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1. Introduction

Bayesian inference is based on the posterior distribution of a set of latent variables x, given
a set of observations y:

p(x|y) =
p(y|x)p0(x)

p(y)
,

where p(y|x) is the likelihood of the data, and p0(x) is the prior. For simplicity we drop the
conditioning on y and write only p(x) := p(x|y) for the posterior. The evidence Z = p(y) is
an important quantity for both model comparison and hyper-parameter optimization, but
computing it is typically intractable for interesting problems.

There is a large class of methods to estimate the evidence, including advanced methods
like Thermodynamic Integration (TI) (Gelman and Meng, 1998; Lartillot and Philippe,
2006) or Bayesian quadrature (O’Hagan, 1991; Rasmussen and Ghahramani, 2003). Most of
these techniques are standalone methods and do not compute nor approximate the posterior.

On the other hand, many methods, such as Variational Inference (VI) aim to find the
best posterior approximation. We are particularly interested in a class of approaches, which
we refer as Flow Based Variational Inference, where the optimization of the variational
distribution can be described as an Ordinary Differential Equation (ODE), we give a precise
definition in Section 2.1. In this work we show that for flow based VI we can approximate
the posterior p(x) and estimate the evidence Z at the same time. More specifically we give
a general approach on the computation of the log evidence for flow based methods. We
illustrate our approach by using the Stein Variational Gradient Descent (SVGD) (Liu and
Wang, 2016) algorithm and show preliminary results on toy problems.

2. Method

2.1. Flow Based Variational Inference

Variational Inference (VI) aims at finding a distribution q that most closely approximates
the target distribution p, while constraining q to be a member of some family Q to make
the problem tractable. The quality of the approximation is measured by the Kullback-
Leibler (KL) divergence between the distributions q and p. The most common approach
(Blei et al., 2017), is to parametrize q with a set of variational parameters χ, thus turning
inference into an optimization problem, solving arg minχ KL(qχ||p).

A different approach is to start with a tractable initial distribution x(0) ∼ q0 and apply
an ODE flow:

dx(t)

dt
= ϕt(x(t)), (1)
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for suitable smooth function ϕt : R× RD → RD, such that dKL(qt||p)
dt ≤ 0.

Assuming such dynamics for x(t), the evolution of the corresponding density qt is given
by the continuity equation:

dqt(x)

dt
= −∇ · (qt(x)ϕt(x)) , (2)

where ∇ = (∂/∂x1, . . . , ∂/∂xD). See Appendix A.1 for a proof in the current context.
In practice, the continuous time variable in (1) must be discretized, leading to iterative

algorithms like:
xt+1 = xt + εtϕt(xt). (3)

2.2. KL Flow

We will now consider the dynamics of the KL divergence induced by (1). Recall that the

KL-divergence is defined by KL(q||p) =
∫
q(x) log q(x)

p(x)dx. As we show in Appendix A.2 its
time evolution is given by:

dKL(qt||p)
dt

=

∫
qt(x)ϕt(x) · ∇(log qt(x)− log p(x))dx (4)

=− Eqt [∇ · ϕt(x) + ϕt(x) · ∇ log p(x)] . (5)

Note that Equation (5) is the expectation of the Stein operator applied on ϕ, also used in
Liu and Wang (2016).
Equation (4) and Equation (5) can both we used to calculate derivative of the KL but
differ in their application. Unlike Equation (5), Equation (4) requires to compute ∇ log qt.
Maoutsa et al. (2020), for example, use an estimator for ∇ log q based on kernels.

2.3. Log-Evidence by Flow Integration

Now that we have expressions for the rate of change in the KL-divergence under a flow, we
can construct an equation for the log of the evidence.

Theorem 1 Given a target distribution p(x) = 1
Z exp(−V (x)) and a variational distri-

bution qt(x) with a flow defined by dqt(x)
dt = −∇ · (qt(x)ϕt(x)) and an initial density q0,

then

logZ ≥ Eq0 [− log q0(x)− V (x)]−
∫ ∞
0

d

dt
KL(qt||p)dt, (6)

with strict equality if KL(q∞||p) = 0.

Proof: The KL-divergence between qt and p can be expressed as:

KL(qt‖p) =

∫
X
qt(x) log

qt(x)

p(x)
dx =

∫
X
qt(x) log qt(x)dx+

∫
X
qt(x)V (x)dx+ logZ

= −H [qt] + Eqt [V (x)] + logZ, (7)
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where H[q] denotes the entropy of q. We can connect Equation (7) to (5) by writing the
KL as an integrated path:

KL(q∞‖p) = KL(q0‖p) +

∫ ∞
0

d

dt
KL(qt‖p)dt.

