Adaptive Testing and Debugging of NLP Models

Anonymous ACL submission

Abstract

Current approaches to testing and debugging
NLP models rely on highly variable human
creativity and extensive labor, or only work for
a very restrictive class of bugs. We present
AdaTest, a process for adaptive testing and de-
bugging of NLP models inspired by the test-
debug cycle in traditional software engineer-
ing. AdaTest encourages a partnership be-
tween the user and a large language model
(LM): the LM proposes tests that are validated
and organized by the user, who in turn gives
feedback and steers the LM towards better
tests. Once enough bugs are discovered, these
are fixed (e.g. finetuning), and the user re-
sumes testing. In experiments with expert and
non-expert users and commercial / research
models for 8 different tasks, AdaTest makes
users 5-10x more effective at finding bugs than
current approaches, and helps users effectively
fix bugs without adding new bugs.

1 Introduction

Although NLP models are often underspecified and
exhibit various generalization failures, finding and
fixing such bugs remains a challenge. Current ap-
proaches include frameworks for testing (Ribeiro
et al., 2020), error analysis (Wu et al., 2019), or
crowdsourcing (Kiela et al., 2021), all of which de-
pend on highly variable human creativity to imag-
ine bugs and extensive labor to instantiate them.
Out of these, only crowdsourcing can potentially
fix bugs when enough data is gathered. On the other
hand, fully automated approaches such as perturba-
tions (Belinkov and Bisk, 2018; Prabhakaran et al.,
2019), automatic adversarial examples (Ribeiro
et al., 2018), and unguided data augmentation (Yoo
et al., 2021; Wang et al., 2021) are severely re-
stricted to specific kinds of problems (e.g. Ribeiro
et al. (2018) only deal with inconsistent predictions
on paraphrases). Despite their obvious usefulness,
none of these approaches allow a single user to eas-
ily specify, discover, and fix undesirable behaviors.

Debugging Loop
\p (Re)test model

Testing Loop
LM suggests tests

-

Test suggestions

~.2 7

User filters and organizes

Target
model

L Fix tests

Figure 1: AdaTest consists of two loops: A Testing
Loop that generates and organizes tests optimized for
the target model, and a Debugging Loop that iteratively
refines the target model based on test failures.

In this work, we present Adaptive Testing (AdaT-
est), a process and tool that leverages the comple-
mentary strengths of humans and large scale lan-
guage models (LMs) in order to find and fix bugs in
NLP models'. In an inner Testing Loop (Figure 1,
unrolled in Figure 2), the LM suggests tests based
on a topic under consideration, which the user in-
spects, validates (filtering non-valid tests), and oc-
casionally organizes by topic into a test tree. With
these operations, the user “steers” the LM, which in
turn adapts its suggestions based on user feedback
and model behavior to hill-climb on the intersec-
tion between user specification and model failure.
Suggested tests help the user spawn new topics
and test new behaviors (exploration), while also
testing hundreds of in-topic variations to surface
potential model failures for the user (exploitation).
The LM thus handles most of the slow “creative”
burden of generating and instantiating tests for the
user to evaluate (Kahneman, 2011). Once enough

'"We use GPT-3 (Brown et al., 2020), but support any others



bugs are discovered, the user engages in an outer
Debugging Loop (Figure 1, unrolled in Figure 4),
performing an operation to fix whatever problems
were discovered (e.g. finetuning on failing tests),
and (crucially) testing the model again to verify
that new bugs were not introduced. Thus, AdaT-
est applies the test-fix-retest loop from software
engineering to NLP.

We demonstrate the usefulness and generality of
AdaTest by having users with diverse skill sets find
and fix bugs in state-of-the-art models for a wide va-
riety of tasks and domains. In controlled user stud-
ies, expert users consistently discovered ~5x more
bugs per minute with AdaTest (when compared
to CheckList), while users with no technical back-
ground discovered ~10x more (when compared to a
tool similar to DynaBench). Our experiments indi-
cate AdaTest’s Debugging Loop reliably fixes bugs
without introducing new ones, in contrast to other
forms of data augmentation (templates, counterfac-
tuals (Wu et al., 2021), manual GPT-3 prompting).
Finally, we present various case studies where ex-
pert and non-expert users use AdaTest “in the wild”
on commercial models, discovering and fixing a
large quantity of previously unknown bugs (e.g. in
one case resulting in a 11.1 improvement in hidden
F1 over expert GPT-3 augmentation).

2 Adaptive Testing

The fundamental unit of specification in AdaTest
is a fest, which we define as an input string or pair
and an expectation (Ribeiro et al., 2020). Taking
3-way Sentiment Analysis as a running example
and denoting the model under testing as f, tests
may specify what the output should or should not
be (e.g. f(“This is so great!!”) = pos,
£f("It’s not bad”) # neg), or a prop-
erty on perturbations such as invariance (e.g.
f(“Hi”) = £(“Hello”)). When a test is applied
to a model, it produces a test failure score, such
that failing tests have high scores, while passing
tests have low scores. The score may be a binary
pass/fail indicator, or a continuous indicator of
how strongly a test passes/fails, e.g. in Figure 2 the
score is the confidence of the model for “negative”.

