

VASEVQA-3D: BENCHMARKING 3D VLMS ON ANCIENT GREEK POTTERY

000
001
002
003
004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
19

054 domain is crucial for digital heritage preservation and cultural heritage transmission, creating an
 055 urgent need for specialized vase-domain VLMs.
 056

057 To address the challenge of 3D vase artifact data scarcity, we need to construct specialized 3D vase
 058 datasets and benchmarks that can systematically assess model performance on 3D cultural heritage
 059 objects. Specifically, ancient Greek pottery requires 3D understanding because its archaeological
 060 significance lies in spatial features (symmetry, proportions, morphology) and complete geomet-
 061 ric representation, which cannot be fully captured through fragmented 2D views. To address the
 062 challenge of insufficient model expertise, we need to develop VLMs with vase-domain expertise,
 063 enhancing model capabilities in archaeological analysis tasks through domain-adaptive training.
 064

065 We introduce **VaseVQA-3D**, a specialized dataset for ancient Greek pottery visual question answer-
 066 ing, addressing the data gap in this professional domain. Our question-answer pairs are structured
 067 around six archaeological semantic dimensions (Fabric, Technique, Shape, Dating, Decoration, At-
 068 tribution), reflecting professional archaeological knowledge rather than generic visual attributes. We
 069 propose a comprehensive pipeline for transforming existing 2D vase images into high-fidelity 3D
 070 representations, including rigorous data filtering, 2D-to-3D conversion techniques, and large model
 071 enhancement of existing vase QA data. We collect 24 high-quality real GLB models as *VaseEval*
 072 to systematically evaluate the effectiveness of our data synthesis pipeline. Based on the validated
 073 high-quality data, we develop **VaseVLM**, a VLM specifically fine-tuned for 3D vase under-
 074 standing capabilities through domain-adaptive training strategies and archaeological expertise in-
 075 tegration. We conduct extensive evaluations on multiple state-of-the-art VLMs, and experimental results
 076 demonstrate that our fine-tuned model can achieve better recognition and understanding of 3D vase
 077 data, validating the effectiveness of our approach in 3D vase and other cultural heritage domains,
 078 providing new technical perspectives and solutions for digital heritage preservation.
 079

080 In summary, the contributions of our paper can be summarized in three folds:
 081

- 082 • We introduce **VaseVQA-3D**, a comprehensive dataset for evaluating VLMs on 3D ancient pot-
 083 ttery, including 664 high-quality 3D vase models and diverse question-answer pairs exploring vase
 084 attribute information. We also construct *VaseEval* for evaluating 3D asset quality, filling the data
 085 gap in this professional domain.
 086 • We propose **VaseVLM**, a vision-language model specifically fine-tuned for 3D vase under-
 087 standing. Since 3D vase artifacts are rare and constitute long-tail data, existing VLMs struggle with
 088 such specialized tasks. Our VaseVLM employs a two-stage training approach: first establishing
 089 baseline performance through LoRA-based supervised fine-tuning (SFT) on 360-degree rotation
 090 videos and archaeological captions, then applying GRPO reinforcement learning with our novel
 091 Reinforcement Learning with Verifiable Rewards (RLVR) framework that decomposes archaeo-
 092 logical descriptions into six semantic dimensions (Fabric, Technique, Shape, Dating, Decoration,
 093 Attribution) for multi-dimensional reward computation and quality control.
 094 • We conduct comprehensive experimental evaluation demonstrating significant improvements in
 095 archaeological VQA tasks. Our VaseVLM-7B-RL achieves 12.8% improvement in R@1 accuracy
 096 and 6.6% improvement in lexical similarity compared to the strongest baselines on the VaseVQA-
 097 3D dataset. Beyond technical contributions, our work provides meaningful exploration for AI
 098 applications in cultural heritage preservation, offering new pathways for digital heritage analysis
 099 and interdisciplinary collaboration between computer science and archaeology.
 100 • We conduct comprehensive experimental evaluation with significant social impact, validating the
 101 effectiveness of our approach through extensive experiments, while our work has important so-
 102 cial value in digital heritage preservation, providing meaningful exploration for AI technology
 103 applications in cultural heritage protection.

104 2 RELATED WORK

105 **VLMs and Visual Question Answering.** VLMs serve as core technology in multimodal AI, en-
 106 abling machines to understand and reason about visual content through natural language. Modern
 107 VLM development is grounded in contrastive learning, with CLIP (Radford et al., 2021) having
 108 pioneered large-scale visual-text alignment. Recent large VLMs have significantly enhanced vi-
 109 sual understanding capabilities. Closed-source models like GPT-4V (Hurst et al., 2024) and Gemini
 110 (Comanici et al., 2025), and open-source models such as Qwen2.5-VL (Bai et al., 2025) and
 111 InternVL (Chen et al., 2024) have demonstrated remarkable performance across various multimodal

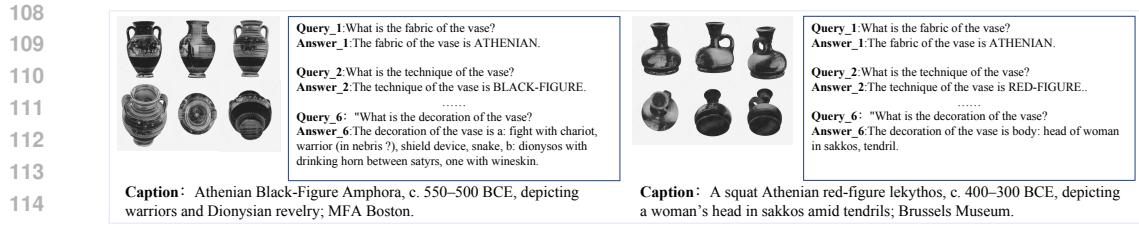


Figure 2: **QA in VaseVQA-3D dataset.** Each data entry contains high-quality 3D vase models, structured question-answer pairs, and GPT-4o enhanced descriptive captions, providing comprehensive support for multimodal understanding of ancient Greek pottery.

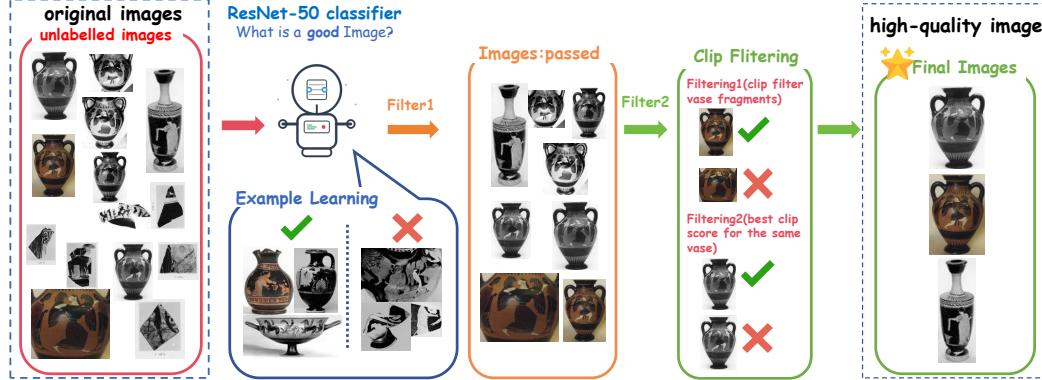


Figure 3: **Complete Data Quality Filtering Pipeline.** The figure shows our comprehensive filtering methodology, including ResNet-50-based quality assessment for removing low-quality images, followed by dual CLIP-based semantic filtering for fragment removal and optimal image selection.

tasks. Specialized techniques have emerged in 3D vision-language understanding: Cap3D (Luo et al., 2023), DiffuRank (Luo et al., 2024), and LLaVA-3D (Zhu et al., 2024) achieved advances in 3D model descriptions and question-answering.

3D Generation and Reconstruction. In image-to-3D model generation, DreamFusion (Poole et al., 2022) pioneered the application of image diffusion priors to 3D generation. Recent advances include TripoSG (Li et al., 2025) and Hunyuan3D (Lai et al., 2025), which achieved state-of-the-art performance in 3D shape generation tasks through improved architectures and training strategies.

Cultural Heritage and Archaeological AI. AI technologies are effectively enhancing cultural heritage preservation. Recent works include ArchaeoScape (Perron et al., 2024) for archaeological site identification and automated restoration methods for cultural artifacts (Feng et al., 2025).

For detailed related work introduction, please refer to Appendix A.2.

3 DATASET: VASEVQA-3D

Data Sources and Collection Our VaseVQA-3D dataset construction is based on two main data sources: the large-scale 2D vase image collection and corresponding archaeological metadata provided by the VaseVQA (Ge et al., 2025) dataset (as shown in Figure 5), and a curated set of high-quality 3D references drawn from the Sketchfab digital museum (as shown in Figure 4). The VaseVQA dataset serves as our primary data source, containing over 30,000 2D images of ancient Greek vases, each accompanied by detailed archaeological metadata annotations covering six core vase attributes: fabric composition, manufacturing techniques, morphological shapes, historical dating, decorative elements, and artistic attribution. To validate our 3D generation pipeline quality and perform generative model selection, we collected high-quality reference data from the Sketchfab digital museum to construct our VaseEval validation set for 3D generation quality assessment.

Data Quality Filtering However, the original VaseVQA dataset suffers from significant quality issues, containing numerous vase fragments, blurred images, and even sketches, which severely impact the dataset's suitability for high-quality 3D generation tasks. To enhance dataset quality,

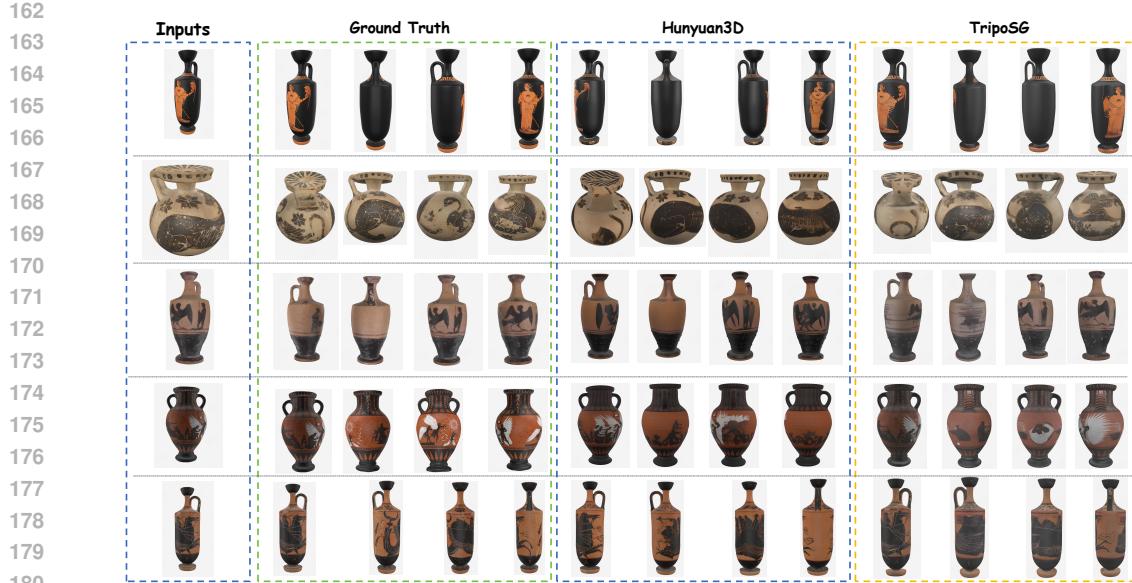


Figure 4: 3D Generation Methods Comparison. Comparison of TripoSG and Hunyan3D generation effects based on the VaseEval validation set. TripoSG performs better in mesh quality, and although Hunyan3D has advantages in texture mapping effects, TripoSG-generated models are closer to ground truth, thus selected for large-scale dataset construction.