(Note the resemblance with TI where we integrate the path from the prior to the posterior.)
If we assume that the final distribution q∞ perfectly approximates the target, i.e.

KL(q∞‖p) ≈ 0 and replace KL(q0||p) by Equation (7) at t = 0 we obtain the result:

logZ = H[q0]− Eq0 [V (x)]−
∫ ∞
0

d

dt
KL(qt‖p)dt �

2.4. Training and Integrating

In Equation (6), the expectations with respect to q0 can be computed analytically or ap-
proximated easily, provided the sampling from q0 is inexpensive. We propose to estimate
the integral as a part of the training procedure. We apply the same time-discretization used
for the inference and approximate it with a simple numerical quadrature.

The term d
dtKL(qt||p) can be replaced by Equation (4) or (5) and reuses existing com-

putation from the inference as we will show in Section 2.5. Additionally, if the inference
reaches a fixed-point, i.e. dx(t)

dt = 0 ≡ ϕ(x) = 0, Equation (4) guarantees that dKL
dt = 0 and

the integral is finite.
Let T be the number of steps until convergence and take εt to be the same as in

Equation (3), then the integral can be approximated by:∫ ∞
0

dKL(qt||p)
dt

dt ≈
T∑
i=0

εi
dKL(qt||p)

dt

∣∣∣∣
t=i

.

2.5. Stein Variational Gradient Descent

We present a brief overview of SVGD and show how Theorem 1 can be applied to estimate
logZ. We refer the reader to Liu and Wang (2016) for a full treatment of the theory of
SVGD.

SVGD belongs to the class of algorithms described in Section 2.1. Liu and Wang (2016)
start with Equation (1) and derive an optimal ϕt, in the sense that it maximizes the ex-
pectation in Equation (5). When ϕt is constrained to lie in the unit ball in a Reproducing
Kernel Hilbert Space (RKHS) the value of this expectation is called the kernelized Stein
discrepancy. This goodness of fit measure was first introduced by Liu et al. (2016), they
furthermore showed that its value is attained for:

ϕ∗t =
ϕqt,p
‖ϕqt,p‖k

, where ϕqt,p(x) = Ey∼qt [k(x, y)∇ log p(y) +∇k(x, y)] . (8)

In practice the variational distribution qt is approximated by an empirical distribution
based on a set of samples {xti} ∼ qt, i.e. qt(x) = 1

N

∑N
i=1 δ(x

t
i − x). Therefore, we start

by drawing N samples {x0i }i=0,...,N from the initial distribution q0, and repeatedly update
their positions using ϕ∗t and Equation (3). Note that, since qt is itself discretized, we only
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have an empirical estimate of ϕt. We explore the implications of this approximation in
the experiments of Section 3.2. The inference steps are summarized in Algorithm 1. We
believe that due to the non-parametric nature of SVGD the odds of satisfying the condition
KL(q∞||p) ≈ 0 are good, making it well suited for flow integration.

2.6. SVGD KL Flow Estimators

Since SVGD calculates ϕt at each iteration, we can also calculate dKL
dt . In this sections we

describe three estimators that can be used.

Stein discrepancy: The most obvious approach is to insert Equation (8) into Equa-
tion (5) and use the empirical estimation of the result, i.e. the negative kernelized Stein
discrepancy:

d

dt
KL(qt‖p) ≈ − 1

N

N∑
i,j

[
k(xi, xj)∇ log p(xi) · ∇ log p(xj) +∇ log p(xi) · ∇xjk(xi, xj)

+∇ log p(xj) · ∇xik(xi, xj) +
D∑
k=1

∂2k(xi, xj)

∂(xi)k∂(xj)k

]
.

(9)

Considering Equation (5), we see that this quantity depends on both ϕ and its gradient.
Since we do not know what happens to the gradient as ϕ approaches 0, there is no guarantee
that (13) will go to 0.

Unbiased Stein discrepancy: An alternative is the unbiased estimator of the Stein
discrepancy as described in Liu et al. (2016). For details, see Appendix B.2.

RKHS-Norm: We propose a third estimator which is guaranteed to converge to 0 if the
SVGD algorithm converges to a fixed solution. Following from Liu et al. (2016), the Stein
discrepancy can also be written as dKL

dt = −‖ϕ‖2k, where ‖·‖k is the RKHS-norm for a given
kernel k.

