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ABSTRACT

Customized image generation is crucial for delivering personalized content based
on user-provided image prompts, aligning large-scale text-to-image diffusion
models with individual needs. However, existing models often overlook the re-
lationships between customized objects in generated images. Instead, this work
addresses that gap by focusing on relation-aware customized image generation,
which aims to preserve the identities from image prompts while maintaining the
predicate relations described in text prompts. Specifically, we introduce Rela-
tionBooth, a framework that disentangles identity and relation learning through
a well-curated dataset. Our training data consists of relation-specific images,
independent object images containing identity information, and text prompts to
guide relation generation. Then, we propose two key modules to tackle the two
main challenges—generating accurate and natural relations, especially when sig-
nificant pose adjustments are required, and avoiding object confusion in cases of
overlap. First, we introduce a keypoint matching loss that effectively guides the
model in adjusting object poses closely tied to their relationships. Second, we
incorporate local features from the image prompts to better distinguish between
objects, preventing confusion in overlapping cases. Extensive results on three
benchmarks demonstrate the superiority of RelationBooth in generating precise
relations while preserving object identities across a diverse set of objects and re-
lations. The source code and trained models will be made available to the public.

1 INTRODUCTION

Driven by large-scale text-to-image diffusion models (Rombach et al., 2022; Saharia et al., 2022;
Podell et al., 2023; Pernias et al., 2023), customized image generation has recently made significant
strides (Ruiz et al., 2023; Kumari et al., 2023; Wei et al., 2023; Zhang et al., 2024; Wang et al., 2024;
Kong et al., 2024). This task focuses on generating images that preserve the identity of objects from
user-provided inputs, enabling the creation of personalized and meaningful content. It has shown
value in numerous applications, including personalized artwork, branding, virtual fashion try-ons,
social media content creation, augmented reality experiences, and more.

Despite the success of many methods for customizing single or multiple objects (Liu et al., 2023;
Ye et al., 2023; Li et al., 2023; Patel et al., 2024; Wang et al., 2024; Gu et al., 2024; Lin et al., 2024;
Pang et al., 2024), they often overlook the relationships between objects and the corresponding text
prompts. For instance, when two user-provided objects are paired with a text prompt specifying
a particular relationship, the generated output should not only preserve their identities but also ac-
curately reflect the intended relationship, such as a ‘hug’. This introduces new challenges in what
we refer to as relation-aware customized image generation, which focuses on preserving multiple
identities while adhering to relationship prompts.

An intuitive solution to this issue is to adapt existing tuning-based or training-based methods for
customizing relationships (Huang et al., 2023; mengmeng Ge et al., 2024; Materzynska et al., 2023)
among objects. However, both approaches face challenges. Tuning-based methods struggle to pre-
serve multiple identities, as they invert objects into specific tokens, while training-based schemes
often fail to balance image and text prompts, frequently overlooking key textual elements and hin-
dering the generation of relationships between objects. As illustrated in Fig. 1, previous methods
fail to capture the actions described in the text prompt and lose identity preservation.
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Figure 1: Relation-aware image customization, the generated image should strictly keep the predi-
cate relation and preserve each identity among those identities provided by the text prompt.

We attribute this failure to two key factors: a lack of relevant data and an ineffective model design.
Unlike data augmentation techniques such as flipping or rotation, commonly used to create paired
training data in object customization methods (Yang et al., 2023; Chen et al., 2024b), our approach
requires a triplet of images: two image prompts and one target image. The image prompts should
contain similar objects but exhibit distinct actions compared to the target image. To collect these
triplets, we propose a data engine to curate our fine-tuning set. We leverage an advanced text-to-
image generation model (Betker et al., 2023) to generate triplets where the same object pair is shared
across the images. Through text prompt guidance, the object in the image prompt provides strong
identity information while maintaining distinct actions in the target image, enabling the model to
focus on relation learning during fine-tuning.

For the model design, we propose RelationBooth, which applies the Low-Rank Adaptation
(LoRA) (Hu et al., 2022) strategy to the text cross-attention layers of existing diffusion models
to process user-provided text prompts. In RelationBooth, two key modules are introduced during
training to enhance the customization of relationships and identity preservation. First, we intro-
duce a keypoint matching loss (KML) as additional supervision to explicitly encourage the model
to adjust object poses, since relationships between objects are closely tied to their poses. Impor-
tantly, the KML operates on the latent representation rather than the original image space, aligning
with the default diffusion loss. Second, we inject local tokens for multiple objects to improve the
distinctiveness of highly overlapping objects. Specifically, we employ the self-distillation method
from CLIPSelf (Wu et al., 2024) to enhance region-language alignment in CLIP’s dense features.
Through partitioning and pooling, the well-aligned local tokens help mitigate appearance confusion
between objects.