we designed a three-stage progressive filtering framework, as shown in Figure 3. First, we train a ResNet-50 binary classifier based on manual annotations for preliminary quality screening, automatically identifying and removing low-quality images. Second, we employ CLIP models for fragment detection, using predefined text prompts to calculate the similarity difference between images and descriptions of complete vases versus fragments, adopting a binary classification approach to automatically identify and remove vase fragments. Finally, addressing the multi-viewpoint issue for each vase, we use CLIP to compute similarity scores between each viewpoint image and high-quality descriptive text, selecting the image with the highest score as the optimal representative view. This comprehensive filtering mechanism ensures the final dataset contains only high-quality, complete, and archaeologically representative vase images, providing a reliable foundation for subsequent 3D generation and VQA tasks.

VaseEval: 3D Generation Quality Assessment To ensure the quality and reliability of our 3D generation pipeline, we construct VaseEval(as shown in Figure 4), a specialized validation set consisting of 24 high-quality ancient Greek vase GLB files carefully selected from the Sketchfab digital museum. These reference models serve as ground truth for evaluating the effectiveness of different 3D generation methods and validating our data synthesis pipeline.

As shown in Figure 4. VaseEval covers diverse vase morphologies including narrow-body vases, wide-mouth vessels, and various decorative patterns, providing comprehensive coverage for quality assessment. Each model in VaseEval features clear geometric structures and rich textural details, enabling systematic evaluation of both mesh quality and texture fidelity in generated 3D models.

Through comparative analysis using VaseEval, we validated our choice of 3D generation method and ensured the archaeological accuracy and visual quality of our final VaseVQA-3D dataset. VaseEval served as the benchmark for selecting the most suitable 3D generation method, ensuring that our chosen approach produces high-quality 3D models with accurate geometric representation and visual fidelity for ancient Greek pottery.

VaseVQA-3D Construction Based on the filtered high-quality 2D images, we designed a comprehensive data synthesis pipeline that converts 2D images into high-fidelity 3D models while maintaining archaeological accuracy and cultural authenticity, as shown in Figure 5. Our data synthesis pipeline contains three core stages: first, filtering 3,880 high-quality 2D images from 30,000+ original images through ResNet-50 and CLIP dual filtering mechanisms; then, converting these 2D

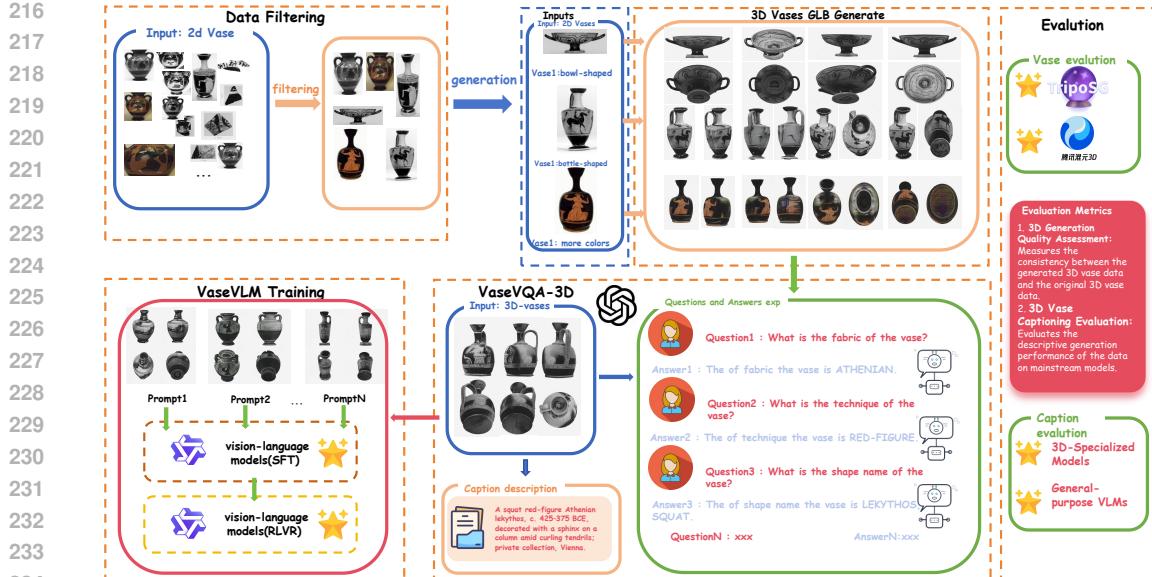


Figure 5: Complete Pipeline for Vase Dataset Construction. The pipeline progresses from initial data collection (30K+ images) through quality filtering (664 images), 3D generation (664 models), QA construction (4K+ pairs), to final model training. Each component includes specific quality control mechanisms and validation procedures.

images into 664 high-fidelity 3D models using TripoSG technology; and finally, generating 4,460 structured question-answer pairs and corresponding descriptive captions by cleaning and organizing the original archaeological metadata using GPT-4o (Hurst et al., 2024).

To construct high-quality 3D vase models, we evaluated two currently recognized superior 2D-to-3D generation methods: TripoSG and Hunyuan3D, both of which excel in 2D-to-3D reconstruction tasks. We used the VaseEval validation set to evaluate the effectiveness of both generation methods by capturing front-view photographs of these 3D models, as shown in Figure 4. From the analysis of the results in the figure, we found that TripoSG generated higher mesh quality, while Hunyuan3D produced better texture mapping effects. However, to restore the ground truth effect, we generally believed that TripoSG generated more realistic results with better vase model quality, so we ultimately chose TripoSG for large-scale data generation.

As shown in Figure 2. Our VaseVQA-3D dataset comprises two complementary components. The structured VQA component directly adopts the original question-answer content from VaseVQA, covering six core vase attributes: Fabric, Technique, Shape, Dating, Decoration, and Attribution. Each question follows the standardized format “What is the [attribute] of the vase?” to ensure consistency and fairness in evaluation. The answers are derived from verified archaeological metadata, maintaining factual accuracy and scholarly reliability.

The caption component provides descriptive captions for each vase by organizing and cleaning the original archaeological metadata from the VaseVQA dataset. The original metadata contains structured information (e.g., “Fabric: ATHENIAN; Technique: BLACK-FIGURE; Shape: LEKYTHOS; Date: -525 to -475 BCE”) but is often fragmented and noisy. We use GPT-4o to consolidate this existing archaeological information into coherent museum-style descriptions (e.g., “Athenian black-figure lekythos, c. 525–475 BCE”) without introducing new archaeological content. This cleaning process removes noise and improves readability while preserving the original archaeological facts. The final VaseVQA-3D dataset contains GLB-format 3D model files, with each model associated with corresponding structured question-answer pairs and cleaned descriptive captions, providing a solid foundation for training and evaluating VLMs in the cultural heritage domain.

4 THE PROPOSED METHOD: VASEVLM

Overview This section introduces the comprehensive pipeline of our 3D visual question answering system specifically designed for ancient Greek vase analysis, as shown in Figure 5. Our method

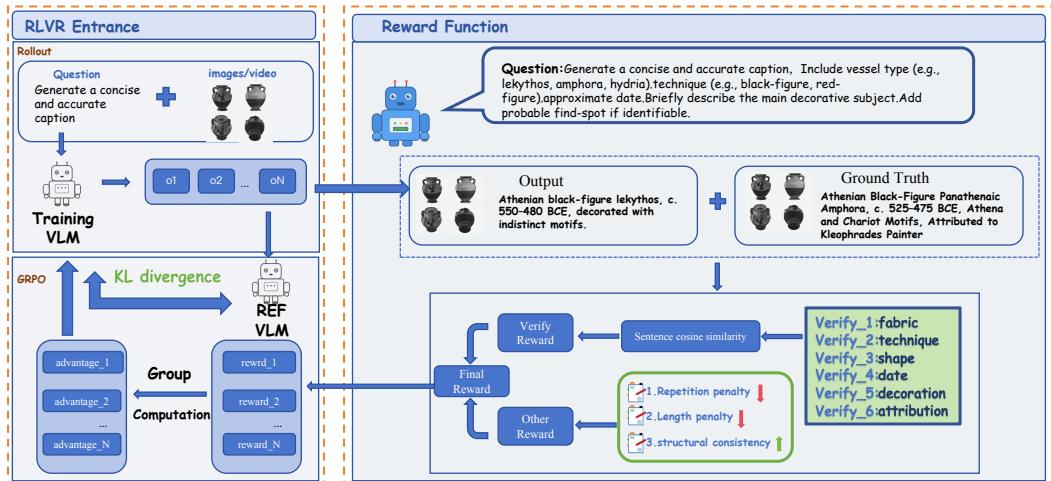


Figure 6: Reinforcement Learning with Verifiable Rewards (RLVR) Framework. The figure shows our multi-dimensional reward computation system that evaluates archaeological descriptions across six semantic dimensions: Fabric, Technique, Shape, Dating, Decoration, and Attribution. The framework includes semantic similarity analysis, quality control penalties, and similarity rewards to ensure accurate and academically appropriate responses.

contains several key components: initial data collection from large-scale 2D vase datasets, comprehensive data quality filtering combining deep learning classifiers and CLIP-based methods, 3D generation method validation and large-scale model generation, refining and organizing content based on original VaseVQA QA data using GPT-4o to obtain concise and clear caption question-answer data to improve QA quality and construct the final VaseVQA-3D, dataset quality evaluation using multiple VLM baselines, and specialized model training using fine-tuning and reinforcement learning.

Supervised Fine-Tuning (SFT) Based on the constructed VaseVQA-3D dataset, we further trained a specialized ancient Greek vase analysis model VaseVLM and evaluated the dataset's performance across different VLMs. We adopt Qwen2.5-VL (3B and 7B variants) as the base model, with training inputs comprising 360-degree rotation videos generated from GLB files and corresponding refined caption descriptions that contain rich archaeological information with concise expression. We establish the VaseVLM baseline model through LoRA-based (Hu et al., 2022) supervised fine-tuning (SFT) (Ouyang et al., 2022).

