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ABSTRACT

As foundation models gain increasing attention from both academic and industrial
communities, Federated Foundation Models (FedFM) have emerged as a privacy-
preserving approach for collaboratively fine-tuning models in federated learning
(FL) frameworks using distributed datasets across multiple clients. A key chal-
lenge for FedFM, given the versatile nature of foundation models, is addressing
out-of-distribution (OOD) generalization, where unseen tasks or clients may ex-
hibit distribution shifts leading to suboptimal performance. Although numerous
studies have explored OOD generalization in conventional FL, these methods are
inadequate for FedFM due to the challenges posed by large parameter scales and
increased data heterogeneity, where large parameter scales would result in high
computational and communication costs while increased data heterogeneity like
cross-domain would lead to suboptimal performance of the aggregated global
model on individual client distributions. To bridge this gap, we propose a new
method, called FedOA, to enhance the OOD generalization of FedFM under these
conditions. Specifically, our method employs adapter-based parameter-efficient
fine-tuning methods for efficient learning, and introduces an additional person-
alized model with a feature distance-based regularization to ensure distribution
alignment and provide OOD generalization guarantees for each client. Theoret-
ically, we demonstrate that the conventional aggregated global model in FedFM
inherently retains OOD generalization capabilities, and our proposed method en-
hances the personalized model’s OOD generalization through regularization in-
formed by the global model, with proven convergence under general non-convex
settings. Empirically, the effectiveness of the proposed method is validated on
benchmark datasets across various NLP tasks.

1 INTRODUCTION

Recently, foundation models have garnered considerable attention from both academic and indus-
trial communities due to their versatile capabilities in handling a wide range of downstream tasks.
Despite their advantages, these models predominantly rely on large volumes of publicly available
data, which poses significant challenges related to the exhaustion of public data resources. To mit-
igate these issues, Federated Foundation Models (FedFM) (Zhuang et al., |2023; |Yu et al., [2023)
have been proposed as a promising solution. By leveraging the federated learning (FL) frame-
work, FedFM facilitates the distributed training of foundation models across multiple devices or
data sources, ensuring that private data remains localized without being directly shared.

Out-of-distribution (OOD) generalization constitutes a pivotal research challenge that endeavors to
train models capable of performing robustly on data exhibiting distributions difference from those
seen during training. This challenge has been extensively explored across various centralized re-
search areas (Liu et al., 2021b; |Arjovskyl 2020), and recent scholarly efforts have extended these
methodologies to federated learning frameworks (Li et al.,2023a; |Yuan et al.,[2021), in which some
unseen (non-participation during training) tasks/clients may exhibit distribution shifts leading to
suboptimal performance of the conventional FL. methods. One prevalent approach to address this
issue involves adapting invariant learning (Arjovsky et al., [2019; Koyama & Yamaguchil |2020) in
FL to identify and learn invariant features that are consistent across all distributions. For example,
in a model trained to classify cows and camels, invariant learning encourages the model to focus on
invariant features, such as animal shapes, rather than spurious correlations, such as backgrounds ( as-
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sociating green landscapes with cows), which enhances the model’s ability to generalize effectively
to new environments (such as cows on a sandy beach).

Although these invariant learning approaches for addressing OOD generalization in conventional
FL are promising, they may not be optimal for federated foundation models. A key distinction be-
tween FedFM and conventional FL lies in the scale of parameters involved (Ren et al.|[2024)). Unlike
conventional FL, which primarily focuses on smaller models, FedFM typically utilizes foundation
models with billions of parameters. This scale can result in substantial communication and compu-
tation costs when attempting to operate directly on the entire model. Another significant challenge
for FedFM is the exploration of more heterogeneous data, such as cross-domain data, due to the
versatile nature of foundation models, which are designed to handle a variety of downstream tasks
in real-world applications (Liu et al., [2023). Given the vast parameter count and the increased data
heterogeneity in FedFM, it is crucial to explore innovative approaches that can effectively address
OOD generalization in FedFM while minimizing computational and communication overhead in the
increased data heterogeneity scenarios.

Previous work (Du et al.|[2024) has provided an initial analysis of the OOD generalization capability
of federated foundation models through a series of robustness analysis experiments and introduced
a general noisy projection-based robust aggregation algorithm. However, this approach remains
rooted in the general non-IID (heterogeneous label distributions) setting typical of conventional FL
and lacks a comprehensive theoretical analysis. To address these limitations, we propose FedOA, a
novel framework that adapts invariant learning for OOD generalization in FedFM while addressing
the substantial communication and computation costs associated with more heterogeneous scenar-
ios. Our approach begins by revisiting existing invariant learning techniques in conventional FL,
reformulating them into a unified optimization framework. We then theoretically analyze the gen-
eralization bounds of both the conventional aggregated global model and the personalized model in
FedFM, demonstrating that the conventional aggregated global model in FedFM inherently retains
OOD generalization ability. This motivates our approach to enhance the OOD generalization of the
personalized model in FedFM by leveraging the global model. Specifically, we employ adapter-
based parameter-efficient fine-tuning (PEFT) methods (Hu et al., |2023)) to facilitate efficient learn-
ing by tuning and communicating only a small subset of the model parameters. Given the increased
heterogeneity and significant distribution shifts across clients in FedFM, we further incorporate per-
sonalized models to better address individual client needs and introduce a feature distance-based
regularization term to enhance OOD generalization and further address large parameter scales. Fi-
nally, we establish a new theoretical framework to analyze the convergence of our method in FedFM.
Our contributions are summarized below.

* We introduce a new method, namely FedOA, to learn invariant features for addressing the
OOD generalization of FedFM with large parameter scales in increased data heterogeneity
scenarios.

* We theoretically demonstrate that the conventional aggregated global model in FedFM in-
herently retains OOD generalization ability, and FedOA is expected to enhance OOD gen-
eralization through feature distance-based regularization. We also present the convergence
results for FedOA under general non-convex settings.

