
Under review as submission to TMLR

Dual Gauss-Newton Directions for Deep Learning

Anonymous authors
Paper under double-blind review

Abstract

Gauss-Newton (a.k.a. prox-linear) directions can be computed by solving an optimization
subproblem that trade-offs between a partial linearization of the objective function and a
proximity term. In this paper, we study the possibility to leverage the convexity of this
subproblem in order to instead solve the corresponding dual. As we show, the dual can be
advantageous when the number of network outputs is smaller than the number of network
parameters. We propose a conjugate gradient algorithm to solve the dual, that integrates
seamlessly with autodiff through the use of linear operators and handles dual constraints.
We prove that this algorithm produces descent directions, when run for any number of
steps. Finally, we study empirically the advantages and current limitations of our approach
compared to various popular deep learning solvers.

1 Introduction

We consider deep learning objectives of the form

min
w∈Rp

[
1
n

n∑
i=1

hi(w) = 1
n

n∑
i=1

ℓi(fi(w))
]

, (1)

where hi := ℓi ◦ fi, ℓi : Rk → R is a convex loss on a sample i ∈ [n], and fi : Rp → Rk is a neural network with
parameters w ∈ Rp, applied on the sample i. Such objectives are generally tackled by algorithms ranging
from stochastic gradient descent to adaptive methods, incorporating momentum (Sutskever et al., 2013;
Kingma & Ba, 2015) or linesearch (Vaswani et al., 2019). Stochastic gradients can be computed efficiently
using autodiff frameworks such as JAX (Bradbury et al., 2018) or Pytorch (Paszke et al., 2019). However,
the information they provide on the objective function is intrinsically limited, since they amount to using a
full linearization of hi.

In this paper, we consider constructing update directions through a partial linearization of the function
hi. Such an approach has a long history starting from the Gauss-Newton and Levenberg-Marquardt
methods (Levenberg, 1944; Marquardt, 1963; Björck, 1996; Kelley, 1999), used for nonlinear least squares. The
extension to arbitrary convex loss functions of this approach has been called modified Gauss-Newton (Burke,
1985; Nesterov, 2007; Tran-Dinh et al., 2020; Zhang & Xiao, 2021) or prox-linear (Drusvyatskiy & Paquette,
2019; Pillutla et al., 2019), name that we will use in the rest of this paper. While Drusvyatskiy & Paquette
(2019) considered the dual formulation of prox-linear to derive convergence rates, Drusvyatskiy & Paquette
(2019) did not develop an algorithm based on the dual formulation for stochastic optimization. In the context
of deep learning, several authors have considered tackling Gauss-Newton-like oracles by decomposing the
resulting problem through the layers of a deep network (Yu & Wilamowski, 2018; Martens & Grosse, 2015;
Botev et al., 2017; Gupta et al., 2018; Anil et al., 2020), see Appendix A for a detailed literature review.

In this paper, we propose instead to exploit the convexity of the subproblem associated with such prox-linear
directions by switching to their dual formulation. We make the following contributions.

• After reviewing prox-linear (a.k.a. modified Gauss-Newton) directions, computed by solving an optimization
subproblem that trade-offs between a partial linearization of the objective function and a proximity term,
we cleanly derive the subproblem’s Fenchel-Rockafellar dual.

1

Under review as submission to TMLR

• To solve this dual, we present a conjugate gradient algorithm. Our proposal integrates seamlessly in an
autodiff framework, by leveraging Jacobian-vector products (JVP) and vector-Jacobian products (VJP)
and can handle dual constraints.

• We prove that the proposed algorithm produces a descent direction, when run for any number of steps,
enabling its use as a drop-in replacement for the stochastic gradient in existing algorithms, such as SGD.

• Finally, we present comprehensive empirical results demonstrating the advantages and current limita-
tions of our approach.

2 Prox-linear directions via the primal

In this section, we review prox-linear directions, which are based on the idea of partial linearization.

2.1 Variational perspective

To motivate prox-linear directions, we review the variational perspective on gradient and Newton directions.
Let the linear approximation of hi around wt be

lin(hi, wt)(w) := hi(wt) + ⟨∇hi(wt), w − wt⟩ ≈ hi(w).

From a variational perspective, the stochastic gradient can be seen as the minimization of this linear
approximation and of a quadratic regularization term,

γ∇hi(wt) = argmin
d∈Rp

lin(hi, wt)(wt − d) + 1
2γ

∥d∥2
2.

The information provided by a gradient is therefore limited by the quality of a linear approximation of the
objective. Alternatively, we may consider the quadratic approximation of hi around wt,

quad(hi, wt)(w) :=hi(wt) + ⟨∇hi(wt), w − wt⟩ + 1
2 ⟨w − wt, ∇2hi(wt)(w − wt)⟩.

The regularized Newton direction is then

argmin
d∈Rp

{
quad(hi, wt)(wt − d) + 1

2γ
∥d∥2

2

}
= (∇2hi(wt) + γ−1 I)−1∇hi(wt).

Unfortunately, when fi is a neural network, hi = ℓi ◦ fi is typically nonconvex and the Hessian ∇2hi(w) is an
indefinite matrix. Therefore, the minimization above is that of a nonconvex quadratic subproblem, that
may be hard to solve. Furthermore, the obtained direction is not guaranteed to define a descent direction.

2.2 Convex-linear approximations

Instead of fully linearizing hi, which amounts to linearizing both ℓi and fi, we may linearize only fi but
keep ℓi as is. That is, we may use the partial linear approximation of hi,

plin(ℓi, fi, wt)(w) := ℓi(fi(wt) + ∂fi(wt)(w − wt))
= ℓi(f t

i + J t
i (w − wt)),

where we defined the shorthands

f t
i := fi(wt) and J t

i := ∂fi(wt).

We say that the approximation is convex-linear, since it is the composition of the convex ℓi and of the
linear approximation of fi. We view J t

i as a linear map from Rp to Rk, with adjoint operator (J t
i)∗, a

linear map from Rk to Rp. That is, we assume that we can compute the Jacobian-vector product (JVP)
(J t

i)u for any direction u ∈ Rp and the vector-Jacobian product (VJP) (J t
i)∗vi for any direction vi ∈ Rk.

This will be the case if fi is implemented using an autodiff framework such as JAX or PyTorch.

2

Under review as submission to TMLR

The minimization of the convex-linear approximation and of a quadratic regularization term leads to the
definition of the prox-linear (a.k.a. modified Gauss-Newton) direction:

d(γℓi, fi)(wt) := argmin
d∈Rp

plin(ℓi, fi, wt)(wt − d) + 1
2γ

∥d∥2
2

= argmin
d∈Rp

ℓi(f t
i − J t

i d) + 1
2γ

∥d∥2
2. (2)

Typically, we will only obtain an approximate solution, that we denote dt
i ≈ d(γℓi, fi)(wt). Once we

obtained dt
i, we can update the parameters as

wt+1 := wt − dt
i.

We emphasize, however, that unlike the gradient, the prox-linear direction is not linear in γ, i.e.,

wt − d(γℓi, fi)(wt) ̸= wt − γd(ℓi, fi)(wt).

Mini-batch extension. The prox-linear direction presented earlier is obtained from a single sample i ∈ [n].
We now consider the extension to a mini-batch S := {i1, . . . , im} ⊆ [n] of size m = |S|. Let us define

fS(w) := (fi1(w), . . . , fim(w))⊤ ∈ Rm×k, ℓS(fS) :=
m∑

j=1
ℓij (fi) ∈ R.

We then define the mini-batch direction

d(γℓS , fS)(wt) := argmin
d∈Rp

1
m

∑
i∈S

plin(ℓi, fi)(wt) + 1
2γ

∥d∥2
2

= argmin
d∈Rp

∑
i∈S

ℓi(f t
i − J t

i d) + m

2γ
∥d∥2

2. (3)

Typically, we only compute an approximate solution, denoted dt
S ≈ d(γℓS , fS)(wt). The above subproblem

is again convex. It can be solved directly in the primal, or, as we propose in Section 3, by switching to the
dual. Once we obtained dt

S , we may perform the update

wt+1 := wt − dt
S ,

or use the direction dt
S in an existing stochastic algorithm. Unlike the mini-batch stochastic gradient, the

mini-batch prox-linear direction is not the average of the individual stochastic directions, i.e.,

d(ℓS , fS)(wt) ̸= 1
m

∑
i∈S

d(ℓi, fi)(wt).

The mini-batch prox-linear direction can therefore take advantage of the correlations between the samples of
the mini-batch, unlike the gradient oracle.

2.3 Quadratic-linear approximations

In the previous section, we studied convex-linear approximations, i.e., the composition of a convex ℓS and
of the linear approximation of fS , on a sample S. As in the so-called “generalized” Gauss-Newton
algorithm (Gargiani et al., 2020), we can replace ℓS with its quadratic approximation around fS(wt), namely,

qt
S := quad(ℓS , fS(wt)).

Replacing ℓS with qt
S , we get after simple algebraic manipulations (see Appendix C) a convex quadratic

d(γqt
S , fS)(wt) = argmin

d∈Rp

1
m

∑
i∈S

qt
i(f t

i − J t
i d) + 1

2γ
∥d∥2

2 (4)

= argmin
d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨(J t
S)∗gt

S , d⟩ + m

2γ
∥d∥2

2

≈d(γℓS , fS)(wt),

3

Under review as submission to TMLR

where, denoting f t
S := fS(wt), we defined

Jt
Su := ∂fS(wt)u = (Jt

i1 u, . . . , J t
im

u)⊤

(Jt
S)∗v := ∂fS(wt)∗v =

m∑
j=1

(Jt
ij

)∗vj

Ht
Sv := ∇ℓ2

S(f t
S)v =

(
∇2ℓi1 (f t

1)v1, . . . , ∇2ℓim (f t
m)vm

)
gt

S := ∇ℓS(f t
S) = (∇ℓi1 (f t

1), . . . , ∇ℓim (f t
m)).

In contrast, we recall that the subproblem associated with the Newton direction is a nonconvex quadratic.

Without a regularization term, that is by using γ = +∞ in (4), d(qt
S , fS) amounts to a generalized Gauss-

Newton step (Gargiani et al., 2020), which itself matches a natural gradient step (Amari, 1998) if ℓi is the
negative log-likelihood of a regular exponential family (Martens, 2020).

Examples. For the squared loss, we have

ℓi(fi) := 1
2∥fi − yi∥2

2, ∇ℓi(fi) = fi − yi,

∇2ℓi(fi) = I, ∇2ℓi(fi)vi = vi.

For the logistic loss, we have

ℓi(fi) := LSE(fi) − ⟨fi, yi⟩, ∇ℓi(fi) = σ(fi) − yi,

∇2ℓi(fi) = diag(σ(fi)) − σ(fi)σ(fi)⊤,

∇2ℓi(fi)vi = σ(fi) ⊙ vi − ⟨vi, σ(fi)⟩σ(fi),

where σ(fi) := softmax(fi).

2.4 Practical implementation

Computing an approximate direction. As we saw, computing a direction involves the (approximate)
resolution of the convex subproblem (3) or of the convex quadratic subproblem (4). In general, we must
resort to an iterative convex optimization algorithm.

On one extreme, performing a single gradient step on the convex subproblem would bring no advantage,
since it would be equivalent to a gradient step on the nonconvex original problem. Indeed, we have

∇[plin(ℓi, fi, wt)](wt) = ∇hi(wt) = (J t
i)∗∇ℓi(fi(wt)),

and generally ∇[plin(ℓS , fS , wt)](wt) = ∇hS(wt).

On the other extreme, if we solve the subproblem to high accuracy, the overhead of solving the subproblem
may hinder the benefit of a better direction than the gradient. A trade-off must be struck between the
additional computational complexity of the subproblem and the benefits of a refined direction (Lin et al.,
2018; Drusvyatskiy & Paquette, 2019).

We argue that a good inner solver should meet the following requirements.

1. It should be easy to implement or widely available.
2. It should be compatible with linear maps, i.e., it should not require materializing J t

S as a matrix in memory.
Such an algorithm is called matrix-free.

3. It should not require tuning hyperparameters.
4. It should leverage the specificities of the subproblem.

If we decide to solve the primal instead, as was done in the existing literature, LBFGS (Nocedal & Wright,
1999) is a good generic candidate, but that does not especially leverage the nature of the subproblem. In

4

Under review as submission to TMLR

the full-batch setting, where m = n, Drusvyatskiy & Paquette (2019); Pillutla et al. (2023) considered
variance-reduced algorithms such as SVRG. In the case of the convex quadratic (4), we can use the conjugate
gradient method.

Whatever the inner algorithm used, we can control the trade-off between computational cost and precision
using a maximum number of inner iterations.

Performing an update. Once we obtained an approximate direction dt
S ≈ d(γℓS , fS)(wt), we already

saw that we can simply perform the update

wt+1 := wt − dt
S . (5)

This may require the tuning of the regularization parameter γ, which effectively act as a stepsize by analogy
with the variational formulation of the gradient.