To evaluate model behavior at varying levels
of abstraction, tests are organized into a fest tree
where each internal node is a fopic. For exam-
ple, in Figure 2 we start with the /Sensitive topic
within the test tree, and organize it further by
defining as children the subtopics /Sensitive/Racial

Sensitive
(“'am a black woman”) # neg M
"(“l am an Asian man”) # neg suggests
My friend is a Christian pastor”) # neg A
| am tired of being silenced”) # neg X
° | am a racial minority”) # neg ¢/
. |
Sensitive B
Racial -
| am part of a racial minority”) # neg User'ﬁlters
. . N & organizes
| am a racial minority”) # neg
LM
Immigration suggests
(“ am an undocumented person”) # neg from topic
I am an undocumented woman”) # neg ~.user opens
S
C
v

I can't keep living in fear”) # neg X
| am an undocumented new hire”) # neg ¢

/

Sensitive/lmmigration D
I am an undocumented new hire”) # neg Z -

| am for refugee immigration”) # neg User adds
I am an undocumented person”) # neg to the'
subtopic

Figure 2: The Testing Loop cycles between test sug-
gestions by the LM and test acceptance/organization by
the user. In this example, test score is P(neg), and a test
fails (red score) when the prediction is neg. As the user
filters and organizes (B, D), the LM hillclimbs towards
suggesting valid tests with high scores (A, C).

and /Sensitive/Immigration, each containing re-
lated tests and subtopics. These flexible test trees
are organized by the user as they explore model
behavior, allowing for fine grained evaluation and
helping the user focus themselves and the LM by
testing a topic at a time. They are also persistent
sets of unit tests that can be applied to new versions
of a model, iteratively updated, and shared with the
community as starting points for testing.

2.1 The Testing Loop

The Testing Loop starts with the user selecting a
topic to focus on. At each iteration the LM pro-
poses a set of new tests for the current topic, and
the user accepts those that are valid, high scoring,
and within the topic’s scope. This process is similar
in spirit to Markov-Chain Monte-Carlo (Hastings,
1970), with the LM as the proposal function, and
the user accepting / rejecting samples, although the
user is free to vary between exploration and ex-
ploitation as desired (instead of following a rule).
Test proposals are generated for a topic by us-



Input
o == en-pt-en | The icing on this cake is delicious
T =
3 E= G en-pt-en | This burger is out of the park!
Vs g g N
& N ERenzh-en| Don'tforget to try the beans, they are delicious! - RIS TiHiXEF, BANREE!
5 == en-pt-en | | can't say anything else than this place sucks.
‘% g G en-pten | |don't recommend this dish.
z == en-zh-en | | can't believe how good these wontons are
& == en-pt-en | Immigrants with healthcare
g G en-pten | lamalegal immigrant
% - == en-zh-en | | want to stay in the U.S. to get education
7
é == en-pt-en | |am a Nigerian woman of color

G en-pten

° I am a Latino person of color
& g -
oa en-zh-en

lidentify as a racial minority in the US

Translation

— A cereja deste bolo é deliciosa

— Este hamburguer esta fora de moda!

- Eu ndo recomendo este prato.
> ETHIRERERF A ST
— Imigrantes com satide

—> eu sou um imigrante legal

> HEBEXEEHE

—> Eu sou uma nigeriana de cor

—> Eu sou uma pessoa de cor latina
> HINFEEZVEES

Back translation
- The cherry of this cake is delicious
- This burger is out of style!
- Don't forget to try beans:

— Néo posso dizer nada além desse lugar. - | can't say anything but this place.

- | highly recommend this dish.

- | can't believe how good these ghosts are

- healthy immigrants
- iam a cool immigrant

- I want to stay in America to educate

- I'm a Nigerian by heart
- I'm a latin person

- | agree that america is a minority

Figure 3: A portion of a test tree with representative examples, adapted from &g Sentiment Analysis to G Translate,
then further adapted to R Translate for different languages. Errors annotated by native speakers.

ing 3-7 tests from the topic as a prompt to the LM.
These tests are selected based on test score, diver-
sity, and randomization, in such a way that high
scoring tests tend to be placed later in the prompt
(details in App. 1), where they have more impact in
hill-climbing (Zhao et al., 2021). We then sample
a large number of independent completions (typ-
ically 25-150) from the LM as proposals, which
are sorted by test score and presented to the user,
such that the user mostly inspects likely failures.
The user then does an organization round, where
they accept good test suggestions, and potentially
reorganize the hierarchy locally, e.g. by grouping
tests into subtopics. User supervision means the
LM only needs a reasonable recall on interesting
tests, rather than being able to “solve” the task.

An example unrolled Testing Loop is shown
in Figure 2, for a topic from Ribeiro et al. (2020)
on sensitive inputs that should not be predicted as
negative. We initialize the /Sensitive topic with a
few tests based on the original CheckList, noting
that Ribeiro et al. (2020) did not identify failures
of this type on any commercial models. A round
of LM test suggestions, however, quickly identifies
notable failures in Microsoft’s Text Analytics (2@,
such as predicting “I am a racial minority” as nega-
tive (Fig 2A). In 2B the user filters invalid tests (e.g.
£f("“I’'m tired of being silenced”) # neg)
and organizes suggestions into the new subtopics
/Sensitive/Racial and /Sensitive/Immigration. For
the next round of the Testing Loop (2C), the user
chooses /Sensitive/Immigration as the focus topic
(it only has borderline failures), and gets LM
suggestions (2D) to find higher scoring failures.

The iterative nature of the Testing Loop allows
the user to give constant feedback, nudging the

LM towards high quality tests with high test score.
Suggestions help the user both explore (finding
new subtopics, Figure 2B) and exploit (hill-climb
towards high scoring tests, as in 2C). The orga-
nization step keeps the LM on-topic, with a hier-
archy that adapts to model behavior rather than
being fixed ahead of time (Kulesza et al., 2014).
A few rounds of AdaTest reveal many sensitive
subtopics with a large number of pos/neutral exam-
ples predicted as “negative” with high confidence,
including the ones in Figure 2 and others such as
/Sensitive/Homeless (e.g. “I opened a homeless
shelter once.”), /Sensitive/Survivor (e.g. “l am a
cancer survivor”), and /Sensitive/Disability (e.g. I
am hard of hearing”).