By definition1 we have ϕ(x) =
∑N

i=1 αik(x, xi) and ‖ϕ‖2k =
∑N

i,j αik(xi, xj)αj where

{xi}Ni=1 are the set of particles representing qt. Let ϕ be the vector ϕi = ϕ(xi), then we can
invert this equation for all particles to obtain α = K−1ϕ, where K is the kernel matrix.
This leads to the final estimator for dKL

dt :

dKL(qt||p)
dt

≈ −‖ϕ‖2k = −ϕ>K−1ϕ. (10)

This estimator is not only the guaranteed to go to 0 with ϕ but also avoids second order
derivatives. Due to numerical instabilities of the kernel matrix it may need to be regularized
in order to be inverted, i.e. K−1 ≈ (K + νI)−1 for 0 < ν << 1. We compare the different
estimators experimentally in Section 3.1.

1. Here we only show the solution in 1 dimension, but it can easily be extended to higher dimensions for
common kernels.
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3. Experiments

In this section we discuss some experiments studying the simplest example: approximating a
2D Gaussian distribution. We empirically explore the different parameters of the algorithm,
namely the estimator for dKL/dt, the step size ε, the number of particles and the problem
setup. We show an unsuccessful attempt to use this method to compute the log evidence in
a Bayesian generalized linear regression in Appendix C and provide a hypothesis to explain
this issue.
Following Liu and Wang (2016), we used a RBF kernel k(x, y) = exp(−0.5‖x − y‖2/l2).
We set l to median(A)

logN at each iteration, where A is the matrix of the pairwise Euclidean
distances between the particles. We use a constant step size εt = ε for all experiments.

3.1. Evaluating Estimators and Step Size

We first compare the effect of the step size and the different flow estimators. For these
experiments we draw 200 particles from q0 = N (0, I2) and set p = N (µ = [4, 5],Σ =
[1, 0.5; 0.5, 1]). Figure 1 shows the results obtained by the estimators: the RKHS-norm as
described in Equation (10), the Stein discrepancy as in Equation (13) and the unbiased
Stein estimator as described in Equation (16). We compare it to the true value 1

2 log |2πΣ|.
The RKHS-norm estimator turns out to be the most reliable and accurate of the three

available flow estimators. As expected the näıve Stein discrepancy tends to overestimate
more than the RKHS-norm, as it naturally comes with a stronger bias from the estimation
of Equation (5). A general issue with all estimators is the steepness of the function at the
origin. This magnifies all approximation errors introduced by the discretization. A smaller
step size improves the result but requires more computational resources to converge.

a) ε = 0.05 b) ε = 0.01 c) ε = 0.005

Figure 1: logZ estimation as a function of the number of iterations for different estimators
of the kernelized Stein discrepancy and different step sizes.

3.2. Varying the Target

Our preliminary experiments show that one of the most critical factors for a good approx-
imation of the log-evidence is the choice of target and initial distributions. We evaluate
the approximation quality for different targets with varying covariances and/or means. For
these experiments we used 500 particles and a step size of 0.05. The convergence of logZ
as well as ‖ϕ‖ and an illustration of the problem are shown in Figure 2. As can be seen
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a) p = N ([0, 0], [1, 0.5; 0.5, 1]) b) p = N ([4, 5], [1, 0.5; 0.5, 1]) c) p = N ([4, 5], [2, 0.1; 0.1, 2])

Figure 2: Approximating logZ of different Gaussian targets p starting from a standard
normal.

from the figures the method typically converges to a slight overestimation of logZ. Large
differences in covariance and/or mean lead to worst results, an observation confirmed in the
linear regression experiment in Appendix C. A simple solution would be to take a Laplace
approximation as a starting point, which might also avoid the strong steepness at the be-
ginning.

3.3. Effect of the Number of Particles

Figure 3: Estimation of logZ as
function of the number
of iterations for a varying
number of particles.

One of the approximations involved is the empiri-
cal estimation of Equation (5) with a finite number
of samples. In Figure 3, we reuse the problem of
Section 3.1 but only examine the convergence of the
RKHS -norm approach. We fix the step size ε = 0.05
and run the problem with 50, 100 and 200 parti-
cles. The figure shows that increasing the number
of particles makes the estimate more accurate. Un-
fortunately, SVGD scales poorly with the number of
particles, thus putting practical limits on the accu-
racy of the computation.