Reinforcement Learning (RL) We later employ the GRPO (Shao et al., 2024) reinforcement learning method for further optimization. Our VaseVQA-3D dataset is naturally suited for RLVR (Lambert et al., 2024) training, as the ground truth captions contain complete information across six dimensions (Fabric, Technique, Shape, Dating, Decoration, and Attribution). During the GRPO rollout phase, the model generates captions containing this dimensional information, which are then compared and verified against the standard answers in the ground truth, analogous to mathematical problem-solving processes where the model generates answers for comparison with standard solutions.

As shown in Figure 6, our GRPO strategy employs Reinforcement Learning with Verifiable Rewards (RLVR) to compute the reward function. This approach decomposes archaeological descriptions into six core semantic dimensions for evaluation, each with corresponding weights: Fabric ($w_f = 0.20$), Technique ($w_t = 0.20$), Shape ($w_s = 0.15$), Dating ($w_d = 0.15$), Decoration ($w_{dec} = 0.20$), and Attribution ($w_a = 0.10$). The dimensional reward r_i is calculated as:

$$r_i = \begin{cases} \text{sim}(g_i, t_i), & \text{if } \text{sim}(g_i, t_i) \geq \tau \\ 0, & \text{otherwise} \end{cases} \quad (1)$$

where g_i and t_i represent the generated content and target content for dimension i , $\text{sim}(\cdot, \cdot)$ denotes cosine similarity, and $\tau = 0.7$ is the similarity threshold. In addition to content accuracy assessment,

324
325 Table 1: CLIP-based Data Quality Filtering Results.
326

327 Filtering Stage	328 Input Images	329 Output Images	330 Retention Rate	331 Quality Score
327 Initial Collection	328 30,000	329 30,000	330 100%	331 -
327 Resnet-50 Quality Filtering	328 30,000	329 13,599	330 45.3%	331 -
327 CLIP Fragment Filtering	328 13,599	329 6,330	330 46.5%	331 0.156
327 CLIP View Selection	328 6,330	329 3,880	330 61.3%	331 0.234
327 3D Generation (TripoSG)	328 3,880	329 664	330 17.1%	331 -
Overall Pipeline		30,000	664	2.2%
				0.234

333 Table 2: 3D Generation Methods Comparison on 24 Ground Truth Models.
334

335 Method	336 PSNR↑	337 SSIM↑	338 LPIPS↓	339 CD↓	340 NC↑	341 CLIP-I↑	342 CLIP-T↑
Reference	15-25	0.7-0.9	0.1-0.3	0.1-0.3	0.6-0.8	0.7-0.9	0.6-0.8
TripoSG (Li et al., 2025)	17.21	0.8676	0.1308	0.1490	0.7232	0.8896	0.9594
Hunyuan3D (Zhao et al., 2025)	17.23	0.8657	0.1319	0.1515	0.7389	0.8837	0.9237

343 our reward function includes quality control penalty mechanisms:
344

$$P = \alpha_l P_{\text{length}} + \alpha_r P_{\text{repetition}} + \alpha_i P_{\text{irrelevant}}, \quad (2)$$

345 which penalizes inappropriate length, repetitive phrasing, and irrelevant content respectively, with
346 penalty weights set to $\alpha_l = 0.1$, $\alpha_r = 0.1$, and $\alpha_i = 0.15$. The final reward function is:
347

$$R = \sum_{i=1}^6 w_i \cdot r_i - P + B, \quad (3)$$

348 where B is a sequence matching-based similarity reward term, and the complete reward is
349 constrained to the unit interval $[0, 1]$ to ensure training stability during policy optimization.
350

351 Through this complete pipeline of data construction, model training, and evaluation, we success-
352 fully established an end-to-end system from 2D images to 3D models to specialized VQA models,
353 providing an effective technical solution for intelligent analysis of ancient Greek pottery.
354

355 5 EXPERIMENTS

356 This section presents a comprehensive experimental evaluation of our pipeline for constructing
357 VaseVQA-3D datasets and training specialized models for ancient Greek vase analysis. We con-
358 duct extensive experiments to validate the effectiveness of each component in our methodology,
359 compare against state-of-the-art baselines, and provide a detailed analysis of the results across mul-
360 tiple evaluation dimensions. Our experiments focus on three key aspects: CLIP-based data quality
361 filtering, 3D generation method comparison, and dataset quality assessment.
362

363 5.1 DATASETS AND EVALUATION METRICS

364 **Experimental Datasets.** This study uses three datasets for experimental validation at different
365 stages. VaseVQA Original Dataset contains 30,000 ancient Greek vase images as the input data
366 source for our pipeline. VaseVQA-3D is the core dataset after quality filtering and 3D generation,
367 containing 664 3D vase models and 4,460 question-answer pairs, divided into training set (420
368 models), validation set (90 models), and test set (90 models) with a 70%/15%/15% split. VaseE-
369 val contains 24 professional GLB files collected from Sketchfab as ground truth references for 3D
370 generation method evaluation.
371

372 **Evaluation Metrics.** We adopt a three-category evaluation metric system. *3D Generation Qual-
373 ity Metrics* are used for VaseEval validation, including visual quality metrics (PSNR (Wang et al.,
374 2004), SSIM (Hore & Ziou, 2010), LPIPS (Johnson et al., 2016)), geometric accuracy metrics
375 (Chamfer Distance(CD) (Fan et al., 2017b), Normal Consistency(NC) (Li et al., 2023a)), and se-
376 mantic consistency metrics (CLIP Image/Text Similarity) (Radford et al., 2021). *VQA Capability*
377 *Evaluation Metrics* are used for model performance assessment, including FID Score (Heusel et al.,

378 Table 3: Comprehensive Dataset Quality Assessment Results by Individual Models.
379

380 Method	381 FID\downarrow	382 CLIP\uparrow	383 R@10\uparrow	384 R@5\uparrow	385 R@1\uparrow	386 Lexical Sim.\uparrow
<i>3D-Specialized Models</i>						
387 DiffuRank (Luo et al., 2024)	0.421	0.798	16.67%	8.33%	2.08%	0.274
388 Cap3D (Luo et al., 2023)	0.445	0.792	14.58%	7.29%	1.56%	0.267
389 LLaVA3D (Zhu et al., 2024)	0.494	0.784	10.42%	5.21%	1.04%	0.238
<i>Closed-source VLMs</i>						
390 Gemini-2.5-flash (Comanici et al., 2025)	0.325	0.736	28.57%	17.58%	2.20%	0.210
Claude-4-sonnet (Anthropic, 2025b)	0.353	0.676	23.96%	10.42%	3.12%	0.188
Gemini-2.5-Pro (Comanici et al., 2025)	0.397	0.680	22.92%	14.58%	3.12%	0.162
GPT-4.1 (OpenAI, 2025)	0.501	0.644	25.00%	10.42%	3.12%	0.128
Claude-3.5-sonnet (Anthropic, 2024)	0.455	0.643	15.62%	8.33%	2.08%	0.116
Douba-1.5-vision-pro-32k (ByteDance, 2025)	0.504	0.606	14.58%	4.17%	1.04%	0.074
GPT-4o (Hurst et al., 2024)	0.582	0.520	13.54%	6.25%	2.08%	0.104
Claude-3.7-sonnet (Anthropic, 2025a)	0.600	0.339	13.54%	6.25%	1.04%	0.101
<i>Open-source VLMs</i>						
391 InternVL (Chen et al., 2024)	0.376	0.771	10.42%	8.33%	2.08%	0.252
392 Qwen2.5-VL-7B (Bai et al., 2025)	0.334	0.775	18.75%	9.38%	2.08%	0.217
393 Qwen2.5-VL-3B (Bai et al., 2025)	0.358	0.782	9.38%	6.25%	1.04%	0.259
394 VaseVL (Ge et al., 2025)	0.493	0.790	10.4%	6.25%	2.08%	0.255
395 VaseVLM-3B-SFT (Ours)	0.359	0.788	17.71%	8.33%	2.08%	0.223
396 VaseVLM-3B-RL (Ours)	0.363	0.789	17.71%	10.42%	2.08%	0.245
397 VaseVLM-7B-SFT (Ours)	0.332	0.779	20.83%	10.42%	3.12%	0.272
398 VaseVLM-7B-RL (Ours)	0.328	0.792	21.24%	11.12%	3.52%	0.276

400 2017), CLIP Score (Shen et al., 2021), retrieval metrics R@1/5/10 (Fang et al., 2015), and lexical
401 similarity (Lin, 2004). *Human Evaluation Metrics* employ 10 experts to score model-generated
402 captions on a 0-5 scale, evaluating description accuracy and cultural appropriateness.

404 5.2 IMPLEMENTATION DETAILS

406 **Training Setup.** All experiments are conducted on a high-performance computing cluster equipped
407 with NVIDIA A100 GPUs. The hardware configuration includes 8× NVIDIA A100 GPUs (80GB
408 VRAM each), 2× Intel Xeon Platinum 8358 CPUs (32 cores each), 1TB DDR4 memory, and 10TB
409 NVMe SSD storage. The total computational time for the entire experimental pipeline is approxi-
410 mately 14 days on a single A100, including 13.5 days for 3D generation, 4 hours for supervised
411 fine-tuning, and 20 hours for reinforcement learning training. For detailed hyperparameters and
412 implementation settings, please refer to Section A.4.

413 **Experimental Workflow.** We adopt a three-stage progressive mechanism to construct our
414 VaseVQA-3D dataset and train specialized models. The first stage involves data filtering using
415 ResNet-50 and CLIP-based quality assessment to select high-quality vase images from the original
416 VaseVQA dataset. The second stage focuses on 3D generation and dataset construction, where we
417 employ TripoSG for single-image 3D reconstruction and generate corresponding video sequences
418 with enhanced captions. The third stage encompasses model training and evaluation, including
419 supervised fine-tuning and reinforcement learning optimization of VaseVLM variants. For detailed
420 technical implementation, please refer to Appendix A.5.

422 5.3 EXPERIMENTAL RESULTS

424 Our comprehensive experimental evaluation demonstrates the effectiveness of each component in
425 our pipeline for constructing high-quality VaseVQA-3D datasets and training specialized models
426 for ancient Greek vase analysis. The results validate our approach across multiple dimensions,
427 including data quality filtering, 3D generation method selection, and dataset quality assessment.