Adapting test trees to new models Even though
AdaTest is adaptive to the specific model being
tested, we observe that existing AdaTest trees are
typically excellent starting points when testing new
models. To illustrate this, we run the tests in our ex-
ample through Google Cloud’s Natural Language
(G), and observe that most of the topics immedi-
ately reveal a variety of failures (with no adapta-
tion). One exception is the /Sensitive/Immigration
topic, on which G has no immediate failures. How-
ever, a single round of suggestions surfaces within-
topic failure patterns (e.g. “I am an immigrant
myself”, “I am an immigrant, my parents are not.”),
which are easily exploited in further rounds. This
augmented topic does not reveal any failures on
Amazon’s Comprehend (@), but once again a sin-
gle round of suggestions reveals related failure
patterns (e.g. “I am a DREAMer”, “I am a DA-
CAmented educator™) that get expanded in further
rounds.

In Figure 3 we show a much more extreme form



Neutral immigration statements should not be predicted as negative.

f(“am an undocumented new hire”) # neg Fix tests

I

Run Neutral immigration statements are now corrected.
testing

f(“l am for refugee immigration”) # neg

loop He is very hard-working.’) # neg

7

Negative immigration statements are now predicted as neutral.

A hard-working dog!”) # neg

f(“l am against all deportations”) = neg Fix tests

=

Run Negative and neutral statements are now predicted correctly.
testing

loop

>

Figure 4: Shortcuts added during an iteration of the De-
bugging Loop are found and fixed by future iterations.

f(" oppose the Muslim ban”) = neg

I am for refugee immigration”) # neg
| am against all deportations”) = neg

of adaptation — we start with a test tree from S
Sentiment Analysis, and adapt a few of its topics
to G Translate (English » Portuguese + English) by
running a few rounds of the Testing Loop. We then
switch the model to S Translate and adapt this new
topic tree to both (English + Portuguese + English)
and (English » Chinese » English). In every case,
we easily discover a variety of in-topic bugs, even
though these are mature products and we use a very
small (toy) test tree. This illustrates how AdaTest
makes it easy to adapt an existing tree to a new
model, even if the test tree was organized using a
different model — or a different task altogether.

2.2 The Debugging Loop

In the outer Debugging Loop (Figure 1, unrolled
in Figure 4) the user fixes bugs discovered in the
Testing Loop. We do this by finetuning the model
on the tests, but other strategies such as collecting
more data or adding constraints are also possible.
Adding the tree to training data in the fix step “in-
validates” it for testing, which is not an issue due
to the lightweight nature of the Testing Loop (but
would be for tests that are costly to produce, e.g.
CheckList). The re-test adaptation is critical, as the
process of fixing a bug often introduces shortcuts
or bugs in the opposite direction. For example, fine-
tuning a RoBERTa-Large sentiment model on the
test tree in Figure 2 inadvertently results in a model
that often predicts “neutral” even on very positive
/ negative sentences about immigration (Figure 4;
“I oppose the muslim ban”’). Another model might
be “fixed” for the discovered subtopics, but still

broken on related subtopics (e.g. “I have a work
visa”). The user does not have to exhaustively iden-
tify every possible shortcut or imbalance ahead of
time, since AdaTest adaptively surfaces and subse-
quently fixes whatever bugs are introduced in the
next round of the Testing Loop. Thus, the Debug-
ging Loop serves as a friendly adversary, pushing
the boundaries of the current “specification” until
a satisfactory model is produced.

3 Evaluation

We present controlled user studies on the Testing
Loop with both expert and non-expert users (3.1),
followed by controlled experiments on the Debug-
ging Loop (3.2). Finally, we present case studies
where AdaTest is used “in the wild” (3.3).

3.1 Testing Loop

Expert testing We ran a user study to quantita-
tively evaluate if AdaTest makes experts better at
writing tests and finding bugs in models, when com-
pared to the SOTA in NLP testing (CheckList).?
We recruited ten participants with a background
in ML and NLP from industry and academia, and
asked them to test two models: 1) a commercial
sentiment classifier (8@), and 2) GPT-2 (Radford
et al., 2019) used for next word auto-complete.

Users completed eight separate tasks, where
each task is a unique combination of a model (sen-
timent or auto-complete), topic (see Figure 5), and
tool (AdaTest or CheckList). For each task, partici-
pants start with a set of four passing sample tests
inside a specific topic, and try to find as many on-
topic model failures as possible within 8 minutes.
The ordering between tools is randomized.

We present the average number of discovered
model failures per minute in Figure 5, where we
observe a ~5-fold improvement with AdaTest, an
effect persistent across models and users. Among
all 80 user+task scenarios, a user found less fail-
ures with AdaTest in only one case (and by only
one test). Interestingly, Ribeiro et al. (2020) had
tests in the same topics with very low error rates
for the same sentiment model (4% for a test that in-
cluded Clear Positives, 0% for Negated positives),
while the participants in the study found many fail-
ures such as “I really like this place” (predicted
as neutral), “Everything was freaking sensational”

2To control for differences due to interface design, we
created a matching web interface for CheckList providing
real-time model scoring for tests



Clear
positives

Negated
positives

Sentiment

I AdaTest

. I CheckList
Muslim

stereotypes

African-american
stereotypes

Auto-complete

00 05 10 15 20 25
Failures found per min.

Figure 5: Per-topic model failures per minute (invalid
tests and near-duplicates are filtered to avoid double
counting). Experts found ~5x more failures with AdaT-
est on all topics. Error bars represent the 10th and 90th
percentiles over bootstrap re-samples of participants.

(predicted as negative), “I didn’t think the food
was that good” and “I couldn’t wait to leave” (both
predicted as positive).

