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ABSTRACT

The radioactive nature of Large Language Model (LLM) watermarking enables
the detection of watermarks inherited by student models when trained on the out-
puts of watermarked teacher models, making it a promising tool for preventing
unauthorized knowledge distillation. However, the robustness of watermark ra-
dioactivity against adversarial actors remains largely unexplored. In this paper, we
investigate whether student models can acquire the capabilities of teacher models
through knowledge distillation while avoiding watermark inheritance. We pro-
pose two categories of watermark removal approaches: pre-distillation removal
through untargeted and targeted training data paraphrasing (UP and TP), and
post-distillation removal through inference-time watermark neutralization (WN).
Extensive experiments across multiple model pairs, watermarking schemes and
hyper-parameter settings demonstrate that both TP and WN thoroughly elimi-
nate inherited watermarks, with WN achieving this while maintaining knowledge
transfer efficiency and low computational overhead. Given the ongoing deploy-
ment of watermarking techniques in production LLMs, these findings emphasize
the urgent need for more robust defense strategies.

1 INTRODUCTION

The capability of Large Language Models (LLMs) to rapidly generate high-quality text at scale
makes them valuable sources of training data (Zoph et al., 2022). However, many leading LLM
services explicitly prohibit the use of their outputs for training competing models through knowledge
distillation in their terms of service. Notable examples include OpenAI, Anthropic and Meta Llama,
as detailed in Appendix A.

Watermarking has emerged as a solution to monitor unauthorized usage (Kirchenbauer et al., 2023;
Zhao et al., 2024; Liu et al., 2024c; Zhao et al., 2023). Research has shown that watermarked LLMs
exhibit radioactivity - student models trained on their outputs inherit detectable watermarks (Sander
et al., 2024; Gu et al., 2024). This traceability has led to increasing practical implementations, such
as Google DeepMind’s integration of SynthID-Text (Dathathri et al., 2024) into Gemini chatbots
(Team et al., 2023).

As watermarking emerges as a promising approach to protect model copyrights from knowledge
distillation, its robustness against adversarial actors remains largely unexplored. We conduct the
first systematic investigation into watermark resilience and propose two categories of watermark
removal attacks: pre-distillation removal through untargeted and targeted training data paraphras-
ing (UP and TP), and post-distillation removal through inference-time watermark neutralization
(WN), as illustrated in the left part of Figure 1. Experiments show that TP and WN can thoroughly
eliminate inherited watermarks, with WN achieves watermark removal while preserving distilled
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Figure 1: LLM watermarking has been proposed as a safeguard against unauthorized knowledge
distillation. However, our pre- and post-distillation watermark removal attacks allow student models
to perform untraceable knowledge distillation, emphasizing the need for more robust design. The
bar chart displays the effectiveness of watermark removal and knowledge preservation for our three
proposed attacks.

knowledge and maintaining low computational overhead - raising important questions about the
reliability of preventing unauthorized knowledge distillation through watermarks.

Given that both TP and WN require knowledge of watermark rules, we propose a watermark stealing
technique. Unlike existing methods (Jovanović et al.; Wu & Chandrasekaran, 2024; Zhang et al.,
2024), our approach (1) does not need access to the watermarking scheme or its hyper-parameters,
and (2) assigns weights by analyzing factors affecting watermark radioactivity, allowing for more
targeted rule extraction. In TP, we integrate the inverse of extracted watermark rules into paraphrase
models like Dipper (Krishna et al., 2023) to remove watermark. In contrast, UP simply employs
standard paraphrasing tools without considering rules. For post-distillation removal, we develop
watermark neutralization that directly counteracts inherited watermarks by applying inverse rules
during the student model’s decoding phase.

Extensive experiments were conducted across two teacher-student model pairs, two leading water-
marking schemes, and three hyperparameter settings. The comparative results are summarized in
the right part of Figure 1. Both TP and WN effectively eliminate inherited watermarks, reducing
detection significance to levels similar to non-watermarked conditions (above 10−2) across all set-
tings. Evaluations on benchmark datasets, including ARC challenge (Clark et al., 2018), TruthfulQA
(Lin et al., 2022), and MTBench (Zheng et al., 2023) show that WN exhibits superior knowledge
preservation, achieving comparable performance to baseline student models trained without any
watermark removal techniques. This indicates that student models can leverage WN to remove
watermarks without sacrificing model performance, posing a significant challenge to the practical
deployment of watermark as a copyright protection mechanism.

Key Contributions Our main contributions are:

• We conduct the first systematic investigation into the robustness of watermarking schemes
against adversarial actors in monitoring unauthorized knowledge distillation, proposing
pre-distillation and post-distillation attacks.

• Our proposed targeted paraphrasing and watermark neutralization methods achieve thor-
ough watermark removal, with the latter demonstrating superior knowledge preservation.
This raises concerns about the reliability of current watermarking schemes for monitoring
unauthorized knowledge distillation.

• Further discovery of watermark collisions in multi-source knowledge distillation scenarios
reveals additional limitations of watermarking schemes in monitoring unauthorized knowl-
edge distillation (Section 5.2). Given the ongoing deployment of watermarking techniques
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in production LLMs, these findings highlight the urgent need for more robust defense strate-
gies (Section 5.3).

2 BACKGROUND

2.1 LLM WATERMARKING SCHEMES

Most of the existing watermarking schemes follow the n-gram paradigm, modifying the next token’s
probability prediction based on the preceding n − 1 tokens, thereby influencing the final sampling
outcome (Kirchenbauer et al., 2023; Zhao et al., 2024; Dathathri et al., 2024; Liu et al., 2024c;b; Lee
et al., 2024; Hu et al., 2024; Wu et al., 2023; Aaronson & Kirchner, 2022; Kuditipudi et al., 2024).
Watermark schemes tested in this work are:

KGW (Kirchenbauer et al., 2023) sets the ground work for generative LLM watermarking. For the
tth token generation, it computes a hash ht = H(xt−n+1:t−1) from the previous n− 1 tokens. This
hash partitions the vocabulary V into a green list Vg and a red list Vr. A constant bias δ is then added
to the logits of green tokens:

l
′(i)
t = l

(i)
t + δ if vi ∈ Vg else l

(i)
t (1)

As a result, watermarked text will statistically contain more green tokens, and can be detected by
computing the z-score:

z = (|s|G − γT )/(
√
γ(1− γ)T ), (2)

where |s|G counts green tokens in text length T , and γ = |Vg|/|V|.
SynthID-Text (Dathathri et al., 2024), recently announced by Google DeepMind, is the first wa-
termarking algorithm deployed in production, and has been integrated into the Gemini and Gemini
Advanced chatbots. For the tth token generation, it computes a hash ht = H(xt−n+1:t−1) to seed m
binary classifiers g1, g2, ..., gm, which randomly assign 0 or 1 to vocabulary tokens. It then samples
2m tokens from the original distribution P (xt|x1:t−1) and conducts tournament sampling: tokens
compete in pairs based on g1 values in the first round, with subsequent rounds using g2, g3, ..., gm
until one token remains. The watermark manifests as a statistical bias toward tokens with higher g
values, detectable by computing their mean:

g =

T∑
t=1

m∑
ℓ=1

gℓ(xt)/mT. (3)

2.2 WATERMARK RADIOACTIVITY

Research shows that watermarked LLMs exhibit radioactivity (Sander et al., 2024; Gu et al., 2024):
student models trained on their outputs inherit the watermark patterns. This effect is highly sig-
nificant, with reported p-values below 10−30 even under the most stringent conditions where the
teacher model is closed-source and detection is unsupervised, and test prompts are disjoint from
training data.