428 **Data Quality Filtering Effectiveness Analysis.** Based on the results in Table 1, our three-stage
429 progressive filtering strategy demonstrates high selectivity and effectiveness. Starting from 30,000
430 initial images, the classifier quality filtering retains 45.3% of images, effectively removing blurry,
431 overly dark, and low-resolution samples. The subsequent CLIP fragment filtering further screens
432 to 46.5%, successfully identifying and removing vase fragments. The CLIP view selection stage

432 Table 4: Human Evaluation Results: Expert Ratings for Vase Caption Generation (Scale: 0-5).
433

Method	Exp-1	Exp-2	Exp-3	Exp-4	Exp-5	Exp-6	Exp-7	Exp-8	Exp-9	Exp-10	Ave.	Rank
<i>Fine-tuned Models (Ours)</i>												
VaseVLM-7B-RL	4.6	4.8	4.5	4.7	4.4	4.6	4.5	4.4	4.7	4.5	4.57	1
VaseVLM-3B-RL	4.4	4.6	4.3	4.5	4.2	4.4	4.3	4.2	4.5	4.3	4.37	2
VaseVLM-7B-SFT	4.2	4.4	4.1	4.3	4.0	4.2	4.1	4.0	4.3	4.1	4.17	3
VaseVLM-3B-SFT	4.0	4.2	3.9	4.1	3.8	4.0	3.9	3.8	4.1	3.9	3.97	4
<i>3D-Specialized Models</i>												
DiffuRank	4.1	4.3	4.0	4.2	3.9	4.1	4.0	3.9	4.2	4.0	4.07	5
<i>General-purpose VLMs</i>												
Gemini-2.5-flash	3.9	4.1	3.8	4.0	3.7	3.9	3.8	3.7	4.0	3.8	3.87	6
VaseVL	3.8	4.0	3.7	3.9	3.6	3.8	3.7	3.6	3.9	3.7	3.77	7
Claude-4-sonnet	3.7	3.9	3.6	3.8	3.5	3.7	3.6	3.5	3.8	3.6	3.67	8
Qwen2.5-VL-7B	3.6	3.8	3.5	3.7	3.4	3.6	3.5	3.4	3.7	3.5	3.57	9
Gemini-2.5-Pro	3.5	3.7	3.4	3.6	3.3	3.5	3.4	3.3	3.6	3.4	3.47	10
Overall Average	4.0	4.2	3.9	4.1	3.8	4.0	3.9	3.8	4.1	3.9	3.97	–

446 has a retention rate of 61.3%, ensuring that only the best viewing angle is retained for each vase,
447 ultimately obtaining 3,880 high-quality images.

449 The quality score significantly improved from 0.156 after fragment filtering to 0.234 after view
450 selection, an improvement of 50%. After the complete filtering pipeline, the TripoSG 3D generation
451 process successfully produced 664 high-quality GLB models from 3,880 images, with a generation
452 success rate of 17.1%.

453 **3D Generation Method Comparison Analysis.** To select the optimal 3D generation method for
454 our dataset construction, we conducted a comprehensive comparison between TripoSG and Hun-
455 yuan3D using our VaseEval validation set. The evaluation encompasses seven key metrics including
456 image quality, geometric accuracy, and semantic consistency. Table 2 shows that while both meth-
457 ods perform competitively, TripoSG demonstrates superior performance in geometric reconstruction
458 accuracy and semantic understanding, making it more suitable for archaeological VQA applications.
459 For detailed comparative analysis, please refer to Appendix A.6.

460 **Comprehensive Dataset Quality Assessment.** After confirming the effectiveness of our 3D gen-
461 eration approach, we proceed to generate our complete 3D vase dataset consisting of 664 models.
462 To ensure the quality and reliability of our constructed dataset, as shown in Table 3, we establish a
463 comprehensive evaluation framework using multiple state-of-the-art VLMs as baselines. We eval-
464 uate both the QA effectiveness and caption quality of our generated dataset across different model
465 categories, including 3D-specialized models, advanced 3D VLMs, and general-purpose VLMs. For
466 detailed experimental analysis, please refer to Appendix A.7. For detailed examples across VLMs,
467 please refer to Appendix A.9 and A.8.

468 Our VaseVLM models perform excellently across all metrics, validating the effectiveness of special-
469 ized training. VaseVLM-7B-RL achieves the best comprehensive performance (FID: 0.328, CLIP:
470 0.792, R@10: 21.24%), maintaining low FID while achieving high CLIP scores and retrieval accu-
471 racy.

472 **Performance Comparison and Baseline Selection.** Our VaseVLM-7B-RL demonstrates superior
473 performance across multiple metrics. Specifically, we achieve 3.52% in R@1 accuracy, representing
474 a 12.8% relative improvement over Claude-4-sonnet’s 3.12% (the highest R@1 among all baseline
475 models). In lexical similarity, our model achieves 0.276, a 6.6% improvement over Qwen2.5-VL-
476 3B’s 0.259 (the best performance in this metric among comparable models). We compare against
477 different baselines for different metrics because no single baseline model excels across all evaluation
478 dimensions, reflecting the multi-faceted nature of archaeological VQA tasks.

479 It is important to note that 3D-specialized models (DiffuRank, Cap3D, LLaVA3D) operate under
480 fundamentally different task settings: they generate descriptions directly from GLB files with com-
481 plete 3D geometric information, while our VaseVLM understands 3D content from 2D rotation
482 videos, requiring spatial reasoning and 3D structure inference. These models are included for com-
483 pleteness but are not directly comparable due to different input modalities.

484 **Human Evaluation Results Analysis.** The expert evaluation results in Table 4 further validate the
485 superiority of our approach. VaseVLM-7B-RL achieved the highest average score of 4.57, receiv-
ing consistent recognition from 10 archaeological experts. Reinforcement learning trained mod-

486 els (VaseVLM-7B-RL: 4.57, VaseVLM-3B-RL: 4.37) significantly outperformed supervised fine-
 487 tuning versions (VaseVLM-7B-SFT: 4.17, VaseVLM-3B-SFT: 3.97), with an average improvement
 488 of approximately 0.4 points, demonstrating the effectiveness of the GRPO method in improving
 489 description quality and cultural appropriateness.

490 Compared to baseline models, our best model surpassed all 3D-specialized models and general-
 491 purpose VLMs. Particularly compared to the best-performing baseline DiffuRank (4.07 points),
 492 VaseVLM-7B-RL achieved a 12.3% improvement, demonstrating the significant effects of spe-
 493 cialized training and reinforcement learning optimization. These results validate our approach of
 494 domain-specific training and reinforcement learning optimization. While different baseline mod-
 495 els excel in different metrics, our VaseVLM-7B-RL achieves competitive or superior performance
 496 across all evaluation dimensions, demonstrating the effectiveness of specialized training for cultural
 497 heritage VQA tasks.

498

499

500 6 LIMITATIONS AND FUTURE WORK

501

502 While our VaseVQA-3D dataset and pipeline demonstrate effectiveness in 3D cultural heritage anal-
 503 ysis, several limitations exist. The 17.1% data retention rate from filtering reflects the quality chal-
 504 lenges in existing cultural heritage datasets. Our approach requires substantial computational re-
 505 sources for 3D generation and model training.

506 However, we emphasize that our methodology is **not** limited to ancient Greek pottery. To validate
 507 the generalizability of our pipeline across different cultural heritage domains, we conducted supple-
 508 mentary experiments on Chinese bronze artifacts and ancient Greek sculptures (see Appendix A.10).
 509 These experiments demonstrate that our end-to-end pipeline can be effectively adapted to other arti-
 510 fact types by customizing the domain-specific reward dimensions, providing strong evidence for the
 511 broader applicability of our approach.

512 Future work should focus on: (1) improving 3D generation success rates through advanced recon-
 513 struction techniques; (2) extending the framework to other cultural heritage domains beyond ancient
 514 Greek pottery; (3) developing more efficient training methods to reduce computational requirements
 515 while maintaining quality.

517

518

519 7 CONCLUSION

520

521 This paper introduces VaseVQA-3D, the first 3D visual question answering dataset for ancient Greek
 522 pottery analysis, along with a complete end-to-end pipeline for cultural heritage AI applications. We
 523 construct a high-quality dataset containing 664 3D vase models with 4,460 question-answer pairs
 524 through systematic filtering and generation processes. Our VaseEval validation set enables reliable
 525 3D generation method selection and quality assessment. Our specialized VaseVLM models achieve
 526 significant improvements over existing approaches: VaseVLM-7B-RL achieves 12.8% improvement
 527 in R@1 accuracy and 6.6% improvement in lexical similarity compared to the strongest baselines
 528 in their respective metrics. The models demonstrate superior performance in archaeological termi-
 529 nology understanding, validating the effectiveness of domain-specific training for cultural heritage
 530 applications.

531 Importantly, our methodology is not limited to ancient Greek pottery. Supplementary experiments
 532 on Chinese bronze artifacts and ancient Greek sculptures (Appendix A.10) demonstrate that our
 533 pipeline can be effectively generalized to other cultural heritage domains by customizing domain-
 534 specific reward dimensions. This generalizability validates our approach as a scalable framework
 535 for digital heritage preservation across diverse artifact types.

536 VaseVQA-3D establishes a new benchmark for AI-driven cultural heritage analysis, providing both
 537 dataset and methodology for future research. This work demonstrates the potential of specialized AI
 538 systems in preserving and understanding cultural heritage, contributing to interdisciplinary collabora-
 539 tion between computer science and archaeology, and offering a replicable framework for extending
 AI applications to other cultural heritage domains worldwide.

540 REFERENCES
541

542 Efstathios Adamopoulos, Fulvio Rinaudo, and Liliana Ardissono. A critical comparison of 3d digi-
543 tization techniques for heritage objects. *ISPRS International Journal of Geo-Information*, 10(1):
544 10, 2020.

545 Anthropic. Claude 3.5 sonnet. <https://www.anthropic.com/news/claude-3-5-sonnet>, 2024. Accessed: 2025-09-17.

546 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, 2025a. Accessed: 2025-09-17.

547 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/clause-4>, 2025b. Accessed: 2025-09-17; Official technical announcement for Claude Sonnet 4.

548 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
549 swering for spatial scene understanding. In *2022 IEEE/CVF Conference on Computer Vision and*
550 *Pattern Recognition (CVPR)*, pp. 19107–19117, 2022. doi: 10.1109/CVPR52688.2022.01854.

551 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
552 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
553 2025.

554 ByteDance. doubaol-1.5-vision-pro. <https://www.volcengine.com/docs/82379/1553586>, 2025. Accessed: 2025-09-17 (In Chinese).

555 Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman, Jeong Joon Park, Axel
556 Levy, Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel
557 view synthesis with 3d-aware diffusion models. In *IEEE/CVF ICCV*, pp. 4194–4206, 2023.

558 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
559 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
560 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer*
561 *vision and pattern recognition*, pp. 24185–24198, 2024.

562 Casey Chu, Andrey Zhmoginov, and Mark Sandler. Cyclegan, a master of steganography. *arXiv*
563 *preprint arXiv:1712.02950*, 2017.