Non-expert testing We recruited 24 participants
in the U.S. equally divided between those who
self-identify as progressive or conservative, with a
diverse range of ages and occupations (including
retired) and with no background in data science,
programming, or ML. We asked users to test the
Perspectives API toxicity model, content modera-
tion being an example of an application that can
impact the general public in group-specific ways.
Users tried to find non-toxic statements predicted
as toxic for two topics: Left (progressive), and
Right (conservative) political opinions. We fur-
ther instructed them to only write statements they
would personally feel appropriate posting online,
such that any model failures discovered are failures
that would impact them directly. When testing the
topic that does not match their perspective, they
were asked to role-play and express appropriate
comments on behalf of someone from the opposite
political perspective. For each topic, users test the
model with an interactive interface designed to be
an improved version of DynaBench (predictions
are computed at each keystroke, making trial-and-
error much faster) for 5 minutes, followed by 10
minutes of AdaTest (topic order is randomized).
We present the results in Figure 6A, where we
observe a 10x increase in test failures per minute
with AdaTest. Part of this gain may come from
users learning about the model in the DynaBench
condition, but a loose upper bound on this order-
ing effect can be estimated by the improvement in
this condition between the first and second topics

(A) AdaTest
DynaBench++

0.0 0.5 1.0 15
Failures found per min.

(B) In-group L2L

out-group R2L Y/ L/ /7

In-group R2R
Out-group L2R{///F
0% 25% 50%
% validated failures

75%

Figure 6: (A) Non-experts found 10x more model fail-
ures with AdaTest assistance. (B) Out-group testers
pretending to be in-group testers have half the valida-
tion rate of true in-group testers. Error bars show the
10™ and 90" percentiles of bootstrap re-samples.

(which has an AdaTest session in between), which
on average is 2.5x. We recruited six additional
participants to verify if the model failures for their
political perspective are things they could person-
ally see themselves appropriately posting online,
and report the validation rate in Figure 6B. Partici-
pants had their tests validated by additional raters
twice as often when they were writing tests reflect-
ing their own political perspective (in-group).

These results indicate that non-experts with
AdaTest are much more effective testers, with the
short study duration indicating that it adds value
even with minimal instructions and experience.
The fact that users writing tests for another group
resulted in a much poorer representation of that
group indicate that it may be important to find
testers from different groups that could be impacted
by a model. Since it is often not practical to find
expert representatives from every impacted group,
empowering non-experts with a tool like AdaTest
can be very valuable.

3.2 Debugging Loop

We evaluate the scenario where a user has found a
bug (or a set of bugs) and wants to fix it. As base
models, we finetune RoOBERTa-Large for duplicate
question detection on the QQP dataset (Wang et al.,
2019), and for 3-way sentiment analysis on the SST
dataset (Socher et al., 2013), and rely on CheckList
topic suites made available in prior work (Ribeiro
et al., 2020). Using a 20% test failure rate threshold
for a topic to “fail”, the base model fails in 22/53
of QQP topics and 11/39 of Sentiment topics.

We create data in order to “fix” a topic by either



Effect on test topics: =@= Fixed T =O= Broken |
CheckList

Net gain

AdaTest

=
o
L

(S}
L

QQp
# topics affected

Sentiment
# topics affected

4
++ 00+ O.,

010+ Q—0-0—0—0 01+— O

2 4 6 2 4 6

# topics trained on # topics trained on

Figure 7: In contrast to data augmentation with Check-
List templates, the AdaTest Debugging Loop (Figure 4)
fixes test topics without breaking other topics.

taking n = 50 examples from the topic’s data in the
CheckList condition,’ or starting from a seed of 5
examples and running the Debugging Loop with
AdaTest until finding failures becomes qualitatively
difficult, on average 2.83 rounds for QQP and 3.83
rounds for Sentiment, yielding an average of 41.6
and 55.8 tests, respectively. We follow this process
for 6 distinct high failure rate topics in each task.
Given a set of “fixing” data from a single
test topic or from multiple topics, we finetune
RoBERTa-Large from the previous checkpoint on
an equal mixture of fixing data and data from the
original training set to prevent catastrophic forget-
ting (McCloskey and Cohen, 1989), until conver-
gence. Ideally, we want to fix the original topic
(and perhaps a few more) without adding new bugs,
and thus we evaluate the “fixed” models by mea-
suring how many topics in the original CheckList
suite they “fix” or “break”, i.e. move from error
rate from greater than 20% to lower than 20%*
or vice versa. For each set of fixing data, we fine-
tune RoBERTa 3 times with different random seeds,
draw 5, 000 bootstrap samples of the predictions,
and consider that a topic is fixed or broken if the
change is significant with an FDR significance level
less than 0.05 (Benjamini and Hochberg, 1995).
We present the results in Figure 7, where we
vary the number of topics used for training in the
x axis (for each tick, we sample 3 random topic
subsets of size x and average the results). In the
vast majority of cases, AdaTest fixes the topics
used for training and a number of other topics

3Similar results were observed with different n, up to 500.
4Other thresholds (e.g. 10%) don’t impact relative results.

Base CheckList AdaTest

Céy Validation 91.9  91.0™ 91.1**
& PAWS (Zhang et al., 2019) 444  32.9* 53.8"
< Validation 76.8 763 75.8

& DynaSent R1 (Potts et al., 2020) 62.0  63.0* 67.0**

Table 1: Accuracy on validation and out of domain
datasets, training on 6 topics. * and **: significance
at p = 0.05 and 0.01 over 5000 bootstrap re-samples
for 5 training seeds.

without breaking any topics, while CheckList data
often introduce new bugs (and thus break other test
topics). We believe this result is mostly explained
by the phenomenon illustrated in Figure 4, as
models finetuned only on data from the first
AdaTest round (roughly equivalent to CheckList,
but with more diversity) also tend to break other
topics. That is, we observe that data from a
single round often introduces non-obvious bugs
that only get discovered and fixed in following
rounds. For example, one of the topics for QQP is
f(“more X, less antonym(X)”) = dupl.,
with examples like (“How do I become more
patient”, “How do I become less irritable”).
Ribeiro et al. (2020) seem to have anticipated a
potential ordering shortcut, since the topic also con-
tains examples of “(less X, more antonym(X))”.
After training on such data, AdaTest sur-
faces a bug where examples in the form
“(more X, more antonym(x))” are predicted
as duplicates, as well as examples of unre-
lated predicates like (“more British”, “less
American”). None of the topics in the suite
capture these exact behaviors, but similar
shortcuts break topics that are present such as
f(“more X, less X”) # dupl.. The iterative
Debugging Loop identifies and fixes such shortcuts,
leading to more robust bug fixing.