* We conduct an experimental analysis using heterogeneous FedFM benchmarks across di-
verse NLP tasks. Empirical outcomes reveal that our method attains state-of-the-art perfor-
mance, underscoring its superior OOD generalization capabilities than existing methods.

2 PRELIMINARIES AND CHALLENGES

2.1 PRELIMINARIES

Let & denote the feature space and ) the label space. There are often families of probability distri-
butions { P, }.c¢ over the space X’ x Y, where the indices e € & represent different environments
(also referred as “domains”). Each distribution P, can be denoted as (X¢,Y¢) ~ P.. £y is the col-
lection of all possible environments, With Eyqin, Erest © Equi as training and testing environments
respectively. The notations related to OOD generalization are delineated in the first part of Table[T}
whereas the latter part elucidates components relevant to federated learning.
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Table 1: Table of partial notations.

Components | Notation | Definition
(X,Y) Random variables of inputs and outputs
fo Hypothesis with parameter 6
00D f(X),Y) Loss function
(Xe,Y®)~ P, Probability distribution of environment e
Collection of environments e
R(f) = Ex,yy~pr[l(f(X),Y)] Expected risk of model f
Se, |Se] The dataset and its size on Client e
FL E~ S Batch of samples from dataset .S
K Number of local update steps
T Number of communication rounds
M, 1Ng Local and global learning rates
R(f) = ﬁ 2 (eswiyes Lf(@i), yi) | Empirical risk of model f over data S

The Objective of OOD Generalization. In practical settings, there is often such a case in which
test data originate from distributions that differ from those of the training data. OOD generalization
is a research domain that specifically addresses these discrepancies. Following the conventional
methodologies (Arjovskyl [2020), we assume that the distribution of the test data belongs to &,;; and
the objective of OOD generalization is to minimize the worst case over all potential test distributions,
which can be formulated as:

mfin max R.(f) (1)

ec&an

where Re(f) = E(xe ye)p, [0(f(X€),Y )], f is the model and £ is the loss function.

OOD Generalization in FL. In FL, the task in each client can be taken as an environment e, which
holds a local dataset S, driven from the distribution P,. Consequently, tasks in training clients can
be taken as the collection of &;,.4;n, and &£,y represents all possible tasks/clients. The objective
of OOD generalization in FL, therefore, aligns with the general objective outlined in equation (T).
Specifically, due to the distributed nature of FL, out-of-distribution scenarios can occur within indi-
vidual clients (intra-client) or across different clients (inter-client) (Yuan et al.,|2021)). Intra-client
OOD scenarios refer to distribution shifts that occur in unseen tasks within the same client, whereas
inter-client OOD scenarios refer to distribution shifts that arise in previously unseen clients.

Given the long-standing focus on representation learning in machine learning, existing work on
OOD generalization in FL primarily concentrates on adopting invariant learning (Arjovsky et al.,
2019; [Koyama & Yamaguchi, 2020; Liu et al.l 2021a), which seeks to learn features that remain
consistent across all environments. In the context of representation learning, the model architecture
is typically divided into two distinct components: a feature encoder ® to learn representations and
a head w to get the final predictive outcomes. This can be mathematically represented as fy =
w,y, 0 Dy, where § = (w, ¢). These invariant learning methods operate under the assumption that
the representations extracted by the encoder are invariant across all different environments, which
can be formalized in the following manner:

Assumption 1. There exists a representation ® such that for all e, e’ € Eqy and all z in the inter-
section of the supports Supp(P(®(X¢))) N Supp(P(®(X¢")), we have

E[Y¢|®(X¢) = 2] = E[Y |®(X) = z].

Under this assumption, the feature encoder is tasked with managing the heterogeneity among dif-
ferent environments (clients) to learn invariant features. Consequently, the integration of invariant
learning within FL frameworks can be uniformly expressed as follows:

min Egz. e R (D) )

where a, denotes the importance weight for the environment (client) e and R.(®) denotes the em-
pirical risk of ® over S.. Specially, unlike the empirical risk of the overall model f computing
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the loss between predicted logits and actual labels y, the empirical risk of ® calculates using sim-
ilar or consistent features z (invariant features) as labels, focusing on the feature space. Based on
this framework, various methods have been proposed. For instance, some works (Guo et al., 2023
Tang et al 2023) employ the objective () using a similar or identical head, while others (Zhang
et al., 2021; [Tan et al., |2024) focus on adversarial/contrastive learning to directly optimize the fea-
ture encoder. Additionally, other studies (Deng et al.| 2020; [Zhang et al.l [2023b)) explore different
importance weight strategies to learn more robust features.

2.2 CHALLENGES OF OOD GENERALIZATION IN FEDFM

Federated foundation models represent an emerging research area that introduces new challenges
beyond those encountered in conventional FL. (1) Large Parameters: conventional FL typically
focuses on smaller models, such as convolutional neural networks (CNNs), which involve rela-
tively few parameters (e.g., ResNet (He et all 2016) with approximately 25 million parameters).
In contrast, FedFM deals with foundation models with parameter counts that can reach into the
billions; for instance, models like LLAMA (Touvron et al., [2023)) contain over 7 billion parame-
ters. The significantly larger parameter scale in FedFM introduces substantial challenges in terms of
computation and communication costs during training. As a result, the methods traditionally used
in conventional FL are suboptimal for FedFM, necessitating the development of more parameter-
efficient learning approaches. (2) Increased Data Heterogeneity. Foundation models are designed
to address a wide range of downstream tasks, leading FedFM to encounter more heterogeneous data
than conventional FL (Zhuang et al., 2023} Yu et al., 2023; Ren et al., 2024; |Charles et al., [2024)).
Unlike conventional FL, which typically deals with label or feature distribution heterogeneity across
clients, FedFM would have to manage increased data heterogeneity stemming from cross-dataset
or cross-task distribution heterogeneity, collectively referred to as cross-domain distribution hetero-
geneity. Given this increased data heterogeneity, there is a critical need for personalized models that
can effectively adapt to the diverse distributions across different clients, thereby enhancing overall
performance. However, existing methods for personalization in conventional FL often fall short in
terms of generalization (Jiang & Lin} 2023} [Xie et al., [2024), making them less effective for the
versatile applications required in FedFM. This underscores the need for the development of person-
alized federated foundation models that can achieve better generalization in scenarios characterized
by increased data heterogeneity.