More generally, we can use dt
S as a drop-in replacement for the stochastic gradient direction in other

algorithms such as SGD with momentum or SGD with linesearch. For example, we may fix the regularization
parameter to some value, say γ = 1, and instead perform the update

wt+1 := wt − ηtdt
S , (6)

where ηt is a stepsize (we use a different letter to distinguish it from the regularization parameter γ), selected
by a backtracking Armijo linesearch. That is, we seek ηt satisfying

hS(wt − ηtdt
S) ≤ hS(wt) − βηt⟨dt

S , gt
S⟩,

where hS = 1
m ℓS ◦ fS(w), gt

S := ∇hS(wt) = 1
m

∑
i∈S ∇hi(wt) is the mini-batch stochastic gradient evaluated

at wt, and where β ∈ (0, 1) is a standard constant, typically set to β = 10−4. The entire procedure is
summarized in Algorithm 1.

3 Prox-linear directions via the dual

In this section, we study how to obtain an approximate prox-linear direction, by solving the convex subproblem
(3) or the convex quadratic subproblem (4) in the dual.

3.1 Convex-linear approximations

By taking advantage of the availability of the conjugate

ℓ∗
i (αi) := sup

fi∈Rk

⟨fi, αi⟩ − ℓi(fi),

we can express the prox-linear direction (2) on a single sample i ∈ [n] as

d(γℓi, fi)(wt) = γ(J t
i)∗α(γℓi, fi)(wt),

where we defined the solution of the dual of (2),

α(γℓi, fi)(wt) := argmin
αi∈Rk

ℓ∗
i (αi) − ⟨αi, f t

i ⟩ + γ

2 ∥(J t
i)∗αi∥2

2.

Let us compare this with a stochastic gradient:

γ∇hi(wt) = γ(J t
i)∗∇ℓi(f t

i).

The dual viewpoint reveals that the prox-linear direction can be seen as replacing the gradient of the loss
∇ℓi(f t

i) by the solution of the subproblem’s dual α(γℓi, fi)(wt). This also suggests that ∇ℓi(f t
i) is a good

initialization for αi.

5

Under review as submission to TMLR

Algorithm 1 Primal-based prox-linear direction
1: Inputs: parameters wt, batch S = {i1, . . . , im} ⊆ [n], regularization γ > 0 (set to 1 if linesearch is used)
2: Compute f t

S = (fi1(wt), . . . , fim
(wt))⊤ ∈ Rm×k

3: Instantiate JVP and VJP operators by autodiff:

u 7→ J t
Su = (J t

i1
u, . . . , J t

im
u) ∈ Rm×k, ∀u ∈ Rp

v 7→ (J t
S)∗v =

m∑
j=1

(J t
ij

)∗vj ∈ Rp, ∀v ∈ Rm×k

4: Run inner solver to approximately solve (3), i.e.,

dt
S ≈ argmin

d∈Rp

1
m

∑
i∈S

ℓi(f t
i − J t

i d) + 1
2γ

∥d∥2
2,

or its quadratic approximation (4), i.e.,

dt
S ≈ argmin

d∈Rp

1
m

∑
i∈S

qt
i(f t

i − J t
i d) + 1

2γ
∥d∥2

2

5: Set next parameters wt+1 by

wt+1 := wt − dt
S (fixed stepsize (5))

or wt+1 := wt − ηtdt
S (linesearch (6))

for ηt s.t. hS(wt − ηtdt
S) ≤ hS(wt) − βηt⟨dt

S , gt
S⟩.

6: Output: wt+1 ∈ Rp

Benefit of using the dual. The dual subproblem involves k variables while the primal subproblem involves
p variables. Typically, k is the number of network outputs (e.g., classes), while p is the number of network
parameters. The dual subproblem is therefore advantageous when k ≪ p, which is often the case.

Mini-batch extension. For the mini-batch case, the prox-linear direction can be computed as

d(γℓS , fS)(wt) = γ

m
(J t

S)∗α(γℓS , fS)(wt),

where we defined the dual solution of (3) by

α(γℓS , fS)(wt) := argmin
αS∈Rm×k

ℓ∗
S(αS) − ⟨αS , f t

S⟩ + γ

2m
∥(J t

S)∗αS∥2
2, (7)

where ℓ∗
S(αS) :=

∑
i∈S ℓ∗

i (αi).

This time, the dual subproblem involves m × k variables, where m is the mini-batch size and k is the number
of network outputs, while the primal subproblem involves p variables, as before. If the mini-batch is not
too large, we typically have mk ≪ p and therefore the dual subproblem is still advantageous. Algorithm 2
summarizes our approach.

Examples. For the squared loss, the conjugate is

ℓ∗
i (αi) = 1

2∥αi∥2
2 + ⟨αi, yi⟩.

The dual subproblem therefore becomes

α(γℓS , fS)(wt) = argmin
αS∈Rm×k

m∑
i=1

1
2∥αi∥2

2 − ⟨αi, gt
i⟩ + γ

2m
∥(J t

S)∗αS∥2
2,

6

Under review as submission to TMLR

where gt
i := f t

i − yi = ∇ℓi(f t
i). Setting the gradient to zero, this gives the linear system(γ

m
J t

S(J t
S)∗ + I

)
αt

S = gt
S ,

where gt
S := (gt

i)i∈S ∈ Rm×k and αt
S = α(γℓS , fS)(wt). We can solve this system using the conjugate

gradient method. Note that if αt
i is equal to the residual yi − f t

i , then (J t
i)∗αt

i = ∇hi(wt). Therefore, the
residual is a good initialization for the conjugate gradient method.

For the logistic loss, the conjugate is

ℓ∗
i (αi) = ⟨µi, log µi⟩ + ι△k (µi), for µi := yi + αi,

where ι△k is the indicator function of the probability simplex △k := {µ ∈ Rk : µ ≥ 0, µ⊤ 1 = 1}.

Applying this conjugate, we arrive at the subproblem

µt
S := argmin

µS∈Rm×k

µi∈△k

⟨µS , log µS⟩ − ⟨µS − yS , f t
S⟩ + γ

2m
∥(J t

S)∗(µS − yS)∥2
2,

where yS := (yi1 , . . . , yim
)⊤ ∈ Rm×k. This is a constrained convex optimization problem, that can be

solved by, e.g., projected gradient descent. Changing the variable back, we obtain

α(γℓS , fS)(wt) = µt
S − yS .

3.2 Quadratic-linear approximations

To enable the use of the conjugate gradient method, we consider the dual of the quadratic approximation
presented earlier. If the Hessian of the loss ℓi is invertible, the dual solution α(γqt

S , fS)(wt) of (4) equals

argmin
αS∈Rm×k

(qt
S)∗(αS) − ⟨αS , f t

S⟩ + γ

2m
∥(J t

S)∗αS∥2
2,

for (qt
S)∗(αS) − ⟨αS , f t

S⟩ = ⟨gt
S − αS , H−1

S (gt
S − αS)⟩, where we used the inverse-Hessian-vector product

H−1
S αS := (∇ℓ2

i1
(f t

i1
)−1α1, . . . , ∇ℓ2

im
(f t

im
)−1αm).

For the squared loss, we naturally get back the solution presented earlier. For the logistic loss, while the
Hessian is positive semi-definite, it is not invertible, as we have ∇2ℓi(f t

i)⊤ 1k = 0 for all i ∈ [n].

Generally for any positive-semi-definite Hessian, the dual can still be formulated as an equality-constrained
QP, see Appendix C.3. The direction can be computed as dt

S ≈ γ
m (J t

S)∗αt
S , with αt

S = gt
S − βt

S and

βt
S ≈ argmin

β∈Rm×k

1
2 ⟨β, (Ht

S)†β⟩+ γ

2m
∥(J t

S)∗(gt
S − β)∥2

2

s.t. (I −Ht
S(Ht

S)†)β = 0, (8)

where we used the pseudo-inverse Hessian product

(Ht
S)†α := ((Ht

i1
)†α1, . . . , (Ht

im
)†αm) (9)

The above equality-constrained QP can be solved efficiently with a conjugate gradient method, using
Ht

S(Ht
S)† as a preconditioner and initializing at a dual variable respecting the constraints, see Appendix C.3.

Note that if the subproblem in β is initialized at 0 as done in the experiments, the output direction is a
gradient at iteration 0. Each subsequent iteration therefore improves on the gradient.

7

Under review as submission to TMLR

Example. For the logistic loss, the pseudo-inverse enjoys a closed form. The direction can then be
computed as dt

S ≈ γ
m (J t

S)∗αt
S , with αt

S = gt
S − βt

S for

βt
S ≈ argmin

β∈Rm×k

1
2 ⟨β, D−1

S β⟩ + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2

s.t. 1⊤
k βi = 0, i ∈ [m]. (10)

Here, denoting σ the softmax, we defined

D−1
S β := (β1/σ(f t

i1
), . . . , βm/σ(f t

im
)),

where division is performed element-wise.

3.3 Linear case: connection with SDCA

We now discuss the setting when fi is linear. In linear multiclass classification, with k classes and d features,
we set fi(w) = W xi, where W ∈ Rk×d is a matrix representation of w ∈ Rp, with p = kd. We then have

(J t
i)∗αi = ∂fi(wt)∗αi = vec(αix

⊤
i) ∈ Rkd.

The key difference with the nonlinear fi setting is that the Jacobian J t
i is actually independent of wt, so that

∥(J t
i)∗αi∥2

2 = ⟨αi, ∥xi∥2
2 I αi⟩ = ∥xi∥2

2 · ∥αi∥2
2.

Contrary to the setting where fi is nonlinear, the Hessian of ∥(J t
i)∗αi∥2

2 is diagonal, which makes the
subproblem easier to solve. Indeed, when the batch size is m = 1, denoting σi := (γ∥xi∥2

2)−1, we arrive at
the dual subproblem

α(γℓi, fi)(wt) = argmin
αi∈Rk

ℓ∗
i (αi) − ⟨αi, f t

i ⟩ + 1
2σi

∥αi∥2
2

= proxσiℓ∗
i
(σif

t
i).

This is exactly the dual subproblem used in SDCA (Shalev-Shwartz & Zhang, 2013). It enjoys a closed form
in the case of the squared, hinge and sparsemax loss functions (Blondel et al., 2020). When the batch size is
m, we obtain that the dual subproblem solution α(γℓS , fS)(wt) is equal to

argmin
αS∈Rm×k

ℓ∗
S(αS) − ⟨αS , f t

S⟩ + γ

2m
⟨αS , KαS⟩,

where we defined the kernel matrix [K]i,j := ⟨xi, xj⟩. There is no closed form in this case.

4 Analysis

We now review prox-linear directions theoretically.

Approximation error. When ℓi is Cℓ-Lipschitz continuous and fi is Lf -smooth, the partial linearization
of hi := ℓi ◦ fi satisfies a quadratic approximation error (Drusvyatskiy & Paquette, 2019, Lemma 3.2), for all
w, u ∈ Rp,

|hi(w + u) − ℓi(fi(w) + ∂fi(w)u)| ≤ CℓLf

2 ∥u∥2
2.

In comparison, if in addition, ℓi is Lℓ smooth and fi is Cf -Lipschitz continuous, a linear approximation of hi

has a quadratic error of the form

|hi(w + u) − hi(w) − ∇hi(w)u| ≤
CℓLf + C2

f Lℓ

2 ∥u∥2
2.

The above result confirms that, unsurprisingly, the partial linearization is theoretically a more accurate
approximation than the full linearization.

8

Under review as submission to TMLR

Algorithm 2 Dual-based prox-linear direction
1: Inputs: network outputs f t

S , JVP J t
S and VJP (J t

S)∗ as in Algorithm 1, regularization γ (1 if linesearch
is used)

2: Run inner solver to approximately solve (7)

αt
S ≈ argmin

αS∈Rm×k

ℓ∗
S(αS) − ⟨αS , f t

S⟩ + γ

2m
∥(J t

S)∗αS∥2
2,

or its quadratic approximation

αt
S ≈ argmin

αS∈Rm×k

(qt
S)∗(αS)−⟨αS , f t

S⟩+ γ

2m
∥(J t

S)∗αS∥2
2,

detailed in (8), and in (10) for the logistic loss.
3: Map back to primal direction

dt
S := γ

m
(J t

S)∗αt
S = γ

m

∑
i∈S

(J t
i)∗αt

i

4: Set next parameters wt+1 by

wt+1 := wt − dt
S (fixed stepsize (5))

or wt+1 := wt − ηtdt
S (linesearch (6))

for ηt s.t. hS(wt − ηtdt
S) ≤ hS(wt) − βηt⟨dt

S , gt
S⟩.

5: Output: wt+1 ∈ Rp

Descent direction. To integrate a prox-linear direction d = d(γℓS , fS) or d(γqt
S , fS), into generic opti-

mization algorithms, it is preferable if −d defines a descent direction w.r.t. the mini-batch stochastic
gradient ∇hS(w), namely, −d should satisfy

⟨−d, ∇hS(w)⟩ ≤ 0. (11)

Thanks to the convexity of the subproblem, we can show that the exact prox-linear direction satisfies (11).
Proposition 1. If each ℓi is convex, the negative direction −d(γℓS , fS)(wt) or its quadratic approximation
direction −d(γqt

S , fS)(wt) define descent directions for the composition hS = ℓS ◦ fS at wt.

