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Abstract

Many methods have been proposed to estimate treatment effects with observational data.
Often, the choice of the method considers the application’s characteristics, such as type of
treatment and outcome, confounding effect, and the complexity of the data. These meth-
ods implicitly assume that the sample size is large enough to train such models, especially
the neural network-based estimators. What if this is not the case? In this work, we pro-
pose Causal-Batle, a methodology to estimate treatment effects in small high-dimensional
datasets in the presence of another high-dimensional dataset in the same feature space. We
adopt an approach that brings transfer learning techniques into causal inference. Our exper-
iments show that such an approach helps to bring stability to neural network-based methods
and improve the treatment effect estimates in small high-dimensional datasets. The code for
our method and all our experiments is available at github.com/HiddenForAnonymization.

1 Introduction

Recent progress in Causal Inference has led to the widespread adoption of the field. Many of these new
applications require more sophisticated methods or the adaptation of existing approaches. This work pro-
poses a treatment effect estimator which targets small high-dimensional datasets. To illustrate our approach,
consider a Computational Biology (CB) application: CB applications often have detailed information from
each patient, such as SNPs, genes, mutations, and parental information, but only a few patients. Hence,
small high-dimensional datasets. The main bottleneck to collecting more samples is the high costs of finding
new patients, plus the event’s rarity. In pharmacogenomics, for instance, some applications aim to explore
the side effects of drugs adopted on certain pediatric cancer treatments. Collecting information about these
patients is quite challenging for several reasons: first, it requires the families’ commitment in a very stressful
and delicate time of their lives; second, it is a rare disease; finally, it requires a common effort between
hospitals and doctors to refer the patients. While there are methods to estimate binary treatment effects
(Glynn & Quinn, 2010; Hill, 2011; Shalit et al., 2017; Shi et al., 2019), and methods to estimate treatment
effects with high-dimensional datasets (Jesson et al., 2020), there is a lack of methods to estimate treatment
effects in small high-dimensional datasets, such as the case of several computational biology applications.

In the Machine Learning (ML) community, transfer learning is the go-to method when handling small
datasets. In that case, the overall goal is to transfer knowledge from a large source-domain dataset to a
small target-domain dataset. However, transfer learning for causal inference has been underexplored. In the
causal inference literature, Pearl & Bareinboim (2011), Bareinboim & Pearl (2014), and Guo et al. (2021)
explore the transfer of knowledge from Randomized Control Trials (RCTs) to observational data. Yang &
Ding (2019) and Chau et al. (2021) focused on data fusion, which combines several datasets with a two-step
estimation method or combines DAGs with a common node. At the same time, most of the existing transfer
learning approaches from the ML community focus on predictive and classification tasks. When causality
is used, it is usually to improve a transfer learning or domain adaptation method (Causality for ML versus
ML for causality).

The practical usefulness of Causal-Batle is most often observed in biomedical applications. Large sets
of labeled data with treatments and outcomes in biomedical applications can be expensive or impossible
to obtain. Nevertheless, unlabeled source-domain data is often available. For instance, consider a study
investigating an intervention on eye pressure (outcome of interest). For each patient, we have an image of
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Figure 1: Illustration of how Causal-Batle combines the target and source-domain. As per the definition of
small high-dimensional datasets, the number of samples in the target-domain is small(nt and nt < ns) and
high-dimensional (large S). Only the target-domain contains treatment assignment (T ) and outcome (Y ).
In the combined dataset, the treatment T and the outcome Y for the samples in the source-domain are left
empty. These empty values do not affect our model, as they are not used by the predictors or loss functions.
The variable D is binary and encodes the samples’ domain, n = nt + ns and X = [Xtarget, Xsource] (See
more in Section 3).

the rear of the eye, also known as a fundus image, used to perform covariate adjustment. In this case, the
dataset of such a study could be augmented by adding other fundus images as part of the source domain
(images without treatment assignment or eye pressure associated). Causal-Batle introduces an approach to
combine source and target domain to perform covariate adjustment and estimate causal effects.

This paper focuses on applications with a small high-dimensional dataset (target-domain), where a large
unlabeled dataset is also available (source-domain). The unlabeled dataset is employed to learn a better
latent representation that allows us to estimate potential outcomes in the target-domain. We assume that
the target-domain and source-domain share the same feature space.

Our main contributions are as follows:

• We introduce and formalize the problem of transfer learning for causal inference from small high-
dimensional datasets and discuss the underlying assumptions and the identifiability of the treatment
effect.