To more comprehensively evaluate relation-aware customized image generation, we constructed our
RelationBench based on three established benchmarks (Ruiz et al., 2023; Kumari et al., 2023). Our
methods demonstrate strong performance compared to existing approaches, achieving significant
improvements in visual quality and quantitative results.

The contributions of this work are:

• We explore a novel task called relation-aware customized image generation, which aims to
preserve multiple identities from image prompts while adhering to the relationships spec-
ified in text prompts. This task can enhance various user-driven applications by enabling
more control and customization.
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• We introduce a data engine that uses an advanced text-to-image generation model to gen-
erate triplet images where the same object pair is present with distinct actions. This well-
curated dataset enables the model to focus on learning object relations during fine-tuning,
leveraging the robust identity information provided by the image prompts.

• Our proposed RelationBooth method has two key modules, including keypoint matching
loss and object-related local tokens, to enhance the customization of relationships and iden-
tity preservation. The extensive experiments on three benchmarks demonstrate the effec-
tiveness of our method.

2 RELATED WORK

Diffusion-Based Text-to-Image Generation. This direction aims to produce high-quality images
based on user-provided textual prompts. Diffusion-based generation models (Rombach et al., 2022;
Saharia et al., 2022) encode these prompts through the text model (Radford et al., 2021; Chung et al.,
2022) and inject the text embedding into the U-Net’s cross-attention layers. Some methods (Podell
et al., 2023; Pernias et al., 2023; Ren et al., 2024) upscale diffusion models and incorporate addi-
tional conditions as priors to generate high-resolution images. Meanwhile, several methods (Betker
et al., 2023; Lian et al., 2023) introduce stronger text encoders or large language models (LLMs)
to enhance the textual comprehension capabilities of diffusion models. Recent works (Peebles &
Xie, 2023; Chen et al., 2024a) have replaced the U-Net denoiser with a Transformer-based denoiser.
However, these models primarily focus on textual conditions and struggle to handle other forms of
input, such as user-provided images. In contrast, our work facilitates customized generation while
following predicate relation conditions given by text inputs.

Diffusion-Based Customized Generation. Customized image generation aims to produce diverse
images based on user-provided concepts. Tuning-based methods accomplish this by fine-tuning
specific parameters of diffusion models, thereby incorporating new concepts into text-to-image dif-
fusion models like Stable Diffusion. Some of these methods (Gal et al., 2023; Voynov et al., 2023;
Liu et al., 2023) employ text embeddings to represent customized concepts, which are then injected
into prompts during inference. On the other hand, Dreambooth (Ruiz et al., 2023) fine-tunes the en-
tire U-Net and introduces a prior preservation loss to mitigate language drift. Additionally, several
approaches (Kumari et al., 2023; Gu et al., 2024; Lin et al., 2024; Pang et al., 2024) combine text
embeddings and diffusion models for image synthesis. They fine-tune both the text embedding and
the U-Net, yielding impressive results. Considering the substantial cost of fine-tuning for commer-
cial uses, training-based methods (Li et al., 2023; Wei et al., 2023; Chen et al., 2024b; Patel et al.,
2024; Zhang et al., 2024) have been proposed. This approach primarily utilizes an ID encoder to
extract the concept’s identity and inject it into the U-Net via cross-attention layers. For instance,
MS-Diffusion (Wang et al., 2024) integrates grounding tokens with a feature resampler to maintain
detail fidelity and employs layout guidance to explicitly place the concepts. Despite their efficiency
during inference, training-based methods often struggle with identity preservation and textual condi-
tion following ability. A typical problem is the relation expressions in prompts are often overlooked.
To address this issue, we present RealtionBooth, to tackle relation-aware customized generation.

Relation-Aware Text-to-Image Generation. Inspired by tuning-based customization methods (Gal
et al., 2023), some recent works (Huang et al., 2023; Wei et al., 2024; mengmeng Ge et al., 2024)
represent a “neglected word” by learnable parameters. These methods fine-tune part of the param-
eters on content co-existing images. For instance, Reversion (Huang et al., 2023) fine-tunes the
text embedding on a set of co-existing related images and introduces a relation-steering contrastive
loss. Reversion gains a better alignment between relational words and generated images by injecting
new text embedding into prompts. While effective with prepositions and adjectives, Reversion strug-
gles with predicate relation which involves significant overlaps, and cannot customize user-provided
concepts. Moreover, this method still struggles to generate vivid relationships while maintaining the
fidelity of multiple customized concepts, likely due to the inherent disregard for text embeddings in
customization methods. Our work bridges the gap in the predicate relation-following capability of
training-based customization methods. This enables efficient inference that naturally and accurately
generates predicate relations from the textual prompt.
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Figure 2: The overview of RelationBooth. RelationBooth encodes the image prompts by dual en-
coder architecture. After getting the U-Net output ϵ̂, we predicate ẑ0 and calculate the keypoint
matching loss. The part in the dotted box is only for training.