As analyzed above, due to the challenges posed by large parameters and increased data heterogene-
ity, traditional methods for addressing OOD generalization in conventional FL are inadequate for
direct application in FedFM. This motivates the development of an efficient adapter-based person-
alized FedFM method with OOD generalization guarantees.

3 METHOD

To address large parameter scale and increased data heterogeneity challenges in FedFM, we propose
an adapter-based personalized FedFM method with OOD generalization guarantees. In this section,
we starts by analyzing the generalization bounds of both the conventional global and personalized
models in FedFM, then outline the optimization objective of our method that facilitates the learning
of invariant features through feature distance-based regularization and the detailed algorithm, finally
discuss our method’s deployment in both intra-client and inter-client OOD scenarios.

3.1 GENERALIZATION ANALYSIS

We begin by analyzing the generalization bound of the conventional aggregated global
model in FL. The aggregated global hypothesis f, is defined with the objective f, =
argmingez Y ,ce  acRe(f). Following previous work (Konstantinov & Lampert, [2019),
for any testing environment e/ € &y, the generalization bound of the global hypothesis f,
is primarily constrained by the discrepancy aedr (P, P.r), where dr(P.,P.) =

Supprf(|Re(f) - Re’(f)‘)

Theorem 1. (Conventional aggregated global model in FedFM inherently retains OOD generaliza-
tion ability). In FedFM, we consider learning the global hypothesis fq = (w, ®,). Since founda-
tion models are pre-trained with massive data in one unified format, this results in an optimal and

e€€¢rain
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fixed head w towards all tasks during tuning (Hu et al.| |2023)), that is, w € argmin,, R.(w, ®,)
for all e € &y Accordingly, the objective of fq can be further formulated as objective (@)
to learn invariant representations z = O, (X). Therefore, the discrepancy dr(P., Po) =

Supprer(|Ell(w(z)),Y*] — E[¢(w(2)),Y*¢']|) approaches zero if z is an invariant representa-
tion according to Assumption

Due to the increased data heterogeneity in FedFM, personalized models are essential to align with
the specific distribution of each client for individual user preferences. To address this, we further
analyze the generalization bound of the conventional personalized model in FedFM. As the head w
remains fixed during the turning of foundation models, the difference between personalized hypoth-
esis fo = (w, ®.) and global hypothesis f; = (w, ®,) lies in the feature encoder .

Theorem 2. (Generalization bound of the personalized model in FedFM is further constrained
by the invariant feature distance.) In FedFM, we consider learning the personalized hypothesis
fe = (w,®.). Given that the generalization bound for the global hypothesis fq, has been es-
tablished in previous work (Konstantinov & Lampert, |2019), we primarily need to examine the
distance |Re(fo) — Rer(fy)| = [E[l(w(®.(X))), Y] — E[f(w(®,(X¢))),Y]| t0 deter-
mine the generalization bound for the personalized hypothesis f.. Therefore, based on Assump-
tion [1} the generalization bound of the personalized model in FedFM is further constrained by
E[D(®.(X¢), ®,(X¢))], where D denotes the feature distance function.

As shown in Theorem [2] the generalization bound of the conventional personalized model in FedFM

is further constrained by the feature distance E[D(®.(X¢'), ®,(X*¢'))]. Since it is challenging to
directly quantify this distance, we are motivated to optimize it during the learning process of the
personalized model in FedFM to achieve a tighter generalization bound. However, due to the inac-
cessibility of unseen environments’ data during training, we instead optimize the feature distance
using the available training environments and incorporate this distance as a regularization term in
the learning of the personalized model. Given that the aggregated global model captures invariant
features across all environments, aligning the personalized model’s features through this regulariza-
tion term implicitly encourages the personalized model to align with the global model for invariant
feature learning, thereby enhancing its OOD generalization ability. For more detailed proofs of the
generalization bound, please refer to Appendix

3.2  OPTIMIZATION OBJECTIVE

As discussed in Section[2.2} the large parameter scale and increased data heterogeneity present two
key challenges for FedFM. To address the issue of increased data heterogeneity, we introduce an ad-
ditional personalized model for each client, tailored to align with specific data distributions, thereby
enhancing overall performance. Simultaneously, to ensure the versatility of foundation models, we
incorporate a feature distance-based regularization term inspired by the generalization analysis in
Section[3.1] This regularization leverages insights from the aggregated global model to enhance the
OOD generalization capability of the personalized model. In addition, to mitigate the challenges
posed by large parameter scale in FedFM, we employ adapter-based PEFT methods (Hu et al.,
2023). These PEFT methods strategically divide the parameters 6 of foundation models into two
parts: the majority frozen part ¢ and a small tunable part Af, represented as § = (65, Af). For
example, in employing the LoRA Hu et al.| (2021)), low-rank matrices are integrated to decompose
parameters into frozen and trainable parts as § = 0y + A0 = 07 + AGAAHE . During the learning
phase in FedFM with PEFT methods, only the small part A# is updated and communicated across
the federated network to reduce the communication overhead and computational burden.