In practice, we never compute the exact direction. We show below that the approximate directions obtained
by the conjugate gradient method run in the primal or in the dual define descent directions for any number
of iterations. Proofs are presented in Appendix C.6.
Proposition 2. Let dt,τ

S be the direction obtained after τ iterations of the conjugate gradient method, for
solving line 4 of Algo. 1 (primal) or line 2 of Algo. 2, followed by line 3 (dual). Then −dt,τ

S is a descent
direction for hS = ℓS ◦ fS at wt.

Computational cost. The computational costs associated to the resolution of the inner subproblems in the
primal and dual formulations depend on (i) the cost of each iteration of the inner solver, (ii) the convergence
rate associated to the subproblem. For quadratic inner subproblems, arising for example with a squared
loss, we detail in Appendix D that the cost of running τ inner iterations of CG in the primal or the dual are
respectively

Primal: τ(TJVP−VJP + O(p)),
Dual : τ(TJVP−VJP + O(mk)),

where TJVP−VJP denotes the computational complexity of a call to a JVP ∂fS(w) and a call to a VJP
∂fS(w)∗. Therefore, the dual formulation, which operates in the dual space leads to less expansive inner
updates. In addition, the convergence rate of CG on the inner subproblems depend theoretically on their

9

Under review as submission to TMLR

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

0 10 20 30
Epoch

0.0
0.5
1.0
1.5
2.0

Tr
ai

n
Lo

ss

SGD
SPL

SGD Mom.
SPL Mom

Adam
SPL Adam

Adafactor
SPL Adafactor

Figure 1: Benefit of using prox-linear directions
as replacement for stochastic gradients in existing
solvers (CIFAR10, ConvNet).

0 10 20 30
Epoch

1

2

Tr
ai

n
Lo

ss

SGD
0.001
0.01
0.1

0 10 20 30
Epoch

1

2

Tr
ai

n
Lo

ss

SGD Mom.
0.0001
0.001
0.01

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

Adam
0.0001
0.001
0.01

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

Adafactor
0.001
0.01
0.1

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

SPL Primal
1.0
0.1
0.01

0 10 20 30
Epoch

0

1

2

Tr
ai

n
Lo

ss

SPL Dual
1.0
0.1
0.01

Figure 2: Robustness to stepsize (CIFAR10, Con-
vNet).

condition numbers and the distribution of eigenvalues of the operators considered as detailed in Appendix D.
Since we consider in practice only few inner iterations, the convergence rate of the method has much less
influence than the per-iteration cost.

5 Experiments

We consider image classification tasks with a logistic loss using a prox-linear direction approximated via
the dual formulation of the quadratic approximation of the loss, using a conjugate gradient method with
2 inner iterations. We use iterates of the form wt+1 = wt − d(γtqt

S , fS)(wt) denoted SPL for stochastic
prox-linear and iterates of the form wt+1 = wt − ηtd(qt

S , fS)(wt) for ηt chosen by an Armijo line-search,
denoted Armijo SPL.

For preliminary diagnosis, we compare the performance of Armijo SPL to several stochastic gradients based
optimization schemes to classify images from the CIFAR10 dataset (Krizhevsky & Hinton, 2009) with a three
layer ConvNet presented in Appendix E in terms of epochs. Stepsizes are searched on a log10 scale with a
batch-size 256.

5.1 Prox-linear vs. stochastic gradient

In Figure 1, we employ the prox-linear direction as a replacement for the stochastic gradient in existing
algorithms, ranging from ADAM to SGD with momentum or AdaFactor. Namely, we simply replace ∇hS(wt)
by d(qt

S , fS)(wt) in each solver’s update rule. Results in time are in Appendix E.

We observe that for most update rules, SPL generally speeds up the convergence or performs on par in terms
of epochs, except for AdaFactor for which using prox-linear directions perform similarly to gradients.

10

Under review as submission to TMLR

0 10 20 30
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Tr

ai
n

Lo
ss

0 50 100
Time in s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

n
Lo

ss
Max inner iter

2 5 10 20

0 10 20 30
Epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 50 100 150 200
Time in s

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

Batch size
32 64 128 256 512 1024

Figure 3: Robustness to #inner iterations (top) and batch size (bottom), on CIFAR10 with a ConvNet. Left:
epochs. Right: wallclock time.

5.2 Dual vs. primal

In Figure 4, we compare the runtime performance of the prox-linear direction, depending on whether the
primal or the dual was used. In both cases, we use an Armijo-SPL. While both approaches perform similarly
in terms of iterations, we observe that the dual approach brings some gains in total runtime.

5.3 Robustness to hyperparameters

We analyze the sensitivity to hyperparameters of algorithms based on the prox-linear direction. Our goal
here is to understand the trade-offs involved in using prox-linear directions.

Robustness to stepsize. We study in Figure 2 the robustness to the stepsize selection of different
algorithms. For each algorithm, we display in solid line the best stepsize found among (10i)0

i=−4 and in
transparent lines the two other best stepsizes. Here we use prox-linear udpates with varying “inner-stepsize” γ
to analyze the benefits of incorporating the stepsize inside the oracle with γ chosen in (10i)0

i=−4. Namely, here
we consider updates wt+1 = wt − d(γqt

S , fS)(wt), denoted SPL, rather than wt+1 = wt − ηtd(qt
S , fS)(wt).

We observe that SPL provides competitive performance for a larger range of stepsizes than other algorithms
such as SGD, SGD with momentum, or AdaFactor, while exhibiting a similar robustness as Adam.

Robustness to number of inner iterations and batch size. One of the hyperparameters of the
algorithm is the number of inner iterations. On the left panel of Figure 3, we analyzed the behavior of
Armijo SPL when varying the number of inner iterations. We did not observe an important sensitivity in
this setting.

On the right panel Figure 3, we observe that for too small or too large mini-batch sizes, Armijo SPL does
not perform as well as for medium sizes. Indeed, if the batch is too small, the variance may be too big. On
the other hand, if the batch is too big, since the batch-size influences the conditioning of subproblem, making
only a few steps of the subroutine may not be sufficient to get a good direction.

5.4 Comparison with existing algorithms

Initial comparisons in Figure 1 demonstrated the benefits of SPL in terms of epochs. In Figure 5, we compare
the performance of Armijo SPL to several stochastic gradient based optimization on the same ConvNet on
CIFAR10 in terms of wallclock time. In this experiment, Armijo SPL and SPL are able to reach higher
test accuracy overall. However, even with only two inner CG steps, SPL remains twice longer to reach
convergence.

Additional experiments on ResNets on Imagenet and various ConvNets on CIFAR10 are presented in
Appendix F. These additional experiments confirm with the ones presented here: while our results are
promising, adaptive optimizers like ADAM remain very competitive thanks to their low computational cost.

11

Under review as submission to TMLR

0 20 40 60 80
Time in s

0.00

0.25

0.50

0.75

1.00

1.25

Tr
ai

n
Lo

ss

0 20 40 60 80
Time in s

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
Ac

c.
Armijo SPL Primal Armijo SPL Dual

Figure 4: Runtime comparison between primal-
based and dual-based computations (CIFAR10,
ConvNet).

0 20 40 60 80
Time in s

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss

0 20 40 60 80
Time in s

0.4

0.5

0.6

0.7

Te
st

 A
cc

.

SGD
SGD Mom.

Adam
Adafactor

SPL
Armijo SPL

Figure 5: CIFAR-10 with a ConvNet.

In Appendix F, we show that our approach is competitive with Shampoo and KFAC. In particular, for small
batch sizes, our approach is faster than KFAC in time. The sensitivity of such methods to the batch size
remains a challenge, to make them more widely applicable.

6 Conclusion

Prox-linear (a.k.a. modified Gauss-Newton) directions can be thought as a principled middle ground
between the stochastic gradient and the stochastic (regularized) Newton direction. In this paper, we derived
the Fenchel-Rockafellar dual associated with the corresponding subproblem, which to our knowledge had
not been studied before. To solve the dual when a quadratic approximation of the loss is used, we proposed a
conjugate gradient algorithm, that integrates seamlessly with autodiff through the use of linear operators
and can handle equality constraints. We proved that this algorithm produces descent directions, when
run for any number of inner iterations. Empirically, we found that prox-linear directions work best with
medium batch sizes and are more robust than stochastic gradients to stepsize specification.

While we demonstrated promising results, first-order adaptive methods such as ADAM remain an excellent
trade-off between accuracy and computational cost. Further work is needed to reduce the computational
cost of Gauss-Newton methods in general and of our dual approach in particular. We hope this study brings
new insights and is a first step in that direction. To conclude, we point out that our approach can be easily
extended to incorporate a non-differentiable regularizer, enabling the use of sparsity-inducing penalties
on the network weights, as studied in Appendix B.

12

Under review as submission to TMLR

References
Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order optimization
for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Amir Beck. First-order methods in optimization. SIAM, 2017.

El Houcine Bergou, Youssef Diouane, and Vyacheslav Kungurtsev. Convergence and complexity analysis of a
Levenberg-Marquardt algorithm for inverse problems. Journal of Optimization Theory and Applications,
185:927–944, 2020.

Ake Björck. Numerical methods for least squares problems. SIAM, 1996.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with Fenchel-Young losses. Journal of
Machine Learning Research, 21(1):1314–1382, 2020.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep learning.
In International Conference on Machine Learning, pp. 557–565, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs. https://github.com/google/jax, 2018.

James V Burke. Descent methods for composite nondifferentiable optimization problems. Mathematical
Programming, 33:260–279, 1985.

Moritz Diehl and Florian Messerer. Local convergence of generalized Gauss-Newton and sequential convex
programming. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3942–3947. IEEE, 2019.

Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex functions and
smooth maps. Mathematical Programming, 178:503–558, 2019.

John C Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimization problems.
SIAM Journal on Optimization, 28(4):3229–3259, 2018.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Matilde Gargiani, Andrea Zanelli, Moritz Diehl, and Frank Hutter. On the promise of the stochastic
generalized Gauss-Newton method for training DNNs. arXiv preprint arXiv:2006.02409, 2020.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approximate
natural gradient descent in a Kronecker factored eigenbasis. Advances in Neural Information Processing
Systems, 31, 2018.

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some slack for
SGD with adaptive Polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022.

Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning, pp. 1842–1850, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

João F Henriques, Sebastien Ehrhardt, Samuel Albanie, and Andrea Vedaldi. Small steps and giant leaps:
Minimal Newton solvers for deep learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4763–4772, 2019.

13

https://github.com/google/jax

Under review as submission to TMLR

James Lincoln Herring, James Nagy, and Lars Ruthotto. Gauss–Newton optimization for phase recovery
from the bispectrum. IEEE Transactions on Computational Imaging, 6:235–247, 2019.

Kejun Huang and Xiao Fu. Low-complexity proximal Gauss-Newton algorithm for nonnegative matrix
factorization. In 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5.
IEEE, 2019.

Carl T Kelley. Iterative methods for optimization. SIAM, 1999.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario, 2009.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of
applied mathematics, 2(2):164–168, 1944.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex optimization:
from theory to practice. Journal of Machine Learning Research, 18(1):7854–7907, 2018.

Guan-Horng Liu, Tianrong Chen, and Evangelos A Theodorou. DDPNOpt: Differential dynamic programming
neural optimizer. arXiv preprint arXiv:2002.08809, 2020.

Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the
society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

James Martens. Deep learning via Hessian-free optimization. In International Conference on Machine
Learning, volume 27, pp. 735–742, 2010.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning
Research, 21(1):5776–5851, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In International conference on machine learning, pp. 2408–2417, 2015.

James Martens and Ilya Sutskever. Learning recurrent neural networks with Hessian-free optimization. In
International Conference on Machine Learning, pp. 1033–1040, 2011.

Florian Messerer, Katrin Baumgärtner, and Moritz Diehl. Survey of sequential convex programming and
generalized Gauss-Newton methods. ESAIM: Proceedings and Surveys, 71:64–88, 2021.

Yu Nesterov. Modified Gauss-Newton scheme with worst case guarantees for global performance. Optimisation
methods and software, 22(3):469–483, 2007.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization, 1(3):
127–239, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T Foster. Convolutional neural network
training with distributed k-fac. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12. IEEE, 2020.

Krishna Pillutla, Vincent Roulet, Sham M Kakade, and Zaid Harchaoui. A smoother way to train structured
prediction models. arXiv preprint arXiv:1902.03228, 2019.

14

Under review as submission to TMLR

Krishna Pillutla, Vincent Roulet, Sham Kakade, and Zaid Harchaoui. Modified Gauss-Newton algorithms
under noise. arXiv preprint arXiv:2305.10634, 2023.