We evaluate accuracy on the validation dataset
and on challenging out of domain datasets after
training on all 6 topics (Table 1). In both tasks,
AdaTest augmentation has a negligible or non-
significant impact on in-domain accuracy, and im-
proves performance on out of domain data, which
is additional evidence that no new bugs are being
introduced. We also compare AdaTest to labeled
Polyjuice counterfactuals (Wu et al., 2021) avail-
able for QQP. Despite having more data (thousands
vs AdaTests’ 250 labels) the results are strictly in-
ferior (accuracy 37.8 on PAWS, fixed 2 topics and
broke 1, vs Adatest fixing 11 and breaking none).



3.3 Case Studies

Non-expert testing of mature products We re-
cruited a bilingual speaker with no technical back-
ground, and asked them to test a translation system
and an NER system commercialized by a large soft-
ware company. Specifically, we asked the user to
find English to Portuguese translations with incon-
sistent or wrong gender assignments (e.g. the equiv-
alent of “My (female) wife (female) is a (male)
doctor (male)”), and to test NER predictions of
the PERSON category. For each task, after being
presented with examples of tests in each topic, the
user wrote tests for 20 minutes, divided between an
interactive interface like DynaBench and AdaTest.

Even though the tasks are very different (gener-
ation and per-token classification), the results are
consistent with Section 3.1, with the user finding
many more bugs with AdaTest (32 vs 4 on trans-
lation, 16 vs 0 on NER). Qualitatively, the bugs
found with AdaTest cover a much wider range of
phenomena than all of the attempts without assis-
tance. For example, the user manually wrote differ-
ent combinations of 15 subjects and 11 predicates
for translation, all related to family members and
professions (e.g. “My mom” and “doctor” in “My
mom is a doctor”). With AdaTest, they found bugs
with 30 subjects and 27 predicates, with much more
diversity in both (e.g. “The woman with the red
dress is my best friend”). AdaTest helped the user
find a variety of sentences where the NER model
predicted the label “Person” for names of organiza-
tions (e.g. “What I do for Black Booty is provide
financial advice”), products (e.g. “I think Alikat
is a good form of cash money”), and animals (e.g.
“Nathan the dog likes to spend time at the farm™),
while they could not find any bugs unassisted.

Text to video matching We shared AdaTest with
a ML team close to releasing a multi-modal clas-
sifier that matches textual inputs with videos. The
model had gone through external red-teaming re-
views and was nearly production ready before they
ran AdaTest. A short (unaided) AdaTest session
revealed several novel issues that were then fed
back into their custom mitigation pipeline and ad-
dressed. The team valued being able to quickly
generate diverse model-targeted tests, while at the
same time building a suite of tests to use on future
model versions. Based on this experience they now
plan to develop adaptive test trees for their whole
suite of production models.

Task detection A team of ML scientists at a large
software company was building a model to predict
whether a sentence in an email or meeting note rep-
resents an action item or task, such as “I will run the
experiment tomorrow”. Prior to our engagement,
the team had gone through a painstaking process
of gathering and labeling data, using CheckList
(Ribeiro et al., 2020) to find bugs, and generating
data with GPT-3 to fix the discovered bugs. The
team is thus well versed in testing, and had been
trying to accomplish the same goals that AdaTest
is built for, using the same exact LM.

After a five minute demo, two of the team mem-
bers engaged in the Testing Loop for an hour. In
this short session, they found many previously
unknown bugs, with various topics they hadn’t
thought about testing (e.g. “While X, task™, as
in “While we wait for the manufacturer, let’s build
a slide deck™), and some they had tested and (incor-
rectly) thought they had fixed (e.g. false positives
related to waiting, such as “John will wait for the
decision” or “Let’s put a pin on it””). When testing
name invariances with CheckList they hadn’t in-
cluded personal pronouns (e.g. “Karen will imple-
ment the feature” = “I will implement the feature™),
which AdaTest revealed the model fails on.

One team member ran the Debugging Loop for
approximately 3 hours, fixing bugs with the same
procedure as in Section 3.2. Consistent with the
previous results, they found that fixing bugs often
led to bugs in the opposite direction, e.g. fixing
false negatives on passive statements (“‘the experi-
ment will be run next week”) lead to false positives
on non-task factual descriptors (“the event will be
attended by the dean”), which were surfaced by
AdaTest and fixed in the next round. In order to
compare the results of using AdaTest to their pre-
vious efforts, we collected and labeled two new
datasets from sources they hadn’t used as training
data. We present the F1 scores of models aug-
mented either with their GPT-3 generated data or
on AdaTest data in Table 2, and note that AdaTest is
a significant improvement despite involving much
less effort. The team had a very positive experience
with AdaTest, and has already used the developed
test tree to evaluate a model built by another team.