3 RELATION-AWARE CUSTOMIZED OBEJCT GENERATION

3.1 PROBLEM DEFINITION

Different from convention customization tasks, we explore a new setting that focuses on image
generation by both image prompts ci ∈ RN×H×W and text prompts ct. The N , H , and W are
the number, height, and width of image prompts. We call this setting RelationBooth due to the
requirements that the generated image x̂ should strictly preserve each identity and keep the predicate
relation among those identities provided by ci and ct.

We define this task as:
x̂ = Φθ(ci, ct) (1)

where Φ is the network parametered by θ. For brevity clarification, we set N = 2 due to the basic
triplet element defined in the RelationBooth.

3.2 DISCUSSION AND MOTIVATION OF RELATIONBOOTH

Although previous works (Kumari et al., 2023; Gu et al., 2024; Zhang et al., 2024) have attempted to
customize multiple objects under text control, we are the first to address the generation of relation-
aware customized images. Notably, the state-of-the-art multi-object customization model, MS-
Diffusion (Wang et al., 2024), cannot handle this task effectively. Specifically, given the image
prompt ci and text prompt ct. MS-Diffusion utilizes the CLIP (Radford et al., 2021) to extract the
image and text tokens from ci and ct respectively. The image and text tokens are injected into the
U-Net ϵθ through parallel cross-attention layers. The U-Net is optimized on the latent representation
of image z:

LMS = Ezt,t,ϵ,c[∥ϵt − ϵθ(zt, t, ci, ct)∥22] (2)

where ϵt ∼ N (0, 1), we omit the CLIP encoder for brevity. However, despite MS-Diffusion can
customize objects under text control, it’s struggled for MS-Diffusion to generate relations accurately.
Furthermore, MS-Diffusion might cause object confusion when heavy overlapping exists, leading to
failure relation generation.

We revise the relation generation task. Existing relation inversion methods (Huang et al., 2023;
mengmeng Ge et al., 2024) aim to invert a relation to a text embedding R∗ in the pre-trained text-
to-image diffusion models. Given a set of relation-specific images {xk}nk=1, they employ denoising
loss LRI to fine-tune R∗ for alignment with specific relation:

LRI = Ezt,t,ϵ,c[∥ϵt − ϵθ(zt, t, ct)∥22] (3)

Directly implementing relation inversion methods on MS-Diffusion leads to suboptimal results. We
fine-tune MS-Diffusion on a set of relation-specific images, and experiment results show the model
falls short in generating relation in Fig. 4. We think the image prompt ci that is not considered in
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Figure 3: The overview of the data generation process. DALLE-3 can generate similar objects by
using ’The photo of the same’ in the text prompt on common animal categories.

Figure 4: Comparison of different fine-tuning data. Simply implementing relation inversion methods
on MS-Diffusion leads to failure relation generation.

relation inversion methods affects the generation process, leading to an overlook of R∗. In the fol-
lowing subsections, we will introduce the data collection and proposed method, considering lacking
both of them in the proposed tasks.

3.3 DATA COLLECTION

Considering the scarcity of available datasets that can be used, we first design a data engine for
collecting high-quality tuning data. We denote the relation-specific image as x. While x contains
relation information, it also includes the object’s identities. Directly fine-tuning on a set of x leads
to unsatisfied relation generation. To disentangle the relation and identity in x. The ideal tuning data
should be in the form of D = (x, ci, ct). Where ci represents the image prompts that contain the
object in x, ct represents the text prompt that guides the relation generation. Unfortunately, directly
cropping the objects from x to obtain ci results in a copy-and-paste effect, even when using data
augmentation techniques like flipping and rotation. Therefore, we introduce our data engine below.

Data engine. Fig. 3 illustrates our data generation process. Inspired by the capability of DALL-E 3
and its multi-turn dialog capability. We use DALL-E 3 to generate D = (x, ci, ct). Where x and ci
share the same object identity by leveraging the prompt “The photo of the same.” We observe that
prompting in this manner allows DALL-E 3 to remember and preserve identity in common categories
such as “tiger” and “brown bear” which are enough for relation learning. Next, we employ X-Pose
(Yang et al., 2024), SAM (Kirillov et al., 2023), and LLaVA (Liu et al., 2024) to annotate x, ci with
keypoints, masks, and captions.