Yi Ren and Donald Goldfarb. Efficient subsampled Gauss-Newton and natural gradient methods for training
neural networks. arXiv preprint arXiv:1906.02353, 2019.

Audrey Repetti, Emilie Chouzenoux, and Jean-Christophe Pesquet. A nonconvex regularized approach for
phase retrieval. In 2014 IEEE International Conference on Image Processing (ICIP), pp. 1753–1757. IEEE,
2014.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and
optimization, 14(5):877–898, 1976.

Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, and Zaid Harchaoui. Complexity bounds of iterative
linear quadratic optimization algorithms for discrete time nonlinear control. arXiv preprint arXiv:2204.02322,
2022.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(1), 2013.

Athanasios Sideris and James E Bobrow. An efficient sequential linear quadratic algorithm for solving
nonlinear optimal control problems. In Proceedings of the 2005, American Control Conference, 2005., pp.
2275–2280. IEEE, 2005.

Zdenek Strakovs. On the real convergence rate of the conjugate gradient method. Linear algebra and its
applications, 154:535–549, 1991.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning, pp. 1139–1147, 2013.

Quoc Tran-Dinh, Nhan Pham, and Lam Nguyen. Stochastic Gauss-Newton algorithms for nonconvex
compositional optimization. In International Conference on Machine Learning, pp. 9572–9582, 2020.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-Julien.
Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in neural informa-
tion processing systems, 32, 2019.

Hao Yu and Bogdan M Wilamowski. Levenberg–Marquardt training. In Intelligent systems, pp. 12–1. CRC
Press, 2018.

Junyu Zhang and Lin Xiao. Stochastic variance-reduced prox-linear algorithms for nonconvex composite
optimization. Mathematical Programming, pp. 1–43, 2021.

Lin Zhang, Shaohuai Shi, Wei Wang, and Bo Li. Scalable k-fac training for deep neural networks with
distributed preconditioning. IEEE Transactions on Cloud Computing, 2022.

15

Under review as submission to TMLR

Dual Gauss-Newton Directions for Deep Learning
Appendix

Appendix A expands on related work. Appendix B presents how to incorporate additional regularizers into
the computation of the Gauss-Newton direction. Appendix C contains all proofs. Appendix D details the
computational costs. Finally, Appendix E presents some additional experiments and experimental details.

A Detailed literature review

Variational perspective on optimization oracles. The variational perspective on optimization oracles
is well-known, see, e.g., Parikh et al. (2014); Beck (2017). This perspective can be used together with full
linearization to motivate SGD variants based on Polyak stepsize (Gower et al., 2022).

In addition to the interpretation of prox-linear/Gauss-Newton as an intermediate oracle between gradient
and Newton updates, the prox-linear can be interpreted through the lens of proximal point methods. With
the notations of Section 1, the proximal point algorithm (Rockafellar, 1976) computes the next iterate as

wt+1 := prox(γhi)(wt)

:= argmin
w∈Rp

hi(w) + 1
2γ

∥w − wt∥2
2

= wt − argmin
d∈Rp

hi(wt − d) + 1
2γ

∥d∥2
2,

where we used the change of variable w := wt − d. Unfortunately, when hi = ℓi ◦ fi and fi is a neural
network, this subproblem is nonconvex. In comparison, we can write the prox-linear update as

prox_linear(γℓi, fi)(wt) := prox(plin(γℓi, fi, wt))(wt)

= argmin
w∈Rp

plin(ℓi, fi, wt)(w) + 1
2γ

∥wt − w∥2
2

=wt − d(γℓi, fi)(wt) ≈ prox(γhi)(wt).

Therefore, we can see the resulting update as the proximal point iteration on a partially linearized function,
hence the name prox-linear. Importantly however, unlike the proximal point update, the associated subproblem
is convex.

Nonlinear least-squares (deterministic case). The idea of exploiting the compositional structure of an
objective to partially linearize the objective and minimize the resulting simplified subproblem, stems from
the resolution of nonlinear least-squares problems (Björck, 1996) of the form

min
w∈Rp

∥f(w)∥2
2,

where f is a nonlinear differentiable function. In this context, the Gauss-Newton algorithm (Kelley, 1999)
proceeds originally by computing

dt := argmin
v∈Rp

∥f(wt) − ∂f(wt)d∥2
2,

and computing wt+1 by means of a line-search along the direction −dt (which is guaranteed to be a descent
direction). The Gauss-Newton algorithm can converge locally to a solution at a quadratic rate provided
that the initial point is close enough to the solution (Kelley, 1999). The Gauss-Newton algorithm can be
subject to numerical instability as soon as the operator ∂f(wt) is non-singular. To circumvent this issue,
Levenberg (1944) and Marquardt (1963) introduced the now called Levenberg-Marquardt algorithm that
computes directions according to a regularized version of the Gauss-Newton direction

dt := argmin
d∈Rp

∥f(wt) − ∂f(wt)d∥2
2 + λ

2 ∥d∥2
2.

16

Under review as submission to TMLR

A line-search along −dt is then taken to define the next iterate (the direction −dt is again a descent direction).
The parameter λ (equivalent to 1/γ in the derivation of our algorithm) acts as a regularization to ensure
that the direction is relevant at the current iterate: larger λ induce smaller directions, closer to a negative
gradient direction. The parameter λ may be modified along the iterations by a trust-region mechanism (see
e.g. Bergou et al. (2020)). Namely, a trust-region mechanism computes

rt := ||f(wt)||22 − ∥f(wt − dt)∥2
2

mt(0) − mt(dt) ,

where mt(d) := ∥f(wt) − ∂f(wt)d∥2
2 + λt∥d∥2

2/2 the approximate model of the objective. Here, rt is a
measure of how good the model was for the current λt. For rt ≫ 0, the step taken reduced efficiently the
original objective, while for, e.g., rt ≪ 0, the model provided a bad direction. At each iteration, if rt > δ1,
λt+1 = 0.5λt for example, is decreased, if ρt < δ2, the iteration is a priori redone with an increased λt, or we
may simply set λt+1 = 2λt for the next iteration. Gauss-Newton-like algorithms have been applied succesfully
to phase-retrieval (Herring et al., 2019; Repetti et al., 2014), nonlinear control (Sideris & Bobrow, 2005),
non-negative matrix factorization (Huang & Fu, 2019) to cite a few.

Compositional problems (deterministic case). Gauss-Newton-like algorithms have then been general-
ized beyond nonlinear least-squares to tackle generic compositional problems of the form ℓ ◦ f + ρ with ℓ
convex, f differentiable nonlinear, ρ a simple function with computable proximity operator. The resulting
algorithm, called prox-linear (Burke, 1985) computes the next oracle as

wt+1 := argmin
w∈Rp

ℓ(f(wt) + ∂f(wt)(w − wt)) + ρ(w) + λ

2 ∥w − wt∥2
2.

Nesterov (2007) proposed to minimize nonlinear residuals with a generic sharp metric such as ℓ = ∥ · ∥2 with
ρ = 0. Nesterov (2007) proved global convergence rates of the above method given that σmin(∂f(w)∗) ≥ σ > 0
for any w and also gave local convergence rates for σmin(∂f(w)) ≥ σ > 0 around an initial point close to a
local solution. Drusvyatskiy & Paquette (2019) considered prox-linear algorithms for finite sum objectives,
that is, problems of the form 1

n

∑n
i=1 ℓi ◦ fi + ρ. Drusvyatskiy & Paquette (2019) considered the norm of

the scaled difference between iterates as a stationary measure of the algorithm by relating it to the gradient
of the Moreau envelope of the objective. They proposed to solve the sub-problem up to a near-stationarity
criterion defined by the norm of the (sub)-gradient of the dual objective of the sub-problem. They derived
the total computational complexity of the algorithm when using various inner solvers from an accelerated
gradient algorithm to fast incremental solvers such as SVRG or its accelerated version. Rates are provided for
the case where ℓ is smooth or non-smooth but smoothable. Pillutla et al. (2019) evaluated these algorithms
in the context of structured prediction with smoothed oracles. The reported performance was on par with
SGD. Pillutla et al. (2023) performed more synthetic experiments with similar conclusions, casting doubt
on the usefulness of the method. Note however that Pillutla et al. (2019; 2023) did not consider varying
the regularization, nor a mini-batch version of the algorithm, nor incorporating the algorithm into other
first-order mechanisms.

For compositional problems with general loss ℓ, an alternative to the prox-linear algorithm is to use a
quadratic approximation of ℓ together with the linearization of f (Messerer et al., 2021; Roulet et al., 2022).
Roulet et al. (2022) showed the global convergence and local convergence of such a method with the same
assumption as Nesterov (2007), i.e., σmin(∂f(w)∗) ≥ σ > 0, while asserting this condition in some nonlinear
control problems. Diehl & Messerer (2019) considered the local convergence of generalized Gauss-Newton
algorithms under suitable assumptions.

Stochastic case. Duchi & Ruan (2018) studied the asymptotic convergence of stochastic versions of the
prox-linear algorithms. They considered objectives of the form Ez∼p[ℓ(f(·; z); z)] + ρ for some unknown
distribution p. The setting considered in our paper is an instance of such a problem. The prox-linear algorithm
consists then in iterates of the form

wt+1 = argmin
w∈Rp

1
|S|
∑
i∈S

ℓ(f(wt; zi) + ∂f(wt; zi)(w − wt); zi) + ρ(w) + λ

2 ∥w − wt∥2
2,

17

Under review as submission to TMLR

for (zi)i∈S
i.i.d.∼ p a mini-batch of samples. Duchi & Ruan (2018) presented asymptotic rates of convergence

for this method with experiments on phase retrieval problems. In a slightly different spirit, namely, objectives
of the form ℓ(Ez∼p[f(·; z)]) + ρ, Tran-Dinh et al. (2020); Zhang & Xiao (2021) presented convergence rates
using estimators of the Jacobian and the function values of f , with stochastic estimators such as SPIDER,
SARAH or simply large mini-batches. Gargiani et al. (2020) considered stochastic versions of the generalized
Gauss-Newton algorithm for deep learning applications with simple experiments on MNIST, FashionMNIST
an CIFAR10. However, they did not use the dual as we do, and they did not consider using the oracle as a
replacement for the gradient in existing solvers such as ADAM.

Jacobian/Hessian-free Gauss-Newton methods in deep learning. To harness the potential power of
second-order optimization algorithms such as a Newton method, Martens (2010) considered implementing
a Newton method by accessing Hessian-vector products and inverting the Hessian by a conjugate gradient
method. Martens (2010) introduced usual techniques from the Newton method such as damping and trust-
region techniques to tune the regularization. An issue quickly pointed out by Martens (2010) is that the
Hessian of the network need not be positive definite which means that H−1g for H the Hessian of the objective
and g the gradient does not necessarily lead to a descent direction. While the Hessian could be regularized to
prevent this issue, this may add a non-negligible overhead. In contrast, oracles based on partial linearizations
à la Gauss-Newton provably return a descent direction. Therefore, Martens (2010) considered in practice a
Gauss-Newton algorithm. Martens (2010) also considered some preconditioning techniques for the conjugate
gradient method and argues for large mini-batch sizes, see Section 4 of the aforementioned paper. Martens &
Sutskever (2011) applied this technique to recurrent neural networks.

Recently, Ren & Goldfarb (2019) revised such a technique by solving the subproblem associated to a generalized
Gauss-Newton iteration by means of the Woodbury formula and using a form of trust-region technique. The
Woodbury formula aims to reduce computational costs associated to inversions by exploiting the structure of
the subproblems. In the case of the squared loss, the two approaches coincide. However, for the quadratic
approximation of the logistic loss, Ren & Goldfarb (2019) considered a non-symmetric development of the
Woodbury formula, that differs from our approach. By carefully tackling the dual formulation of the problem
in the case of a quadratic approximation of the logistic loss, we are able to keep the same inner solver, i.e., a
conjugate gradient method, and to prove that the resulting direction is always a descent direction. Ren &
Goldfarb (2019) performed experiments on CIFAR10, MNIST and webspam with two hidden layers MLPS.
In a similar spirit, Henriques et al. (2019) considered a Hessian-free optimization algorithm to compute
exactly a Newton step. Henriques et al. (2019) considered performing one gradient step on the subproblem
by means of a Hessian-vector product and use the resulting direction in place of the gradient. The algorithm
of Henriques et al. (2019) can therefore be seen as an extreme case of our algorithm with only one iteration
in the subproblem (with the additional difference that they consider a Newton step). Henriques et al. (2019)
conducted an extensive set of experiments on CIFAR10 with ConvNets, ResNets, ImageNet with VGG
ConvNet and MNIST with MLPS as well as standard difficult nonconvex objectives such as the Rosenberg
function. They observed some gains in accuracy and speed in epochs. On the other hand, gains in time were
only reported for a small architecture (Henriques et al., 2019, Figure 3).