564 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
565 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
566 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
567 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

568 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
569 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
570 Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
571 Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
572 Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
573 Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Bor-
574 chardt, Dirk Groeneveld, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick, Oscar
575 Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick, Ali
576 Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and open data for state-of-
577 the-art vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
578 *and Pattern Recognition (CVPR)*, pp. 91–104, June 2025.

579 Jiajun Deng, Tianyu He, Li Jiang, Tianyu Wang, Feras Dayoub, and Ian Reid. 3d-llava: Towards
580 generalist 3d lmms with omni superpoint transformer. In *Proceedings of the Computer Vision and*
581 *Pattern Recognition Conference*, pp. 3772–3782, 2025.

582 Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
583 reconstruction from a single image. In *IEEE/CVF CVPR*, pp. 2463–2471, 2017a.

594 Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
 595 struction from a single image. In *Proceedings of the IEEE conference on computer vision and*
 596 *pattern recognition*, pp. 605–613, 2017b.

597

598 Hao Fang, Saurabh Gupta, Forrest Landola, Rupesh K Srivastava, Li Deng, Piotr Dollár, Jianfeng
 599 Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. From captions to visual concepts and
 600 back. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 601 1473–1482, 2015.

602 Haixia Feng, Qingwu Hu, Pengcheng Zhao, Daoyuan Zheng, Mingyao Ai, Siliang Chen, and Xiyu
 603 Hu. Automatic generation of chinese mural line drawings via enhanced edge detection and
 604 cyclegan-based denoising. *npj Heritage Science*, 13(1):345, 2025.

605 Jinchao Ge, Tengfei Cheng, Biao Wu, Zeyu Zhang, Shiya Huang, Judith Bishop, Gillian Shepherd,
 606 Meng Fang, Ling Chen, and Yang Zhao. Vasevqa: Multimodal agent and benchmark for ancient
 607 greek pottery. *arXiv preprint arXiv:2509.17191*, 2025.

608

609 Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and
 610 generative vector representation for objects. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
 611 Welling (eds.), *ECCV*, volume 9910, pp. 484–499, 2016.

612 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 613 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
 614 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

615

616 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 617 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 618 *neural information processing systems*, 30, 2017.

619 Fangzhou Hong, Jiaxiang Tang, Ziang Cao, Min Shi, Tong Wu, Zhaoxi Chen, Shuai Yang, Tengfei
 620 Wang, Liang Pan, Dahua Lin, et al. 3dtopia: Large text-to-3d generation model with hybrid
 621 diffusion priors. *arXiv preprint arXiv:2403.02234*, 2024.

622

623 Alain Hore and Djamel Ziou. Image quality metrics: Psnr vs. ssim. In *2010 20th international*
 624 *conference on pattern recognition*, pp. 2366–2369. IEEE, 2010.

625

626 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 627 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

628

629 Ting Huang, Zeyu Zhang, and Hao Tang. 3d-r1: Enhancing reasoning in 3d vlms for unified scene
 630 understanding. *arXiv preprint arXiv:2507.23478*, 2025a.

631

632 Ting Huang, Zeyu Zhang, Yemin Wang, and Hao Tang. 3d coca: Contrastive learners are 3d cap-
 633 tioners. *arXiv preprint arXiv:2504.09518*, 2025b.

634

635 Ting Huang, Zeyu Zhang, Ruicheng Zhang, and Yang Zhao. Dc-scene: Data-centric learning for 3d
 636 scene understanding. *arXiv preprint arXiv:2505.15232*, 2025c.

637

638 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 639 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 640 *arXiv:2410.21276*, 2024.

641

642 Pablo Jaramillo and Ivan Sipiran. Cultural heritage 3d reconstruction with diffusion networks. In
 643 *European Conference on Computer Vision*, pp. 104–117. Springer, 2024.

644

645 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 646 super-resolution. In *European conference on computer vision*, pp. 694–711. Springer, 2016.

647

648 Rahima Khanam and Muhammad Hussain. What is yolov5: A deep look into the internal features
 649 of the popular object detector. *arXiv preprint arXiv:2407.20892*, 2024.

650

651 Zeqiang Lai, Yunfei Zhao, Haolin Liu, Zibo Zhao, Qingxiang Lin, Huiwen Shi, Xianghui Yang,
 652 Mingxin Yang, Shuhui Yang, Yifei Feng, et al. Hunyuan3d 2.5: Towards high-fidelity 3d assets
 653 generation with ultimate details. *arXiv preprint arXiv:2506.16504*, 2025.

648 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 649 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 650 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

651

652 Yushi Lan, Fangzhou Hong, Shuai Yang, Shangchen Zhou, Xuyi Meng, Bo Dai, Xingang Pan, and
 653 Chen Change Loy. Ln3diff: Scalable latent neural fields diffusion for speedy 3d generation. In
 654 *European Conference on Computer Vision*, pp. 112–130. Springer, 2024.

655 Jingliang Li, Zhengda Lu, Yiqun Wang, Jun Xiao, and Ying Wang. Nr-mvsnet: Learning multi-
 656 view stereo based on normal consistency and depth refinement. *IEEE Transactions on Image
 657 Processing*, 32:2649–2662, 2023a.

658 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 659 training for unified vision-language understanding and generation. In *International conference on
 660 machine learning*, pp. 12888–12900. PMLR, 2022.

661 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 662 pre-training with frozen image encoders and large language models. In *International conference
 663 on machine learning*, pp. 19730–19742. PMLR, 2023b.

664 Weiyu Li, Jiarui Liu, Hongyu Yan, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao
 665 Long. Craftsman3d: High-fidelity mesh generation with 3d native generation and interactive
 666 geometry refiner. *arXiv preprint arXiv:2405.14979*, 2024.

667 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 668 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis
 669 using large-scale rectified flow models. *arXiv preprint arXiv:2502.06608*, 2025.

670 Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Luciddreamer:
 671 Towards high-fidelity text-to-3d generation via interval score matching. In *IEEE/CVF CVPR*, pp.
 672 6517–6526, 2024.

673 Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
 674 Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content
 675 creation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 676 pp. 300–309, 2023.

677 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 678 branches out*, pp. 74–81, 2004.

679 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 680 in neural information processing systems*, 36:34892–34916, 2023a.

681 Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund Varma T, Zexiang Xu, and Hao Su. One-
 682 2-3-45: Any single image to 3d mesh in 45 seconds without per-shape optimization. *Advances in
 683 Neural Information Processing Systems*, 36:22226–22246, 2023b.

684 Qingxiang Liu, Ting Huang, Zeyu Zhang, and Hao Tang. Nav-r1: Reasoning and navigation in
 685 embodied scenes. *arXiv preprint arXiv:2509.10884*, 2025.

686 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 687 Zero-1-to-3: Zero-shot one image to 3d object. In *IEEE/CVF ICCV*, pp. 9264–9275, 2023c.

688 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 689 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 690 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

691 Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
 692 Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
 693 using cross-domain diffusion. In *Proceedings of the IEEE/CVF conference on computer vision
 694 and pattern recognition*, pp. 9970–9980, 2024.

695 Tiange Luo, Chris Rockwell, Honglak Lee, and Justin Johnson. Scalable 3d captioning with pre-
 696 trained models. *Advances in Neural Information Processing Systems*, 36:75307–75337, 2023.

702 Tiange Luo, Justin Johnson, and Honglak Lee. View selection for 3d captioning via diffusion rank-
 703 ing. In *European Conference on Computer Vision*, pp. 180–197. Springer, 2024.
 704

705 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
 706 cupancy networks: Learning 3d reconstruction in function space. In *Proceedings of the IEEE/CVF*
 707 *conference on computer vision and pattern recognition*, pp. 4460–4470, 2019.

708 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 709 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 710 *of the ACM*, 65(1):99–106, 2021.
 711

712 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 4 2025.
 713 Accessed: 2025-09-17; Official technical announcement for GPT-4.1, GPT-4.1 mini, and GPT-4.1
 714 nano.

715 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 716 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 717 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 718 27730–27744, 2022.

719 Jiao Pan, Liang Li, Hiroshi Yamaguchi, Kyoko Hasegawa, Fadjar Ibnu Thufail, Brahmantara, Xiao-
 720 juan Ban, and Satoshi Tanaka. Reconstructing, understanding, and analyzing relief type cultural
 721 heritage from a single old photo. In *Proceedings of the 32nd ACM International Conference on*
 722 *Multimedia*, pp. 7724–7733, 2024.

723 Yohann Perron, Vladyslav Sydorov, Adam P Wijker, Damian Evans, Christophe Pottier, and Loic
 724 Landrieu. Archaeoscape: Bringing aerial laser scanning archaeology to the deep learning era.
 725 *Advances in Neural Information Processing Systems*, 37:25888–25912, 2024.

726 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 727 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

728

729 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 730 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 731 models from natural language supervision. In *International conference on machine learning*, pp.
 732 8748–8763. PMLR, 2021.

733

734 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 735 ical image segmentation. In *International Conference on Medical image computing and computer-
 736 assisted intervention*, pp. 234–241. Springer, 2015.

737 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 738 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 739 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

740

741 Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
 742 Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? *arXiv preprint*
 743 *arXiv:2107.06383*, 2021.

744

745 Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
 746 Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
 747 model. *CoRR*, abs/2310.15110, 2023.

748

749 Zirui Song, Guangxian Ouyang, Meng Fang, Hongbin Na, Zijing Shi, Zhenhao Chen, Fu Yujie,
 750 Zeyu Zhang, Shiyu Jiang, Miao Fang, et al. Hazards in daily life? enabling robots to proactively
 751 detect and resolve anomalies. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 7399–7415, 2025a.

752

753 Zirui Song, Guangxian Ouyang, Mingzhe Li, Yuheng Ji, Chenxi Wang, Zixiang Xu, Zeyu Zhang,
 754 Xiaoqing Zhang, Qian Jiang, Zhenhao Chen, et al. Maniplvml-r1: Reinforcement learning
 755 for reasoning in embodied manipulation with large vision-language models. *arXiv preprint*
arXiv:2505.16517, 2025b.

756 Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
 757 gaussian splatting for efficient 3d content creation. *arXiv preprint arXiv:2309.16653*, 2023a.
 758

759 Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-
 760 it-3d: High-fidelity 3d creation from A single image with diffusion prior. In *IEEE ICCV*, pp.
 761 22762–22772, 2023b.

762 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. Score jacobian
 763 chaining: Lifting pretrained 2d diffusion models for 3d generation. In *IEEE CVPR*, pp. 12619–
 764 12629, 2023a.
 765

766 Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
 767 Generating 3d mesh models from single rgb images. In *Proceedings of the European conference
 768 on computer vision (ECCV)*, pp. 52–67, 2018.

769 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
 770 dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. In
 771 *NeurIPS*, 2023b.

772 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 773 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 774 612, 2004.
 775

776 Markus Worchel, Rodrigo Diaz, Weiwen Hu, Oliver Schreer, Ingo Feldmann, and Peter Eisert.
 777 Multi-view mesh reconstruction with neural deferred shading. In *Proceedings of the IEEE/CVF
 778 Conference on Computer Vision and Pattern Recognition*, pp. 6187–6197, 2022.