3.4 RELATIONBOOTH

3.4.1 RELATIONLORA FINE-TUNING

To disentangle the relation and identity information in relation-specific images x, we utilize off-
the-shelf identity inject methods from state-of-the-art customized model MS-Diffusion (Wang et al.,
2024). Specifically, we utilize parallel cross-attention layers to process the ci and ct, the identity
information in ci facilitates the model to focus on relation information in x and ct during fine-tuning.
We formulate the parallel cross-attention layers:

h = γ · Softmax(
QKi√

d
)Vi + Softmax(

QKt√
d
)Vt (4)
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where Q = Wqh, Ki = Wki
ci, Vi = Wvici, Kt = Wkt

ct, Vt = Wvtct, and γ is a hyperparameter
for scaling features from ci. For clarity, we omit the final linear layer Wout. The predicate relation
information mainly depends on text prompts. Therefore, we inject LoRA layers in all of the Wq ,
Wkt

, Wvt
, and Wout to encourage the model to pay more attention to the predicate relation in ct.

We freeze all other parameters during fine-tuning. The required additional storage space for LoRA
weights is only 13MB. As shown in Fig.4, benefited from the disentangled identity information in
ci, the LoRA weights effectively capture the predicate relation in x and ct, accurately generating the
corresponding images. Notably, after fine-tuning, our RelationLoRA can also be directly integrated
into SDXL (Podell et al., 2023), effectively enabling the model to address the relation inversion task.
The extensive results are presented in the appendix (Fig. 15).

3.4.2 KEYPOINT MATCHING LOSS

Most relations have specific requirements for the pose, such as “hugging” requires the arm to crossed
over the other object’s body, and “riding a bicycle” requires the feet of the object to be on the pedal
plate. Therefore, it’s important to accurately manipulate the pose of objects in the right status.
Intuitively, we propose to introduce keypoint features into the fine-tuning procedure to explicitly
guide the pose of the objects for better relation generation.

Specifically, considering our task involves common objects instead of humans only, We employ
X-Pose (Yang et al., 2024) as keypoint detector because it can detect any keypoints in complex
real-world scenarios. We detect 17 keypoints for each object in x and ci, and denote the keypoint
coordinates as cxkp, c

ci
kp ∈ R17×2 respectively. To encourage the model to generate accurate pose in

D(ẑ0), where D is the VAE decoder. We use the U-Net’s output ϵ̂ to predict z0 during fine-tuning:

ẑ0 =
zt −

√
1− ᾱtϵ̂√
ᾱt

(5)

We use the VAE encoder E to obtain latent representation of image prompts E(ci). Then we calculate
the MSE loss on the corresponding keypoint locations between E(ci) and ẑ0:

LKML =
1

nkp
Ezt,ci

∥∥∥E(ci)[ccikp]− ẑ0[c
z0
kp]

∥∥∥2
2

(6)

L = Ldenoise + λ · LKML (7)

where nkp denote the number of keypoint, ccikp and cz0kp are keypoint’s coordinates in ci and z0
respectively, λ controls for the relative weight of KML. The part inside the dotted box in Fig. 2
illustrates the model fine-tuning with the KML. We find KML is effective in encouraging the model
to manipulate the pose for relation generation.

3.4.3 LOCAL TOKEN INJECTION

When generating relations, overlapping objects often occur. It is challenging to distinguish multiple
objects solely using CLIP’s image-level embedding of the full image, which can lead to confusion
between customized objects during relation generation. To address this limitation, we introduce a
local region representation of images. Considering the domain shift from the full image to local
image regions, we employ CLIPSelf’s self-distillation methods (Wu et al., 2024) to enhance the
region-language alignment of local region representation. Specifically, in line with CLIPSelf, we
extract dense features (Zhou et al., 2022) from a student CLIP model and derive local tokens through
partitioning and pooling (He et al., 2017). We partition the full image into patches and feed them
into a frozen CLIP model to obtain teacher tokens. Our approach minimizes the cosine similarity
between local tokens and teacher tokens to improve the region-language alignment of local tokens.
To formulate this process, we denote the hidden states of the second-to-last layer of CLIP as h′

clip.
We modify the last layer of CLIP hclip = ModifiedAttention(hclip) to obtain the dense features:

htmp = Projv(norm(h′
clip)), htmp = h′

clip + Projout(htmp), htmp = htmp + FFN(htmp) (8)

where Proj means the linear projection. We discard the class embedding hclip[0] and reshape the
image embeddings z′[1 : h×w] into an h×w feature map. We partition the feature map into patches,
from which we can get local tokens tokl by pooling. During inference, we simply concatenate
the aligned local tokens with the image-level tokens and send them to the ID extractor which is a
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Figure 5: Single-object comparison with our base model MS-Diffusion: The results demonstrate
that our method generates more accurate and natural relation-aware images.
Table 1: Quantitative comparison on RelationBench, Bold and underline represent the highest and
second-highest metrics.