• We propose Causal-Batle, a causal inference method that uses transfer learning to estimate treatment
effects on small high-dimensional datasets.

• We validate Causal-Batle in three datasets and compare with state-of-the-art methods to evaluate
if the transfer learning approach contributes to improving the estimates.

2 Related Work

Our work combines treatment effect estimation and transfer learning:

Treatment Effect Estimation: There are many methods to estimate treatment effects, each one with its
own set of assumptions, targeting different types of applications. This work estimates the average treatment
effect in a binary treatment setting. Starting with the most traditional methods, AIPW (Glynn & Quinn,
2010) adopts a two-step estimation approach, and BART (Hill, 2011) adopts a bayesian random forest
approach. Recently, many methods have adopted Machine Learning components, like neural networks, to
estimate treatment effects. TARNet (Shalit et al., 2017), CEVAE (Louizos et al., 2017), Dragonnet (Shi
et al., 2019), and X-learner (Künzel et al., 2019) are some of examples of ML-based approaches. CEVAE
(Louizos et al., 2017) has also adopted a variational autoencoder to estimate latent variables used to replace
unobserved confounders. CEVAE and other methods (Wang & Blei, 2019) have claimed robustness to
missing confounders. These methods, however, have been under large scrutiny by the community, with
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several counterexamples showing their limitations and situations where they fail (Rissanen & Marttinen,
2021; Zheng et al., 2021). Considering high-dimensional datasets, Jesson et al. (2020) has suggested that
bayesian neural networks tend to perform better than their regular neural network counterparts. However,
the challenge is that bayesian deep neural networks require larger datasets for training, which are often
unavailable.

Transfer Learning (TL): TL aims to improve applications with limited data by leveraging knowledge
from other related domains (Zhuang et al., 2020). Transfer knowledge between causal experiments has
been previously explored as transportability of causal knowledge (Pearl & Bareinboim, 2011; Bareinboim &
Pearl, 2014; Guo et al., 2021; Dahabreh et al., 2020), where the core idea is to transfer knowledge from one
experiment to another. These works assume at least two experiments available with covariates, treatment,
and an outcome. In practice, the transportability of causal knowledge performs an adjustment for new
populations considering the causal graph and results from previous experiments. Causal data fusion (Yang
& Ding, 2019; Chau et al., 2021) combines different datasets to perform the estimation of treatment effects.
The datasets’ fusion is incorporated into causal inference methods, either as a smaller validation set with
additional information or a two-step estimation method that combines causal graphs through a shared node.
Some works use semi-supervised approaches to estimate treatment effects. Chakrabortty et al. (2022) adopts
a semi-supervised setup and uses unlabeled data to improve treatment effect estimation of a labeled dataset
through kernels and regression models-based estimators. Harada & Kashima (2020) also proposes a semi-
supervised approach based on a matching method to estimate treatment effects. Causal-Batle is similar
to the semi-supervised approaches in the sense that it also adopts an unlabeled source-domain to improve
the treatment effect estimations on a labeled target-domain, where the labels are the treatment and the
observed outcomes. Causal-Batle adopts transfer learning techniques explored in the ML community. In
the ML community, such a technique is classified as heterogeneous transfer learning (Zhuang et al., 2020).
Causal-Batle is also suitable for high-dimensional and complex datasets, something that many matching and
regression-based methods have struggled with in the past.

3 Causal-batle

The main goal of this work is to estimate treatment effects from small high-dimensional datasets in applica-
tions where a second high-dimensional dataset is available in the same feature space but without treatment
assignment or outcomes. The challenge in such applications is to extract a meaningful representation from
the high-dimensional covariates, given the small number of samples. Therefore, for applications with a second
dataset with a shared feature space, we propose a method that performs Causal inference with Unlabeled
and Small Labeled data using Bayesian neural networks and Transfer Learning (Causal-Batle).

3.1 Notation

Causal-Batle is a treatment effect estimator for observational studies. We assume two domains: the target-
domain and the source-domain. The target-domain is the small high-dimensional dataset we extract the
treatment effect from, and it is composed of covariates Xtarget, a binary treatment assignment T ∈ {0, 1},
and continuous outcome Y . The source-domain contains the covariates Xsource, which are from the same
feature space as Xtarget. Here, we assume the source-domain is unlabeled (without treatment assignment
or outcomes). Consider X = [Xtarget, Xsource], and n = ns + nt, where ns and nt are the sample sizes
of the source-domain and target-domain, respectively. We create a new binary variable D, which encodes
the sample’s domain. We define the target-domain set as DS = {(xi, di = 0) : i = 1, ..., ns} and DT =
{(xi, ti, yi, di = 1) : i = 1, ..., nt}.