779 Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, and Josh Tenenbaum. Marrnet:
 780 3d shape reconstruction via 2.5d sketches. In *NeurIPS*, pp. 540–550, 2017.
 781

782 Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. PQ-NET: A generative part
 783 seq2seq network for 3d shapes. In *IEEE/CVF CVPR*, pp. 826–835, 2020.

784 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
 785 Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. *Advances in
 786 Neural Information Processing Systems*, 37:121859–121881, 2024.
 787

788 Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep
 789 implicit surface network for high-quality single-view 3d reconstruction. *Advances in neural in-
 790 formation processing systems*, 32, 2019.

791 Hong Yang, Shaohua Wang, Shunli Wang, Pengcheng Zhao, Mingyao Ai, and Qingwu Hu. Moated
 792 site object detection using time series satellite imagery and an improved deep learning model in
 793 northeast thailand. *Journal of Archaeological Science*, 171:106070, 2024.
 794

795 Angen Ye, Zeyu Zhang, Boyuan Wang, Xiaofeng Wang, Dapeng Zhang, and Zheng Zhu. Vla-r1:
 796 Enhancing reasoning in vision-language-action models. *arXiv preprint arXiv:2510.01623*, 2025.

797 Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu,
 798 Qi Tian, and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by
 799 bridging 2d and 3d diffusion models. In *IEEE CVPR*, pp. 6796–6807, 2024.
 800

801 Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
 802 one or few images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 803 recognition*, pp. 4578–4587, 2021.

804 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
 805 Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
 806 assets. *ACM Transactions on Graphics (TOG)*, 43(4):1–20, 2024.
 807

808 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
 809 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025.

810 Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang, and Xihui Liu. Llava-3d: A simple
811 yet effective pathway to empowering lmms with 3d-awareness. *arXiv preprint arXiv:2409.18125*,
812 2024.

813

814 Zixin Zou, Weihao Cheng, Yan-Pei Cao, Shi-Sheng Huang, Ying Shan, and Song-Hai Zhang.
815 Sparse3d: Distilling multiview-consistent diffusion for object reconstruction from sparse views.
816 In *AAAI*, pp. 7900–7908, 2024.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A APPENDIX**
865866 **A.1 LLM USE DECLARATION**
867868
869 Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
870 English writing. They were not involved in research ideation, experimental design, data analysis, or
871 interpretation. The authors take full responsibility for all content.872
873 **A.2 DETAILED RELATED WORK**
874875 **Vision-Language Models and Visual Question Answering** Vision-Language Models (VLMs)
876 serve as core technology in multimodal AI, enabling machines to understand and reason about visual
877 content through natural language. Modern VLM development is grounded in contrastive learning,
878 with CLIP (Radford et al., 2021) having pioneered large-scale visual-text alignment. Building on
879 this foundation, BLIP (Li et al., 2022) and BLIP-2 (Li et al., 2023b) established unified frameworks
880 for vision-language understanding and generation, while LLaVA (Liu et al., 2023a) achieved break-
881 throughs in multimodal tasks by integrating vision encoders with large language models.882 Recent large VLMs have significantly enhanced visual understanding capabilities. Closed-source
883 models like GPT-4V (Hurst et al., 2024) and Gemini (Comanici et al., 2025) excel at complex visual
884 reasoning, while open-source models such as Qwen2.5-VL (Bai et al., 2025) and InternVL (Chen
885 et al., 2024) provide powerful multimodal tools for the research community.886 Specialized techniques have emerged in 3D vision-language understanding (Huang et al., 2025a;b;c;
887 Liu et al., 2025; Song et al., 2025a;b; Ye et al., 2025): Cap3D (Luo et al., 2023) advanced 3D-
888 text data construction through large-scale 3D object descriptions, DiffuRank (Luo et al., 2024) im-
889 proved caption generation accuracy via optimized rendered view selection, and LLaVA-3D (Zhu
890 et al., 2024) with 3D-LLaVA (Deng et al., 2025) achieved high-quality 3D model descriptions and
891 question-answering.892 Traditional 2D visual question answering datasets like VQAv2 (Goyal et al., 2017) have driven vi-
893 sual reasoning development but cannot handle 3D spatial complexity. Early 3D VQA works such as
894 ScanQA (Azuma et al., 2022) focused on indoor spatial relationships, establishing foundations for
895 3D question answering. However, existing methods show significant limitations when processing
896 cultural artifacts with complex geometric structures and cultural significance. 3D VQA applications
897 in cultural heritage remain underexplored, particularly for ancient Greek pottery with intricate deco-
898 rative patterns and profound historical meaning. This work constructs the first ancient Greek pottery
899 VaseVQA-3D dataset to address this gap.900 **3D Generation and Reconstruction** In image-to-3D model generation, DreamFusion (Poole et al.,
901 2022) pioneered the application of image diffusion priors to 3D generation, proposing the Score
902 Distillation Sampling (SDS) method, which enabled iterative optimization of 3D representations via
903 differentiable volume rendering (Mildenhall et al., 2021). Subsequent studies have made substantial
904 improvements in multiple directions, including 3D representation forms (Lin et al., 2023; Tang
905 et al., 2023a; Yi et al., 2024), sampling strategies (Liang et al., 2024; Wang et al., 2023a;b; Zou
906 et al., 2024), integration of additional geometric cues (Long et al., 2024; Tang et al., 2023b), and
907 consistency in multi-view image generation.908 Furthermore, numerous studies have explored training viewpoint-aware image diffusion models
909 based on input images (Chan et al., 2023; Liu et al., 2023c; Shi et al., 2023). A range of research has
910 proposed learning geometric structures in various representation forms from input images through
911 an encoder-decoder network architecture within a deterministic process—such as point clouds (Fan
912 et al., 2017a; Wu et al., 2020), voxels (Girdhar et al., 2016; Wu et al., 2017), meshes (Wang et al.,
913 2018; Worchsel et al., 2022), or implicit fields (Mescheder et al., 2019; Xu et al., 2019; Yu et al.,
914 2021).915 One-2-3-45 (Liu et al., 2023b) was the first to propose combining a 2D image diffusion model
916 with a multi-view reconstruction model, achieving generative capabilities while maintaining fast
917 reconstruction speed. Recently, some researchers have attempted to train latent 3D diffusion models
918 based on massive high-quality 3D models (Hong et al., 2024; Lan et al., 2024; Li et al., 2024; Wu

et al., 2024; Zhang et al., 2024), demonstrating impressive 3D generation results. However, these methods still have limitations in the task of “high-fidelity generation with image alignment.”

TripoSG (Li et al., 2025) adopted a 3D representation with stronger geometric expression ability, improved the diffusion model architecture and training strategies, and achieved state-of-the-art performance in 3D shape generation tasks. Hunyuan3D (Lai et al., 2025) employed a two-stage approach: first, it used a multi-view diffusion model to generate multi-view RGB images, and then converted these images into 3D assets using a Transformer-based large-scale reconstruction model for sparse viewpoints.

Cultural Heritage and Archaeological AI Currently, AI technologies are effectively enhancing the level of cultural heritage preservation. ArchaeoScape (Perron et al., 2024) constructed the world’s largest archaeological LiDAR dataset, successfully identifying ancient architectural remains under jungle cover through semantic segmentation models (such as U-Net (Ronneberger et al., 2015) and Swin Transformer (Liu et al., 2021)), with accuracy significantly superior to traditional manual interpretation. (Yang et al., 2024) proposed an improved YOLOv5s model (Khanam & Hussain, 2024), combining multispectral data with vegetation indices, identifying 116 moat sites in northeastern Thailand with 100% detection accuracy, representing a vivid example of identification technology and cultural heritage protection. (Feng et al., 2025) proposed an automated mural line drawing generation method combining CLAHE edge enhancement, neural network (MLineNet), and CycleGAN (Chu et al., 2017) denoising. Using Dunhuang murals as test subjects, the restoration results outperformed existing algorithms in detail, clarity, and smoothness metrics, achieving a Q-value of 89.26%. These studies systematically demonstrated the technological breakthroughs and ethical challenges of AI in cultural heritage preservation and archaeological research, providing important references for interdisciplinary collaboration. In the field of cultural heritage 3D reconstruction, Adamopoulos et al. (2020) critically compared 3D digitization techniques to clarify their application boundaries, Jaramillo & Sipiran (2024) proposed a method using diffusion networks to address incomplete data issues, and Pan et al. (2024) realized 3D reconstruction of relief heritage from single old photos, collectively advancing related research.

A.3 DATASET FEATURES AND COMPOSITION

Our VaseVQA-3D dataset constitutes the first comprehensive evaluation resource specifically designed for 3D ancient Greek pottery visual question answering, filling the gap in existing VQA datasets in the cultural heritage domain. Table 5 shows detailed statistical comparisons from the original Vase dataset to our final VaseVQA-3D dataset. The strict filtering process reduced the dataset from 3,880 vase entries to 664 unique vase entries. Although the data retention rate is only 17.1%, this ensures that the final dataset achieves good standards in archaeological accuracy, image quality, and metadata completeness.

Regarding question type distribution, our dataset maintains a similar balance to the original VaseVQA dataset, with core attribute questions (fabric, technique, shape, overall, dating, decoration) comprising the main proportion, while specialized attribute questions (attribution, provenance) have relatively lower coverage due to the incompleteness of archaeological records. Figure 2 shows typical examples from our VaseVQA-3D dataset, including high-quality 3D vase models, structured question-answer pairs, and cleaned descriptive captions, demonstrating the dataset’s comprehensive capabilities in supporting multimodal understanding of ancient Greek pottery.

GPT-4o Usage for Data Cleaning The archaeological metadata in the original VaseVQA dataset already possesses strong structural information but contains significant noise in the complete descriptions, making them difficult to use directly for model training. We use GPT-4o to clean this noise and reorganize the metadata into coherent descriptions consistent with standard museum documentation practices.

For example, the original fragmented format:

“The overall information is: The Vase Number is 14292; The Fabric is ATHENIAN; The Technique is BLACK-FIGURE; The Shape Name is LEKYTHOS; The Provenance is GREECE, ATTICA, MARATHON; The Date is -525 to -475; The Decoration is Body: HERAKLES AND THE BOAR (?); The Collection Record is Athens, National Museum: 1021; ...”

972 is reorganized into:
 973

974 “Athenian black-figure lekythos, c. 525–475 BCE, depicting Herakles and the boar;
 975 Marathon, Attica.”