2.3 WATERMARK REMOVAL APPROACHES

Prior work has explored various watermark removal methods, but focused on removing watermarks
from generated text rather than models. These include untargeted approaches like paraphrasing,
emoji attacks (Kirchenbauer et al., 2023), back-translation, and cross-lingual removal (He et al.,
2024). For targeted removal, Jovanović et al., Wu & Chandrasekaran (2024) and Zhang et al.
(2024) proposed watermark stealing-and-removing, requiring knowledge of the type of watermark-
ing scheme and the window size used.

3 METHODOLOGY

3.1 THREAT MODEL

Overview of the Attack Scenario: Assume there is a closed-source teacher model, which employs
a watermarking scheme, making all outputs acquired from its API carries the watermark. Now,
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Figure 2: An illustration of the proposed watermark removal attacks.

consider the owner of a student model, who seeks to perform knowledge distillation by training on
the teacher’s watermarked outputs. The owner applies various watermark removal attacks—such as
untargeted training data paraphrasing, targeted training data paraphrasing, and watermark neutral-
ization—with the goal of removing the inherited watermark from the trained student model, while
preserving the knowledge it has learned.

Watermarking Schemes Covered: The targeted watermarking schemes include all n-gram-based
watermarking schemes, such as KGW(Kirchenbauer et al., 2023), SynthID-Text(Dathathri et al.,
2024), KGW-Minhash(Kirchenbauer et al., 2024), KGW-SkipHash(Kirchenbauer et al., 2024), Un-
biased Watermark(Hu et al., 2024), DiPMark(Wu et al., 2023), Aar(Aaronson & Kirchner, 2022),
and SIR(Liu et al., 2024c), among others. These represent the predominant paradigm of exist-
ing LLM watermarking methods. In our main experiments, we have presented results for KGW
and SynthID-Text. Additionally, in Appendix D, we have included results for KGW-Minhash and
KGW-SkipHash.

Access Requirements for the Student Model Owner to Perform Watermark Removal: The
student model owner requires the following: (1) Access to the training data (2) Access to both
the original and trained student models. Since our removal methods are designed from the student
model’s perspective, these requirements are practical and feasible. Importantly, the student model
owner does NOT need access to the watermark detection system or its API, which are controlled by
the teacher model owner.

Watermark Detection: The watermark detection for the trained student model is performed by
the owner of teacher model, involving prompting the trained student model to generate a certain
amount of output text. These outputs are then analyzed to detect the presence of the watermark and
to compute a confidence score. The test prompts are distinct from the training data, assuming that
the teacher model service cannot track which specific data was used to train the student model.

3.2 OVERVIEW OF THE PROPOSED WATERMARK REMOVAL METHODS

We propose two categories of watermark removal methods: pre-distillation and post-distillation
watermark removal, as illustrated in Figure 2. Pre-distillation methods remove watermarks from
training data using external paraphrase models. These include untargeted paraphrasing (UP), which
directly rewrites training data, and targeted paraphrasing (TP), which first steals watermarking rules
and then applies an inverse watermark on the paraphrase model to rewrite training data. Post-
distillation method first steals watermark rules, and then neutralizes the inherited watermark by
directly adding an inverse watermark during the student model’s decoding phase. We refer to this
process as watermark neutralization (WN). Details of these methods are presented in Sections 3.3
and 3.4, while our watermark stealing method used in both TP and WN is introduced in Section 3.5.

3.3 PRE-DISTILLATION WATERMARK REMOVAL

Let R, C, O, and W denote the paraphrase model, training dataset collected from watermarked
teacher model’s API, original student model, and student model trained on C without attacks, re-
spectively. For both TP and WN, we denote the watermark stealing result as D(xt;xt−n′+1:t−1),
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Figure 3: Correlation between prefix frequency
in training data and the probability that tokens
following these prefixes are watermarked in stu-
dent model outputs.

Figure 4: Percentages of high-frequency (5 ×
10−5) and unseen prefixes in training data
within student model outputs, at different n.

representing the confidence that xt is a watermarked token following xt−n′+1:t−1. Section 3.5 de-
tails the computation of D.

Targeted Training Data Paraphrasing During paraphrasing, we apply an inverse watermark to
the paraphrase model R’s logits based on D:

l′R(xt|x1:t−1) = lR(xt|x1:t−1)−D(xt;xt−n′+1:t−1) · δ′, (4)

where δ′ controls the strength. This yields a new training dataset CTP for the student model.

Untargeted Training Data Paraphrasing As a comparison, this method directly applies R to
rewrite training data, yielding dataset CUP .

3.4 POST-DISTILLATION WATERMARK REMOVAL

This approach neutralizes watermark by directly applying the inverse watermark to the trained stu-
dent model W’s logits during inference:

l′W(xt|x1:t−1) = lW(xt|x1:t−1)−D(xt;xt−n′+1:t−1) · δ′. (5)

3.5 WATERMARK STEALING

This subsection presents our watermark stealing method that extracts token preferences following a
prefix p (denoted as p-rule).

3.5.1 WATERMARK RADIOACTIVITY FACTORS

To efficiently steal watermarks, we first analyze factors that affecting watermark radioactivity. This
analysis helps limits watermark stealing scope to rules with stronger inheritance patterns, reducing
computational cost and minimizing model modifications needed for watermark removal. Our exper-
iments reveal two key factors: (1) the occurring frequency of the prefix p in training data, and (2)
the window size n used in watermarking schemes.

Setup GLM-4-9b-chat (GLM et al., 2024) is used as the teacher model to generate 200k QA pairs
for training Llama-7b (Touvron et al., 2023). KGW (Kirchenbauer et al., 2023) and SynthID-Text
(Dathathri et al., 2024) are used as watermarking schemes with n = 1, 2, 3, 4. We evaluated the
inherited watermark strength in the student model using C4 (Raffel et al., 2020) as prompts.

Prefix Frequency vs. Radioactivity As shown in Figure 3, more frequent prefixes in training
dataset lead to stronger watermark radioactivity of their p-rules in student model’s outputs, across
all schemes and settings. For rare prefixes (frequency ≤ 5× 10−5), the radioactivity of their corre-
sponding p-rules approaches that of unwatermarked text. Note: n = 1 is excluded in the figure as it
uses global, prefix-independent watermark rules.

Window Size n vs. Radioactivity As shown in Table 1, the watermark radioactivity falls dra-
matically as n increases. For both KGW and SynthID-Text, watermarks become undetectable even
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with groups of 1 million tokens1 when n reaches 4. This is because: (1) shorter p-rules are simpler,
making it easier for student models to learn; (2) as n increases, there is a marked expansion in the
variety of prefixes generated by student models, resulting in fewer high-frequency prefixes and more
unseen ones in the training data (as shown in Figure 4).

Table 1: Median p-values for watermark detection
in student model outputs, evaluated on groups of 1
million tokens, across varying watermark window
sizes n.

n = 1 n = 2 n = 3 n = 4

KGW 6.24e-25979 4.79e-2537 1.67e-23 0.14
SynthID-Text 6.20e-4028 6.08e-887 0.58 0.64

Scope of Watermark Stealing Based on
the preceding analysis, when conducting water-
mark stealing, we need only focus on scenarios
with small values of n (i.e., n ≤ 3). Further-
more, for cases where n ̸= 1, we can restrict
our attention to high-frequency prefixes (i.e.
those with frequencies exceeding 5× 10−5).

3.5.2 WATERMARK STEALING PROCESS

Unlike prior work (Jovanović et al.; Wu &
Chandrasekaran, 2024; Zhang et al., 2024), our proposed stealing method operates effectively with-
out knowing the exact watermarking scheme or window size. We first assume a window size n used
by the teacher model to extract watermark rules, then obtain the final output by aggregating results
from all windows less or equal to the maximum window size n′ considered. Based on Section 3.5.1,
n′ typically remains small, ensuring manageable computational complexity.

Scoring Single n-gram Regardless of the specific watermarking algorithm, the core mechanism
is adjusting the sampling preferences of the subsequent token based on prefix tokens. Therefore,
our objective is to identify preferred tokens following prefix p = xt−n+1:t−1 by assigning a score
in [0, 1] for each v ∈ V , indicating the confidence value of “v is a watermarked token following p”.