Method Single-object Multi-object
CLIP-T CLIP-R CLIP-I DINO CLIP-T CLIP-R CLIP-I DINO

DreamBooth (SDXL) 27.8 18.2 74.2 62.6 24.3 16.2 67.8 57.2
Custom Diffusion 26.5 15.2 73.2 58.8 20.1 15.4 64.7 55.3

Cones-V2 24.4 13.5 72.1 57.2 21.3 15.2 64.3 54.2
ELITE 25.7 14.9 75.4 61.5 — — — —

AnyDoor 24.5 14.7 77.4 62.2 21.6 14.9 69.7 59.8
BLIP-Diffusion 26.2 15.7 77.4 57.7 — — — —
SSR-Encoder 25.5 15.9 80.4 59.4 24.2 14.6 72.1 56.2
MS-Diffusion 26.5 18.8 78.7 64.5 26.9 18.9 73.8 58.8

Ours 30.6 21.4 77.9 63.4 28.9 20.4 75.4 62.1

transformer-based architecture shown in Fig. 2 b). The query q is obtained by concatenating class
text embedding with the bounding box.

q = q +GatedSelfAttn([q, toki, tokl]) (9)

Experimental results show that local token injection enhances identity preservation in evaluation
metrics and visual effects as shown in Fig. 9.

4 EXPERIMENTS

Implementation Details. For relation-aware fine-tuning, we generate a tuning set with 4-6 samples
per relation. We incorporate LoRA layers into all text cross-attention layers of the U-Net. We set the
LoRA rank to r = 4, the parallel cross-attention scaling factor to γ = 0.6, and the keypoint matching
loss weight to λ = 1e− 3. The model is fine-tuned for 500 steps, using 2 A100 GPUs, with a total
batch size of 8, completing the process in 10 minutes. We use the Adam optimizer with a learning
rate of 1e − 4 and no weight decay, resulting in a total of 3.1M trainable parameters. Note that our
RelationLoRA only modifies the text cross-attention layers in SDXL, making it compatible with any
SDXL-based models. Considering the strong identity preservation capabilities of MS-Diffusion, we
implement our RelationBooth on MS-Diffusion. During fine-tuning and inference, we concatenate
local tokens with image tokens. We put more self-distillation details of the Local Image Encoder in
appendix (A.1). Additionally, as shown in appendix (Fig. 15), our RelationLoRA is compatible with
SDXL for addressing the Relation Inversion task (Huang et al., 2023).

Evaluation. To evaluate relation-aware customized image generation, we propose RelationBench,
consisting of 44 objects from DreamBench (Ruiz et al., 2023) and CustomConcept101 (Kumari
et al., 2023), along with 25 predicate relations. The object categories include pets, plushies, toys,
people, and cartoons. Using GPT-4, we generate 100 cases for single- and multi-object evaluations.
Following previous works (Ruiz et al., 2023; Wang et al., 2024), we evaluate our method on three
metrics: (1) Identity Preservation, which assesses the similarity between the generated images and
the image prompts, using the CLIP image score and DINO score that calculate the cosine similarity
between the class embeddings of images, referred to as CLIP-I and DINO, respectively; (2) Text
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Figure 6: Multi-object comparison with training-based and tuning-based methods: Compared to our
base model, our method shows a clear advantage in relation-aware generation and avoiding object
confusion in overlapping scenarios.

Table 2: DreamBench.

Method Single-object
CLIP-T CLIP-I DINO

DreamBooth (SDXL) 31.2 81.5 69.2
Custom Diffusion 28.4 77.2 66.8

Cones-V2 31.0 76.5 67.2
ELITE 29.8 77.4 62.5

AnyDoor 25.5 82.1 67.8
SSR-Encoder 30.8 82.1 61.2
MS-Diffusion 31.5 79.3 68.2

Ours 31.6 78.9 67.4

Table 3: M-CustomConcept101.

Method Multi-object
CLIP-T CLIP-I DINO

DreamBooth (SDXL) 29.5 67.4 49.2
Custom Diffusion 28.1 66.2 48.8

Cones-V2 29.2 66.5 47.2
AnyDoor 20.2 72.1 51.2

SSR-Encoder 30.6 71.1 52.2
λ-eclipse 29.2 68.2 48.2

MS-Diffusion 28.0 70.2 51.2
Ours 29.4 71.4 52.3

Alignment, which evaluates how well the generated images align with the text prompts, using the
CLIP image-text score, denoted as CLIP-T; and (3) Relation Alignment. We observed that nouns in
the prompts can inflate CLIP-T scores, making them less accurate for evaluating relation generation.
To address this, we extract relation predicate from the prompts using spaCy and calculate the CLIP
image-text score using only the predicate, denoted as CLIP-R.

4.1 MAIN RESULTS

We evaluate our method through both quantitative and qualitative results in single- and multi-object
cases. In single-object cases, we primarily focus on the alignment of the object’s pose with the
predicate relation in the text prompt, as well as the model’s ability to preserve identity. In multi-
object cases, in addition to relation generation and identity preservation, we also need to ensure there
is no confusion between the multiple objects.