Approximating the Gauss-Newton matrix by block diagonal blocks. Rather than solving approxi-
mately for a Gauss-Newton-like direction, a line of work starting from Martens & Grosse (2015) considered
using a block diagonal approximation of the Gauss-Newton matrix. Such a direction often took the terminology
of natural gradient descent algorithms since, for losses stemming from an exponential family, a generalized
Gauss-Newton method coincides with a natural gradient descent (Martens, 2020). The resulting algorithm
called KFAC (Kronecker Factored Approximate Curvature) stems from the observation that the block of the
Gauss-Newton matrix corresponding to the kth can be factorized as a Kronecker product whose expectation
may be approximated as the Kronecker product of the expectations. George et al. (2018) extended the
KFAC method in an algorithm EKFAC that further tries to compute an adequate eigenbasis along which to
compute the approximate blocks. Botev et al. (2017) considered a finer decomposition of the block diagonal
Gauss-Newton matrix computed by back-propagating the information through the graph of a feed-forward
network leading to the algorithm KFRA. Both KFAC and KFRA a priori depend on the proposed architecture.
They were developed for MLPs and subsequently extended to convolutional neural networks (Pauloski et al.,

18

Under review as submission to TMLR

2020) and transformers architecture (Zhang et al., 2022). Such layer-wise decomposition of second-order
methods is reminiscent of techniques used in nonlinear control to implement Gauss-Newton methods or
their nonlinear control variant called differentiable dynamic programming which were adapted to a deep
learning context by Liu et al. (2020). Recently, Gupta et al. (2018); Anil et al. (2020) generalized the idea of
computing generic preconditioners for deep networks by exploiting their tensor structure.

B Non-differentiable regularizer extension

In this section, we consider regularized objectives of the form

min
w∈Rp

[
1
n

n∑
i=1

hi(w) + ρ(w) = 1
n

n∑
i=1

ℓi(fi(w)) + ρ(w)
]

,

where ρ is a potentially non-differentiable regularization, such as the sparsity-inducing penalty ρ(w) = λ∥w∥1,
where λ > 0 controls the regularization strength.

B.1 Primal

In order to perform an update on a mini-batch S, we can solve

w(γℓS , fS , γρ)(wt) := argmin
w∈Rp

1
m

∑
i∈S

plin(ℓi, fi, wt)(w) + 1
2γ

∥wt − w∥2
2 + ρ(w)

= argmin
w∈Rp

∑
i∈S

ℓi(f t
i + J t

i (w − wt)) + m

[
1

2γ
∥wt − w∥2

2 + ρ(w)
]

.

Using the change of variable w := wt − d, this can equivalently be written

w(γℓS , fS , γρ)(wt) = wt − d(γℓS , fS , γρ)(wt),

where

d(γℓS , fS , γρ)(wt) := argmin
d∈Rp

∑
i∈S

ℓi(f t
i − J t

i d) + m

[
1

2γ
∥d∥2

2 + ρ(wt − d)
]

(12)

For sparsity-inducing penalties such as the ℓ1 norm, this is a non-smooth convex problem that can be solved
by a proximal gradient method, by using the proximal operator associated to the regularization ρ. We
rather consider an approximation of the above problem allowing for an algorithm that does not require any
additional hyperparameters.

B.2 Dual

Let us denote rt(d) := m
[

1
2γ ∥d∥2

2 + ρ(wt − d)
]
. From Proposition 3, the dual of the primal subproblem (12)

is
α(γℓS , fS , γρ)(wt) := argmin

αS∈Rm×k

ℓ∗
S(αS) − ⟨f t

S , αS⟩ + r∗
t

(
(J t

S)∗αS

)
.

Unfortunately, this subproblem may be difficult to solve in general. As shown in Proposition 4, assuming rt

is µ-strongly convex, we can approximate the dual subproblem around any ut with

α(γℓS , fS , γρ)(wt) ≈ argmin
αS∈Rm×k

ℓ∗
S(αS) − ⟨f t

S − δt
S , αS⟩ + 1

2µ
∥(J t

S)∗αS∥2,

where δt
S := J t

S

(
∇r∗

t (ut) − 1
µ ut

)
. We choose ut = 0, so that approximating the computation of

d(γℓS , fS , γρ)(wt) around d = 0 amounts to approximating the computation of w(γℓS , fS , γρ)(wt) around
wt. Note that if ρ(w) = 0, we get wt = 1

µ ut, so that δt
S = 0. Therefore, we recover the dual subproblem (7)

in this case.

The entire procedure is summarized in Algorithm 3.

19

Under review as submission to TMLR

Algorithm 3 Dual-based prox-linear algorithm with µ-strongly convex regularization rt

1: Inputs: Parameters wt, “inner stepsize” γ > 0
2: Compute network outputs f t

S , instantiate JVP J t
S and VJP (J t

S)∗ as in Algorithm 1
3: Compute for any ut, e.g., ut := 0,

δt
S := J t

S

(
∇r∗

t (ut) − 1
µ

ut

)
4: Run inner solver to approximately solve

αt
S ≈ argmin

αS∈Rm×k

ℓ∗
S(αS) − ⟨αS , f t

S − δt
S⟩ + 1

2µ
∥(J t

S)∗αS∥2
2

or to approximately solve the equality constrained QP

αt
S ≈ argmin

α∈Rm×k

1
2 ⟨(αS − gt

S), (Ht
S)†(αS − gt

S)⟩ + ⟨αS , δt
S⟩ + 1

2µ
∥(J t

S)∗αS∥2
2

s.t. (I −Ht
S(Ht

S)†)(αS − gt
S) = 0,

with gt
S = ∇ℓS(f t

S), Ht
S := ∇2ℓS(f t

S) and (Ht
S)† the pseudo-inverse (9) (closed forms available for the

logistic loss).
5: Compute direction

dt
S := ∇r∗

t ((J t
S)∗αt

S)

6: Set next parameters wt+1 by

wt+1 := wt − dt
S (fixed stepsize (5)) or wt+1 := wt − ηtdt

S (linesearch (6))

for ηt s.t. hS(wt − ηtdt
S) ≤ hS(wt) − βηt⟨dt

S , gt
S⟩.

7: Outputs: wt+1

B.3 Examples of regularizers

Quadratic regularization. If rt(d) = m
2γ ∥d∥2

2, which is strongly convex with constant µ = m
γ , we obtain

r∗
t (u) = γ

2m ∥u∥2
2 and therefore ∇r∗

t (u) = γ
m u. We therefore recover Algorithm 2.

Sum of quadratic and another regularization. If rt(d) = m
2γ ∥d∥2

2 + m ρ(wt − d), which is strongly
convex with constant µ = m

γ in general and with µ = m
γ + mλ if ρ is λ-strongly convex (which is not required),

using the change of variable w := wt − d, we obtain

∇r∗
t (u) = argmax

d∈Rp

⟨u, d⟩ − rt(d)

= argmax
d∈Rp

⟨u, d⟩ − m

2γ
∥d∥2

2 − m ρ(wt − d)

= wt − argmax
w∈Rp

−⟨u, w⟩ − m

2γ
∥wt − w∥2

2 − m ρ(w)

= wt − argmin
w∈Rp

∥w − (wt − γ

m
u)∥2

2 + γρ(w)

= wt − proxγρ

(
wt − γ

m
u
)

.

Sum of quadratic and L1 regularizations. As a particular example of the above, if ρ(w) = λ∥w∥1, we
obtain

proxγρ(z) = STλγ(z),

20

Under review as submission to TMLR

where we defined the soft-thresholding operator

STτ (z) := proxτ∥·∥1(z) =

zj − τ, zj > τ

0, |zj | ≤ τ

zj + τ, zj < −τ

.

C Proofs

C.1 Derivation of the dual subproblem

We begin by deriving the dual when using a generic strongly convex regularizer rt.
Proposition 3. Denote f t

i := fi(wt), J t
i := ∂fi(wt) and rt : Rp → R a strongly convex regularizer. Then,

min
d∈Rp

∑
i∈S

ℓi(f t
i − J t

i d) + rt(d) = − min
αS∈Rm×k

∑
i∈S

(
ℓ∗

i (αi) − ⟨f t
i , αi⟩

)
+ r∗

t

(
(J t

S)∗αS

)
where (J t

S)∗αS :=
∑m

i=1(J t
i)∗αi ∈ Rp, αS = (α1, . . . , αm)⊤ ∈ Rm×k.

The dual-primal link is
d⋆ = ∇r∗

t

(
(J t

S)∗α⋆
S

)
,

where
∇r∗

t (u) = argmax
d∈Rp

⟨u, d⟩ − rt(d).

Proof.
min
d∈Rp

∑
i∈S

ℓi(f t
i − J t

i d) + rt(d)

= min
d∈Rp

m∑
i=1

max
αi∈Rk

⟨f t
i − J t

i d, αi⟩ − ℓ∗
i (αi) + rt(d)

= max
α1,...,αm∈Rk

∑
i∈S

(
−ℓ∗

i (αi) + ⟨f t
i , αi⟩

)
+
[

min
d∈Rp

〈
−
∑
i∈S

(J t
i)∗αi, d

〉
+ rt(d)

]

= max
α1,...,αm∈Rk

∑
i∈S

(
−ℓ∗

i (αi) + ⟨f t
i , αi⟩

)
−

[
max
d∈Rp

〈∑
i∈S

(J t
i)∗αi, d

〉
− rt(d)

]

= max
α1,...,αm∈Rk

∑
i∈S

(
−ℓ∗

i (αi) + ⟨f t
i , αi⟩

)
− r∗

t

(∑
i∈S

(J t
i)∗αi

)
.

C.2 Approximate dual subproblem

Consider the dual subproblem derived in Proposition 3, that is,

min
αS∈Rm×k

ℓ∗
S(αS) − ⟨f t

S , αS⟩ + r∗
t

(
(J t

S)∗αS

)
.

Unfortunately, this subproblem could be difficult to solve for generic rt. In our case rt takes the form
rt(d) = m

[
ρ(wt − d) + 1

2γ ∥d∥2
2

]
, which is strongly convex. We can therefore exploit the smoothness of its

convex conjugate r∗
t . Inspired by the prox-SDCA algorithm (Shalev-Shwartz & Zhang, 2013), we therefore

propose to approximate r∗
t by a quadratic upper bound.

Proposition 4. If rt is µ-strongly convex, the solution of the dual subproblem

min
αS∈Rm×k

ℓ∗
S(αS) − ⟨f t

S , αS⟩ + r∗
t

(
(J t

S)∗αS

)
, (13)

21

Under review as submission to TMLR

can be approximated around any ut ∈ Rp by solving

min
αS∈Rm×k

ℓ∗
S(αS) − ⟨f t

S − J t
S

(
∇r∗

t (ut) − 1
µ

ut

)
, αS⟩ + 1

2µ
∥(J t

S)∗αS∥2.

Proof. Denoting ∥ · ∥ the norm w.r.t. which r∗
t is 1

µ -smooth, we have for any u, v ∈ Rp,

r∗
t (v) ≤ rt(u) + ⟨∇r∗

t (u), v − u⟩ + 1
2µ

∥u − v∥2. (14)

Using vt = (J t
S)∗αS , we obtain

r∗
t

(
(J t

S)∗αS

)
≤ rt(ut) +

〈
∇r∗

t (ut), (J t
S)∗αS − ut

〉
+ 1

2µ
∥(J t

S)∗αS − ut∥2
2

=
〈
J t

S∇r∗
t (ut), αS

〉
+ 1

2µ
∥(J t

S)∗αS∥2
2 − 1

µ
⟨J t

Su, αS⟩ + const w.r.t. αS .

Plugging this quadratic upper-bound of r∗
t ((J t

S)∗αS) back in (13), we arrive at the approximate subproblem

min
αS∈Rm×k

ℓ∗
S(αS) −

〈
f t

S − J t
S

(
∇r∗

t (ut) − 1
µ

ut

)
, αS

〉
+ 1

2µ
∥(J t

S)∗αS∥2.

C.3 Dual of quadratic approximation of convex losses

When using a quadratic-linear approximation of hi, the primal subproblem is, for a mini-batch S =
{i1, . . . , im} ⊆ [n],

dt
S := argmin

d∈Rp

qt
S(−J t

i d) − ⟨f t
S , d⟩ + m

2γ
∥d∥2

2

= argmin
d∈Rp

∑
i∈S

1
2 ⟨d, (J t

i)∗Ht
i J t

i d⟩ − ⟨d, (J t
i)∗gt

i⟩ + m

2γ
∥d∥2

2

= argmin
d∈Rp

1
2 ⟨d(J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

S⟩ + m

2γ
∥d∥2

2,

= argmin
d∈Rp

aS(−J t
Sd) + m

2γ
∥d∥2

2,

where we used the shorthands

at
S(z) := qt

S(z) − ⟨f t
S , z⟩ = 1

2 ⟨z, Ht
Sz⟩ + ⟨z, gt

S⟩ = bt
S(z) + ⟨z, gt

S⟩

bt
S(z) :=

m∑
j=1

bt
ij

(zj) =
m∑

j=1

1
2 ⟨zj , Ht

ij
zj⟩ = 1

2 ⟨z, Ht
Sz⟩,

bt
i(z) := 1

2 ⟨z, Ht
i z⟩.