Let O denote the original student model, W denote the student model after training on watermarked
data, and C represent the training corpus. To extract p-rules, we collect all contexts in C that end with
p, perform forward passes using both O and W on these contexts to obtain next token probability
predictions, and average the predictions across different contexts, which are:

PO(xt|p) = Ec∈C,ct−n+1:t−1=p[PO(xt|c)]. (6)

PW(xt|p) = Ec∈C,ct−n+1:t−1=p[PW(xt|c)]. (7)

Comparing these two distributions reveals the context-independent statistical bias of tokens follow-
ing prefix p, characterizing the watermark patterns. We quantify the distribution shift and score the
n-gram using d(xt;xt−n+1:t−1):

d(xt; [xt−n+1:t−1]) =
1

2
min(2,

PW (xt|xt−n+1:t−1)

PO(xt|xt−n+1:t−1)
), (8)

if PW(xt|xt−n+1:t−1) > PO(xt|xt−n+1:t−1). Otherwise, d(xt, xt−n+1:t−1) = 0. Note that if
n = 1, which means the watermark rule is globally fixed, d(xt) is computed by quantifying the
average probability shifts across all contexts.

Considering Multiple Window Sizes Since the window size n of the watermark scheme used in
the teacher model is unknown, we need to aggregate scoring results across different n-gram sizes.
Let n′ be the maximum window size under consideration. The final confidence score is then defined
as:

D(xt;xt−n′+1:t−1) = d(xt) +

n′−1∑
i=1

w(xt−i:t−1) · d(xt;xt−i:t−1), (9)

where w(xt−i:t−1) is the weight assigned to the prefix based on its occurring frequency in training
data. The weight value is computed as follows:

w(xt−k:t−1) =

{(
log f(xt−k:t−1)
logmaxc∈Ck

f(c)

)−α

if f(xt−k:t−1) > θ

0 otherwise,
(10)

1For watermarked text, larger token samples yield stronger detection significance.
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Table 2: Median p-values for watermark detection using UP (Untargeted Training Data Paraphras-
ing), TP (Targeted Training Data Paraphrasing), and WN (Watermark Neutralization), compared
against direct training (No Attack) and unwatermarked conditions (Unw.). indicates high wa-
termark confidence, indicates low watermark confidence, and unshaded cells indicate insuffi-
cient evidence for watermark presence. Student model used in this table is Llama-7b, results for
Llama-3.2-1b can be found in Appendix C.1.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN

KGW

n = 1
1k 5.75e-01 8.97e-29 6.82e-03 8.27e-01 8.20e-02
2k 5.71e-01 6.49e-55 2.43e-04 6.99e-01 2.72e-02
3k 6.01e-01 2.68e-81 9.68e-06 7.98e-01 1.21e-02

n = 2
10k 4.80e-01 4.12e-28 2.18e-03 6.88e-01 9.85e-02
20k 4.47e-01 4.12e-53 1.29e-05 7.37e-01 3.35e-02
30k 3.62e-01 8.26e-79 1.05e-07 7.43e-01 1.24e-02

n = 3
100k 3.40e-01 1.85e-03 8.52e-01 4.30e-01 5.95e-01
300k 3.41e-01 8.98e-09 9.51e-01 3.23e-01 6.80e-01

1 million 4.84e-01 1.67e-23 8.63e-01 3.69e-01 8.63e-01

SynthID-Text

n = 1
1k 9.67e-01 1.46e-05 7.10e-01 9.98e-01 9.44e-01
2k 9.95e-01 1.08e-09 7.69e-01 9.96e-01 9.88e-01
3k 9.99e-01 1.02e-13 8.05e-01 9.98e-01 9.97e-01

n = 2
10k 4.23e-01 6.67e-11 1.10e-01 4.97e-01 1.52e-01
20k 3.82e-01 8.83e-20 4.29e-02 5.42e-01 7.30e-02
30k 3.09e-01 1.65e-28 1.53e-02 4.45e-01 4.40e-02

n = 3
100k 9.98e-01 5.28e-01 9.92e-01 9.94e-01 9.87e-01
300k 9.76e-01 5.78e-01 9.99e-01 9.91e-01 9.49e-01

1 million 9.87e-01 5.83e-01 9.99e-01 9.92e-01 9.85e-01

where f denotes the occurring frequency in training data, Ck represents the set of all unique k-
grams appearing in C, and α is a smoothing parameter. This function assigns higher weight values
to prefixes with higher frequency. According to our analysis in Section 3.5.1, we set n′ = 3 and
θ = 5× 10−5.

4 EXPERIMENTS

4.1 SETUP

Teacher and Student Models Teacher: GLM-4-9b-chat (GLM et al., 2024); Students: Llama-7b
(Touvron et al., 2023) and Llama-3.2-1b (Dubey et al., 2024).

Watermarking Schemes KGW (Kirchenbauer et al., 2023) and SynthID-Text (Dathathri et al.,
2024) with n = 1, 2, 3. Results for more watermarking schemes can be found in Appendix D.

Training Details Dataset is collected by prompting the teacher model to generate 200k QA pairs
(detailed in Appendix G). We employ LlamaFactory (Zheng et al., 2024) to perform supervised
fine-tuning to the student models, with a learning rate of 1e-5 and 3 epochs for all test settings.

Testing Details For watermark detection, we prompted the distilled student models to generate
texts using C4 dataset (Raffel et al., 2020). The generated tokens were grouped into fixed-size sam-
ples, with p-values calculated for each group and the median reported. For knowledge preservation,
we selected three representative benchmarks: ARC Challenge (Clark et al., 2018) and TruthfulQA
Multiple Choice (Lin et al., 2022) (both multiple-choice tasks), along with the generative task MT-
Bench (Zheng et al., 2023). These benchmarks cover diverse areas including humanity, STEM,
reasoning, writing, math, and coding.

Others Frequency threshold θ = 5 × 10−5, n′ = 3, smoothing parameter α = 0.3, inverse
watermark strength δ′ = 2.5 (adaptive control strategy for δ′ can be found in Appendix F). We use
Dipper (Krishna et al., 2023) as the paraphraser.

4.2 EFFECTIVENESS OF WATERMARK REMOVAL

7



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 3: Comparison of student model performance across benchmarks under different scenarios:
no attack (Trained SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained
SM, with the highest performance in each setting bolded and underlined. Student model used in this
table is Llama-7b, results for Llama-3.2-1b can be found in Appendix C.2.

Benchmark Ori. SM Wat. Scheme Trained SM Trained SM + UP Trained SM + TP Trained SM + WN

ARC
Challenge

(ACC)
0.4181

KGW
n = 1 0.4480 0.4215 (-5.9%) 0.3951 (-11.8%) 0.4497 (+0.6%)
n = 2 0.4404 0.4283 (-2.7%) 0.4104 (-6.8%) 0.4369 (-0.8%)
n = 3 0.4778 0.3865 (-19.1%) 0.3840 (-19.6%) 0.4642 (-2.8%)

SynthID
-Text

n = 1 0.4505 0.4394 (-2.5%) 0.4198 (-6.8%) 0.4548 (+1.0%)
n = 2 0.4360 0.4403 (+1.0%) 0.4241 (-2.7%) 0.4565 (+4.7%)
n = 3 0.4505 0.4394 (-2.5%) 0.4283 (-4.9%) 0.4471 (-0.8%)

TruthfulQA
Multiple Choice

(ACC)
0.3407

KGW
n = 1 0.3884 0.3917 (+0.8%) 0.3785 (-2.5%) 0.4186 (+7.8%)
n = 2 0.4376 0.4097 (-6.4%) 0.4089 (-6.6%) 0.4353 (-0.5%)
n = 3 0.4459 0.4315 (-3.2%) 0.4055 (-9.1%) 0.4632 (+3.9%)