Quantitative results. We quantitatively compare our method with baseline models across three
benchmarks: RelationBench, DreamBench, and multi-object cases in CustomConcept101. As
shown in Tab. 1, our method demonstrates a clear advantage on RelationBench for single-object
cases, particularly in the CLIP-T and CLIP-R metrics. However, it performs slightly lower in the
CLIP-I metric, likely due to significant pose variations in the objects, which can negatively impact
the CLIP-I score. For multi-object generation, our method surpasses other approaches across all
evaluation metrics, which we attribute to effectively preventing object confusion, leading to a sig-
nificant improvement in CLIP-I performance. Furthermore, as shown in Tab. 2, we evaluate single-
object generation performance on DreamBench. Our method outperforms others in the CLIP-T
metric while delivering competitive results in CLIP-I and DINO. To evaluate multi-object gener-
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Figure 7: Additional results of relation-aware generation.

Figure 8: Additional results of relation-aware generation across a wide range of objects.

ation, we conduct experiments on multi-object cases from CustomConcept101, which we denote
as M-CustomConcept101. As shown in Fig. 3, our model achieves the highest performance in the
DINO score and ranks second in both the CLIP-T and CLIP-I metrics.

Qualitative Comparison. We conduct qualitative comparison experiments for relation-aware cus-
tomized image generation on RelationBench. For single-object comparisons, as shown in Fig. 5,
our generated images are more accurate than those produced by our base model, MS-Diffusion, and
naturally reflect the predicate relations in the text prompts. Additional single-object comparison
results are provided in the appendix (Fig. 12). In multi-object comparisons, Fig. 6 demonstrates that
our method excels in generating multi-object relations, successfully avoiding object confusion while
accurately representing the intended relations.

4.2 ABLATION STUDY AND ANALYSIS

RelationLoRA Fine-tuning. Instead of injecting LoRA layers and fine-tuning on our curated
(x, ci, ct), we fine-tune the text embedding R∗ using a set of relation-specific data (x, ct), where
blank images are used as image prompts ci. The visual comparison is presented in Fig. 4, and the
quantitative results in Tab. 4 indicate that this method underperforms in both CLIP-T and CLIP-R
scores. This may be due to the entanglement of identity and relation information in x, as well as the
gap between the blank and real images, making it difficult to accurately generate the relation.

Keypoint Matching Loss. For the keypoint matching loss (KML), we omit it during fine-tuning.
As shown in Fig. 9 a), including the KML leads to more accurate and natural relation-aware images
when using the same random seed. Quantitative results, presented in Tab. 4, show a decline across
all evaluation metrics when the KML is removed. Additionally, we experimented with different
values for λ and found that the best performance occurs at λ = 1e− 3.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Ablation study of keypoint matching loss (KML) and local tokens: The images are gen-
erated using the same random seed. We use green and red boxes to highlight the main differences.
The areas within the green boxes show the improvements with our proposed component.

Table 4: Ablation study on our proposed components

Method Single-object Multi-object
CLIP-T CLIP-R CLIP-I DINO CLIP-T CLIP-R CLIP-I DINO

w/o Relation-aware Data 28.4 16.9 78.2 64.4 26.2 16.8 75.3 59.7
w/o Dense Token 29.2 21.0 76.8 62.5 28.5 19.5 75.1 59.3

w/o Keypoint Matching Loss 28.3 17.9 77.8 62.1 27.4 18.2 75.2 61.2
Full Model 30.6 21.4 77.9 63.4 28.9 20.4 75.4 62.1

Table 5: Ablation study on Local Image En-
coder’s architecture.

Model Multi-object
CLIP-T CLIP-R CLIP-I DINO

EVA-CLIP-L14 23.6 15.7 56.4 54.8
CLIP-ViT-L14 22.9 14.8 58.3 52.7
CLIP-ViT-bigG 28.9 20.4 75.4 62.1

Table 6: Ablation study on λ, controlling rel-
ative weight of KML.

Lambda Multi-object
CLIP-T CLIP-R CLIP-I DINO

λ=1e-2 27.5 19.3 72.6 59.6
λ=1e-3 28.9 20.4 75.4 62.1
λ=1e-4 26.8 18.1 73.9 60.4

Table 7: Ablation study on the number of lo-
cal tokens (determined by partition size).

Num Local Tokens Multi-object
CLIP-T CLIP-R CLIP-I DINO

N=2×2 28.3 19.4 75.3 60.1
N=4×4 28.9 20.4 75.4 62.1
N=8×8 27.9 18.1 74.1 59.4

Table 8: Ablation study on local token injec-
tion methods to ID extractor.