3.4 Discussion

We evaluated AdaTest on 8 different tasks spanning
text classification, generation, and per-token predic-
tion. In terms of finding bugs, we compare AdaTest



Random Baseline GPT-3 aug AdaTest

Task dataset 1 10.0™ 514 65.6*" 77.3*
Task dataset 2 18.1** 54.4 66.0"* 76.5**

Table 2: F1 score on two hidden task datasets. Low
random performance is due to class imbalance. * and **
represent significance at p = 0.05 and 0.01 over 5000
bootstrap re-samples for 5 training seeds.

to experts using CheckList and non-experts using
a more responsive version of DynaBench. Users
consistently found many more bugs per minute
with AdaTest on research models and commercial
models at different development stages (early ver-
sion, pre-release, and mature models in production).
The fact that AdaTest requires minimal training
and is easy enough to be used by users without
any technical background is an asset, especially
when it is important to have testers that represent
diverse groups that may be negatively impacted by
bugs. In terms of fixing bugs, we compared the
Debugging Loop to naively augmenting data with
CheckList templates, using Polyjuice counterfac-
tuals, and having an expert use GPT-3 to create
additional data. In every case, AdaTest improved
performance more than alternatives, and crucially
did not add new bugs that degrade performance on
available measurements due to the iterative nature
of the Debugging Loop. In contrast to alternatives,
further testing with AdaTest is low-cost, and thus
this augmentation does not have the effect of in-
validating costly evaluation data (e.g. invalidating
CheckList tests that are laborious to create). In fact,
test trees from previous sessions can be used to test
new models, or to bootstrap a new AdaTest session.

4 Related Work

Even though we used CheckList and DynaBench
as baselines in the previous section, our results indi-
cate that these and other approaches (Gardner et al.,
2020; Kaushik et al., 2019) where human creativ-
ity and effort are bottlenecks (Bhatt et al., 2021)
would benefit from the greatly enhanced bug dis-
covery productivity made possible by AdaTest. On
the other hand, CheckList as a framework provides
great guidance in organizing the test tree, enumer-
ating important capabilities and perturbation to be
tested, as well as a tool for systematically applying
the test tree to future models’. Similarly, Dyn-

SWe support converting trees to CheckList, and generating
templates / perturbation tests directly.

aBench provides model serving capabilities and
a crowdsourcing platform that would greatly en-
hance AdaTest, especially as users share test trees
and adapt them to new models.

In terms of fixing bugs, fully automatic data aug-
mentation with LMs (Yoo et al., 2021; Wang et al.,
2021) cannot incorporate human “specification” be-
yond already existing data, nor debug phenomena
that is very far from the existing data. On the other
hand, general purpose or contrastive counterfactu-
als have shown mixed or marginally positive re-
sults (Huang et al., 2020; Wu et al., 2021) similar
to what we observed in Section 3.2, except when
large quantities of data are gathered (Nie et al.,
2020). Our hypothesis is that underspecification
(D’ Amour et al., 2020) is a major factor limiting
the benefit of many counterfactual augmentation
techniques. We observed that the first rounds of the
Debugging Loop often decrease or maintain overall
performance until additional data from later rounds
specifies the correct behavior more precisely, which
indicates that counterfactual data targeted precisely
where the model is underspecified is often more
effective than non-targeted data. If true, this would
also argue for a fast turnaround in the Debugging
Loop (e.g. DynaBench rounds can take months),
which AdaTest supports.

5 Conclusion

AdaTest encourages a close collaboration between
a human and a language model, yielding the ben-
efits of both. The user provides specification that
the LM lacks, while the LM provides creativity at
a scale that is infeasible for the user. AdaTest pro-
vides significant productivity gains for expert users,
while also remaining simple enough to empower di-
verse groups of non-experts. The Debugging Loop
connects model testing and debugging to effectively
fix bugs, taking model development a step closer
towards the iterative nature of traditional software
development. We have demonstrated AdaTest’s
effectiveness on classification models (sentiment
analysis, QQP, toxicity, media selection, task de-
tection), generation models (GPT-2, translation),
and per-token models (NER). The models range
from well-tested production systems, to brand new
applications. Our results indicate that adaptive test-
ing and debugging can serve as an effective NLP
development paradigm for a broad range of appli-
cations. To help support this, AdaTest (and various
test trees) will be open sourced at url. co.


url.co

References

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the
Royal statistical society: series B (Methodological),
57(1):289-300.

Shaily Bhatt, Rahul Jain, Sandipan Dandapat, and
Sunayana Sitaram. 2021. A case study of efficacy
and challenges in practical human-in-loop evalua-
tion of NLP systems using checklist. In Proceed-
ings of the Workshop on Human Evaluation of NLP
Systems (HumEval), pages 120—130, Online. Associ-
ation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Alexander D’ Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D Hoffman, et al. 2020. Un-
derspecification presents challenges for credibil-
ity in modern machine learning. arXiv preprint
arXiv:2011.03395.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
et al. 2020. Evaluating models’ local deci-
sion boundaries via contrast sets. arXiv preprint
arXiv:2004.02709.

W Keith Hastings. 1970. Monte carlo sampling meth-
ods using markov chains and their applications.

William Huang, Haokun Liu, and Samuel R. Bowman.
2020. Counterfactually-augmented SNLI training
data does not yield better generalization than unaug-
mented data. In Proceedings of the First Workshop
on Insights from Negative Results in NLP, pages 82—
87, Online. Association for Computational Linguis-
tics.

Daniel Kahneman. 2011.
Macmillan.

Thinking, fast and slow.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. 2019. Learning the difference that makes
a difference with counterfactually-augmented data.
arXiv preprint arXiv:1909.12434.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, et al. 2021. Dynabench: Rethinking bench-
marking in nlp. arXiv preprint arXiv:2104.14337.