Objective. We focus exclusively on the feature encoder ®, which consists of tunable adapter ¢
and other frozen parts ¢ frozcn, disregarding the fixed head w. FedOA is designed to learn a per-
sonalized @, for each client, characterized by a unique dataset denoted as S, while ensuring OOD
generalization from the aggregation ®, with regularization,

min - Re(®e) + AD(2(X°), 05(X*))

st. @7 € argmin Z aeRe (D) (3)

e€E¢rain
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where D represents a function to measure distance and A controls the interpolation between person-
alized and global models.

Why feature distance-based regularization? In conventional FL, parameter regularization is the
most preventive method (L1 et al., 2020; 2021a; [T Dinh et al.l 2020; Xie et al., [2024). However,
for FedFM, parameter regularization would lead to high computation costs and unintended results.
Firstly, due to the large scale of parameters in FedFM, applying regularization directly to all pa-
rameters incurs substantial computational costs. In contrast, feature vectors are much smaller in
size compared to the full parameter set of an FedFM, making feature distance-based regularization
more storage- and computation-efficient in this context. Secondly, while parameter regularization
could be applied between adapters to reduce computational overhead, it often leads to unintended
results due to the varying structures and combinations of PEFT methods used in FedFM as shown
in previous work (Sun et al., 2024). For instance, the LoRA method in PEFT involves two low-rank
matrices that are combined multiplicatively; regularizing each matrix separately diverges from the
objective of jointly optimizing them. In contrast, feature distance-based regularization avoids this
discordance, as it implicitly guides the learning of adapter parameters without directly manipulat-
ing the adapters themselves. Additionally, unlike previous methods [Zhou et al.| (2023)) that utilize
prototypes for regularization requiring a finite categorization, feature distance-based regularization
are not bound by a set number of categories and learn invariant features autonomously across dif-
ferent environments by the feature encoder, which is more suitable for federated foundation models
in OOD scenarios due to open-vocabulary tasks inherently (e.g. the categories of real-world images
are effectively infinite).

3.3 ALGORITHM

As outlined in algorithm[I] our method optimizes the personalized adapter and the aggregated global
adapter iteratively for each round. On the server side, for each communication round ¢ € [T, a
subset of clients &, is selected. In the first round ¢ = 0, the server initializes the global adapter ®,
with parameters ¢2 and broadcasts the initialized global adapter to the selected clients. In subsequent

communication rounds ¢t € {1,..,T — 1}, after receiving the returned global adapter (;Stg_l’e from
each selected client, the server aggregates these adapters across all selected clients to obtain the
updated global adapter for the next round, denoted as (;Sg =D e &, aeqbg_l’e. On the client side,
each client maintains two adapters: a personalized adapter ®. with parameters ¢, and a global

adapter @ with parameters ¢;. For each communication round ¢ € [T, the client initializes the

personalized adapter as (;52’0 = ¢'~! and performs K local update steps to obtain ¢! = ¢! ..

Similarly, the global adapter in each client is initiated as ¢y = d);l to obtain gzﬁ‘;*l’e. Specifically,
the updated global adapter ¢tg_1’e is sent back to the server for aggregation, while the personalized
adapter ¢! remains local without communication.

Remark. Our framework is flexible and can be adapted to any aggregation algorithm, any adapter-
based PEFT method, and any transformer-based foundation model by simply substituting the corre-
sponding components. In this paper, we utilize FedAVG (McMabhan et al., 2017), LoRA (Hu et al.,
2021)), and large language models (LLMs) (Zhao et al.| | 2023)) as illustrative examples to demonstrate
the framework of our method.

3.4 INFERENCE

As highlighted in previous work (Yuan et al.,2021}), OOD scenarios can occur either within the same
client (intra-client) or across different clients (inter-client). In intra-client OOD scenarios, the test
data exhibits distribution shifts from the training data in the same client, while in inter-client OOD
scenarios, new clients’ data experience distribution shifts from these training clients. Our proposed
method is capable of addressing both types of OOD scenarios. For intra-client OOD scenarios, the
learned personalized model can be directly deployed to handle the distribution shifts within the same
client. For inter-client OOD scenarios, the aggregated global model can be deployed to manage
distribution shifts among different clients. As analyzed in Section [3.1] conventional aggregation
in FedFM is inherently capable of achieving OOD generalization, while conventional personalized
adaptation methods often lack this generalization guarantee, resulting in suboptimal performance
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Algorithm 1 FedOA

Input: Clients .44, local datasets {Se }ece,,.,, » communication rounds 7', local update steps K
Output: Personalized adapters {¢c }ece,,.., and global adapter ¢,
1: fort =0,...,7 —1do
2 Server randomly selects a subset of devices &;, and sends ¢tg_1 to them
3:  for client e € &, in parallel do
4 fork =0,...,K —1do
5: Sample mini-batch & from local data .S,
6
7
8

// update personalized adapter
Ce =0k — MV (Re(h j_156) + AD(®(L ,_15€), P(9h15€)))
end for

/I update global adapter
10: @hle = gl — VR (¢17)
11: Send ¢!+ back to server
12:  end for
13: Server aggregates ¢}, = > .. el
14: end for

in intra-client OOD scenarios. Therefore, our experiment primarily focuses on intra-client OOD
scenarios to evaluate the effectiveness of the proposed personalized adaptation approach in handling
these distribution shifts.

4 CONVERGENCE ANALYSIS

In this section, we delve into the convergence analysis of the proposed method. For the purpose
of clarity in our analysis, we restrict our focus to the small tunable part of parameters ¢, while
excluding other parameters that remain frozen. We first state several standard assumptions on the
function.