The individual treatment effect (ITE) for a given sample i is defined as τi = Yi(1) − Yi(0), where Yi(t) is
the potential outcomes under t. The challenge is each sample i either has a Yi(1) or Yi(0) associated, never
both. A solution is to work with the Average Treatment Effect (ATE), the focus of our work, defined as
τ = E[Y (1)− Y (0)]. We define outcome models as Y (t) = µt(x) = E[Y |X = x, T = t], and estimate ATE as
τ = µ1(x)− µ0(x).
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3.2 Assumptions

In this section, we list the underlying assumptions of Causal-Batle. To illustrate our methodology, we
adopt a dragonnet architecture (Shi et al., 2019) as the backbone of our neural network. Other backbones
architecture could also be adopted, such as convolutional neural networks for image-based applications.

Assumption 1: The target-domain covariates Xtarget and source-domain covariates Xsource are in the same
feature space.

Assumption 2: Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980) - the response of a
particular unit depends only on the treatment(s) assigned, not the treatments of other units.

Assumption 3: Ignorability - the potential outcome is independent of the treatments given the covariates

{Y (1), Y (0)} ⊥ T |X

Assumption 4: Positivity/Overlap - the treatment assignment is not deterministic.

0 < P (T = t|X = x) < 1

Definition 1: Back-door Criterion (Pearl, 1995) - Given a pair of variables (T, Y ) in a directed acyclic graph
G, a set of variables X ∈ G satisfies the backdoor criterion relative to (T, Y ) if no node in X is a descendant
of T , and X blocks every path between T and Y that contains an arrow into T .

Theorem 1: Identifiability (Pearl, 1995) - If a set of variables X satisfies the back-door criterion relative to
(T, Y ), then the causal effect of T on Y is identifiable.

Assumption 1 is related to our TL component to ensure both domains share the same features. According to
Assumption 2, our target-domain is generated as (Yi, Ti, Xi)

i.i.d.∼ Dtarget, where Dtarget is the observational
distribution of the target-domain. Assumption 2 is also a standard causal inference assumption, which
guarantees that one unit does not affect other units. According to Assumption 3, the observed covariates
Xtarget contain all the confounders of the treatment T and outcome Y . Assumption 3 guarantees that Xtarget

will block all back-door paths and satisfy the back-door criterion (Definition 1). Thus, the identifiability of
the treatment effect is guaranteed by Theorem 1. Note that we assume a setting with strong ignorability
(Assumption 3). If that is not the case, one might need to choose a different backbone architecture and
make extra assumptions to guarantee identifiability. However, while there are recent works exploring how to
estimate treatment effects with unobserved confounders (Tchetgen et al., 2020; Mastouri et al., 2021; Louizos
et al., 2017; Wang & Blei, 2019), they still have several known limitations (Rissanen & Marttinen, 2021;
Zheng et al., 2021). Furthermore, working with unobserved confounders is not the focus of this paper.

Theorem 2: Sufficiency of Propensity Score (Rosenbaum & Rubin, 1983; Shi et al., 2019) - If the average
treatment effect is identifiable from observational data by adjusting for X, i.e., ATE = EX [EY [Y |T =
1, X]−EY [Y |T = 0, X]], then adjusting for the propensity score also suffices: ATE = EX [EY [Y |f(X), T =
1]− EY [Y |f(X), T = 0]]

According to the Sufficiency of Propensity Score, it suffices to use only the information in X relevant to
predicting the propensity score, P (T = 1|X). The propensity score is predicted by g(.), and all the relevant
information to predict P (T = 1|X) is the output of f(.). For the proof, please refer to the original publication
Rosenbaum & Rubin (1983).