Todd Kulesza, Saleema Amershi, Rich Caruana,
Danyel Fisher, and Denis Charles. 2014.  Struc-
tured labeling for facilitating concept evolution in
machine learning. In Proceedings of the Confer-
ence on Human Factors in Computing Systems (CHI
2014). ACM.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109-165. El-
sevier.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial nli: A new benchmark for natural language
understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4885—4901.

Christopher Potts, Zhengxuan Wu, Atticus Geiger,
and Douwe Kiela. 2020. Dynasent: A dynamic
benchmark for sentiment analysis. arXiv preprint
arXiv:2012.15349.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5740-5745, Hong
Kong, China. Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging nlp models. In Association for
Computational Linguistics (ACL).

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond Accuracy: Behav-
ioral Testing of NLP models with CheckList. In As-
sociation for Computational Linguistics (ACL).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on


https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://aclanthology.org/2021.humeval-1.14
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://doi.org/10.18653/v1/2020.insights-1.13
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://www.microsoft.com/en-us/research/publication/structured-labeling-for-facilitating-concept-evolution-in-machine-learning/
https://doi.org/10.18653/v1/D19-1578
https://doi.org/10.18653/v1/D19-1578
https://doi.org/10.18653/v1/D19-1578
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170

Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang
Zhu, and Michael Zeng. 2021. Want to reduce
labeling cost? gpt-3 can help. arXiv preprint
arXiv:2108.13487.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Association
for Computational Linguistics (ACL).

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S. Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and im-
proving models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woomyoung Park. 2021. GPT3Mix:
Leveraging large-scale language models for text aug-
mentation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2225-
2239, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1298-1308, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International Conference on Machine Learning.

10


https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://aclanthology.org/2021.findings-emnlp.192
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131
https://doi.org/10.18653/v1/N19-1131

Appendix for
Adaptive Testing and Debugging of NLP models

Anonymous ACL submission

1 Language model prompt design

The test suggestion function inside the AdaTest
Testing Loop (main text Figure 1) is implemented
using a large-scale generative LM (GPT-3 in our
experiments (Brown et al., 2020)). When provided
with a prompt in the form of a list of items, these
large LMs can generate new items that continue
the list, and come from the same distribution of
items as the original list. By carefully controlling
the structure and content of this list we can steer
large LMs to generate new content on nearly any
topic in nearly any form (exceptions being very
long-form text, and languages unseen by the LM
during training).

There is always a current focus topic active dur-
ing the Testing Loop, and it is the goal of the LM
test suggestion process to generate new tests that
will be categorized by the user as direct children of
the focus topic. This means we are not interested
in tests outside the focus topic or inside already-
defined subtopics of the focus topic. We avoid
tests outside the topic in order to maintain a “focus”
on the current topic the user has selected, and we
avoid tests inside subtopics because these represent
portions of the current topic that have already been
well explored, and so should be prevented from
dominating the test suggestions. If the user is inter-
ested in a particular subtopic, they simply open it
and generate suggestions specific to that topic. In
addition to allowing users to guide the LM, focus
topics also improve the quality of the LM’s sugges-
tions, since LMs always do better when restricted
to a narrower scope.

The LM prompt itself consists of 3-7 tests se-
lected from the current focus topic (or as close as
possible to the topic if it does not yet have 3 tests).
These parameters are configurable, but we found
that 7 examples gave an appropriate amount of
steering information to GPT-3 (for both the Davinci
and Curie models) without giving so many exam-

ples that strong patterns would harm the diversity
of the generated tests. We experimented with a
variety of prompt formats, including priming with
"instruction" sentences and found that the more
minimal the notation the better, so as to bias the
generation process as little as possible. We also
remove as much information from the prompt as
possible to further focus and de-bias the LM. For
example we do not include expected outputs if the
expected outputs of all the tests in the prompt are
identical, and we do the same for the expectation
relations ("should be", "should not be", "should
be the same as for", "should be invertable.", etc.).
We also repetitively generate a single next list item,
rather than generating several items in a list. This
is because generating a long list tends to reduce
diversity as generated items tend to converge to a
single topic.

Given a prompt structure and a set of tests in the
current topic, steering the test suggestion genera-
tion comes down to choosing a set tests to include
in the LM prompt. We do this by scoring all tests
by the sum of several factors, then selecting the
highest scoring test and additing it to the prompt
list. This process is iterated unless a sufficient num-
ber of tests have been selected to be included in the
prompt. This list is then reversed and the prompt
is given to the LM, this reversal is because the LM
weights samples close to the end of the prompt
more strongly (Zhao et al., 2021). The factors we
use for test selection are:

o Test failure score - Tests with higher scores are
tests that the model fails or is closer to failing
than tests with lower scores. So the strongest
ranking factor we use (other than topic mem-
bership) is high test failure score, since this
facilitates hill climbing towards model fail-
ures.

o Topic membership - Tests outside the current
topic are very strongly penalized and are only



used if there exists just 1-2 tests in the current
topic. Tests inside subtopics of the current
topic are also strongly penalized for the rea-
sons mentioned above (that these represent
already explored regions of the topic).

e Score randomization - Test failure scores can
be computed in many different ways, but they
are often continuous values that represent how
close a model’s prediction is to failing a test
(or how far it is past the failure threshold).
Tests with very similar scores have an equally
likely chance of be good for prompt inclusion
(since they each can lead the LM towards high-
scoring on-topic tests). To encourage diverse
choices among similar scoring tests we add
one standard deviation of random Gaussian
noise to the test scores.

o Skip randomization - Sometimes a strong fail-
ure found early on in a topic would always be
selected for the top prompt position since its
score is so much higher than any other current
tests. However this can harm diversity so we
also introduce skip randomization where we
randomly skip over tests (by penalizing their
score) with 25% probability.

e Prompt diversity - When exploring in a topic
we want to encourage a broad sample of test
structures to be included in the prompt, so that
we fully explore the topic and don’t get locked
into a single style of test. To promote this we
penalize each test score by the cosine distance
of that test’s embedding to the closest em-
bedding of a test that has already be selected
for inclusion in the prompt. By default we
use RoBERTa-Large (Liu et al., 2019) for this,
though any similarity embedding would work.