We recall that

f t
i := fi(wt)

J t
i := ∂fi(wt)

gt
i := ∇ℓi(f t

i)
Ht

i := ∇2ℓi(f t
i)

22

Under review as submission to TMLR

and similarly

f t
S := fS(wt) := (fi1(wt), . . . , fim(wt))

gt
S := ∇ℓS(f t

S)
Ht

Su := ∇2ℓS(f t
S)u = (∇2ℓi1(f t

i1
)u1, . . . , ∇2ℓim(f t

im
)um)

J t
Sd := ∂fS(wt)d := (∂fi1(wt)d, . . . , ∂fim

(wt)d)

(J t
S)∗u := ∂fS(wt)∗u =

m∑
j=1

∂fij
(wt)∗uj .

Strictly convex losses. We first present the result for strictly convex losses, in which case the convex
conjugate of interest is well-known.
Proposition 5. The prox-linear direction associated to a linear quadratic approximation of the objective

dt
S := argmin

d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

S⟩ + m

2γ
∥d∥2

2,

with Ht
i and so Ht

S invertible, can be computed as dt
S = γ

m (J t
S)∗αt

S, αt
S = gt

S − βt
S for

βt
S := argmin

β∈Rm×k

1
2 ⟨β, (Ht

S)−1β⟩ + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2,

where
(Ht

S)−1β := ((Ht
i1

)−1β1, . . . , (Ht
im

)−1βm).

Proof. We use the same notations as in the beginning of the section. The convex conjugate of at
S can be

expressed in terms of the convex conjugate of bt
S as

(at
S)∗(α) = (bt

S)∗(α − gt
S).

The convex conjugate of bt
S itself can be expressed as

(bt
S)∗(β) =

n∑
j=1

(bt
ij

)∗(βj) =
m∑

j=1

1
2 ⟨βj , (Ht

ij
)−1βj⟩ = 1

2 ⟨β, (Ht
S)−1β⟩,

using that Ht
i is invertible such that (bt

i)∗(β) = 1
2 ⟨β, (Ht

i)−1β⟩. The problem can then be solved as
dt

S = (J t
S)∗αt

S for

αt
S := argmin

α∈Rm×k

(at
S)∗(α) + γ

2m
∥(J t

S)∗α∥2
2 = argmin

α∈Rm×k

(bt
S)∗(α − gt

S) + γ

2m
∥(J t

S)∗α∥2
2 = gt

S − βt
S

βt
S := argmin

β∈Rm×k

(bt
S)∗(−β) + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2 = argmin
β∈Rm×k

1
2 ⟨β, (Ht

S)−1β⟩ + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2.

The approach above holds for example in the case of the squared loss. The logistic loss on the other hand
is not strictly convex, therefore its Hessian is not invertible. We present below a generic derivation for any
convex loss. We then specialize the result for the logistic loss.

Generic convex loss. In the generic case, we can tackle the computation of the dual of the quadratic-linear
approximation by using the pseudo-inverse of the Hessian as stated in Proposition 6.

23

Under review as submission to TMLR

Proposition 6. The prox-linear direction associated to a linear quadratic approximation of the objective

dt
S = argmin

d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

S⟩ + m

2γ
∥d∥2

2,

can be computed as dt
S = γ

m (J t
S)∗αt

S, αt
S = gt

S − βt
S for

βt
S = argmin

β∈Rm×k

1
2 ⟨β, (Ht

S)†β⟩ + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2

s.t. (I − Ht
S(Ht

S)†)β = 0,

where (Ht
i)† denotes the pseudo inverse of Ht

i and

(Ht
S)†β = ((Ht

i1
)†β1, . . . , (Ht

im
)†βm).

Proof. The proof follows the same reasoning as in Proposition 5 except that for generic convex loss, the
convex conjugate of bt

i is given by Lemma 7 as

(bt
i)∗(β) =

{
1
2 ⟨β, (Ht

i)†β⟩ if (I −Ht
i (Ht

i)†)β = 0
+∞ otherwise.

The result follows using that Ht
S(Ht

S)†β = (Ht
i1

(Ht
i1

)†β1, . . . , Ht
im

(Ht
im

)†βm).

Lemma 7. Let q(w) := 1
2 ⟨w, Aw⟩, where A ⪰ 0, A ∈ Rk×k. The convex conjugate of q is

q∗(v) =
{

1
2 ⟨v, A†v⟩ if AA†v = v

+∞ otherwise

where A† denotes the pseudo-inverse of A.

Proof. Denote P = I − A†A the projection on the null-space of A. Note that as A is symmetric, we have
P = I − AA†. Since A ⪰ 0, q is convex and its conjugate is defined as

q∗(v) = sup
w∈Rk

⟨v, w⟩ − 1
2 ⟨w, Aw⟩.

If Pv ̸= 0, then by considering w(t) = tPv for t ∈ R, we have ⟨v, w(t)⟩ − 1
2 ⟨w(t), Aw(t)⟩ = t∥Pv∥2

2 which
tends to +∞ for t → +∞. Hence, q∗(v) = +∞ if Pv ̸= 0.

If v = AA†v. The convex conjugate then amounts to solve

sup
w∈Rd

⟨w, AA†v⟩ − 1
2 ⟨w, Aw⟩.

The solution of this problem is given by w⋆ such that AA†v = Aw⋆, hence w⋆ = A†v is a solution and the
convex conjugate is then

q∗(v) = ⟨v, A†∗
AA†v⟩ − 1

2 ⟨v, A†∗
AA†v⟩ = ⟨v, A†AA†v⟩ − 1

2 ⟨v, A†AA†v⟩ = 1
2 ⟨v, A†v⟩,

where we used that A† is symmetric since A is symmetric, and we used the identity A†AA† = A†.

24

Under review as submission to TMLR

Logistic loss. We now derive the conjugate of the quadratic approximation in the case of the logistic loss.
Proposition 8. Consider the logistic loss

ℓ(f) = −⟨y, f⟩ + ϕ(f),

for y ∈ {0, 1}k, y⊤ 1k = 1 and ϕ(f) = log(exp(f)⊤ 1k) for f ∈ Rk, where exp is applied element-wise.
Consider the quadratic approximation of the logistic loss at a point f given by

q(ℓ, f)(v) := −⟨y − ∇ϕ(f), v⟩ + 1
2v⊤∇2ϕ(f)v,

where ∇ϕ(f) = σ(f), ∇2ϕ(f) = diag (σ(f)) − σ(f)σ(f)⊤, σ(f) := softmax(f) = exp(f)/(exp(f)⊤ 1k). Its
convex conjugate is, for β := α − ∇ℓ(f) and D := diag(σ(f)),

q(ℓ, f)∗(α) =
{

1
2 ⟨β, D−1β⟩ if β⊤ 1k = 0
+∞ otherwise.

Proof. The convex conjugate reads

q(ℓ, f)∗(α) = h∗(α + y − ∇ϕ(f)),

where
h∗(β) = sup

v∈Rk

β⊤v − 1
2 ⟨v, ∇2ϕ(f)v⟩.

Note that ∇2ϕ(f) 1k = 0. In the following, denote β = α + y − ∇ϕ(f) and consider computing h∗(β). Note
that β⊤ 1k = α⊤ 1k since y⊤ 1k = ∇ϕ(f)⊤ 1k = 1.

If β⊤ 1k ̸= 0, that is α⊤ 1k ̸= 0, then by considering v(t) = t 1k 1⊤
k β, we have

β⊤v(t) − 1
2 ⟨v(t), ∇2ϕ(f)v(t)⟩ = t(1⊤

k β)2 −→
t→+∞

+∞

so h∗(β) = +∞ and q(ℓ, f)∗(α) = +∞.

Consider now β⊤ 1k = 0, that is α⊤ 1k = 0 and v⋆ = D−1β for D = diag
(

exp(f)
exp(f)⊤ 1k

)
. We have then

∇2ϕ(f)v⋆ = DD−1β − exp(f)
exp(f)⊤ 1k

1⊤
k β = β.

Hence, v⋆ satisfies the first-order conditions of the problem defining h∗(β), so it is a solution of that problem.
The expression of the convex conjugate follows.

Using this expression of the conjugate, we obtain (10) as formally stated below.
Corollary 9. The prox-linear direction associated to a linear quadratic approximation of the objective

dt
S = argmin

d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

i⟩ + m

2γ
∥d∥2

2,

for ℓi the logistic loss, can be computed as dt
S = γ

m (J t
S)∗αt

S, αt
S = gt

S − βt
S for

βt
S = argmin

β∈Rm×k

1
2 ⟨β, (Dt

S)−1β⟩ + γ

2m
∥(J t

S)∗(gt
S − β)∥2

2,

s.t. 1⊤
k βi = 0 for i ∈ {1, . . . m}

for (Dt
S)−1β = (β1/σ(f t

i1
), . . . , βm/σ(f t

im
)).

25

Under review as submission to TMLR

C.4 Conjugate gradient method for quadratic approximations

Proposition 10. Consider a quadratic problem under linear constraints of the form

min
β∈Rd

1
2 ⟨β, Qβ⟩ − ⟨β, c⟩ (15)

s.t. (I − P)β = 0

for Q semi-definite positive and P an orthonormal projector, that is, P = P ∗ and PP = P . Assume that
β 7→ 1

2 ⟨β, Qβ⟩ − ⟨β, c⟩ is bounded below.

Any convergent first-order optimization algorithm applied to the unconstrained problem

min
β∈Rd

1
2 ⟨β, PQPβ⟩ − ⟨β, Pc⟩ (16)

and initialized at β0 = 0 converges to a solution of (15).

Proof. First, note that problem (15) is necessarily feasible as its constraints are satisfied for β = 0. Moreover,
problem (15) admits a minimizer since it is the minimization of a convex quadratic bounded below on a
subspace of Rd.

Similarly, if β 7→ 1
2 ⟨β, Qβ⟩ − ⟨β, c⟩ is bounded below, then necessarily c does not belong to the null space

of Q, otherwise taking β = tc, t → +∞, would lead to −∞. Since the null space and the image of Q are
orthonormal spaces, c belongs to the image of Q, so that there exists d ∈ Rd satisfying c = Qd. The objective
of (16) can then be factorized as 1

2 ⟨β, PQPβ⟩ − ⟨β, Pc⟩ = 1
2 ⟨(Pβ − d), Q(Pβ − d)⟩ − 1

2 ⟨d, Qd⟩. Hence, it is
a convex quadratic bounded below, so it admits a minimizer.

A point β⋆ is optimal for (15) if there exists λ⋆ ∈ Rd such that

PQPβ⋆ − Pc + Pλ⋆ − λ⋆ = 0, Pβ⋆ = β⋆.

In comparison, a convergent first-order optimization algorithm applied to (16) converges to a point β̂ satisfying
the first order optimality conditions of (16), that is,

PQP β̂ − Pc = 0.

The iterates of any first-order optimization algorithm are built such that

βk ∈ Span(β0, ∇f(β0), β1, ∇f(β1), . . . , βk−1, ∇f(βk−1)),

where f(β) = 1
2 ⟨β, PQPβ⟩ − ⟨β, Pc⟩. Denote C := {β : Pβ = β}, that is a subspace of Rd. We have that

for any β ∈ Rd, ∇f(β) = PQPβ − Pc ∈ C since PP = P . If β0 = 0, then β0 ∈ C and by induction we have
that βk ∈ C. Therefore, β̂ = limk→+∞ βk satisfies P β̂ = limk→+∞ Pβk = limk→+∞ βk = β̂. Therefore, β̂
satisfies

PQP β̂ − Pc = 0, P β̂ = β̂.

It is therefore a solution of (15) with associated λ⋆ = 0.

The above proposition can directly be applied to the problems associated to βt
S in Proposition 6 and 8 they

are convex quadratic problem unbounded below.
Corollary 11. The prox-linear direction associated to a linear quadratic approximation of the objective

dt
S = argmin

d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

S⟩ + m

2γ
∥d∥2

2,

can be computed as dt
S = γ

m (J t
S)∗αt

S, αt
S = gt

S − βt
S for βt

S solving

βt
S = argmin

β∈Rm×k

1
2 ⟨β, P (Ht

S)†Pβ⟩ + γ

2m
∥(J t

S)∗(gt
S − Pβ)∥2

2,

for P = Ht
S(Ht

S)† and βt
S computed by a conjugate gradient method initialized at 0.

26

Under review as submission to TMLR

Corollary 12. The prox-linear direction associated to a linear quadratic approximation of the objective

dt
S = argmin

d∈Rp

1
2 ⟨d, (J t

S)∗Ht
SJ t

Sd⟩ − ⟨d, (J t
S)∗gt

S⟩ + m

2γ
∥d∥2

2,

for ℓi the logistic loss, can be computed as dt
S = γ

m (J t
S)∗αt

S, αt
S = gt

S − βt
S for βt

S solving

βt
S = argmin

β∈Rm×k

1
2 ⟨β, P (Dt

S)−1Pβ⟩ + γ

2m
∥(J t

S)∗(gt
S − Pβ)∥2

2,

for Pβ = (Πkβ1, . . . , Πkβm), Πk = 1
n 1k 1⊤

k and βt
S computed by a conjugate gradient method initialized at 0.