SynthID
-Text

n = 1 0.4063 0.3780 (-7.0%) 0.3597 (-11.5%) 0.4262 (+4.9%)
n = 2 0.3991 0.3965 (-0.7%) 0.4043 (+1.3%) 0.4281 (+7.3%)
n = 3 0.4102 0.4009 (-2.3%) 0.4062 (-1.0%) 0.4330 (+5.3%)

MTBench
(Full Score: 10) 2.64

KGW
n = 1 3.86 3.04 (-21.2%) 2.76 (-28.5%) 3.67 (-4.9%)
n = 2 3.99 3.40 (-14.8%) 2.94 (-26.3%) 4.02 (+0.7%)
n = 3 4.11 3.27 (-20.4%) 3.04 (-26.0%) 3.99 (-2.9%)

SynthID
-Text

n = 1 4.14 3.27 (-21.0%) 2.01 (-51.4%) 4.13 (-0.2%)
n = 2 4.24 3.05 (-28.1%) 2.84 (-33.0%) 4.12 (-2.8%)
n = 3 4.24 2.90 (-31.6%) 2.69 (-36.6%) 4.16 (-1.9%)

Figure 5: Comparison of watermark removal ef-
fectiveness: frequency-based prefix weighting vs.
uniform weighting strategies.

Main Results Table 2 demonstrates the ef-
fectiveness of the three proposed watermark re-
moval methods across different settings. It is
evident that both TP and WN methods suc-
cessfully eliminate the inherited watermark in
all cases, maintaining confidence levels similar
to unwatermarked conditions. The UP method
also contributes to watermark removal; how-
ever, due to its lack of specificity, it fails to
achieve complete removal when the watermark
learned by the student model is strong (i.e.,
KGW n = 1, 2).

Weight Ablation Study Figure 5 compares
watermark removal effectiveness of WN between frequency-based and uniform prefix weighting
(using n = 2). The results show that frequency-based prefix weighting, which assigns higher
weights to more easily learned p-rules, achieves better watermark removal while maintaining an
equal total weight across prefixes.

4.3 PERFORMANCE OF KNOWLEDGE PRESERVATION

Figure 6: Pairwise similarities of probability predic-
tion shifts across different contexts when the last to-
ken is fixed as “the”, showing (a) knowledge shifts
similarity and (b) watermark shifts similarity.

Main Results Table 3 shows that training
on 200k watermarked teacher samples signif-
icantly improves the student model’s perfor-
mance across all benchmarks (Trained SM
vs Ori. SM), regardless of watermarking
scheme or window size n. When applying
removal methods, UP and TP generally de-
grade performance, especially on generative
tasks like MTBench, with TP showing larger
degradation than UP. WN effectively main-
tains knowledge - compared to the trained
SM, it improves performance in about half
the cases and shows minor decreases (under
5%) in others, performing similarly to direct
training without attacks.

8
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Why WN Can Achieve Good Knowledge Preservation WN achieves superior knowledge
preservation for two key reasons. First, it eliminates the need for external rewriting tools. Since the
teacher model represents our highest quality data source, avoiding external rewriting prevents data
quality degradation. Second, our experiments reveal distinct patterns between knowledge and wa-
termark learning. Knowledge learning depends on broader context, while watermark learning only
relies on the previous n − 1 tokens. Using n = 2, we analyze 1,000 distinct text segments ending
with "the" (ctx the) and compare: (1) Knowledge shifts: Probability differences between models be-
fore and after training on non-watermarked data show high variation across contexts (Figure 6(a));
(2) Watermark shifts: Probability differences between models trained on non-watermarked and
watermarked data (generated using the same teacher and prompts) exhibit high consistency across
different ctx when the last token is fixed (Figure 6(b)).

Therefore, using prompts with fixed ending tokens to get averaged probability shifts mainly captures
watermark patterns, while knowledge-related shifts tend to cancel out during averaging, resulting in
minimal impact.

5 FURTHER ANALYSIS

5.1 COMPUTATIONAL OVERHEAD

Table 4: Overhead comparison of watermark
removal methods, averaged across various wa-
termark settings using Llama-7b as the student
model. All experiments were conducted on 8
NVIDIA H800 GPUs.

UP TP WN

Required External Tools ✓ ✓ ✗
Preprocessing Time (h) 31.8 37.1 3.6
Inference Latency (s / token) 0.0000 0.0000 0.0068

To conduct a thorough assessment of practi-
cal applications, this section presents a detailed
analysis of the operational overhead associated
with the three proposed watermark removal
methods, as summarized in Table 4.

External Tools UP and TP require external
paraphrasing tools, while WN needs none.

Preprocessing Time Consumption UP re-
quires Dipper-like models to paraphrase the en-
tire training dataset, WN only needs watermark
stealing for preprocessing, and TP requires both. The time cost of watermark stealing consists of
student model training (about 1h for Llama-7b) and dataset forward passes. The forward passes are
computationally much cheaper than paraphrasing, as parallel computation is faster than autoregres-
sive generation.

Student Model Inference Latency UP and TP have no additional inference overhead. WN re-
quires adding inverse watermark during inference, causing slight delay.

5.2 MULTI-SOURCE KNOWLEDGE DISTILLATION

Table 5: Watermark detection results in multi-
source settings: 2 teacher models (1) employ-
ing KGW scheme with opposing keys; (2) us-
ing KGW and SynthID-Text respectively. Single-
source results are shown in ().

KGW k + KGW k KGW + SynthID-Text
Detector 1 2.81e-01 (4.21e-28) 5.64e-09 (4.21e-28)
Detector 2 7.19e-01 (4.21e-28) 3.48e-03 (6.67e-11)

The previous analysis focused on single-source
knowledge distillation. In real-world scenarios
with multiple LLM services, we found that wa-
termarks from different sources can collide and
counteract each other during knowledge distil-
lation, making watermarks less effective as a
protection mechanism - even without any re-
moval methods.

Case 1: Two Opposing Keys We tested an
extreme case with two teachers using the KGW
scheme with complementary keys (the hash results were complete opposites). When we trained a
student model using a combined dataset (100k samples from each teacher), the watermark detection
confidence dropped significantly from e-28 to e-01, as shown in Table 5.

Case 2: Two Watermarking Schemes We examined a scenario using two teacher models with
different watermarking methods (KGW and SynthID-Text), each generating 100k samples. Training
a student model on this combined dataset led to reduced watermark detection confidence for both
schemes’ detectors compared to single-source scenarios (as shown in Table 5).
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Case 3: Multi-Source In this scenario, all teacher models employ the KGW scheme with ran-
domly selected keys. As shown in Figure 7, while increasing the number of source models and
maintaining a constant total volume of mixed training data, watermark detection became increas-
ingly difficult, yet model performance remained stable. This suggests that mixing data from a suffi-
cient number of teacher sources can achieve untraceable knowledge distillation.

5.3 FUTURE DIRECTIONS IN DEFENSE STRATEGY

Figure 7: Average -log p values from detectors
and MTBench scores as the number of teacher
sources increases.

This work reveals the vulnerability of unautho-
rized knowledge distillation prevention when
generative LLM watermarking is predomi-
nantly confined to n-gram based approaches.
While alternatives such as sentence-level reject
sampling (Hou et al., 2023) and post-generation
signal embedding (Chang et al., 2024) exist,
these approaches introduce significant latency
to the current token-by-token real-time LLM
inference paradigm, making them difficult to
deploy at scale in real-time LLM services. We
therefore advocate for diversifying token-level
watermarking techniques, as multiple paradigms would make it harder for attackers to identify and
target specific methods, enabling more robust protection.

6 CONCLUSION

This work presents the first systematic study of the robustness of watermarking schemes against
adversarial attacks in preventing unauthorized knowledge distillation. We propose three watermark
removal approaches: two pre-distillation methods (UP, TP) and one post-distillation method (WN).
Through comprehensive experiments, we evaluate the resilience of watermarking schemes against
these attacks. Our findings reveal that WN achieves effective watermark removal while maintaining
superior knowledge preservation, highlighting the urgent need for more robust defensive strategies.