Injection method Multi-object
CLIP-T CLIP-R CLIP-I DINO

Add 25.4 18.5 71.0 56.9
Linear Projection 25.8 18.3 68.2 54.4

Concatenate 28.9 20.4 75.4 62.1

Local Token Injection. For local token injection, the visual comparison in Fig. 9 b) shows severe
object confusion when local tokens are omitted. The quantitative results in Tab. 8 demonstrate that
local tokens improve relation-aware customization. We conduct further ablation as shown in Tab. 7,
Tab. 5, and Tab. 8. We experimented with varying numbers of local tokens injected into the ID
extractor and found that 16 tokens yielded the best results across all evaluation metrics. Therefore,
we use 16 local tokens in all experiments. Additionally, we swapped the Local Image Encoder and
found that CLIP-ViT-bigG was the most compatible model. For the injection method, we note that
simply concatenating local tokens with image tokens produced the best outcomes. Combining these
methods ensures that our method maintains high quality relation-aware customized generation.

5 CONCLUSION

In this work, we introduce a challenging task: relation-aware customized image generation, which
aims to generate objects that adhere to the relations specified in the text prompt while preserving
the identities of user-provided images. To support this, we propose a data engine for generating
high-quality fine-tuning data. Our method, RelationBooth, incorporating Keypoint Matching Loss
and Local Token Injection, effectively captures relation information and generates natural relations
between customized objects while mitigating object confusion. We also provide a fair compari-
son with other methods on a new benchmark, RelationBench. The extensive experiments on three
benchmarks demonstrate the effectiveness of our method, highlighting its potential for interactive
scenario generation, relation detection, etc.
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A APPENDIX

This appendix provides additional implementation details for the Local Image Encoder and baseline
methods. In the second section, we offer a brief introduction to the RelationBench benchmark. We
then present further experimental results to validate the effectiveness of our method across various
scenarios. Following that, we provide an in-depth analysis of the contributions of the proposed
components to overall performance. Lastly, we discuss the potential ethical, privacy, and fairness
implications of this technology, highlighting its social responsibility in real-world applications.

A.1 MORE IMPLEMENTATION DETAILS

Local Image Encoder’s Implementation Details. To enhance region-language alignment of dense
features, we employ self-distillation on CLIP-ViT-bigG. The training is conducted on the train2017
split of the COCO dataset for six epochs, using 8 A100 GPUs with a batch size of 2 per GPU. We
apply the Adam optimizer with a learning rate of 1e−5 and a weight decay of 0.1. The Local Image
Encoder, containing 1.8B parameters, extracts local tokens that are concatenated with image tokens
during fine-tuning and inference to improve the alignment of object appearance. This distillation
process enhances the performance of our base model, MS-Diffusion, in multi-object generation
tasks. However, significant object confusion still occurs during relation generation.

Baselines’ Implementation Details. For tuning-based methods, we implement Textual Inversion,
DreamBooth, and Custom Diffusion using their respective Diffusers versions, with learning rates
and tuning steps aligned to those reported in the original papers. We utilize the official implemen-
tations and checkpoints for training-based methods, adjusting hyperparameters as needed during
evaluation. Specifically, we set the scale to 0.6 in MS-Diffusion and sample 30 steps using the Eu-
lerDiscreteScheduler. For the SSR Encoder, we employ the UniPCMultistepScheduler, sampling
30 steps and adjusting the scale for each object to accommodate different cases. For λ-Eclipse, we
apply the default settings of the official implementation without modification.

A.2 RELATIONBENCH

In this section, we show the object and text prompt contained in our RelationBench in Fig. 10.

Figure 10: Objects in our proposed RelationBench

A.3 MORE RESULTS OF RELATION-AWARE IMAGE CUSTOMIZATION

More Results of Single-object relation-aware generation. We show more qualitative results in
Fig. 12. We compare our methods with both training-based and tuning-based methods.
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Figure 11: Object category in RelationBench

Table 9: Text prompt in RelationBench.

No. Prompt
1 A { } is playing guitar on a park bench, serenading passersby.
2 A { } is playing piano in a grand hall filled with glowing chandeliers.
3 A { } is eating dinner in a bustling restaurant with soft jazz playing in the background.
4 A { } is dancing in the moonlight on a rooftop terrace with a stunning city view.
5 A { } is lifting weights in a modern gym, pushing through an intense workout.
6 A { } is reading a book by the fireplace on a rainy evening.
7 A { } is skiing down a steep slope in the Alps, with snowflakes falling gently.
8 A { } is sleeping peacefully in a hammock under the shade of a palm tree.
9 A { } is cooking lunch in an open-air kitchen overlooking a lush green valley.
10 A { } is singing on stage during a vibrant music festival with thousands of fans.
11 A { } is riding a bike along the scenic countryside road during sunset.
12 A { } is riding a horse through a dense forest, surrounded by nature.
13 A { } is riding a motorbike on a winding mountain road, feeling the wind rush by.
14 A { } is playing soccer on a sandy beach, with a vibrant sunset in the background.
15 A { } is playing chess with a { } in a quiet park under the shade of a tree.
16 A { } is partner dancing with a { } in a vintage ballroom with live music playing.
17 A { } is carrying a { } across a rushing river, carefully finding their steps.
18 A { } is fencing with a { } in an elegant arena, with spectators watching closely.
19 A { } shakes hands with a { } at a formal awards ceremony after receiving a prize.
20 A { } is kissing a { } in the rain under a large umbrella in a romantic city square.
21 A { } is playing basketball with a { } on a street court.
22 A { } is wrestling with a { } in a championship ring.
23 A { } is hugging a { } in front of the mountain.
24 A { } is fighting with a { } in a garden.
25 A { } is sitting back to back with a { } on a hilltop.
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Figure 12: Single-object comparison. TI and DB indicate Textual Inversion and DreamBooth, re-
spectively. Our methods achieve the best balance between relation generation and identity preserva-
tion.