In practice, the matrix D−1 may also be ill-conditioned as it consists of the diagonal of the reciprocal of the
softmax, whose values may be close to 0. To avoid this problem, we precondition the problem associated
with βt

S by D1/2.

C.5 Prox-linear directions define critical points

We recall here that prox-linear directions define critical points. This will help us refine the results about
descent directions. We state it for individual functions for simplicity. The result can readily be generalized
for mini-batches. Nullity of d(γℓi, fi)(wt) can also be linked to the fact that wt is close to a stationary point
as shown by Drusvyatskiy & Paquette (2019).
Proposition 13. If w⋆ is a minimum of ℓi ◦ fi then the prox-linear direction (2) d(γℓi, fi)(w⋆) or its
quadratic approximation (4) d(γq⋆

i , fi)(w⋆), with q⋆
i the quadratic approximation of ℓi around fi(w⋆), is zero.

On the other hand, if d(γq⋆
i , fi)(w⋆) = 0, then ∇(ℓi ◦ fi)(w⋆) = 0, that is w⋆ is a critical point.

Proof. Suppose w⋆ is a minimum of ℓi ◦ fi. Denote F (d) = ℓi(fi(w⋆) − ∂fi(d)) + γ∥d∥2
2/2. Since w⋆ is the

minimum of ℓi ◦ fi, 0 is the minimizer of F , hence since d(γℓi, fi)(w⋆) is defined as the minimizer of F it
must be 0. For d(γq⋆

i , fi)(w⋆), then ∇(ℓi ◦ fi)(w⋆) = 0 so the direction reduces to compute d(γq⋆
i , fi)(w⋆) =

argmind∈Rp
1
2 ⟨d, Qd⟩ + 1

2γ ∥d∥2 = 0 for Q = ∂fi(w⋆)∗∇2ℓi(fi(w⋆))∂fi(w⋆) ⪰ 0. On the other hand, we have
for any w⋆, d(γq⋆

i , fi)(w⋆) = (γ−1 I +Q)−1∇(ℓi ◦ fi)(w∗), so d(γq⋆
i , fi) = 0 ⇐⇒ ∇(ℓi ◦ fi)(w⋆) = 0.

C.6 Proof of Proposition 1 (descent direction, exact case)

We show a slightly stronger result, namely that, unless d(γqt
S , fS)(wt) = 0, that is, wt is a critical point of

ℓS ◦fS as shown in Proposition 13, the direction d(γqt
S , fS)(wt) satisfies ⟨d(γqt

S , fS)(wt), ∇(ℓS ◦fS)(wt)⟩ > 0.
The result claims in the main text holds naturally for d(γqt

S , fS)(wt) = 0.

Denote
F t

S(d) := ℓS(fS(wt) − ∂fS(wt)d) + m

2γ
∥d∥2

2

and d⋆ := d(γℓS , fS)(w) = argmind∈Rp F t
S(d). Since F t

S is strongly convex and assuming d⋆ ̸= 0, we have
F t

S(d⋆) > F t
S(0) + ∇F t

S(0)⊤d⋆, that is, ∇F t
S(0)⊤d⋆ < F t

S(d⋆) − F t
S(0) < 0 since d⋆ = argmind∈Rp F t

S(d).
Note that ∇F t

S(0) = −∂fS(wt)∗∇ℓS(fS(wt)) = −∇(ℓS ◦ fS)(wt). Hence, ⟨∇(ℓS ◦ fS)(wt), −d⋆⟩ < 0.

For the quadratic case, a similar reasoning applies. Denote now

Gt
S(d) := qt

S(f t
S − ∂fS(wt)d) + m

2γ
∥d∥2

2.

We have that Gt
S is strongly convex with minimizer d(γqS , fS)(wt). Moreover, we have that ∇Gt

S(0) =
−∂fS(wt)∗∇ℓS(fS(wt)) = −∇(ℓS ◦ fS)(wt). Hence, as above, assuming d(γqS , fS)(wt) ̸= 0, we get that
⟨∇(ℓS ◦ fS)(wt), −d(γqS , fS)(wt)⟩ < 0.

C.7 Proof of Proposition 2 (descent direction, inexact case)

27

Under review as submission to TMLR

Primal case.
Proposition 14. Denote dt,τ

S the approximate solution of the following problem computed by a conjugate
gradient method after τ iterations,

argmin
d∈Rp

1
2 ⟨d, J∗HJd⟩ − ⟨d, J∗g⟩ + m

2γ
∥d∥2

2

for J := ∂fS(wt), H := ∇2ℓS(f t
i), g := ∇ℓS(f t

i), f t
S := fS(wt), γ > 0, m := |S|. Then −dt,τ

S is a descent
direction for ℓS ◦ fS at wt.

Proof. The problem at hand is a convex quadratic of the form mind∈Rp
1
2 ⟨d, Qd⟩ − ⟨c, d⟩ for Q := J∗HJ +

(m/γ) I and c := J∗g. Using Lemma 16, we have that the τ th iterate of a conjugate gradient method applied
to the above problem satisfies ⟨dt,τ

S , c⟩ ≥ 0. Since c = ∇hS(wt), the result follows.

Dual case.
Proposition 15. Consider computing the prox-linear direction

dt
S = argmin

d∈Rp

1
2 ⟨d, J∗HJd⟩ − ⟨d, J∗g⟩ + m

2γ
∥d∥2

2

for J = ∂fS(wt), H = ∇2ℓS(f t
i), g = ∇ℓS(f t

S), f t
S = fS(wt), γ > 0, via its dual formulation as

dt
S = γ

m J∗αt
S, αt

S = g − βt
S for

βt
S = argmin

β∈Rk

1
2 ⟨β, P

(
H† + γ

m
JJ∗

)
Pβ⟩ − γ

β
⟨β, PJJ∗g⟩, (17)

and P = HH† as presented in Corollary 11. Let βt,τ
S be the τ th iteration of a conjugate gradient method

applied to (17) with associated primal direction dt,τ
S = γ

m (J∗g − J∗βt,τ
S). We have ⟨dt,τ

S , ∇(ℓi ◦ fi)(wt)⟩ ≥ 0
so that −dt,τ

S is a descent direction for ℓS ◦ fS at wt.

Proof. For simplicity denote γ̃ = γ/m. Consider problem (17) in a canonical form

min
β∈Rk

1
2 ⟨β, Qβ⟩ − ⟨β, c⟩,

for Q = P (H† + γ̃JJ∗)P , c = γ̃PJJ∗g. Consider βτ the τ th iteration of a conjugate gradient method applied
to the above problem whose iterations are presented in Lemma 16. Our goal is to show that for any τ ≥ 0,
⟨dτ , ∇(ℓS ◦ fS)(wt)⟩ ≥ 0 for dτ = γ̃(J∗g − J∗βτ), which reads

⟨βτ , JJ∗g⟩ ≤ ⟨g, JJ∗g⟩.

Note that given the forms of Q and c above, the iterates of a conjugate gradient method satisfy βτ = Pβτ

with P an orthonormal projector satisfying P = P ∗. The above condition is then equivalent to γ̃−1⟨βτ , c⟩ =
⟨βτ , PJJ∗g⟩ ≤ ⟨g, JJ∗g⟩. We proceed by contradiction and assume there exists τ0 ∈ {0, 1, . . . , +∞} such
that

⟨βτ0 , JJ∗g⟩ > ⟨g, JJ∗g⟩. (18)
Recall that, with the notations of Lemma 16, for any τ ≥ 0, γ̃⟨pτ , JJ∗g⟩ = ⟨pτ , c⟩ ≥ 0. If (18) is true, then,
for any τ > τ0, since βτ = βτ0 +

∑τ
s=τ0+1 asps−1, as ≥ 0 and γ̃ ≥ 0, we have that ⟨βτ , JJ∗g⟩ > ⟨g, JJ∗g⟩.

Taking τ → +∞, we have then

0 ≤ lim
t→+∞

⟨J∗(βτ − g), J∗g⟩ = ⟨J∗(β⋆ − g), J∗g⟩ = ⟨−d⋆, J∗g⟩,

for d⋆ the prox-linear direction. This contradicts Proposition 1 where in the proof we showed that the
prox-linear direction satisfies ⟨d⋆, J∗g⟩ > 0, unless d⋆ = 0, in which the case, the claim holds trivially. Hence,
we have shown the claim, i.e., that for any τ ≥ 0, ⟨βτ , JJ∗g⟩ ≤ ⟨g, JJ∗g⟩. Therefore, the output primal
direction dτ satisfies ⟨dτ , ∇(ℓS ◦ fS)(wt)⟩ ≥ 0.

28

Under review as submission to TMLR

Lemma 16. Consider the iterations of a conjugate gradient method for solving minx∈Rd
1
2 ⟨x, Qx⟩ − ⟨c, x⟩,

i.e., starting from x0 := 0 and r0 := p0 := c,

aτ := ⟨rτ−1, rτ−1⟩/⟨pτ−1, Qpτ−1⟩
xτ := xτ−1 + aτ pτ−1

rτ := rτ−1 − aτ Qpτ−1

bτ := ⟨rτ , rτ ⟩/⟨rτ−1, rτ−1⟩
pτ := rτ + bτ pτ−1.

Then, for any τ ≥ 0, we have ⟨pτ , c⟩ ≥ 0 and

⟨xτ , c⟩ ≥ 0.

Proof. Since xτ = x0 +
∑τ

s=1 asps−1 with as ≥ 0 for all s and x0 = 0, it suffices to show that ⟨pτ , c⟩ ≥ 0 for
all τ ≥ 0. For τ = 0, we have ⟨p0, c⟩ = ∥c∥2

2 ≥ 0. Assume ⟨pτ−1, c⟩ ≥ 0 for τ ≥ 1, then, as bτ ≥ 0,

⟨pτ , c⟩ = ⟨rτ , c⟩ + bτ ⟨pτ−1, c⟩ ≥ ⟨rτ , b⟩ = ⟨rτ , r0⟩ = 0,

where the last equality comes from the orthogonality of the residuals in a conjugate gradient method. The
proof has then been shown by induction.

D Computational complexities

The computational complexities of the primal and dual formulation can be formally compared in the case of
the squared loss or the quadratic approximation of the loss. We consider for simplicity here the formulation
of the prox-linear step for squared losses, whose primal formulation reads, for a mini-batch S = {i1, . . . , im},

dt
S = argmin

d∈Rp

1
2 ⟨d,

(
(J t

S)∗J t
S + (m/γ) I

)
d⟩ − ⟨(J t

S)∗gt
S , d⟩, (19)

with associated dual formulation,

αt
S = argmin

α∈Rp

1
2 ⟨α,

(
J t

S(J t
S)∗ + (γ/m) I

)
α⟩ − ⟨gt

S , α⟩, dt
S = (J t

S)∗αt
S , (20)

and associated shortcuts,

f t
S = fS(wt) = (fi1(wt), . . . , fim

(wt)) ∈ Rm×k,

gt
S = ∇ℓS(f t

S) = (∇ℓi1(f t
1), . . . , ∇ℓim

(f t
m)) ∈ Rm×k,

J t
Su = ∂fS(wt)(u) = (J t

i1
u, . . . , J t

im
u), J t

i u = ∂fi(wt)u, for u ∈ Rp,

(J t
S)∗v = (∂fS(wt))∗v =

m∑
j=1

(J t
ij

)∗vj , for v = (v1, . . . , vm) ∈ Rm×k.

For each formulation, we need to consider (i) the cost of each iteration of the inner solver, (ii) the condition
number of each subproblem.

Computational cost of running τ iterations of the inner solver. Consider a conjugate gradient (CG)
applied to solve minx∈Rd

1
2 ⟨x, Qx⟩ − ⟨x, c⟩ with Q positive definite as recalled in Lemma 16. Each iteration

of CG requires

1. 1 call to the linear operator x 7→ Qx to compute Qpτ−1; if this linear call amounts to a matrix-vector
computation, it costs O(d2) elementary computations,

29

Under review as submission to TMLR

2. 3 inner products computations in Rd, each at a cost of O(d) elementary computations, to compute
⟨rτ−1, rτ−1⟩, ⟨rτ , rτ ⟩, ⟨pτ−1, Qpτ−1⟩,

3. 3 additions in Rd, each at a cost of O(d) elementary computations, to compute xτ , rτ , pτ .

For the primal formulation (19), computing the linear operator call x 7→ Qprimalx, with Qprimal := (J t
S)∗J t

S +
(m/γ) I amounts to one call to the JVP J t

S and one call to the VJP (J t
S)∗. For the dual formulation, computing

the linear operator call x 7→ Qdualx, with Qdual := J t
S(J t

S)∗ + (γ/m) I amounts to one call to the VJP (J t
S)∗

and one call to the JVP J t
S . Hence, the computation of the linear operator is the same in both formulations.