976 This cleaning process consolidates existing archaeological information without introducing new
 977 content. Importantly, our evaluation metrics are independent of language style: retrieval accuracy
 978 metrics (R@1/R@5/R@10) measure semantic matching independent of stylistic variation; CLIP
 979 and FID scores are computed from visual-semantic alignment rather than language patterns; and
 980 human evaluation by archaeological experts assesses archaeological accuracy rather than language
 981 style. Therefore, the evaluation results reward models that understand archaeological content, not
 982 those that merely imitate GPT-4o’s language patterns.
 983

984 Table 5: Dataset Statistics Comparison: Before and After Quality Filtering.
 985

Metric	Original VaseVQA	Filtered VaseVQA-3D
Total Vase Entries	3,880	664
Total QA Pairs	26,101	4,460
Avg. QA per Entry	6.73	6.72
Fabric Questions	3,880 (14.9%)	664 (14.9%)
Technique Questions	3,880 (14.9%)	664 (14.9%)
Shape Questions	3,880 (14.9%)	664 (14.9%)
Caption Questions	3,880 (14.9%)	664 (14.9%)
Dating Questions	3,872 (14.8%)	664 (14.9%)
Decoration Questions	3,870 (14.8%)	663 (14.9%)
Attribution Questions	1,696 (6.5%)	280 (6.3%)
Provenance Questions	1,143 (4.4%)	197 (4.4%)
Question Types	8	8
Unique Images	3,880	664
Data Retention Rate	100%	17.1%
Quality Score	Mixed	High

1001 A.4 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

1003 **Data Filtering Stage** ResNet-50 binary classifier: cross-entropy loss, Adam optimizer (learning
 1004 rate 1e-4), 20 epochs, 512×512 pixel RGB input, confidence threshold 0.5. CLIP ViT-B/32 model:
 1005 fragment removal threshold 0.1, text prompt “a complete intact vase viewed from the front”.

1007 **3D Generation Stage** TripoSG: 512×512 pixel front-view input, image preprocessing (normal-
 1008 ization, denoising), approximately 5 minutes per sample (single A100), GLB format output. Blender
 1009 3.6: 16-frame 360-degree rotation videos, 512×512 pixels per frame, 2fps.

1011 **Post Training Stage** Supervised Fine-tuning (SFT): Qwen2.5VL-3B/7B base models, LoRA rank
 1012 8, alpha 32, learning rate 1e-4, batch size 1 (16-step gradient accumulation), 2 epochs, frozen ViT
 1013 parameters, approximately 2 hours training time (single A100).

1014 Reinforcement Learning (GRPO): policy gradient methods, policy update every 100 samples, learning
 1015 rate 1e-5, batch size 8, 10 epochs, approximately 10 hours training time (single A100).

1017 **Evaluation Metrics** Quantitative: FID Score, CLIP Score, R@1/5/10, lexical similarity. Qualita-
 1018 tive: description accuracy, cultural appropriateness (10 archaeological experts).

1020 A.5 DETAILED WORKFLOW AND IMPLEMENTATION

1022 We adopt a three-stage progressive filtering mechanism to process the original VaseVQA dataset.
 1023 The initial stage uses a ResNet-50 architecture binary classifier for coarse-grained screening, auto-
 1024 matically identifying and removing low-quality images. Building on this, we introduce the CLIP
 1025 ViT-B/32 model for fine-grained semantic filtering, including fragment removal and optimal view
 selection.

1026 Table 6: Expert and Non-Expert Evaluation of TripoSG vs Hunyuan3D (Scale: 0-5).
1027

Dimension	Method	Exp-1	Exp-2	Exp-3	Exp-4	Exp-5	Non-1	Non-2	Non-3	Non-4	Non-5	Ave.
Geometric Accuracy	TripoSG	4.5	4.6	4.2	4.4	4.5	4.3	4.1	4.4	4.2	4.3	4.35
	Hunyuan3D	4.3	4.2	4.4	4.1	4.0	4.4	4.3	4.0	4.3	4.2	4.22
Decoration Fidelity	TripoSG	4.2	4.3	4.0	4.1	4.2	4.1	3.9	4.2	4.0	4.1	4.11
	Hunyuan3D	4.3	4.4	4.2	4.3	4.1	4.2	4.3	4.1	4.2	4.3	4.24
Archaeological Credibility	TripoSG	4.4	4.5	4.1	4.3	4.4	4.2	4.0	4.3	4.1	4.2	4.25
	Hunyuan3D	4.1	4.0	4.2	3.9	3.8	4.2	4.1	3.8	4.1	4.0	4.02
Overall Average	TripoSG	4.37	4.47	4.10	4.27	4.37	4.20	3.97	4.30	4.10	4.20	4.24
	Hunyuan3D	4.23	4.20	4.27	4.10	3.97	4.27	4.23	3.97	4.20	4.17	4.16

1035
1036 Subsequently, we conduct a systematic comparison between TripoSG and Hunyuan3D based on
1037 the VaseEval dataset. After determining TripoSG’s advantages in generation quality, we adopt this
1038 method for single-image 3D reconstruction of filtered high-quality images. We then convert the
1039 generated GLB files to video sequence format using Blender 3.6 for model training.

1040 The supervised fine-tuning stage uses Qwen2.5VL as base models, adopting LoRA for parameter-
1041 efficient fine-tuning. Building on SFT, we adopt the GRPO method for verifiable reinforcement
1042 learning training. Finally, we conduct comprehensive evaluation of the four trained VaseVLM vari-
1043 ants using both quantitative metrics and human evaluation by archaeological experts.

1044 A.6 DETAILED 3D GENERATION METHOD COMPARISON

1045 Table 2 presents a comprehensive comparison of TripoSG and Hunyuan3D across seven dimensions
1046 on VaseEval. In terms of traditional image quality metrics, both methods perform closely, but each
1047 has advantages. Hunyuan3D has a slight advantage in PSNR (17.23 vs 17.21), while TripoSG
1048 performs better in LPIPS (0.1308 vs 0.1319). In SSIM metrics, both perform comparably (TripoSG:
1049 0.8676 vs Hunyuan3D: 0.8657).

1050 In terms of geometric accuracy, the results show differentiation characteristics. TripoSG performs
1051 better in Chamfer distance (0.1490 vs 0.1515), showing its advantage in overall geometric recon-
1052 struction accuracy. However, Hunyuan3D performs better in normal consistency (0.7389 vs 0.7232),
1053 indicating its capability in surface details and lighting interaction.

1054 In semantic consistency evaluation, TripoSG demonstrates significant advantages. In CLIP image
1055 similarity, TripoSG (0.8896) slightly outperforms Hunyuan3D (0.8837). More importantly, in CLIP
1056 text similarity, TripoSG performs excellently (0.9594 vs 0.9237), exceeding Hunyuan3D by about
1057 3.9%. Although our input is only a single image rather than text descriptions, the CLIP text similarity
1058 metric reflects the matching degree between generated 3D models and predefined archaeological
1059 description templates, which is crucial for subsequent text generation tasks.

1060 Comprehensive analysis shows that Hunyuan3D has slight advantages in traditional image quality
1061 metrics, while TripoSG performs better in geometric reconstruction accuracy and semantic consis-
1062 tency. Considering that our application scenario requires accurate 3D geometric structures and good
1063 semantic understanding capabilities to support archaeological description generation, TripoSG’s ad-
1064 vantages in key metrics make it more suitable for our VQA task requirements.

1065 To further validate the TripoSG selection, we conducted additional blind evaluation with 5 archaeol-
1066 ogists and 5 domain-unrelated individuals, assessing both methods on the VaseEval set across three
1067 dimensions: geometric accuracy, decoration fidelity, and archaeological credibility.

1068 The human evaluation results confirm TripoSG’s superiority, particularly in archaeological credi-
1069 bility (4.25 vs 4.02), which is critical for cultural heritage applications. TripoSG achieves higher
1070 overall average (4.24 vs 4.16), validating our method selection.

1071 A.7 DETAILED DATASET QUALITY ANALYSIS

1072 As shown in Table 3 Among 3D-specialized models, DiffuRank performs best (FID: 0.421, CLIP:
1073 0.798), with this advantage stemming from its specialized architecture design and training strategy
1074 for 3D scene understanding. DiffuRank adopts a diffusion model framework that can better capture
1075 the complexity and spatial relationships of 3D geometric structures, which is particularly important
1076 when processing the three-dimensional forms of ancient Greek vases. Cap3D follows closely (FID:
1077

1080 0.445, CLIP: 0.792), with its advantages based on large-scale 3D-text pair training reflected in semantic understanding, but slightly inferior to DiffuRank in fine-grained control of generation quality. 1081 Although LLaVA3D performs relatively weakly in retrieval tasks (R@10: 10.42%), its multimodal 1082 fusion mechanism provides important references for subsequent model design.

1083 1084 General-purpose VLMs show significant performance differentiation characteristics. Gemini-2.5- 1085 flash performs excellently in retrieval tasks (R@10: 28.57%), benefiting from Google’s pretraining 1086 advantages on large-scale multimodal data and its advanced attention mechanism design, enabling 1087 the model to better establish correspondences between visual features and text descriptions. How- 1088 ever, its relative disadvantage in lexical similarity (0.210) reflects the limitations of general models 1089 in understanding professional archaeological terminology. This phenomenon is also reflected in 1090 other general models, such as GPT-4o achieving only 0.104 in lexical similarity, indicating that 1091 while large-scale general pretraining improves overall understanding capabilities, there are still de- 1092 ficiencies in mastering specific domain terminology.

1093 Claude series models show progressive performance characteristics across versions, with Claude- 1094 4-sonnet (FID: 0.353) significantly outperforming Claude-3.5-sonnet (FID: 0.455) and Claude-3.7- 1095 sonnet (FID: 0.600), reflecting Anthropic’s continuous improvements in model architecture optimi- 1096 zation and training data quality enhancement. Particularly noteworthy is Claude-4-sonnet’s per- 1097 formance in retrieval tasks (R@10: 23.96%) showing significant improvement compared to earlier 1098 versions, indicating progress in multimodal understanding and cross-modal retrieval capabilities in 1099 new versions.

1100 Among GPT series models, GPT-4.1 performs well in retrieval tasks (R@10: 25.00%), but GPT-4o’s 1101 relatively lower performance (FID: 0.582) may be related to its design tendency toward dialogue 1102 optimization rather than visual understanding tasks. This performance difference reveals the impact 1103 of different model optimization objectives: models specifically optimized for visual understanding 1104 typically perform better in image-text matching tasks, while dialogue-optimized models may have 1105 advantages in generation fluency but are relatively weaker in precise visual understanding.

1106 Notably, open-source models demonstrate competitive capabilities comparable to closed-source 1107 commercial models in certain dimensions. Qwen2.5-VL-7B performs excellently in FID metrics 1108 (0.334), second only to Gemini-2.5-flash, reflecting Alibaba’s technical strength in VLM architec- 1109 ture design. More importantly, this model achieves 0.217 in lexical similarity, significantly out- 1110 performing most closed-source models, indicating the potential of the open-source community in 1111 specific task optimization. InternVL’s strong performance in CLIP scores (0.771) demonstrates its 1112 capabilities in semantic understanding, benefiting from its innovative vision-language interaction 1113 mechanisms and large-scale pretraining strategies.