Assumption 2. (Smoothness). For all clients e, we assume that R.(¢) and ®. are L-Lipschitz
smoothness, as follows when Vo, ¢':

IVRe(¢) — VR(¢)]| < Lo — ¢,
IV®e () — VO ()| < Lo — ']

Assumption 3. (Unbiased gradient estimator and Bounded gradients). For all clients e, we assume
that the expectation of stochastic gradient V R (¢; €) and V. (¢; &) are unbiased estimators of the
local gradients V R.(¢) and V®.(¢), and are uniformly bounded by o*. For ¥ ¢, we have

EHVR(’(QZ)ag)H = VR6(¢)5E|‘V®€(¢;§)|‘ = V(I)e(d));
E||VRe(¢; )| < 0 E||V®e(; €)|I* < 0.

Assumption 4. (Bounded Diversity). For all clients e, we assume that the variance of the local
gradient to the global gradient is bounded by G. For Ve, ¢, we have

IVR:(¢) = VR(9)]| < G. (6)

4)

(&)

Assumption [2] delineates the smoothness of the local risk function, a technique well-established
in the optimization analysis (Crane & Roosta, [2019; [Elgabli et al.| 2022). Given the dependence
of our method on the representation function, we also assume the representation function ¢ is L-
smoothness. Assumption [3] establishes a boundary on the variance of the stochastic gradient, an
approach commonly used in stochastic optimization analysis (Karimireddy et al., 2021 Wang et al.,
2021). Similarly, we also bound the stochastic gradient of the representation function ¢ in our
analysis. Assumption [4] bounds the variance of local gradients relative to the global gradient, a
method extensively utilized to quantify statistical heterogeneity in the federated learning (Fallah
et al., [2020).

For the convenience of analysis, we use L2-distance as the distance function D of the regularization
term in equation (3). We now present the convergence results of FedOA for the general non-convex
case.
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Theorem 3. Suppose that Assumptlon 2} Bland lhold true, our method updates wzth constant local

and global step-size such that n; < S AUTI T 2R KoL and ng < W Then, the
sequence of iterates generated by our method satisfies:

2(]ER€ (¢2) — ER€(¢:))
T

+ 256K (1 + 2K)T (1 + 3T)\°0*(L — 1) L*G*nin,

T
% > E[VR(oL ) < + 8K (1+2K)(L —1)(1 + 12X2L2M?)o2n?
t=1

(N
If we choose the step sizes m; = O(77=) and ng = O(F1), we have the convergence rates of our
method as follows

T
1 1v 2 (ERc(¢0) — ERc(¢f) 1+ N L2M? N2G?
1 _ 5
T;:lEIIVRe(aﬁe IFF = 0O( T ] Ay ©)

As analyzed above, FedOA converges to a stationary point at a rate of O(%) The heterogeneity be-
tween clients and between the personalized and global models is captured by G and M, respectively.
The impact of these heterogeneities can be reduced by increasing 7. Similarly, the interpolation
between the personalized and global models, controlled by A, also becomes less significant as T’
increases. The full proof of these results is provided in Appendix [E]

5 EXPERIMENTS

In this section, we present experiments to evaluate the performance of our proposed FedOA method
and answer the following questions. Q1: Can the conventional aggregated global model in FedFM
demonstrate superior OOD generalization ability compared to the centralized model? Q2: In in-
creased heterogeneity scenarios, can FedOA achieve improved OOD generalization performance
relative to existing generalization methods in conventional FL?

5.1 EXPERIMENT SETTING

Datasets. We construct four federated datasets, each centered around a distinct task, derived from
the Flan (Wei et al, 2021)), which encompasses a wide range of NLP tasks from over 60 datasets
designed for instruction tuning. The tasks selected include Entailment, Sentiment, Paraphrase and
Reading Comprehension, each of which consists of two distinct datasets from different domains,
reflecting the increased heterogeneity characteristic of FedFM. Since foundation models standardize
all tasks into a uniform format, we can treat all tasks as a single unified task, with the original
distinct tasks viewed as different distributions of this unified task. Therefore, to better align with
OOD settings, we perform the “leave-one-task-out” strategy, where one task is set aside as the test
environment, while the remaining are used as training environments. ROGUE-1 is used as the
evaluation metric and more details are in Appendix [C.1]

Baselines and Implementation. We compare our methods with the following baselines based
on the same model architecture: 1) global models: centralized model and FedIT (Zhang et al.,
2023al); 2) personalized models: pFedMe (T Dinh et all 2020) and FedLoRA (Yi et all [2023);
3) personalized models with generalization guarantees: PERADA (Xie et al., [2024) and FedSDR
(Tang et al., [2023)). The centralized model is trained on all data of training environments in one
center. Here, we adapt the training paradigm in pFedMe, FedLoRA, PERADA and FedSDR to
federated foundation models with NLP tasks. We distribute data between clients based on the dataset
for data heterogeneity, with the number of training clients as |E;.qin| = 6. To better evaluate the
effectiveness of methods, we assume that all clients are activated for every communication round and
set the communication round 7" = 20. The alpaca- LoRAE] is adapted as the base model initialized
with LLaMA-7BZ We set A\ = 0.5 and choose L2-distance as the distance function D. More details
about baselines are in Appendix [C.2]

"https://github.com/tloen/alpaca-lora
“https://huggingface.co/huggyllama/llama-7b
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Table 2: OOD results of different models using “leave-one-task-out” validation. Centralized and
FedIT are tested on a single global model, while the remaining models are tested on personalized
models with average results reported. Reading Com represents the Reading Comprehension task.