3.3 Architecture

Causal-Batle builds upon existing neural network methods that estimate treatment effects. While not tied
to any specific architecture, we will explain our methodology using a Dragonnet (Shi et al., 2019) as a
backbone. The Dragonnet is a neural network with three heads: one to predict the treatment assignment
given the input features, and the other two to predict the outcome if treated and untreated. It assumes no
hidden confounders and relies on the Sufficiency of Propensity Score (Theorem 1) to estimate its outcomes,
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Figure 2: Causal-Batle’s architecture when adopting the Bayesian Dragonnet as a backbone architecture. In
the blue-traced board, we have our main contributions - the discriminator and the reconstruction heads.

later used to estimate the treatment effects. The Dragonnet architecture has five key components: a shared
representation of the input covariates f(.), treatment assignment prediction g(.), a targeted regularization,
and the prediction of the outcome if treated and untreated. Jesson et al. (2020) showed that for high-
dimensional datasets, Bayesian neural networks tend to yield better results than their non-Bayesian neural
network counterpart. They proposed a modification that suits most treatment effect estimators based on
neural networks: a Gaussian Process on the last layer.

q(Y |T, X, w) = N (Y |µt(X; w), σ2
t (X; w)) (1)

where Y , T , and X are the observed outcome, the treatment assigned, and the covariates, respectively, and
w are the neural network weights.

Up to this point, all components of the architecture address only the estimation of the outcome in a high-
dimensional setting. Note that these components assume the sample size n is sufficiently large to train such a
neural network. It is also worth noticing that, regardless of the backbone adopted (in our case, Dragonnet),
training the shared representation f(.) is the most expensive step: this is the component with the largest
number of weights, which receives as input the high-dimensional data and outputs a lower-dimensional
representation of that data, used as input by the other components.

Causal-Batle focuses on improving the training of f(.), the hardest part of the architecture. The idea is to
use the source-domain to improve the representation of f(.) (hence, transfer knowledge from source-domain
to target-domain). With a better trained f(.), the estimation of the outcome models and the propensity
score would yield better results.

Causal-Batle adds two new components to the network architecture: a discriminator d(.) and a reconstruction
layer r(.), and their corresponding terms in the loss function. The overall architecture is shown in Figure 2,
with the two new components highlighted with blue-traced boards. The discriminator component d(.) is a
binary classifier defined as d(f(X)) = P (D = 1|X). Therefore, for a given sample i, the discriminator will
predict whether it belongs to the source or target-domain. The adversarial loss incentivizes f(.) to extract
patterns common to both domains and fool d(.). The adversarial loss also helps remove spurious correlations
and potential biases present in only one of the domains, improving f(.)’s representation. The reconstruction
component r(.) is to ensure f(.)’s representation is meaningful. For the reconstruction component r(.), in
our work, we adopt an autoencoder for simplicity, but we point out that one could replace it with more
sophisticated methods, such as variational autoencoders.

Similarly to Jesson et al. (2020), Causal-Batle adopts a Bayesian neural network with a Gaussian Process
to estimate the outcomes (See Equation 1), and for the propensity score, with a Bernoulli Distribution:

g(T |X, w) = Bernoulli(T = 1|p(X; w)) (2)
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Causal-Batle does not assume a distribution for the discriminator d(D|X). Instead, it adopts a neural
network classification node, which allows it to use traditional losses for adversarial learning.

In the context of Causal Inference, Causal-Batle components aim to improve the covariate adjustment.
Existing causal effect estimators might underperform in applications with small high-dimensional datasets.
Often, this underperformance is due to data limitations that prevent the estimator from learning a good
feature representation to perform the covariate adjustment. Focusing on these applications (with small high-
dimensional datasets), Causal-Battle uses an architecture that allows us to adopt an additional data source,
Xsource. By adding another data source, under certain assumptions, the proposed representation would
perform a better covariate adjustment, resulting in better treatment effect estimates with a lower variance.

3.4 Loss Functions

The exact loss function will depend on the backbone architecture adopted. Here, we will present the loss
function for the example given in Figure 2, which is a bayesian dragonnet architecture. Note that we have
nt samples in the target-domain, ns samples in the source-domain, and n = nt + ns

There is a loss associated with each grey/blue square. Starting with the outcome model loss: we only observe
the outcome Y for either q(0, .) or q(1, .), with q() representing a distribution. Therefore, we define the loss
as the log probability:

ℓy(Y, Ŷ ) = − 1
nt

nt∑
i=0

(Tilog(q̂(Yi|Ti = 1, Xi)) + (1− Ti)log(q̂(Yi|Ti = 0, Xi)))] (3)

The propensity score loss is also calculated using log probability.