Other computational costs differ whether the primal or the dual formulation is considered. For the primal
formulation (19), the variables are of the dimension of the parameters, that is all other computations incur a
cost of O(p) elementary computations. On the other hand, for the dual formulation (20), the variables are of
dimension the number of samples times the output dimension, that is all other computations incur a cost of
O(mk) in this case. For small batches, we retrieve that the dual formulation can be advantageous.

Finally, each formulation requires one additional call to the VJP (J t
S)∗. For the primal formulation, this

call is necessary to compute (J t
S)∗gt

S . For the dual formulation, this call is necessary to map back the dual
solution to the primal solution, i.e., computing (J t

S)∗αt
S .

To summarize, the computational cost of running τ iterations of CG to compute the prox-linear update is

Primal formulation: τ(T (∂fS(wt)) + T (∂fS(wt)∗) + O(p)) + T (∂fS(wt)∗),
Dual formulation: τ(T (∂fS(wt)) + T (∂fS(wt)∗) + O(mk)) + T (∂fS(wt)∗),

where T (∂fS(wt)) and T (∂fS(wt)∗) denote the computational complexity of the JVP and VJP of fS

respectively in a differentiable programming framework. This computational complexity varies with the
architecture considered. As an illustrative example, if the network considered is a fully connected network
with D layers of constant input-output dimensions H, the computational cost of a JVP/VJP is of the order
of O(DH2) elementary computations.

Conditioning of primal and dual formulations The convergence rate of a CG method on a problem of
the form minx∈Rd

1
2 ⟨x, Qx⟩ − ⟨x, c⟩ with Q positive definite is theoretically given by

∥xτ − x∗∥ ≤ 2
(√

κ − 1√
κ + 1

)τ

∥x0 − x∗∥2, for κ = λmax(Q)
λmin(Q)

where x∗ = argminx∈Rd
1
2 ⟨x, Qx⟩ − ⟨x, c⟩, κ is the condition number associated to the subproblem, and

λmax(Q), λmin(Q) are respectively the largest and smallest eigenvalues of Q.

In our case, λmax := λmax(J t
S(J t

S)∗) = λmax((J t
S)∗J t

S). If p > m×k, we have that necessarily λmin((J t
S)∗J t

S) =
0, while λmin := λmin(J t

S(J t
S)∗) ≥ 0. Hence, the condition numbers associated to the primal (19) and dual (20)

formulations are respectively, in the case where p > m × k,

Primal: κprimal = 1 + γλmax

m
Dual: κdual = λmax + (γ/m)

λmin + (γ/m) .

The dual condition number can thus take advantage of the minimal eigenvalue λmin of J t
S(J t

S)∗. In practice,
the rate of CG depends highly on the distribution of eigenvalues of the linear operator considered (Strakovs,
1991; Greenbaum, 1997). Typically, if the eigenvalues are clustered rather than dispersed, the CG method
can converge must faster (Greenbaum, 1997).

E Experimental Details

Architecture. The ConvNet we consider in Section 5 is defined by (i) a convolutional layer with 32 filters
of kernel size 3 × 3 followed by the SiLU activation function (Elfwing et al., 2018) and an average pooling
layer of kernel size 2 × 2, (ii) another convolutional layer with 64 filters of kernel size 3 × 3 followed by the
SiLU and an average pooling layer of kernel size 2 × 2, (iii) a dense layer of output dimension 256, followed
by the SiLU, (iv) a final dense layer for classification of output size 10.

30

Under review as submission to TMLR

2 4
Epoch

0.6

0.8

1.0

1.2

Tr
ai

n
Lo

ss

Batch size 32

0 10 20 30
Epoch

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss

Batch size 64

0 10 20 30
Epoch

0.0

0.5

1.0

Tr
ai

n
Lo

ss

Batch size 128

0 10 20 30
Epoch

0.0

0.5

1.0

Tr
ai

n
Lo

ss

Batch size 256

0 10 20 30
Epoch

0.0

0.5

1.0

1.5

Tr
ai

n
Lo

ss

Batch size 512

Max inner iter
2 5 10 20

Figure 6: Sensitivity to inner iterations across batch-sizes for SPL without linesearch.

Computing infrastructure The experiments have been run on TPUv2 (180 TFLOPS) and TPUv3 (420
TFLOPS) machines with eight tensor nodes that is a single tray.

F Additional experiments

F.1 Diagnosis experiments

Sensitivity to inner iterations across batch-sizes. Figure 6 displays the performance of the SPL
algorithm using descent directions for a fixed stepsize γ = 1 and varying numbers of inner iterations and
batch-sizes. We observe that for small mini-batches or very large mini-batches (at 1024, none of the choice of
inner iterations led to convergence), the algorithm suffers from numerical instabilities as it stops suddenly.
Adding an Armijo-type line-search stabilizes the algorithm across the board. Overall, a medium batch-size
(here 128 or 256) appears best performing.

Plots in time. Figure 7 presents the results of Figure 1 in time for completeness.

F.2 Additional architectures

We consider here several other architectures ranging from CNNs with various depths and a larger ResNet
model.

ResNets on ImageNet. We consider the ResNet 18 and 34 architecture as presented by He et al. (2016),
except that we consider SiLU activation functions (Elfwing et al., 2018) instead of the ReLU activation
function. We consider standard preprocessing of images from ImageNet (crop and center images randomly to
a 224 × 224 size).

To test the performance of the prox-linear, we consider its implementation (i) with various γ ranging in
{10i, i ∈ {−2, . . . , 2}}, (ii) with 1 or 2 inner iterations, (iii) with (Armijo SPL) or without additional
linesearch (SPL). We consider 2 inner iterations for the inner solver. We test SPL against SGD, SGD with
momentum and Adam, whose learning rates are searched on a log 10 scale in {10i, i ∈ {−5, . . . , 0}}.

31

Under review as submission to TMLR

0 25 50 75
Time in s

0

1

2

Tr
ai

n
Lo

ss

0 25 50 75
Time in s

0

1

2

Tr
ai

n
Lo

ss

0 25 50 75
Time in s

0

1

2

Tr
ai

n
Lo

ss

0 25 50 75
Time in s

0.0
0.5
1.0
1.5
2.0

Tr
ai

n
Lo

ss

SGD
SPL

SGD Mom.
SPL Mom

Adam
SPL Adam

Adafactor
SPL Adafactor

Figure 7: Prox-linear direction as a replacement for the stochastic gradient in existing algorithms, in time.

The results are presented on Figure 8. We observe that the potential gains offered by a Gauss-Newton method
such as SPL are not apparent in this architecture, though SPL still optimizes well the objective.

CNNs on CIFAR10 with various depths. We consider additional experiments on the CIFAR10 datasets
with convolutional networks of various depths consisting in x layers of 128 filters, x layers of 64 filters, x layers
of 32 filters and a final dense layer, for x ∈ {1, 2, 3}, corresponding to “short”, “medium”, “long” architectures
respectively. Each layer is followed by a SiLU activation function (Elfwing et al., 2018). All convolutional
layers have a 3 × 3 kernel.

In each setting, we consider an implementation of SPL (i) with various γ ranging in {10i, i ∈ {−3, . . . , 3}},
(ii) with 1, 2, 4 or 6 inner iterations, (iii) with (Armijo SPL) or without additional linesearch (SPL). We test
SPL against SGD, SGD with momentum, Adam, Shampoo and KFAC, whose learning rates are searched on
a log 10 scale in {10i, i ∈ {−5, . . . , 0}}. For KFAC, we consider a fixed momentum of 0.9, a fixed damping of
10−3 and used the implementation available at https://github.com/google-deepmind/kfac-jax with support
for parallelism on accelerators.

The results are presented on Figures 9, 10, 11. We observe that SPL-Armijo performs generally on par with
its competitors, performing best for small bath-sizes. For small batch-sizes, we also observed that the best
hyperparameters were generally to fix γ to 1., and the number of inner iterations to 2. On the other hand,
for larger batch-sizes, we observed that the performance of Armijo-SGD can deteriorate. Interestingly, we
observed that for larger models and batch-sizes the best performances were obtained for larger number of
inner iterations and smaller γ.

32

https://github.com/google-deepmind/kfac-jax

Under review as submission to TMLR

0 2 4
Step 1e5

2

4

6

Tr
ai

n
Lo

ss

0 2 4 6 8
Time 1e4

2

4

6

Tr
ai

n
Lo

ss

0 2 4
Step 1e5

0.0

0.2

0.4

0.6

Te
st

 A
cc

.
0 2 4 6 8

Time 1e4

0.0

0.2

0.4

0.6

Te
st

 A
cc

.

ResNet18 Batch Size 256

SGD SGD Mom. Adam Armijo SPL SPL

0 2 4
Step 1e5

2

4

6

Tr
ai

n
Lo

ss

0.00 0.25 0.50 0.75 1.00
Time 1e5

2

4

6

Tr
ai

n
Lo

ss

0 2 4
Step 1e5

0.0

0.2

0.4

0.6

Te
st

 A
cc

.

0.00 0.25 0.50 0.75 1.00
Time 1e5

0.0

0.2

0.4

0.6

Te
st

 A
cc

.

ResNet34 Batch Size 256

SGD SGD Mom. Adam Armijo SPL SPL

0.0 0.5 1.0
Step 1e5

2

4

6

Tr
ai

n
Lo

ss

0.0 2.5 5.0 7.5
Time 1e4

2

4

6

Tr
ai

n
Lo

ss

0.0 0.5 1.0
Step 1e5

0.0

0.2

0.4

0.6

Te
st

 A
cc

.

0.0 2.5 5.0 7.5
Time 1e4

0.0

0.2

0.4

0.6

Te
st

 A
cc

.

ResNet34 Batch Size 1024

SGD SGD Mom. Adam Armijo SPL SPL

Figure 8: ImageNet. Top: ResNet18 batch-size 256, Middle: ResNet34 batch-size 256, Bottom: ResNet34
batch-size 1024, for various regularizations γ, various maximum inner iterations τ .

33

Under review as submission to TMLR

0 2 4 6 8
Step 1e4

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5
Time 1e3

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss
0 2 4 6 8

Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

0.0 0.5 1.0 1.5
Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

Batch Size 64

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0.0 0.5 1.0
Time 1e3

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.
0.0 0.5 1.0

Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

Batch Size 256

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

Figure 9: Short CNN (128 × 1, 64 × 1, 32 × 1) Top: Batch-size 64, Middle: Batch-size 256, Bottom: Batch-size
1024. Best of various regularizations γ in {10i, i ∈ {−3, . . . , 3}}. Best of various max inner iterations τ in
(1, 2, 4, 6).

0 2 4 6 8
Step 1e4

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 2 4 6
Time 1e3

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 2 4 6 8
Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

0 2 4 6
Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.
Batch Size 64

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 1 2
Time 1e3

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

0 1 2
Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

Batch Size 256

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

Figure 10: Medium CNN (128 × 2, 64 × 2, 32 × 2) Top: Batch-size 64, Middle: Batch-size 256, Bottom:
Batch-size 1024. Best of various regularizations γ in {10i, i ∈ {−3, . . . , 3}}. Best of various max inner
iterations τ in (1, 2, 4, 6).

34

Under review as submission to TMLR

0 2 4 6 8
Step 1e4

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 2 4 6
Time 1e3

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 2 4 6 8
Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

0 2 4 6
Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

Batch Size 64

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0 2 4
Time 1e3

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
Lo

ss

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

0 2 4
Time 1e3

0.2

0.4

0.6

0.8

Te
st

 A
cc

.

Batch Size 256

SGD SGD Mom. Adam Armijo SPL SPL KFAC Shampoo

Figure 11: Long CNN (128 × 3, 64 × 3, 32 × 3). Top: Batch-size 64, Middle: Batch-size 256, Bottom:
Batch-size 1024. Best of various regularizations γ in {10i, i ∈ {−3, . . . , 3}}. Best of various max inner
iterations τ in (1, 2, 4, 6).

35

	Introduction
	Prox-linear directions via the primal
	Variational perspective
	Convex-linear approximations
	Quadratic-linear approximations
	Practical implementation

	Prox-linear directions via the dual
	Convex-linear approximations
	Quadratic-linear approximations
	Linear case: connection with SDCA

	Analysis
	Experiments
	Prox-linear vs. stochastic gradient
	Dual vs. primal
	Robustness to hyperparameters
	Comparison with existing algorithms

	Conclusion
	Detailed literature review
	Non-differentiable regularizer extension
	Primal
	Dual
	Examples of regularizers

	Proofs
	Derivation of the dual subproblem
	Approximate dual subproblem
	Dual of quadratic approximation of convex losses
	Conjugate gradient method for quadratic approximations
	Prox-linear directions define critical points
	Proof of Proposition 1 (descent direction, exact case)
	Proof of Proposition 2 (descent direction, inexact case)

	Computational complexities
	Experimental Details
	Additional experiments
	Diagnosis experiments
	Additional architectures