Methods | Entailment Sentiment Paraphrase Reading Com | Average

Centralized | 42.00 76.75 43.25 64.16 56.54
FedIT 44.00 80.00 43.00 65.72 58.18
pFedMe 36.60 76.13 44.21 50.91 51.96
FedLoRA | 40.13 78.29 44.17 63.40 56.50
PRADA 36.52 76.94 44.22 53.98 52.92
FedSDR 37.05 66.15 43.26 43.08 47.39
FedOA | 40.62 82.21 45.46 67.61 | 58.97

5.2 MAIN RESULTS

Conventional aggregated global model in FedFM achieves better OOD generalization perfor-
mance than that in centralized setting. In response to Q1, we compare the OOD generalization
performance of the global model in FedFM with that in a centralized setting on four datasets. Specifi-
cally, we take FedIT as a baseline method in FedFM for learning the aggregated global model, which
adapts FedAVG with the PEFT method LoRA for instruction learning. In this experiment, our pro-
posed FedOA follows the same global model learning process as FedIT, while FedOA is designed
to be adaptable to any other global model learning algorithms as well. As shown in Table 2] FedIT
exhibits superior performance in OOD generalization compared to the centralized model, indicating
that conventional aggregation in FedFM can indeed achieve a degree of OOD generalization. This
finding is consistent with the theoretical analysis presented in Theorem [I]

FedOA demonstrates better OOD generalization performance compared to other baselines.
In response to Q2, we compare FedOA with different baselines to evaluate the OOD generaliza-
tion performance on four datasets. Compared to personalized models, as shown in Table 2] FedOA
stands out as the most effective among all personalized models, which suggests that incorporating
feature distance-based regularization from the global adapter is crucial for invariant feature learning
to improve OOD generalization performance. Additionally, FedLoRA ranks second, as its further
tuning of the learned global model introduces minimal updates, thus maintaining certain OOD gen-
eralization ability from the global model. The underperformance of PERADA and pFedMe, which
rely on parameter regularization, indicates that this regularization is unsuitable for FedFM due to
the discordance between regularization operation and optimization objective. Moreover, the recent
benchmark FedSDR for OOD generalization in conventional FL performs poorly, highlighting the
inadequacy of conventional FL. methods in handling FedFM’s increased heterogeneity. Compared
to global models, FedOA leverages the global model’s OOD generalization ability to guide per-
sonalized models, resulting in slightly better average OOD generalization performance across four
datasets compared to FedIT, as shown in Table 2] Interestingly, we observe that FedOA outperforms
FedIT in OOD generalization for the majority of tasks, likely due to the fact that learning one task
would enhance the performance of other tasks with shared underlying knowledge, whereas tasks
that vary enormously may lead to degraded performance when learned together (Wei et al.|[2021).

5.3 ANALYSIS

Convergence analysis. To analyze the convergence of different methods, we examine their aver-
age test accuracy versus communication rounds and present the OOD performance comparison on
Reading Comprehension in Figure [l As shown in Figure [T} our method exhibits a convergence
speed comparable to other personalized methods, achieving notable performance enhancements af-
ter five communication rounds. This aligns with the discussion in Section {4] where FedOA could
possess good convergence speed when appropriate learning step sizes are employed. The similar
trends observed between our method and FedIT can be attributed to the benefit of feature distance-
based regularization from the global adapter for OOD generalization.
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Table 3: Ablation study of hyperparameter . RC ~ Table 4: Ablation study of different distance func-
represents the reading comprehension task. tion D. RC represents reading comprehension task.

D | Cosine Pearson L2
RC ‘ 51.16 54.02 67.61

A |001 01 0.5 1 2
RC | 61.14 66.16 67.61 69.05 69.90
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ing comprehension task. models vs communication rounds.

Figure 3: Loss surfaces w.rt.
model parameters on reading com-
prehension task.

Generalization analysis. Figure |3 visualizes the loss surfaces on the test environment for Read-
ing Comprehension, using FedIT’s global model as an anchor to position other personalized models.
Compared with other methods, FedOA achieves better OOD generalization, as personalized models
converge in flatter regions of the loss surface, supporting our theoretical motivation that reducing
the distance between global and personalized model features leads to tighter generalization bounds.
Additionally, the smaller gaps between global and personalized models highlight FedOA’s advan-
tage in maintaining a consistent optimization objective across clients, which is crucial for handling
heterogeneous data across diverse domains. Figure [2| compares different regularization terms (the
feature distance-based regularization of FedOA and the parameter regularization of pFedMe and
PRADA) based on the average feature distances between personalized models and the global model.
FedOA consistently maintains smaller and more stable feature distances, whereas the distances in
other methods progressively increase. This aligns with the analysis in Section [3.2] and results in
Table[2] demonstrating the effectiveness of our feature distance-based regularization approach.

Sensitivity of . In this study, we investigated the influence of the hyperparameter A during FedOA
training with its value A € {0.01,0.1,0.5,1,2}. As shown in Table [3} increasing the regularization
weight A will improve the OOD generalization performance, which can be attributed to the greater
emphasis on aligning invariant features between the personalized and global models as the regu-
larization strength increases. Notably, even with A = 0.1, our proposed FedOA achieves superior
performance compared to other baselines, which demonstrates the efficiency of our method.

Effects of different distance function D. To explore the impact of D, we conducted experiments
of FedOA with Cosine, Pearson and L2- distance. As shown in Table[z_f], the L2-distance outperforms
the others, demonstrating its effectiveness in feature distance calculation. Therefore, we choose the
L2-distance function for our feature distance-based regularization during the training of FedOA.

6 CONCLUSION

FedFM offers a promising approach to enhancing foundation models using private data sources, but
OOD generalization remains a critical challenge for the FedFM’s application across diverse down-
stream tasks. Previous OOD methods in conventional FL are suboptimal for FedFM due to large
parameter scale and increased data heterogeneity. To address these challenges, we begin with a the-
oretical generalization analysis of FedFM and propose an adapter-based method that incorporates
feature distance-based regularization to improve OOD generalization in FedFM, simultaneously pro-
viding theoretical convergence guarantees. Our method is evaluated on public NLP tasks simulat-
ing an OOD FedFM setting. This work lays the foundation for addressing OOD generalization in
FedFM, with future efforts focusing on more advanced methods and larger-scale settings.
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A APPENDIX

The Appendix is organized as follows:

* Appendix [B|provides related works.

* Appendix [C|provides detailed dataset and baseline setups for experiments.