ℓt(T, T̂ ) = − 1
nt

nt∑
i=0

log(q̂(Ti|Xi)) (4)

To capture the losses associated with the transfer learning components, we adopt a second binary cross
entropy loss for the discriminator. Defining D̂i = d̂(Xi):

ℓd(D, D̂) = − 1
n

n∑
i=0

(Dilog(D̂i) + (1−Di)log(1− D̂i)) = BCE(D, D̂) (5)

and to compete with the discriminator loss, we have the adversarial loss:

ℓa(D̂) = 1
n

n∑
i=0

log(1− D̂i) (6)

Finally, the reconstruction loss ensures the features extracted by f(.) are meaningful. Denoting by X̂ the
reconstruction of input X, we have:

ℓr(X, X̂) = MSE(X, X̂) (7)

The final loss is defined as:

ℓ = α0ℓy(Y, Ŷ ) + α1ℓt(T, T̂ ) + α2ℓd(D, D̂) + α3ℓa(D̂) + α4ℓr(X, X̂) (8)

where the array α = [α0, ..., α4] are the losses’ weights.

Fining tuning the losses’ weights is extremely important. The most basic approach is to adopt a grid search
with a human in the loop to find each component’s minimum loss and convergence. The convergence is
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measured by tracking the losses per epoch and comparing the losses on the training and validation set.
While simple, this approach can be time consuming. For advanced users, a task balancing loss approach,
such as Dynamic Weight Average (DWA) Liu et al. (2019) could also be adopted after suitable adaptations.

3.5 Treatment Effect Estimation

Equation 9 shows how the treatment effect is estimated. To calculate the Average Treatment Effect (ATE),
we use the mean value µt(x, w) of the Normal Distribution (see Equation 1). The ATE can then be estimated
as:

τ̂ = 1
n

n∑
i=0

[µ1(xi, w)− µ0(xi, w)] (9)

3.6 Source-domain and Target-domain relationship

This section discusses the relationship between the source and target-domain. Causal-Batle aims to use the
unlabeled source-domain to learn a better representation of the labeled target-domain. There are three losses
associated with the transfer learning: the discriminator loss ℓd, the adversarial loss ℓa, and the reconstruction
loss ℓr. Here, we discuss the impact of P (Xtarget) (target-domain distribution) and P (Xsource) (source-
domain distribution) in our proposed methodology.

• P (Xtarget) = P (Xsource): ℓd will be large, as the discriminator will have a hard time trying to
distinguish elements from two identical distributions while working against the adversarial loss. The
ℓr loss, on the other hand, will thrive. A large collection of samples from the same distribution will
help f() to find a good representation of the input data, lowering the ℓr.

• P (Xtarget) ̸= P (Xsource): ℓd will be low, as d(.) would be able to identify these differences and
use them. Still, ℓa would attempt to fool d(.), which would push f(.) to learn a domain agnostic
representation.

This means that, in practice, regardless of the P (Xtarget) and P (Xsource) distributions, the losses would
push f(.) to have a meaningful representation of X. The key is to find a balance between the adversarial
loss, the discriminator loss, and the reconstruction loss, which, as shown in Equation 8 is controlled by
the weights (hyper-parameters) α. Hence, the losses’ weights, when well calibrated, contribute to avoid the
degradation of the performance when the distributions are different.

4 Experiments

Our experiments compare Causal-Batle against some of the most adopted causal inference baselines for
binary treatments: Dragonnet (Shi et al., 2019), Bayesian Dragonnet (Jesson et al., 2020), AIPW (Glynn &
Quinn, 2010), and CEVAE (Louizos et al., 2017). Note that none of these baselines adopt transfer-learning
techniques. The AIPW was adopted in its simplest form with two linear regressions as base-models and
logistic regression as propensity score. As future work, it would be very interesting to plug-in the results of
our neural network as a base-model of a AIPW.

The main questions we want to investigate are:

• Does the transfer learning approach improve the treatment effect estimates compared to existing
treatment effect methods?

• What is the impact of the ratio between the sizes of Xs (unlabeled source-domain) and Xt (labeled
target-domain)?
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To make a fair comparison between Causal-Batle and the baselines, we adopt the following scheme:

Setting 1 - Datasets with only Xtarget: In the evaluation, we also adopted traditional benchmark datasets,
which do not have an unlabeled source domain. To adapt to our setting, we splited the n samples of Xtarget

into two sets: n × pt samples to X ′target and n × (1 − pt) samples to X ′source. The quantity pt represents
the proportion of the dataset used as target-domain, with 0 < pt < 1. We removed the labels (treatment
assignment and outcome) from the samples in X ′source. The baselines receive the labeled target-dataset
X ′target, and Causal-Batles receives the target-dataset X ′target and the unlabeled source-dataset X ′source.