1114 The consistent improvement of reinforcement learning training versions compared to supervised 1115 fine-tuning versions (7B-RL vs 7B-SFT: FID improvement 1.2%, R@10 improvement 2.0%) 1116 demonstrates the effectiveness of the GRPO method in archaeological VQA tasks. This improve- 1117 ment is particularly evident in lexical similarity metrics, with the 7B-RL model achieving 0.276 1118 compared to the SFT version’s 0.272, indicating that reinforcement learning training effectively 1119 improves the model’s mastery of archaeological professional terminology.

1120 Comparing the performance of models with different parameter scales, we observe that larger 1121 models generally perform better in most metrics. The performance improvement of VaseVLM-7B 1122 compared to VaseVLM-3B (FID: 0.328 vs 0.363) is significant, indicating clear advantages of larger 1123 model capacity. In lexical similarity, the 7B-RL model achieves 0.276 compared to the 3B-RL ver- 1124 sion’s 0.245, demonstrating that larger models have superior capabilities in mastering archaeological 1125 terminology. However, 3B models still show competitive performance in other metrics, indicating 1126 good practical value in resource-constrained scenarios.

1127 Comprehensive analysis shows that specialized training can effectively compensate for disadvan- 1128 tages in model scale. Our VaseVLM-3B-RL (FID: 0.363) outperforms general models with larger 1129 parameter scales in multiple metrics, such as its performance in retrieval tasks (R@10: 17.71%) ap- 1130 proaching Qwen2.5-VL-7B’s 18.75%, demonstrating the advantages of task-specific optimization 1131 over pure scale expansion. The evaluation results further reveal inherent characteristic differences 1132 of different model architectures when processing 3D visual understanding tasks. Transformer-based 1133 models generally perform excellently in semantic understanding, while specialized 3D models have structural advantages in geometric feature capture. Our hybrid training strategy successfully com-

1134 bines the advantages of both aspects, enhancing the perception of 3D geometric structures while
 1135 maintaining semantic understanding capabilities.
 1136

1137 **A.8 ARCHAEOLOGICAL QUALITATIVE ANALYSIS**
 1138

1139 Beyond quantitative metrics, we conduct qualitative analysis to demonstrate that VaseVLM has
 1140 genuinely learned specialized archaeological knowledge rather than merely memorizing patterns.
 1141 We compare VaseVLM-7B-RL with Gemini-2.5-flash across three representative cases.
 1142

1143 **Case 1: Red-Figure vs Black-Figure Classification**

1144 **Ground Truth:** “Athenian Red-Figure Cup, c. 500–450 BCE, depicting a youth wreathing
 1145 an altar; Detroit Institute of Arts.”

1146 **Gemini 2.5 Flash (R@1):** “Athenian black-figure kylix, c. 550–500 BCE, with figural
 1147 decoration; Attica.”

1148 **VaseVLM-7B-RL (R@1):** “Athenian red-figure cup, c. 500–450 BCE, depicting a youth
 1149 at an altar; Detroit Institute of Arts.”

1150 Gemini’s R@1 error (Black-Figure vs Red-Figure) represents a fundamental technical classification
 1151 error, not a minor detail difference. Black-figure and Red-figure techniques represent distinct histor-
 1152 ical periods separated by 50–100 years. This error is archaeologically unacceptable, as it misleads
 1153 researchers about chronology and artistic development. VaseVLM correctly identifies the technique,
 1154 demonstrating learned archaeological knowledge.
 1155

1156 **Case 2: Vessel Type Identification (Hydria vs Amphora)**

1157 **Ground Truth:** “Athenian black-figure hydria, c. 525–475 BCE, depicting Herakles,
 1158 Dionysos, Hermes, and Athena; Munich Collection.”

1159 **Gemini 2.5 Flash (R@1):** “Athenian black-figure amphora, c. 550–500 BCE, depicting
 1160 mythological scene with multiple figures.”

1161 **VaseVLM-7B-RL (R@1):** “Athenian black-figure hydria, c. 525–475 BCE, depicting
 1162 Herakles, Dionysos, Hermes, and Athena.”

1163 The Amphora vs Hydria distinction is critical: these vessels served different functions in ancient
 1164 Greek society (storage vs water-carrying), leading to different morphological features. Misidentifi-
 1165 cation propagates errors in understanding vessel function, daily life practices, and museum classifi-
 1166 cation. VaseVLM correctly identifies the vessel type and associated mythological figures, indicating
 1167 genuine archaeological understanding.
 1168

1169 **Case 3: Descriptive Style and Generalization**

1170 **Ground Truth:** “Athenian black-figure amphora, c. 550–500 BCE, depicting figures.”

1171 **Gemini 2.5 Flash (R@1):** “Athenian black-figure amphora, c. 550–500 BCE, depicting
 1172 figures.”

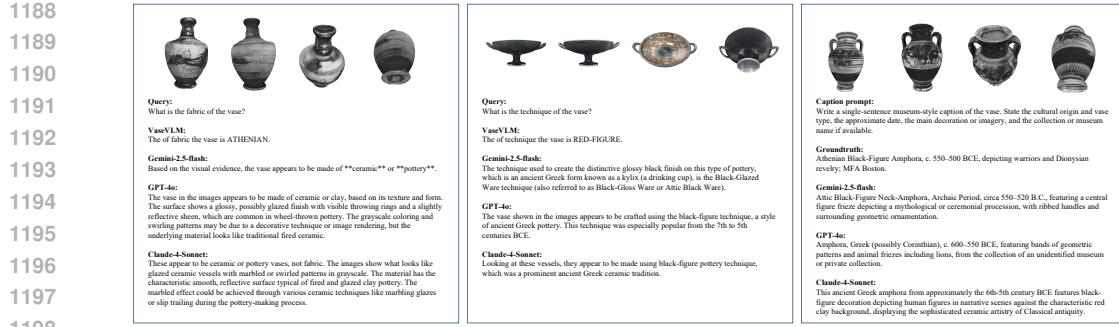
1173 **VaseVLM-7B-RL (R@1):** “Athenian black-figure lekythos, c. 500–450 BCE, depicting a
 1174 woman with a lyre; National Museum, Warsaw.”

1175 VaseVLM’s answer differs from ground truth, indicating it has developed its own descriptive style
 1176 emphasizing decorative patterns and professional terminology, rather than memorizing exact an-
 1177 swers. This demonstrates genuine archaeological understanding and generalization capability.
 1178

1179 **Summary** These qualitative cases demonstrate that in specialized expert domains like archaeol-
 1180 ogy, R@1 precision is more critical than R@10 recall. Archaeologists require accurate first answers
 1181 to avoid propagating fundamental errors in research and classification. VaseVLM’s superior R@1
 1182 performance reflects genuine domain expertise rather than statistical pattern matching.
 1183

1184 **A.9 QUALITY COMPARISON ACROSS VLMs**

1185 Figure 7 illustrates differences in text generation performance across VLMs on the vase dataset
 1186 for QA and captioning tasks. Figures 7a and 7b illustrate QA quality comparisons across multiple
 1187 VLMs, while Figure 7c shows caption generation quality comparison.



(a) QA quality example. (b) QA quality example. (c) Caption quality example.

Figure 7: Examples of QA and captioning quality comparisons across different VLMs. (a) and (b) show QA cases, while (c) figure illustrates a captioning case.

Table 7: Data Processing Results Across Cultural Heritage Domains.

Domain	Initial	Filtered	3D Models	Retention	QA Pairs
Ancient Greek Pottery	30,000	3,880	664	2.2%	4,460
Chinese Bronze	100	73	52	52.0%	312
Ancient Greek Sculpture	100	63	58	58.0%	348

Table 8: Domain-Specific RLVR Dimensions.

Domain	Reward Dimensions (weights)
Ancient Greek Pottery	Fabric (0.20), Technique (0.20), Shape (0.15), Dating (0.15), Decoration (0.20), Attribution (0.10)
Chinese Bronze	Casting Material (0.18), Technique (0.22), Dating (0.15), Decoration (0.18), Preservation (0.15), Provenance (0.12)
Ancient Greek Sculpture	Clay Type (0.30), Dating (0.20), Style (0.15), Decoration (0.20), Excavation Site (0.15)

Table 9: Performance on New Domains.

Domain	Method	FID↓	CLIP↑	R@10↑	R@5↑	R@1↑	Lex. Sim.↑
Chinese Bronze	Qwen2.5-VL-7B (Baseline)	0.356	0.732	16.68%	8.33%	3.23%	0.227
	BronzeVLM-3B-RL	0.368	0.724	15.60%	8.47%	2.85%	0.216
	BronzeVLM-7B-RL	0.324	0.752	20.83%	10.50%	3.50%	0.274
Greek Sculpture	Qwen2.5-VL-7B (Baseline)	0.342	0.731	18.47%	8.83%	2.17%	0.235
	SculptureVLM-3B-RL	0.356	0.696	16.67%	9.37%	2.13%	0.228
	SculptureVLM-7B-RL	0.337	0.748	19.53%	11.25%	3.31%	0.263

A.10 PIPELINE GENERALIZATION ACROSS CULTURAL HERITAGE DOMAINS

To validate the generalizability of our methodology beyond ancient Greek pottery, we conducted supplementary experiments on Chinese bronze artifacts and ancient Greek sculptures. Both domains share similar characteristics (complex geometric structures, rich decorative patterns, established archaeological classification systems) yet differ in domain-specific knowledge requirements.

Experimental Setup For each domain, we customized the RLVR reward dimensions to reflect domain-specific archaeological knowledge while maintaining the core pipeline structure. Table 7 presents data processing results across three domains.

Domain-Specific Reward Dimensions Table 8 shows the customized RLVR dimensions for each domain. While maintaining six semantic dimensions, we adjusted weights and focus areas based on archaeological significance.

Performance Results Table 9 demonstrates consistent improvements across domains. VaseVLM-7B-RL achieves 8.4-52.5% improvement in R@1 accuracy and 11.9-20.7% improvement in lexical similarity over baseline models.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 8: VaseVLM Generalization on Chinese Bronze Artifacts. The example demonstrates successful adaptation to domain-specific archaeological knowledge through customized reward dimensions for casting material and preservation state.

Qualitative Analysis Figures 8 and 9 show VQA examples from Chinese bronze artifacts and ancient Greek sculptures, respectively, demonstrating the model's ability to adapt to domain-specific archaeological features.

These results validate the generalizability of our pipeline across diverse cultural heritage domains through flexible reward dimension customization, demonstrating its applicability beyond ancient Greek pottery.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1326 **Figure 9:** VaseVLM Generalization on Ancient Greek Sculptures. The example demonstrates suc-
1327 cessful adaptation to domain-specific archaeological knowledge through customized reward dimen-
1328 sions for clay type and excavation site.

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349