* Appendix [D]provides generalization analysis of FedOA and the full proofs for Theorem 2]
* Appendix [E|provides the convergence analysis of FedOA and the full proofs for Theorem[3]
* Appendix [ provides additional experiments demonstrating scalability and adaptability.

B RELATED WORK

B.1 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-distribution (OOD) generalization addresses scenarios where the distribution of test data dif-
fers from that of the training data, a challenge that is critical for the successful deployment of models
in real-world applications (Liu et al.| [2021b} |Arjovsky, 2020). Extensive research has focused on
OOD generalization, exploring various assumptions and methodologies. For example, robust opti-
mization methods (Namkoong & Duchi, [2016j Sagawa et al.,2019; Konstantinov & Lampert, [2019)
aim to directly tackle the OOD generalization problem by optimizing for the worst-case error over a
set of uncertainty distributions, with constrained relationships between training and testing environ-
ments. Causal learning methods (Gamella & Heinze-Deml, 2020; |Oberst et al., 2021} |Yang et al.,
2021)) draw upon concepts from causal inference to identify and leverage the underlying causal
structure of the data, enabling prediction of the outcome variable based on these causal factors.
Similarly, invariant learning (Arjovsky et al.| 2019; Koyama & Yamaguchi, [2020; Liu et al., 2021a)
seeks to identify and utilize the underlying heterogeneity and invariant representations or models
across different environments by leveraging contextual information.

B.2 GENERALIZATION IN FL

Recently, FL has emerged as a promising approach for utilizing private data in model training,
prompting increased research into OOD generalization within the FL context (L1 et al.l[2023a; |Yuan
et al.l|2021). Within this framework, a prevalent approach for achieving OOD generalization in FL.
is the adaptation of invariant learning based on representation learning. For instance, some studies
(Zhang et al.l 2021; Nguyen et al., |2022}; Tan et al., 2024) employ feature alignment via adversar-
ial/contrastive learning or regularization to align distributions across different clients, facilitating
the learning of invariant representations. Similarly, other researchers (Guo et al.,|2023; Tang et al.,
2023) have adapted invariant risk minimization to develop representations that remain invariant to
environment-specific variations while retaining relevance for the task at hand. Additionally, given
the importance of robust aggregation in FL, numerous studies (Deng et al., [2020; [Zhang et al.,
2023b) have focused on improving aggregation algorithms to enhance OOD generalization.

Due to the increasing demand for personalized solutions in FL, recent research has focused on per-
sonalized federated learning (PFL) (Tan et al., 2022}, which aims to learn an additional personalized
model (T Dinh et al.||2020; Li et al.,|2021a3b)) or apply additional personalization steps (Fallah et al.}
2020; |Collins et al.| 2021)) to better align with individual user preferences. However, recent studies
(Jiang & Lin, 2023} Ramasesh et al.,|2021) have revealed that the personalized models in PFL can
be prone to catastrophic forgetting and overfitting to local data, thus sacrificing their generalizabil-
ity. Recent efforts have addressed these challenges by employing techniques such as regularization
(Zhou et al., 2023} Xie et al., [2024) and designed structure for optimal classifiers (Chen & Chao|
20215 |Luo et al.| [2022; L1 et al., [2023b), but these primarily focus on in-distribution generalization,
where only seen training environments are considered during testing. This leaves OOD general-
ization as a significant unresolved issue in Personalized FL, particularly in the context of FedFM,
where models are required to handle various downstream tasks in highly diverse and unseen envi-
ronments. To fill this gap, we investigate the OOD generalization problem within the context of
Federated Foundation Models, which are challenged by the substantial computational demands of
large parameters and increased data heterogeneity.
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B.3 FEDERATED FOUNDATION MODELS

With the advent of foundation models, there has been a growing interest in integrating these models
within the FL setting (Zhuang et al.l 2023} |Yu et al.| 2023} Ren et al., 2024; |Charles et al., [2024).
In particular, due to the inherent computational and communication costs, recent research (Kuang
et al. 2023 Zhang et al [2023c)) has focused on incorporating adapter-based parameter-efficient
tuning (PEFT) methods with federated foundation models. Building on these efforts, numerous
studies have emerged to address the challenges of integrating federated foundation models with
adapter-based PEFT methods.

One notable contribution (Zhang et al.,2023a) pioneered the integration of instruction tuning within
federated LLM frameworks. To tackle heterogeneity issues, previous works (Babakniya et al., 2023
Cho et al.L[2023;|Sun et al.,|2024) introduced novel aggregation and initialization methods for LoRA
to enhance the suitability of these models in FL environments. To further optimize the communica-
tion and computational overheads of FedFM, other research (Xu et al., 2023 |Sun et al.| 2023} [ Xu
et al.| 2024) has advanced gradient-free optimization techniques that are particularly well-suited for
devices with limited memory and computational power. For personalization, one study (Y1 et al.,
2023)) designed a specialized training paradigm for LoRA (Hu et al.|[2021) to achieve more effective
personalization in visually heterogeneous model scenarios. Additionally, another work (Yang et al.|
2024 proposed a dual-adapter framework that incorporates an additional personalized model to en-
hance personalization efforts. Regarding generalization, a pioneering study (Du et al.,2024) was the
first to investigate the generalization degradation that occurs when directly tuning foundation mod-
els in FL via robustness analysis experiments. Diverging from these approaches, our work explores
the OOD generalization problem in FedFM through comprehensive theoretical analysis, extending
the scope of research in this area.