Setting 2 - Datasets with Xsource and Xtarget: Baselines are trained using only Xtarget. Causal-Batle would
have access to both domains.

We define the ratio as r = nt/ns, representing the target-domain’s size relative to the source-domain.
The Causal-Batle ideal use-cause is for applications with low r. The code for an implemented version
of Causal-Batle is available at github/HiddenForDoubleBlindSubmission. We simulated each dataset bd

times and fit each method bm times. Therefore, each given combination of (dataset × method) was repeated
bd × bm = B times for consistency and reproducibility. For the Causal-Batle, Dragonnet, and Bayesian
Dragonnet, we adopted the same backbone architecture to have a fair comparison. As metric, we adopt
the Mean Absolute Error (MAE) between the estimated treatment effect τ̂ and the true treatment effect τ ,
defined as MAE = |τ̂ − τ |. In our plots and tables, we report the average value over all the B repetitions:
MAE =

∑B
MAE

B . Low values of MAE are desirable. The experiments were run using GPUs on Colab
Pro+.

4.1 Datasets

We adopted the three datasets to validate our proposed method. Note that we adapted these datasets to
suit the application we want to mimic, which contains small high-dimensional datasets.

4.1.1 GWAS

The Genome-Wide Association Study (GWAS)(Wang & Blei, 2019; Aoki & Ester, 2021) dataset is a semi-
simulated dataset that explores a high-dimensional sparse setting. Proposed initially to handle multiple
treatments, we adapt it to have one binary treatment T and a continuous outcome Y . We split the data
into two datasets, as explained in Setting 1. Note that Xsource and Xtarget have the same distribution. We
simulated a small high-dimensional dataset with 2k samples and 10k covariates.

The core idea is to simulate covariates that mimic the behavior of single-nucleotide polymorphisms (SNPs),
and the outcome represents a clinical trait. This dataset allows the simulation of single and multiple binary
treatments, and the process described below is the same adopted by Wang & Blei (2019). The 1000 Genome
Project (TGP)Consortium et al. (2015) is used to make the simulations more realistic. The first step is
to generate this dataset is to use Linkage Disequilibrium to remove TGP’s highly correlated SNPs, and
adopt a PCA to extract c = 2 components. The resulting dataset is the genetic representation matrix ΓV,c,
where V is the number of remaining covariates. An interception column ΓV,c+1 = 1 is appended to Γ. The
patients’ representation matrix is generated as ΠN,c ∼ 0.9 × Uniform(0, 0.5), where N is the number of
desired samples. The last column of the patient’s representation matrix is constant ΠN,c+1 = 0.05 (intercept
column). The product of these two matrices, ΠN,c × ΓT

V,c, represents the allele frequency, later used to
simulate the covariates X. The covariates are simulated as XN,V ∼ Binomial(1, ΠN,c × ΓT

V,c). The effect of
the treatment is defined as: τ ∼ Normal(0, 0.5). To calculate the outcome, three groups were extracted using
k-means(X) to add confounding. Each group l ∈ {1, 2, 3} has an intercept value λl and noise distribution
ϵ ∼ Normal(0, σl), σl ∼ InvGamma(3, 1). Following a high signal-to-noise ration, the SNP’s and the
per-group intercept are responsible for 40% (vgene = vgroup = 0.4) of the variance each, and the error is
responsible for 20% (vnoise = 0.2) of the variance. To re-scale the noise and intercept:

λ←

[
sd{

∑
V τvXn,v}N

n=0√
vgene

] [ √
vgroup

sd{λ}N
n=0

]
λ (10)
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ϵj ←
[

sd{
∑

V τvXn,v}N
n=0√

vgene

] [ √
vnoise

sd{ϵj}N
n=0

]
ϵj (11)

Finally, the outcomes are generated as:

Y = τXn,t + λcj
+ ϵj (12)

4.1.2 IHDP

The Infant Health and Development Program (IHDP)Hill (2011) is a traditional benchmark to evaluate
treatment effect estimators that target single binary treatments. It simulates data to mimic a study on
infant development. In that study, the treatment was assigned (T = 1) if the child had special care/home
visits from a trained provider. The outcome Y is cognitive test scores, and the goal is to measure the causal
effect of the home visits. The benchmark contains ten replications of such a study, with 24 covariates and
a continuous outcome. We adopt this dataset to compare our proposed method with some of the single-
treatment baselines that have been previously evaluated on the IHDP benchmark datasets 1. This dataset
has been adopted by several of our baselines. We adopted Setting 1. Note that this dataset is not high-
dimensional. Hence, the IHDP is not the ideal use case of our proposed method; still, it is a classic dataset
in Causal Inference, so we adopted it to compare with existing methods.