LIMITATIONS

While our study presents a systematic investigation of watermark resilience against adversarial at-
tacks under the scenario of preventing unauthorized knowledge distillation, there still exist several
limitations. Due to computational constraints, we only evaluated one teacher model (GLM-4-9b-
chat) and two student models (Llama-7b and Llama-3.2-1b). The experiments were conducted using
a fixed training dataset size of 200,000 samples and tested primarily on English language tasks. Ad-
ditionally, our evaluation metrics focused on standard benchmarks (ARC, TruthfulQA, MTBench)
and may not fully reflect performance on specialized domain tasks. Future work could explore a
broader range of model architectures, training data scales, and task domains.
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A SELECTED TERMS OF USE FOR LLM SERVICES

Figure 8 shows excerpts from terms of use across various leading LLM services, including OpenAI2,
Anthropic3 and Meta Llama4. These terms explicitly prohibit using model outputs for training or
improving other models.

OpenAI. What you cannot do.

Use output to develop models that compete with OpenAI.

Anthropic. You may not access or use, or help another person to access or use, our Services
in the following ways:

To develop any products or services that compete with our Services, including to develop or
train any artificial intelligence or machine learning algorithms or models.

Meta (Llama 2). License Rights and Redistribution.

You will not use the Llama Materials or any output or results of the Llama Materials to
improve any other large language model (excluding Llama 2 or derivative works thereof).

Figure 8: Selected terms of use for various LLM services.

B DETAILS OF WATERMARKING SCHEMES

B.1 KGW

Watermarking KGW (Kirchenbauer et al., 2023) is a fundamental scheme of LLM watermarking.
For generating the t-th token, the algorithm examines the previous n− 1 tokens: xt−n+1:t−1. These
tokens are fed into a hash function H to produce ht = H(xt−n+1:t−1). Based on ht, the vocabulary
V is deterministically split into a green list Vg and a red list Vr. A constant bias δ is applied to logits
of green tokens according to:

l′
(i)
t =

{
l
(i)
t + δ if vi ∈ Vg

l
(i)
t if vi ∈ Vr

(11)

Detection Given a text sequence of length T , we count the number of green tokens |s|G. Let
γ = |Vg|/|V| represent the expected proportion of green tokens in random text. The statistical
significance of the green token count is measured by the z-score:

z =
|s|G − γT√
γ(1− γ)T

(12)

For a fixed δ (δ > 0), longer sequences lead to stronger detection signal, as the z-score increases
with text length T .

In our experiments, we set δ = 3.0 and γ = 0.5, which represents a relatively strong watermark
configuration in typical KGW settings. We avoid using larger δ values since stronger watermarks
would notably degrade the text quality (as shown in Figure 9a), making them impractical for real-
world LLM services.

Watermark Confidence: p-value Under the null hypothesis (non-watermarked text), the z-score
follows a standard normal distribution N (0, 1). The p-value can be computed as:

p = 1− Φ(z). (13)
2https://openai.com/policies/terms-of-use/
3https://www.anthropic.com/legal/consumer-terms
4https://ai.meta.com/llama/license/
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(a) KGW (b) SynthID-Text

Figure 9: The relationship between watermark strength settings and perplexity under different wa-
termarking schemes. The model used for calculating PPL is Llama-3.1-70B (Dubey et al., 2024).

Smaller p-value suggests higher confidence of watermark presence, as it indicates that the proportion
of green tokens significantly exceeds what would be expected by chance.

B.2 SYNTHID-TEXT

Watermarking SynthID-Text (Dathathri et al., 2024) employs a tournament-based watermarking
approach during the token generation process. For generating the t-th token, the algorithm first
generates a random seed ht by applying a hash function H to the previous n − 1 tokens: ht =
H(xt−n+1:t−1). This seed initializes m independent g functions g1, g2, ..., gm, which assign binary
values (0 or 1) to each token in the vocabulary.

The core watermarking process involves a tournament with m layers. Initially, 2m candidate tokens
are sampled from the language model’s original probability distribution P (xt|x1:t−1). These tokens
undergo a series of pairwise competitions through m tournament layers. In each layer ℓ, tokens are
randomly paired, and within each pair, the token with the higher gℓ score advances to the next layer,
with random tie-breaking. The final surviving token after m layers becomes the output token xt.

Detection Detection in SynthID-Text relies on measuring the statistical signature introduced dur-
ing the watermarking process. Given a piece of text x = x1, ..., xT , the detection algorithm:

1. Reconstructs the random seeds ht for each position t using the same hash function and
watermarking key

2. Computes the g-values for each token using the same watermarking functions

3. Calculates the mean score across all positions and layers:

g =
1

mT

T∑
t=1

m∑
ℓ=1

gℓ(xt). (14)

Due to the tournament selection process, watermarked text tends to contain tokens with higher g-
values compared to non-watermarked text. Several factors contribute to a stronger detection signal:
increasing the number of g functions (larger m), using more candidates in each round of tournament
sampling, and extending the sequence length for detection.

In our experiment, we set m = 30 and use 2 candidates per round in tournament sampling, fol-
lowing the default configuration in SynthID-Text paper. We avoid using larger candidates number
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Table 6: Median p-values for watermark detection using UP (Untargeted Training Data Paraphras-
ing), TP (Targeted Training Data Paraphrasing), and WN (Watermark Neutralization), compared
against direct training (No Attack) and unwatermarked conditions (Unw.). indicates high water-
mark confidence, indicates low watermark confidence, and unshaded cells indicate insufficient
evidence for watermark presence. Student model used in this table is Llama-3.2-1b.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN

KGW

n = 1
1k 5.75e-01 1.26e-36 3.27e-03 9.98e-01 6.21e-01
2k 5.71e-01 3.59e-71 6.00e-05 9.95e-01 7.00e-01
3k 6.01e-01 1.28e-104 1.03e-06 9.98e-01 7.34e-01

n = 2
10k 4.80e-01 4.79e-65 1.00e-03 8.14e-01 5.20e-01
20k 4.47e-01 5.96e-128 6.42e-06 6.79e-01 4.97e-01
30k 3.62e-01 4.68e-190 3.59e-08 8.92e-01 5.48e-01

n = 3
100k 3.40e-01 6.85e-12 6.96e-02 1.98e-01 8.13e-01
300k 3.41e-01 2.33e-27 1.09e-02 5.19e-01 9.43e-01

1 million 4.84e-01 1.13e-87 9.80e-05 2.04e-01 9.98e-01

SynthID-Text

n = 1
1k 9.67e-01 3.76e-10 2.55e-01 9.98e-01 9.94e-01
2k 9.95e-01 9.00e-19 1.66e-01 9.87e-01 9.96e-01
3k 9.99e-01 1.72e-27 1.26e-01 9.89e-01 9.98e-01

n = 2
10k 4.23e-01 1.29e-32 4.81e-03 2.93e-01 4.58e-01
20k 3.82e-01 1.48e-63 1.11e-04 1.83e-01 4.77e-02
30k 3.09e-01 2.22e-95 4.28e-06 3.67e-01 1.51e-02

n = 3
100k 9.98e-01 2.41e-05 9.93e-01 9.99e-01 8.95e-01
300k 9.76e-01 2.47e-14 9.94e-01 9.99e-01 9.97e-01

1 million 9.87e-01 1.85e-32 9.97e-01 9.99e-01 9.98e-01

since stronger watermarks would notably degrade the text quality (as shown in Figure 9b), mak-
ing them impractical for real-world LLM services. However, we built upon this foundation by
implementing the distortionary version of SynthID-Text, which enhances watermark strength. The
non-distortionary version employs repeated context masking, where watermarks are only applied to
subsequent tokens upon the first encounter with a particular prefix, while original sampling is used
for subsequent occurrences of the same prefix. This approach ensures unbiased multi-step sampling
and maintains text quality at the cost of watermark strength. In contrast, the distortionary version
foregoes repeated context masking, sacrificing some text quality but achieving stronger watermarks.