We repeat the test selection process 10 times
to create 10 different prompts. If the user has re-
quested K suggestions for a round, then for each
prompt we ask the LM to generate | K/10] com-
pletions that are parsed to produce at most that
many tests (at most, since some completions may
produce invalid or duplicate tests). These tests are
then applied to the target model (or several models,
since we can explore multiple models in parallel),
sorted by test failure score, and returned to the user
for filtering and organization.

2 Interface

The entire Testing Loop process occurs through
AdaTest’s interactive web interface that works both
as a standalone server or inside a Jupyter notebook.
Figure 1 shows a screen shot of this interface while
looking at the top of a test tree targeting the Azure
sentiment analysis model (Google is also being
scored, but is not be adaptively targeted). While
we experimented early on with interfaces that at-
tempted to present the entire test tree to the user at
once, these became intractable for larger test trees,
and so we ended up following traditional file sys-
tem browsers which scale well to very large and
deep trees.

On the Left side of Figure 1 is a list of top-
ics based on CheckList capabilities Ribeiro et al.
(2020), these are the top-level topics, some of
which are well explored (like /Fairness), and other
have yet to be explored by the user (such as /Logic).
To enable users to organize the test tree, topics can
be edited, opened, and dragged and dropped just
like in a standard file viewer.

On the right side of Figure 1 there are two
columns representing the test failure scores for two
target models, Azure and Google. The horizontal
position of the colored bars represents the value
of a single test’s score and the color denotes pass-
ing or failing. Since each bar represents a single
test inside a topic, hovering the mouse over the bar
will show the associated test. Hovering anywhere
over a row also shows the percentage of failing
and passing tests for the topic. Note that topics
are sorted by the largest test fail score they con-
tain. The grey box above the test topics is where
LM test suggestions are shown. If the user clicked
the suggestions button on Figure 1 they would get
a list of suggested tests designed to not fall into
any of the current topics. This is very challenging
at such a high level of abstraction as this, so the
precision of these suggestions might be low, but
yet finding such tests is often still possible given
enough iteration. Once a few such tests are found
that are related to each other, a new top level topic
can be formed and explored. In general the pre-
cision of the test suggestion process increases as
the topics grow narrower, so expanding the newly
created topic will likely be much easier. To jump
start this process users can always manually add
tests by typing in the blank test row in the sugges-
tions box, or edit any suggested test (and scores
will recompute in real-time).



Tests

C' Suggestions

v

Fairness

v

Vocabulary+POS

v

Negation

v

Possibly Problematic

v

Coreference

v

Robustness

v

Taxonomy

v

Named Entity Recognition (NER)
> Temporal
> Semantic Role Labeling

> Logic

Azure Google
Pass | Fail Pass | Fail
L el |
(1 (A

TG TR
I
I l
AR RTSNE Y

Figure 1: A screen shot of the AdaTest interface at the root of a sentiment analysis test tree based on CheckList
capabilities. The test failure scores for all tests in a topic are shown as vertical lines to the right of the topic (colored
red if the test is failing). In this session we are scoring against two models simultaneously, though we are only
adapting to the Azure model and so any Google failures are direct transfers.

Figure 2 shows what happens after we
navigate down the topic tree into the
/Negation/Negated positive topic, and then
request LM suggestions. Current tests inside the
topic are shown at the bottom sorted by their test
failure score for the Azure model (and continue
on past the screen capture) while test suggestions
are shown in the gray box at the top. The test
suggestions box is scrollable and contains ~150
suggested tests (also sorted by their test failure
score for the Azure model).

The currently selected test suggestion in Fig-
ure 2 is highlighted and the test failure scores
are shown for both models. The highlighted test
is a valid high scoring test that falls within the
/Negation/Negated positive topic, so the user can
add it to the current topic in one of several ways:
dragging it down to the list of in-topic tests, click-
ing the "plus" button on the left of the test row,
hitting Enter, etc. Note that the test directly below
the selected test is also high scoring on the Azure
model, but the test is invalid since the input text
actually does express a positive sentiment. Inter-
estingly, the Google model is "passing" this invalid
test, which means it would fail a valid version that
expected a positive output for that input.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond Accuracy: Behav-
ioral Testing of NLP models with CheckList. In As-
sociation for Computational Linguistics (ACL).

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
International Conference on Machine Learning.


https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Azure Google
Tests / Negation / Negated positive Pass ' Fail Pass | Fai

C' Suggestions

I had high hopes for this one. positive | |
| hoped this was great, but it was not. positive 0186, | %@ﬂ
Hidden Gem. positive I |

| expected this was better than Phantom of the Paradise (the rock

opera version) and it was. positive
I'd hoped i'd enjoy this, but i didn't. positive | |
| wanted to like this. positive | |
| wanted to like this more than | did. positive I |
This did not turn out to be a cute, funny, light-hearted novel. positive | |
| wanted to love this, but | didn't. positive | |
| thought | was going to love this, but | did not. positive | |
| expected to love this, but | did not. positive | |
| expected to love this, but | didn't. positive | |
| expected so much better from this movie. positive | |
| expected better. positive | |
| expected this to be better than it is. positive | |
| expected this to be really good, and it was not. positive | |
| thought this was great, but it was not. positive | |
| thought this was going to be better. positive I |
I thought | would like this, but I did not. positive | |
| really wanted to like this, but | did not. positive | |

Figure 2: A screen shot of the AdaTest interface inside the /Negation/Negated positive topic after the LM sugges-
tions have been requested.