4. Conclusion

We presented KL flow integration, a way to extend flow based variational inference algo-
rithms to also estimate the log evidence, or at least a lower bound thereof. As an example,
we added log evidence estimation to SVGD and provided some first experimental results.
We intend to continue to study, analytically and empirically, the issues arising when working
on more difficult problems such as Bayesian generalized linear regression. Since our frame-

6



Evidence Estimation by Kullback-Leibler Integration for Flow-Based Methods

work is not limited to a single algorithm, we also plan on exploring applications to other
flows, such as the work of Maoutsa et al. (2020) and other expressive parametric models.
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Appendix A. Detailed derivations

A.1. Conservation Law for Density

To prove the conservation law for a probability density under an ODE flow, consider the
time derivative of the expectation of an arbitrary smooth function g(x) : RD → R:

d

dt
E [g(X(t))] =E

[
∇g(X(t)) · dX(t)

dt

]
= E [∇g(X(t)) · ϕt(X(t))]

=

∫
∇g(x) · qt(x)ϕt(x)dx = −

∫
g(x)∇ · (qt(x)ϕt(x)) dx,
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where · is the dot product and ∇ =
(

∂
∂x1

, . . . , ∂
∂xD

)
is the gradient operator. We used the

ODE flow from Equation (1), the chain rule and Green’s identity. Naturally we can also
express the derivative by the change of qt :

d

dt
E [g(X(t))] =

∫
dqt(x)

dt
g(x)dx. (11)

Since this is true for all functions g, we obtain the following gradient flow for qt:

dqt(x)

dt
= −∇ · (qt(x)ϕt(x)) (12)

Note that this is classic result for in physics of conserved quantities, known as a continuity
equation.

A.2. KL Derivatives

Given KL(q||p) =
∫
q(x) log q(x)− log p(x)dx the time derivative is given by:

dKL(q||p)
dt

=
d

dt

∫
qt(x) (log qt(x)− log p(x))

=−
∫
∇ · (qt(x)ϕt(x))(log qt(x)− log p(x))dx

=

∫
qt(x)ϕt(x) · ∇(log qt(x)− log p(x))dx

=

∫
∇qt(x) · ϕt(x))dx−

∫
qt(x)ϕt(x) · ∇ log p(x)dx

=− Eqt [∇ · (ϕt(x))− ϕt(x) · ∇ log p(x)] ,

where we used Equation (2), Green’s identity and the fact that limx→∞ qt(x) = 0.

Appendix B. SVGD Algorithm and estimators

B.1. SVGD Algorithm with Flow Integration

We summarize the different steps presented in Section 2 with Algorithm 1. Note that
SVGD does not actually calculate the full time derivative at every step, but the information
required is present at every step, namely the updated ϕ (Liu et al., 2016).

The computation of the derivative of the KL divergence is written only as Ft. This is
because there are two ways to estimate Ft: it can either be estimated by computing the
Stein discrepancy or from the RKHS norm of ϕ.

B.2. Estimation Based on the Stein Discrepancy

The derivative of the KL divergence is equal to the negative of the Stein discrepancy, which
is defined by

D(q, p) = max
ϕ∈H

{
Ex∼q [trace(Apϕ(x))]2 | ‖ϕ‖ ≤ 1

}
(13)
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Algorithm 1: Stein Variational Gradient Descent with Flow Integration
Input: Initial distribution q0, target distribution p(x) = 1

Z exp(−V (x)), step size εt,

# iterations T , kernel function k(x, y), KL derivative estimator F (ϕ, x) ≈ dKL
dt (see Equa-

tion (4), (5) or (10)).
Output: Set of particles {xi}Ni=1, log-evidence approximation log Z̃
Init: Sample initial particles {xi}Ni=1 from q0, compute KL = H[q0]− Eq0 [V (x)]
for t = 1 : T do

ϕi = 1
N

∑N
j=1−k(xkj , x)∇V (xki ) +∇k(xki , x), ∀i = 1 : N # SVGD step

KL← KL + εtF (ϕ, x)
xi ← xi + εtϕi, ∀i = 1 : N

end

where Apϕ = ϕ∇ log p+∇ϕ is the Stein operator and the maximum is attained by

ϕ∗ =
ϕq,p
‖ϕq,p‖

where ϕq,p(x) = Ey∼q [Apk(x, y)] (14)

Thus the derivative of the KL divergence can be obtained by applying the Stein operator
twice to the kernel of the RKHS:

d

dt
KL(qt‖p) ≈ −

1

N

N∑
i,j

[
k(xi, xj)∇ log p(xi) · ∇ log p(xj) +∇ log p(xi) · ∇xjk(xi, xj)

+∇ log p(xj) · ∇xik(xi, xj) +
D∑
k=1

∂2k(xi, xj)

∂(xi)k∂(xj)k

]
.