Watermark Confidence: p-value For a given text x and its score g, the p-value is calculated
based on the following principles: Under the null hypothesis (text contains no watermark), g ap-
proximately follows a normal distribution according to the Central Limit Theorem. This distribution
has a mean µ = 0.5 since g functions output 0 and 1 with equal probability for non-watermarked
text. The variance σ2 is estimated as 1

4mT , where m is the number of g functions and T is the text
length. The p-value is then computed as:

p = 1− Φ(
g − 0.5

1/
√
4mT

) (15)

where Φ(·) is the cumulative distribution function of the standard normal distribution. A smaller
p-value indicates stronger evidence that the text contains a watermark.

C EXPERIMENT RESULTS FOR LLAMA-3.2-1B

This section provides supplementary experimental results for Llama-3.2-1b, including the effective-
ness of watermark removal and knowledge preservation performance.

C.1 RESULTS OF WATERMARK REMOVAL EFFECTIVENESS FOR LLAMA-3.2-1B

Table 6 demonstrates the effectiveness of the three proposed watermark removal approaches across
various settings, with Llama-3.2-1b serving as the student model. The experimental results align
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Table 7: Comparison of student model performance across benchmarks under different scenarios:
no attack (Trained SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained
SM, with the highest performance in each setting bolded and underlined. Student model used in this
table is Llama-3.2-1b.

Benchmark Ori. SM Wat. Scheme Trained SM Trained SM + UP Trained SM + TP Trained SM + WN

ARC
Challenge

(ACC)
0.3166

KGW
n = 1 0.3404 0.3430 (+0.8%) 0.3259 (-4.3%) 0.3660 (+7.5%)
n = 2 0.3515 0.3200 (-9.0%) 0.2841 (-19.2%) 0.3498 (-0.5%)
n = 3 0.3712 0.3072 (-17.2%) 0.2935 (-20.9%) 0.3626 (-2.3%)

SynthID
-Text

n = 1 0.3541 0.3259 (-8.0%) 0.3242 (-8.4%) 0.3626 (+2.4%)
n = 2 0.3481 0.3345 (-3.9%) 0.3200 (-8.1%) 0.3575 (+2.7%)
n = 3 0.3532 0.3396 (-3.9%) 0.3251 (-8.0%) 0.3498 (-1.0%)

TruthfulQA
Multiple Choice

(ACC)
0.3768

KGW
n = 1 0.3783 0.3815 (+0.8%) 0.3796 (+0.3%) 0.3820 (+1.0%)
n = 2 0.4022 0.3719 (-7.5%) 0.3887 (-3.4%) 0.4026 (+0.1%)
n = 3 0.4061 0.3949 (-2.8%) 0.3862 (-4.9%) 0.4411 (+8.6%)

SynthID
-Text

n = 1 0.4023 0.3869 (-3.8%) 0.3497 (-13.1%) 0.4027 (+0.1%)
n = 2 0.3912 0.3893 (-0.5%) 0.3921 (+0.2%) 0.4177 (+6.8%)
n = 3 0.4140 0.3883 (-6.2%) 0.3941 (-4.8%) 0.4224 (+2.0%)

MTBench
(Full Score: 10) 2.78

KGW
n = 1 2.88 1.87 (-35.1%) 1.27 (-55.9%) 3.20 (+11.1%)
n = 2 2.90 1.31 (-54.8%) 1.19 (-59.0%) 2.85 (-1.7%)
n = 3 2.88 1.30 (-54.9%) 1.16 (-59.7%) 2.88 (+0.0%)

SynthID
-Text

n = 1 3.21 1.51 (-53.0%) 1.26 (-60.7%) 3.19 (-0.6%)
n = 2 3.11 1.29 (-58.5%) 1.31 (-57.9%) 2.83 (-9.0%)
n = 3 3.09 1.28 (-58.6%) 1.27 (-58.9%) 2.98 (-3.6%)

closely with those obtained using Llama-7b as the student model, as discussed in the main text:
both targeted training data paraphrasing (TP) and inference-time watermark neutralization (WN)
successfully eliminate the watermark completely, while untargeted training data paraphrasing (UP)
shows some removal effect but fails to achieve complete elimination across all scenarios.

C.2 RESULTS OF KNOWLEDGE PRESERVATION PERFORMANCE FOR LLAMA-3.2-1B

Table 7 reveals that Llama-3.2-1b, when trained on 200,000 watermarked samples from the teacher
model, achieves substantial performance gains across all benchmarks. As for knowledge preserva-
tion performance of the three proposed watermark removal methods, the results of Llama-3.2-1b
echo the main experimental results: while both UP and TP lead to widespread performance degra-
dation under most configurations, WN stands out for its remarkable ability to preserve knowledge.
Specifically, WN yields performance improvements in roughly half of the settings while showing
slight decreases in the remaining scenarios, and these changes remain small throughout.

D EXPERIMENT RESULTS FOR MORE WATERMARKING SCHEMES

The main experiments focused on two representative watermarking schemes, KGW Kirchenbauer
et al. (2023) and SynthID-Text Dathathri et al. (2024), for testing. This section presents supplemen-
tary experiments with additional n-gram based watermarking schemes to demonstrate the strong
generalization capability of the proposed method. Moreover, we will discuss several other water-
marking paradigms that represent alternative approaches in this field.

D.1 EXPERIMENT RESULTS FOR MORE N-GRAM BASED WATERMARKING SCHEMES

MinHash This method is a variant of KGW, proposed by Kirchenbauer et al. (2024). In the default
implementation of KGW, the hash function H is a multiplicative modular function, expressed as:

ht = H(xt−n+1:t−1) =

t−1∏
i=t−n+1

xi mod |V|. (16)

This approach causes the hash result to change whenever any token within the window is modified,
leading to reduced robustness as the window size n increases. To address this limitation, several im-
proved versions have been proposed, including MinHash, which uses the minimum token id within
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Table 8: Median p-values for watermark detection using WN (Watermark Neutralization), compared
against direct training (No Attack) and unwatermarked conditions (Unw.). indicates high water-
mark confidence, indicates low watermark confidence, and unshaded cells indicate insufficient
evidence for watermark presence. The watermarking schemes used in this table are MinHash and
SkipHash.

Watermarking Scheme Model Token Num. Unw. No Attack WN

MinHash
n = 3

Llama-7b
100k 7.87e-01 2.32e-16 8.41e-01
300k 9.23e-01 4.52e-47 9.28e-01

1 million 9.97e-01 2.79e-141 9.98e-01

Llama-3.2-1b
100k 7.87e-01 6.28e-44 9.89e-01
300k 9.23e-01 1.14e-134 9.96e-01

1 million 9.97e-01 4.56e-385 9.98e-01

SkipHash
n = 3

Llama-7b
100k 9.98e-01 2.80e-05 8.91e-01
300k 9.98e-01 1.85e-13 9.84e-01

1 million 9.98e-01 4.13e-39 9.92e-01

Llama-3.2-1b
100k 9.98e-01 1.07e-07 9.91e-01
300k 9.98e-01 4.01e-18 9.97e-01

1 million 9.98e-01 3.45e-47 9.98e-01

Table 9: Comparison of student model performance across benchmarks under no attack scenario
(Trained SM) and using WN for watermark removal. Values in () indicate percentage changes
relative to Trained SM, with the highest performance in each setting bolded and underlined.