4.1.3 CMNIST

A semi-synthetic dataset that adapts the MNIST (LeCun, 1998) dataset to causal inference. It contains
a binary treatment and continuous outcome. We follow the setup from Jesson et al. (2021) with small
adaptations to contain a source and a target-domain. Jesson et al. (2021) generates the treatment assignments
T and the outcomes Y partially based on the images’ representation. In our adaption, we also follow this
scheme, but we only used two randomly selected digits ci, cj ∈ {0, .., 9}, ci ̸= cj . Therefore, in our target-
domain, we have the images of the digits ci and cj . We map the high-dimensional images to a one-dimensional
array ϕ, which is used to simulate the treatments T and the outcome Y as follows. We calculate the average
intensity of the images with the digits ci and cj , µci and µcj, and standard deviations σci and σcj. The
average intensity of a sample i is defined as Xi. The high-dimensional images X are mapped into a one-
dimensional manifold ϕ ∈ [−2, 2] with a linear transformation defined by [Minc, Maxc].

ϕ =
(

Clip

(
X − µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc −Minc

1.4− (−1.4) (13)

The treatment assignment is generated as:

T ∼ Bernoulli(Sigmoid(2ϕ + 0.5)) (14)

The outcome is generated as:

Y = (2T − 1)ϕ + (2T − 1)− 2Sin(2(2T − 1)ϕ) + 2(1 + 0.5ϕ) + ϵ

where ϵ ∼ N(0, 1).

For the source-domain, we use the images of the other digits. As the source-domain is unlabeled, there is no
treatment T or outcome Y produced, and we use the images as they are observed. We follow Setting 2.

4.2 Experimental Results

Setting 1 (Figure 3A-D): We explored the following ratios r ∈ {0.25, 0.67, 1.5, 4}, with low r being the
ideal use-case of Causal-Batle. For the IHDP dataset, we adopted bd = 10 datasets replications with bm = 30
model repetitions, for a total of B = 10 × 30 = 300 estimated values for each r. For the GWAS dataset,

1IHDP dataset is available at github.com/AMLab-Amsterdam/
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Figure 3: Experimental Results. Plots A, C and E show the average MAE of the IHDP, GWAS and
HCMNIST datasets, and the black vertical line is an error bar (95% Confidence Interval). Plots B, D and
F show estimated values of individual runs on a dataset replication of the IHDP, GWAS and HCMNIST
datasets. The black horizontal line indicates the true treatment effect, and the color gradient encodes the
ratio r = nt/ns (light colors → low r , darker colors → high r).Legend: C-Batle: Causal-Bate, B-Drag.:
Bayesian Dragonnet, Drag.: Dragonnet.

we adopted bd = 10 dataset replications with bm = 10 model repetitions for each r (B = 100). The IHDP
dataset is not a small high-dimensional dataset; however, it is a classic benchmark dataset. With r ≤ 1,
Causal-Batle outperforms all the other baselines as shown in Figure 3.A. With r > 1, the performance of all
methods improves, including Causal-Batle, which stays in the top 2. Figure 3.B shows the bm = 30 model
repetitions on a dataset replication, where the colors indicate the r value (lighter colors → low r). Besides
having the lowest MAE’s, Causal-Batle estimations are well distributed around the true value, while some
baselines often underestimate the true values, especially for low r values (light-colored dots).

10
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The GWAS dataset fits more in our ideal use-case, containing 2k samples and 10k covariates. As a reminder,
pt = 0.2(20%) means that all methods will receive 2k × 0.2 = 400 samples as Xtarget, which contains
the treatment assignment and the outcome of interest; Causal-Batle, on top of the Xtarget, also receives
Xsource, which contains 2k×(1−0.2) = 1.6k unlabeled samples (only covariates available, without treatment
assignment nor outcome). Figure 3.C shows that Causal-Batle has the lowest MAE among all methods
considered, with the distance between Causal-Batle and the other methods decreasing as r increases. Figure
3.D shows that Causal-Batle estimated values are well distributed around the true value. Note that the
Bayesian Dragonnet and CEVAE are also well distributed around the true value; however, they underestimate
τ̂ with low r values.