Figure 13: Single-object comparison with our base model MS-Diffusion
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More Results of Multi-object relation-aware generation. In this section, we present additional
results on multi-object relation-aware generation. In addition to implementing our RelationBooth
on MS-Diffusion, we also use SDXL as a base model. As shown in Fig. 15, our RelationBooth
enhances SDXL’s ability to generate images that accurately depict object relations. Compared to
ReVersion (Huang et al., 2023), our method generates more precise relations, without object con-
fusion or missing objects, demonstrating the strong performance of RelationBooth in the Relation
Generation task.

Figure 14: Multi-object relation-aware image customization results of pet, toy, plushie, and person.

Figure 15: Our RelationBooth is compatible with SDXL to address Relation Inversion task.

Failure cases. As shown in Fig. 16, we present three typical failure cases from our experimental
results. The first involves unreasonable relation generation requests, such as asking a plushie octo-
pus, which lacks limbs, to ’shake hands.’ In response, our model generates additional arms for the
plushie octopus, leading to a mismatched appearance. The second issue is the unnaturalness of some
generated relations, such as a duck failing to make contact with a cat as it should. The final failure
case is object confusion at the interaction point, which is a common challenge across all multi-object
generation models.

A.4 ADDITIONAL ANALYSIS ON OUR PROPOSED COMPONENTS

Our well-curated Data. Our curated data are generated by DALLE-3 (Betker et al., 2023), which
can effectively preserve the identity of common categories, such as animals, through its multi-turn
dialogue capability. While our fine-tuning dataset consists solely of animals, our method focuses
primarily on the relation information in the ground truth by disentangling identity using an off-the-
shelf identity extractor. Therefore, the specific categories in the fine-tuning data are not the most
critical factor for relation learning.
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Figure 16: Failure cases of our RelationBooth.

Figure 17: Our fine-tuning dataset as an example.

Keypoint Matching Loss. We use X-Pose as our keypoint detector due to its open-vocabulary de-
tection capabilities. The keypoint matching loss (KML) facilitates relation generation by explicitly
guiding the model’s pose manipulation, resulting in more accurate pose generation. As shown in
Fig. 19, the cat’s arm crosses the dog’s body, accurately depicting the ’hug’ relation.

Figure 18: Illustration of Keypoint Matching Loss

Figure 19: Additional ablation studies on KML and Local Tokens.

Local Tokens Visualization. To understand why local features enhance relation-aware generation,
we adopt Principal Component Analysis (PCA) to project the dense feature more compactly. As
shown in Fig. 20, dense features provide more fine-grained information than CLIP image tokens,
aiding in distinguishing between different objects during the generation process and helping to avoid
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object confusion, especially in cases of heavy overlap. Moreover, it can facilitate object appearance
alignment.

Figure 20: Visualization of Dense feature and Image tokens by Principal Component Analysis
(PCA).

A.5 SOCIAL COMPACT

Positive societal impacts. Relation-aware image customization enables users to generate images
that not only contain customized objects but also capture their meaningful relationships. This opens
up new opportunities for creative professionals, such as designers, advertisers, and educators, to
communicate complex ideas visually with greater precision and flexibility. It has the potential to
streamline content creation in diverse fields, from personalized marketing to educational tools, mak-
ing high-quality, contextually rich imagery accessible without the need for extensive resources.

Potential negative societal impacts. The ability to generate customized images that involve specific
relationships between objects could be misused to fabricate misleading or harmful visual narratives,
including false representations of events or manipulative visual content in political or social contexts.
Additionally, if the models are trained on biased data, they may reinforce existing societal biases,
marginalizing certain groups or distorting the accuracy of represented relationships.

Mitigation strategies. To reduce misuse, ethical guidelines should be established to govern the re-
sponsible development and application of this technology. Promoting transparency about generated
content and integrating fairness and diversity considerations into dataset selection are key strategies
for mitigating potential harms.
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