Benchmark Student Model Ori. SM Wat. Scheme Trained SM Trained SM + WN

ARC
Challenge

(ACC)

Llama-7b 0.4181 MinHash n = 3 0.4505 0.4471 (-0.8%)

SkipHash n = 3 0.4625 0.4625 (+0.0%)

Llama-3.2-1b 0.3166 MinHash n = 3 0.3532 0.3567 (+1.0%)

SkipHash n = 3 0.3609 0.3618 (+0.2%)

TruthfulQA
Multiple Choice

(ACC)

Llama-7b 0.3407 MinHash n = 3 0.4836 0.4872 (+0.7%)

SkipHash n = 3 0.4562 0.4624 (+1.4%)

Llama-3.2-1b 0.3768 MinHash n = 3 0.4153 0.4187 (+0.8%)

SkipHash n = 3 0.4037 0.4069 (+0.8%)

MTBench
(Full Score: 10)

Llama-7b 2.64 MinHash n = 3 3.75 3.73 (-0.5%)

SkipHash n = 3 4.11 4.04 (-1.7%)

Llama-3.2-1b 2.78 MinHash n = 3 3.03 2.91 (-4.0%)

SkipHash n = 3 3.46 3.37 (-2.6%)

the window as the hash result:

ht = H(xt−n+1:t−1) = min
i∈[t−n+1,t−1]

xi (17)

SkipHash SkipHash Kirchenbauer et al. (2024) is also a variant of KGW designed to improve
robustness, but it uses a hash function that takes the leftmost token id within the window, expressed
as:

ht = H(xt−n+1:t−1) = xt−n+1 (18)

When n ≤ 2, MinHash and SkipHash are equivalent to KGW, so we only evaluate scenarios where
n = 3. Given WN’s superior overall performance among the three proposed methods in terms of
watermark removal effectiveness and knowledge preservation, the subsequent experiments exclu-
sively focus on this approach. The experimental results are shown in Table 8 and Table 9. The
observed trends in the experimental results align consistently with the main experiment, which uses
KGW and SynthID-Text. The WN approach demonstrates complete watermark removal efficacy
while showing no significant impact on the knowledge acquired by the student model.
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D.2 DISCUSSION ABOUT OTHER WATERMARKING PARADIGMS

Watermarking
Schemes

Post-hoc Wa-
termarking

PostMark (Chang et al., 2024)), DeepTextMark (Munyer & Zhong,
2023), Context-aware Lexical Substitution (Yang et al., 2022), etc.

Generative
Water-

marking

Token-level

N-gram based

KGW (Kirchenbauer et al.,
2023)), SynthID-Text
(Dathathri et al., 2024), KGW-
MinHash (Kirchenbauer
et al., 2024), KGW-SkipHash
(Kirchenbauer et al., 2024),
Unbiased Watermark Hu
et al. (2024), DiPMark (Wu
et al., 2023), Aar (Aaronson
& Kirchner, 2022), SIR (Liu
et al., 2024c), UPV (Liu et al.,
2024b), etc.

Fixed-key-
list based

Unigram (Zhao et al., 2024),
KTH (Kuditipudi et al., 2024)

Sentence-level SemStamp (Hou et al., 2023), k-SemStamp (Hou
et al., 2024)

Figure 10: Taxonomy of existing watermarking schemes.

As illustrated in Figure 10, current watermarking schemes can be categorized into two main ap-
proaches: generative watermarking, where watermarks are embedded during the text generation
process, and post-hoc watermarking, where watermarks are added to existing texts. Within gen-
erative watermarking, there are further subdivisions into token-level methods and sentence-level
approaches based on reject sampling. In real-time services, tokens can be outputted as they are
sampled while inference continues, thereby enhancing user experience. Post-hoc watermarking and
sentence-level watermarking introduce significant latency, making them less suitable for real-time
LLM services compared to token-level watermarking.

Among token-level methods, the predominant paradigm is the n-gram based approach. Addition-
ally, there are few methods that employ a fixed-key-list based approach, which utilizes global fixed
watermark keys independent of the prefix. These methods include Unigram (Zhao et al., 2024) and
KTH (Kuditipudi et al., 2024), for which we conduct supplementary experiments.

Unigram (Zhao et al., 2024) This approach is equivalent to KGW with prefix length of 0, using
a globally fixed red-green partition. According to our main experimental results, both TP and WN
can completely remove the watermarks inherited by the student model.

KTH (Kuditipudi et al., 2024) This method employs a globally fixed sequence of watermark keys:
ξ = ξ(0), ξ(1), ..., ξ(m−1), where each ξ(j) ∈ [0, 1]|V| follows a uniform distribution. During text
generation, first a random shift s ∈ [0,m) is selected, then the t-th generated token is chosen using
the following strategy:

xt = argmax
i

(ξ
(s+t mod m)
i )1/pt , (19)

where pt is the original probability prediction at position t. During watermark detection, it computes
the minimum Levenshtein distance d between the text to be detected x and the key sequences ξ. In
comparison, it randomly generates n sequences with the same shape as xi, and calculates d′1, d′2,
..., d′n using the same method. The detection p-value is represented by the proportion of values in
the d′ sequence that are lower than d. It is worth noting that the p-value of this detection method is
bounded by the number of trials n.

Our experiments revealed that the addition of KTH watermark significantly affects the instruction-
following capability of the teacher model, resulting in a lower proportion of QA pairs conforming
to format rules and generally shorter answers. After training on such data, the watermark is barely
detectable in the student model, as shown in Table 10.
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Table 10: Median p-value of watermark detection in trained student models using KTH watermark-
ing scheme (m = 256, token num. = 256, n = 100).

Watermarking Scheme Student Model Median p-value (No Attack)

KTH Llama-7b 3.1e-01
Llama-3.2-1b 3.2e-01

Table 11: Impact of WN on knowledge preservation under non-watermarked setting.

Benchmark Student Model Ori. SM Trained SM Trained SM + WN

ARC Challenge
(ACC)

Llama-7b 0.4181 0.4454 0.4488 (+0.7%)
Llama-3.2-1b 0.3166 0.3524 0.3507 (-0.5%)

TruthfulQA
Multiple Choice (ACC)

Llama-7b 0.3407 0.4254 0.4507 (+5.9%)
Llama-3.2-1b 0.3768 0.4052 0.3951 (-2.5%)

MTBench
(Full Score: 10)

Llama-7b 2.64 3.99 4.12 (+3.2%)
Llama-3.2-1b 2.78 3.15 3.08 (-2.2%)

E IMPACT OF INFERENCE-TIME WATERMARK NEUTRALIZATION (WN) ON
KNOWLEDGE PRESERVATION UNDER NON-WATERMARKED SETTING

Previous experiments have demonstrated that when teacher model is watermarked, inference-time
watermark neutralization (WN) effectively enables the student model to bypass the watermark while
acquiring knowledge from the teacher model’s outputs that is comparable to what would be learned
without any attack. In this section, we conducted additional experiments to examine whether ap-
plying WN would affect the knowledge acquired by the student model in cases where the teacher
model itself is not watermarked (noting that the student model has no access to the detector and thus
cannot determine the presence of watermarks).

Consistent with the settings in our main experiments, we generated QA pairs using GLM-4-9b-
chat. After filtering and deduplication, we obtained 200,000 non-watermarked samples. We trained
both Llama-7b and Llama-3.2-1b models using this dataset, and then applied WN for watermark
removal and evaluated the performance changes across various benchmarks, with results presented
in Table 11. It can be concluded that WN does not exert a substantial negative impact on knowledge
preservation under non-watermarked setting.

F ADAPTIVE CONTROL FOR INVERSE WATERMARK STRENGTH

Throughout all previous experiments, we consistently used an inverse watermark strength of δ′ =
2.5 for WN, which achieved complete watermark removal in all cases. As detailed in Appendix B,
the chosen watermark strength of the teacher model represents a notably high intensity that remains
practical for deployment in LLM services, suggesting that δ′ = 2.5 is sufficient for the vast majority
of scenarios.