Setting 2 (Figure 3E-F): The HCMNIST had bd = 4 dataset replications and bm = 25 model repetitions,
for a total of 4×25 = 100 estimated values for each r ∈ {0.25, 0.5, 0.75, 1}. As Figure 3.E shows, Causal-Batle
has the smallest MAE for r ≤ 0.5, and the second-best MAE for r > 0.5. According to the experimental
results in Figure 3.F, both Causal-Batle and the Bayesian Dragonnet tend to underestimate the treatment
effect with low r values (light colors). However, Causal-Batle has lower variance, and its estimates are more
accurate than Bayesian Dragonnet’s estimates.

Discussion: Causal-Batle has more accurate estimates (low MAE) than the baselines for low r values.
Note that the only difference between Causal-Batle and the Bayesian Dragonnet is the transfer learning
components (discriminator loss, adversarial loss, reconstruction loss, and the use of the Xs dataset). An
explanation for these results is that transfer learning improves the estimates. Considering the IHDP dataset,
when r > 1, the simpler architecture of the Bayesian Dragonnet performs better, indicating a possible
threshold for the IHDP dataset when a simpler architecture is preferable over a more complex one with
transfer learning. For the GWAS and HCMNIST datasets, that threshold is above r > 4 and r > 0.5.
Note that we did not experiment with CEVAE with the HCMNIST as that would require many changes
to the CEVAE to work with image data, which was not our focus. We also investigated Dragonnet’s poor
performance. Our main hypothesis is that the Bayesian component included in the Bayesian Dragonnet
and Causal-Batle reduces the variability and improves τ estimates. The Bayesian component predicts the
outcome and the treatment assignment as a Gaussian Mixture and Bernoulli distribution, respectively, and
predictions are calculated using MC-dropout (30 forward passes).

5 Conclusion

This paper addresses an important and underexplored problem: causal inference in small high-dimensional
datasets. In Section 2 we describe existing approaches to estimate treatment effects with a binary treatment
and continuous outcome, along with their main limitations. We later describe in Section 3 our assumptions
and our proposed method, Causal-Batle, and the main characteristics of the target and source-domain
datasets. Finally, in Section 4 we validate our method, comparing it with existing methods in three different
datasets. The Causal-Batle ideal use case is tested in our experiments when we have low r = nt/ns. Under
this setting, Causal-Batle has the best performance among all the baselines considered. In other settings,
with larger target-domain datasets, the performance is comparable to the baselines. Therefore, according
to our experimental results, the transfer learning components of Causal-Batle improved the treatment effect
estimations for low values of r compared to other methods.

Causal-Batle, like other machine learning methods, could have negative societal impacts if misused, fed biased
data, or applied to unethical applications. In general, we believe most Causal-Batle negative characteristics
are inherent to the field (of machine learning) rather than our proposed method. Ethics guidelines can
help reduce unethical applications while the others can be mitigated by increasing the transparency in
methodologies, datasets, and code availability. Causal-Batle’s dependence on the availability of an unlabeled
source-domain dataset in the same feature space as the target-domain dataset can be considered a limitation
of our approach, along with the strong ignorability assumption that is often difficult to guarantee in real-world
applications. To address the first limitation, we recommend checking the baselines adopted by our work,
in particular the Bayesian Dragonnet(Jesson et al., 2020) and CEVAE(Louizos et al., 2017), as these two
methods do not need external source-domain datasets. As for the strong ignorability assumption, one might
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adopt a sensitivity analysis (Veitch & Zaveri, 2020) to investigate the impact of unobserved confounders on
the estimation of treatment effects.

Overall, Causal-Batle demonstrated to be a good estimator for its intended use case. Such a setting is very
common in Computational Biology applications, where we often have high-dimensional datasets with genetic
information but a limited number of samples available with treatment assignment and observed outcome.
Yet, several unlabeled datasets in the same feature space could be used under certain assumptions to improve
causal inference in small high-dimensional datasets. Another use-case example is when images are used as
covariates to perform causal inference - a topic that has recently received more attention. In this case, if
only a few labeled images are available to estimate the treatment effects, one could adopt several unlabeled
(similar) images to improve the feature extraction component of Causal-Batle, and, consequently, improve
the treatment effect estimation.
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