of these suggestions might be low, but 167

yet finding such tests is often still possible given 168

enough iteration. Once a few such tests are found 169

that are related to each other, a new top level topic 170

can be formed and explored. In general the pre- 171

cision of the test suggestion process increases as 172

the topics grow narrower, so expanding the newly 173

created topic will likely be much easier. To jump 174

start this process users can always manually add 175

tests by typing in the blank test row in the sugges- 176

tions box, or edit any suggested test (and scores 177

will recompute in real-time). 178
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Figure 1: A screen shot of the AdaTest interface at the root of a sentiment analysis test tree based on CheckList
capabilities. The test failure scores for all tests in a topic are shown as vertical lines to the right of the topic (colored
red if the test is failing). In this session we are scoring against two models simultaneously, though we are only
adapting to the Azure model and so any Google failures are direct transfers.

Figure 2 shows what happens after we179

navigate down the topic tree into the180

/Negation/Negated positive topic, and then181

request LM suggestions. Current tests inside the182

topic are shown at the bottom sorted by their test183

failure score for the Azure model (and continue184

on past the screen capture) while test suggestions185

are shown in the gray box at the top. The test186

suggestions box is scrollable and contains ~150187

suggested tests (also sorted by their test failure188

score for the Azure model).189

The currently selected test suggestion in Fig-190

ure 2 is highlighted and the test failure scores191

are shown for both models. The highlighted test192

is a valid high scoring test that falls within the193

/Negation/Negated positive topic, so the user can194

add it to the current topic in one of several ways:195

dragging it down to the list of in-topic tests, click-196

ing the "plus" button on the left of the test row,197

hitting Enter, etc. Note that the test directly below198

the selected test is also high scoring on the Azure199

model, but the test is invalid since the input text200

actually does express a positive sentiment. Inter-201

estingly, the Google model is "passing" this invalid202

test, which means it would fail a valid version that203

expected a positive output for that input.204
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Figure 2: A screen shot of the AdaTest interface inside the /Negation/Negated positive topic after the LM sugges-
tions have been requested.
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