However, to account for potential extreme cases, we also explored strategies for adaptive control
of inverse watermark strength. Our approach is to estimate the required inverse watermark strength
δ′ by detecting the watermark intensity inherited by the student model. Since the student model
holder does not have access to the watermark detector, we employed Water-Probe (Liu et al., 2024a)
to measure watermark intensity. Water-Probe is a recently proposed identification algorithm that
tests for watermarks by comparing the model’s responses to specially crafted prompts, where higher
similarity in responses to crafted prompts pairs indicates a higher likelihood (or strength) of water-
marking.

We conducted experiments using KGW with n = 1. Table 12 shows the cosine similarity scores de-
tected by Water-Probe-v25 for Llama-7b student models trained with different watermark strengths

5There are two versions of Water-Probe, with version 2 demonstrating more stable performance in our
experiments.
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Table 12: Water-Probe-v2 cosine similarity scores for student models under different watermark
strength settings.

Settings Unw. KGW with Different δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 4.0 δ = 5.0

Cosine Similarity 0.0065 0.0853 0.1032 0.1366 0.1544 0.1694

Table 13: Median p-values for watermark detection using WN under different inverse watermark
strengths. The watermark used in teacher model is KGW, with δ = 5.0, the student model is Llama-
7b.

Token Number No Attack WN δ′ = 2.5 WN δ′ = 3.0

10k 7.75e-59 2.81e-03 9.17e-02
20k 7.48e-115 6.91e-05 4.29e-02
30k 1.14e-170 6.31e-07 1.13e-02

δ, compared with a student model trained on unwatermarked data. Based on this reference table, we
can estimate the watermark strength δ used in the teacher model by examining the WaterProbe-v2
cosine similarity score of the trained student model. This estimation enables us to adaptively select
an appropriate inverse watermark strength δ′ for removal.

Here is a practical example: Suppose the teacher model is watermarked using KGW with n = 1, δ =
5.0. The trained student model’s detected cosine similarity is 0.1694, which is slightly higher than
the reference value of 0.1366 for δ = 3.0. Given our prior knowledge that δ′ = 2.5 can completely
remove watermarks with δ = 3.0, we should proportionally increase the inverse watermark strength.
Therefore, we set δ′ = 3.0 for this case. The removal results are shown in Table 13.

We acknowledge that the current estimation method is relatively rough. However, it’s important to
emphasize that in practical LLM services, it would be unrealistic to use such strong watermarks as
δ = 5.0, as this would significantly degrade the output quality. In most cases, selecting an inverse
watermark strength of δ′ = 2.5 is already sufficient.

G DETAILS OF TRAINING DATA COLLECTION

G.1 PROMPT USED FOR TRAINING DATA COLLECTION

Following the work by Sander et al. (2024), we prompted the teacher model to generate question-
answering samples consisting of instruction, input and answer, as shown in the prompt template in
Figure 11.

G.2 EXAMPLE SAMPLES OF TRAINING DATA

Example samples of training data produced using different watermarking schemes and n are shown
in Figure 12.
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You are asked to come up with a set of 20 diverse task instructions and their answers. These
instructions will be given to large language model and we will evaluate it for completing the
instructions. Here are the requirements:

1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should
combine questions with imperative instructions.
3. The type of instructions should be diverse. The list should include diverse types of tasks
like open-ended generation, classification, math reasoning, code generation, world common
knowledge, reading comprehension, editing, etc.
2. A language model should be able to complete the instruction. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant
to wake you up at 5pm or set a reminder because it cannot perform any action.
3. The instructions should be in English.
4. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a
question is permitted.
5. You should generate an appropriate input to the instruction. It should contain a specific
example for the instruction when needed.
6. Most of the instructions do not require input. In this case, you must simply put "None" in
the input field.
7. The input should not be the answer to the instruction. For example, if the instruction is
"Write a headline for ...", the input should not be the said headline. Instead, the input should
be "None".
8. The output should be an appropriate response to the instruction and the input. Make sure
the output is less than 100 words.
9. Do not repeat instructions.
10. Use [[, ]] to flag the start and end of each example.

Examples of generating 3 task instruction and its answer:

[[Instuction: Give a detailed description of a method for brainstorming an essay.
Input:
Answer: Mind Mapping is one of the methods for brainstorming an essay. Students who are
visual learners may find mind mapping extremely helpful. In order to Mind Mapping: Take
a paper and draw a circle in the center Write your topic inside it. Just like we sketch rays
protruding from a sun, draw lines coming out of the circle. Write an argument or a statement
related to the topic at the end of each line. Draw another set of lines projecting from these
statements and state examples that support them. Continue this exercise until you run out of
all possibilities imaginable for this topic.]]

[[Instuction: Write a creative or imaginative response to the given prompt.
Input: You are a time traveler who has just arrived in ancient Egypt. What do you see?
Answer: Wow! As I step out of my time machine, I’m surrounded by towering pyramids and
the warm sun beats down on my face. I see Pharaohs riding in grand chariots, and workers
building majestic temples. It’s like something out of a dream!]]

[[Instuction: Solve a math problem.
Input: A snail is at the bottom of a 20-foot well. Each day, it climbs up 3 feet, but at night,
it slips back 2 feet. How many days will it take for the snail to reach the top of the well?
Answer: To solve this problem, we first calculate the net distance the snail covers each day:
3 feet up minus 2 feet down, resulting in 1 foot of progress daily. Since the well is 20 feet
deep, we can set up the equation: number of days × 1 foot = 20 feet. Solving this, we find it
takes 20 days for the snail to reach the top. We can verify this by noting that after 19 days,
the snail will have climbed 19 feet. On the 20th day, it will climb the final 3 feet, reaching
the top before any night-time slipping occurs. Therefore, the snail will reach the top of the
well in 20 days.]]

Figure 11: Prompt used for acquiring training data.

23



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

KGW n = 1

Instruction: How does photosynthesis work?
Input: None
Answer: Photosynthesis is the process by which green plants, algae, and some bacteria use
light to synthesize foods with the help of chlorophyll.

KGW n = 2

Instruction: Explain how the Internet has transformed the way people learn.
Input: None
Answer: The Internet has transformed learning by providing access to vast information,
allowing flexible learning times, and facilitating interactive communication between
learners and instructors.

KGW n = 3

Instruction: Provide the definition of a simile.
Input: None.
Answer: A simile is a figure of speech in which two things are compared using like or as,
often used to enhance the vividness of a comparison.

SynthID-Text n = 1

Instruction: How do you brew a cup of green tea?
Input: None
Answer: 1. Boil water: Start by boiling water to the ideal temperature of 160 degrees
Fahrenheit (70 degrees Celsius). 2. Steep the tea: Place a green tea bag or loose-leaf green
tea in a tea pot or cup. 3. Add hot water: Pour the hot water directly over the tea. 4.
Steep for the appropriate time: Green tea typically needs to steep for about 2-3 minutes. 5.
Remove the tea: Take the tea bag or strain the loose leaves from the water. 6. Sweeten if
desired: Add honey, sugar, or a sweetener of your choice to taste. 7. Serve: Pour the brewed
tea into a cup and enjoy.

SynthID-Text n = 2

Instruction: Provide a list of three common kitchen tools and their uses.
Input: None
Answer: 1. Cutting board: A cutting board is used for chopping, slicing, and dicing
various ingredients, such as vegetables, fruits, and meats. 2. Measuring cups and spoons:
These tools are used for accurately measuring ingredients, ensuring consistent and precise
measurements in recipes. 3. Kitchen knife: A kitchen knife is versatile and used for slicing,
dicing, chopping, and mincing a wide range of ingredients.

SynthID-Text n = 3

Instruction: Analyze the given quote and identify the underlying theme.
Input: The only way to do great work is to love what you do.
Answer: 1. Passion and joy in work 2. Importance of personal fulfillment in work 3. The
necessity of loving one’s job

Figure 12: Selected examples in training dataset.
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