(15)

However, according to Liu et al. (2016) this is a biased estimator for the Stein discrep-
ancy, an unbiased one can be constructed by leaving out the terms where i = j.

d

dt
KL(qt‖p) ≈ −

1

N

N∑
i 6=j

[
k(xi, xj)∇ log p(xi) · ∇ log p(xj) +∇ log p(xi) · ∇xjk(xi, xj)

+∇ log p(xj) · ∇xik(xi, xj) +
D∑
k=1

∂2k(xi, xj)

∂(xi)k∂(xj)k

]
.

(16)

Unfortunately neither of these converge to 0 when ϕ → 0, making them unsuitable to
approximate an improper integral.

B.3. Estimating the Gradient Using RKHS Norm

Liu et al. (2016) showed that D(q, p) = ‖ϕ‖2k, so that

d

dt
KL(qt‖p) = −E [trace (Apϕ(x))] = −D(qt, p) = −‖ϕqt,p‖2. (17)

Using the fact that ϕ lies in the RKHS spanned by k and the representer theorem we
know that:
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ϕ(x) =
n∑
i=1

αik(x, xi) and ‖ϕ‖2k =
n∑

i,j=1

αik(xi, xj)αj (18)

where {xi} are the SVGD particles. Let α denote the vector (αi), these coefficients are
unknown, but letting ϕ denote the vector (ϕ(xi)) and K the matrix (k(xi, xj)), they can
be found by inverting K, i.e.

α = K−1ϕ (19)

The RKHS norm of ϕ can then be found as

‖ϕ‖2k = ϕ>K−1ϕ =

n∑
i,j=1

ϕ(xi)K
−1
ij ϕ(xj) (20)

When the problem is more than 1 dimensional (i.e. the SVGD particles are vectors
rather than scalars) the general form of Equation (20) is a tensor equation. This is because
in higher dimensions the functions ϕ are vector-valued functions and the kernel matrix-
valued. Details of this more general formulation of SVGD can be found in Wang et al.
(2019). However, as is the case in vanilla SVGD, while such generality can be interesting
it is not always needed in practice. When using SVGD with scalar-valued kernels the norm
of ϕ can be found using the simple relation ‖ϕ‖2 =

∑D
i ‖ϕi‖2, where ϕi are the component

functions, whose norm is calculated as in (20).

Appendix C. Bayesian Generalized Linear Regression

We applied our methods in the problem of Bayesian generalized linear regression. Given
some inputs xi ∈ RD and output yi ∈ R we define the model:

yi = Φ(xi) · w + χ, (21)

where Φ : RD → RM , χ ∼ N (0, 1√
β

), w ∼ N (0,Σ0). Since both the likelihood and the prior

are Gaussians, the posterior and therefore the evidence can be found analytically,

logZ = 2 log

∣∣∣∣2π (Σ−10 + βΦ(x)>Φ(x)
)−1∣∣∣∣ ,

where Φ(x) is the (row)-vector of observations.
We create a toy dataset by sampling xi ∈ U [−3, 3], we set w = [2,−1, 0.2] and Φ(x) =

[1, x, x2], finally we obtain yi via Equation (21). We sample N particles from an initial
Gaussian distribution centered around the MAP and with covariance 0.1IM . We set the
prior covariance Σ0 to be 0.1IM as well and the likelihood precision to be β = 2

Figure 4 show the convergence result for 50, 100 and 200 particles and a step size of
0.001 over 500 iterations. Our algorithm completely overestimate the true value of logZ.
By inspecting the initial values of ϕ (∼ 105) we realized that they were the cause of the
issue. Since the posterior is particularly peaked, the gradients at the initial distribution
grow quadratically with the distance to the true weight. For optimization it is not a large
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Figure 4: Log evidence computation for a linear regression problem

issue, but for integration it causes additional problem as we need to integrate over an
extremely steep curve. This is still an issue we need to figure out how to solve and maybe
some methods for integrating discontinuous functions could come as a solution.
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