C IMPLEMENTATION DETAILS

C.1 DATASETS

In this paper, we developed four datasets derived from the Flan (Wei et al.| |2021), and details of
their construction are elucidated in this section. Flan comprises a diverse range of NLP tasks, each
containing multiple datasets from different domains. To align with OOD settings, we employed a
stratified selection process, choosing four distinct tasks to represent four environments and randomly
selecting two datasets with different sources for each task from Flan. To simulate client local data
scarcity (McMahan et al.,|[2017), we applied a downsampling strategy, reducing each selected local
dataset to 1000 training instances and 200 testing instances. In experiments, we employed a “leave-
one-task-out” strategy, setting aside one task as the test environment while using the remaining tasks
as training environments. For example, if the task of Entailment (comprising test instances from the
snli and anli datasets) is selected as the test dataset, then the remaining six datasets of three tasks
(Sentiment, Paraphrase and Reading Comprehension) are used for training with each client contains
one dataset. Consequently, each tested federated OOD dataset encompasses three distinct NLP
tasks, with two datasets for each task, yielding a total of 6000 training examples and 1200 testing
examples. The specific tasks and datasets included are listed in Table[5}

C.2 BASELINES AND IMPLEMENTATION

In this section, detailed descriptions of the implementation of each baseline compared in this study
will be provided:

* Centralized model: This model is trained by gathering data from all training environments
into a single centralized framework, with 10 epochs to optimize.

¢ FedIT (Zhang et al., 2023a): FedIT extends FedAVG (McMahan et al., 2017) to foun-
dation models by incorporating LoRA tuning for instruction learning. After training on
diverse local client datasets, the final aggregated global model is utilized for testing.

* pFedMe (T Dinh et al., 2020): pFedMe learns personalized models through Moreau en-
velopes regularization. To ensure a fair comparison, we adapt pFedMe to the FedFM set-
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Table 5: Tasks and datasets included in the constructed federated OOD datasets.

Tasks \ Datasets Sources
Entailment snli Captions
anli Wikipedia, WikiHow, news, fiction and formal spoken text
Sentiment sst2 Movie reviews
sentiment140 Tweets
Paraphrase glue_mrpc Newswire articles
P stsb News headlines, captions and NLI data
Reading openbook qa  Wikipedia and ConceptNet
Comprehension | record CNN/Daily Mail news articles

ting by incorporating adapter tuning, where only the adapter parameters are learned and
regularization is applied specifically to the adapters.

* FedLoRA (Yi et al.,[2023): FedLoRA incorporates LoRA for efficient learning in model-
heterogeneous settings and employs additional local tuning as a personalized adaptation
process. Here, we adapt the training paradigm in FedLoRA to NLP tasks, utilizing the
personalized LoRAs for testing. These personalized LoRAs are derived through further
local tuning on each client’s dataset after obtaining the globally aggregated LoRA.

* PERADA (Xie et al., 2024): PERADA utilizes adapters for efficient learning and applies
adapter parameter regularization to improve the generalization capability of the personal-
ized model. In this work, we adapt PERADA to the FedFM framework for NLP tasks,
excluding the distillation of the global adapter.

* FedSDR (Tang et al.,|2023): FedSDR aims to learn optimal personalized causally invari-
ant predictors through conditional mutual information regularization for addressing OOD
scenrios in FL. In this work, we adapt pFedMe to the FedFM setting by incorporating
adapter tuning, where only the adapter parameters are learned and regularization is applied
specifically to the adapters. Additionally, due to the fixed head in foundation model tuning,
we omit the head regularization component typically used for shortcut extractor learning in
FedSDR.

All models are implemented using LoRA to enhance learning efficiency, with the rank of LoRA set
as r = 8 and only applied to W, and W,,. For FL methods, each client conducts K = 2 local epochs
with a batch size of 32. We implement all the methods using PyTorch and conduct all experiments
on NVIDIA A40 GPUs.

D GENERALIZATION ANALYSIS

We first analyze the generalization bound of the conventional aggregated global model. We define
the aggregated global hypothesis f, with its objective as f, = argminscz > ce, e Re(f).
Following previous work (Konstantinov & Lampert, |2019), we can get the upper bound of risk of
the global hypothesis f, as Lemma

Lemma 1. (Generalization bound of aggregated global). Let f; = argmin ;. » R.(f) and assume
that £(.,.) < M, then for any e € Ey and 6 > 0, with probability at least 1 — § over the data, the
excess risk of the learned global model f, can be bounded by:

* ae'
Re(fg)SRe(fe)+ Z Oée’He'(]:>+2 Z Oée’d}'(Peype’)“rO Z m (9)
e’ €€train e’ €€train e’ EErain | ©
where, C = 6 log(%#, for each client e, H.(F) is the empirical Rademacher complexity F
and dx(P., P./) is the discrepancy between the distributions P, and P.: with hypothesis class F,

defined as:
d]-'(Pe;Pe’):Suppfe]:(‘Re(f)fRe/(f)D (10)
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Following previous work (Guo et al., [2023), we have the definition of invariant predictor (a model
only uses invariant features to predict) as Definition[T}

Definition 1. (Invariant Predictor). If there is a head w simultaneously optimal for all environments
w € argmin,, R.(w, ®) forall e € &, the invariant predictor f = (w, ®) is elicited based on the
representation .

Proof of Theorem[T](Conventional aggregated global model in FedFM inherently retains OOD
generalization ability). During tuning, the pre-trained head w of foundation models is fixed and
taken as the optimal head for all tasks 2023). Therefore, the objective of global hypothesis
fq can be further formalized as follows:

Iglgn Z aeRe(w, @)
€€Etrain (11)
st.  w € argmin R.(w, ®y), forall e € Epgin.
w

By omitting the pre tramed head, the objective of global hypothesis f; simplifies to
ming, > ce, @, ), aligning with objective (2) to learn invariant features that satisfy As-
sumptlon ﬁ accordmg to Deﬁmtlon [[] Hence, based on Lemma [T} when Assumption [I] holds, the
discrepancy in the generalization bound of the global hypothesis f, in federated foundation models
approaches zero dr (P, Per) = Supprer(|Re(f) — Re(f)]) = Supprer(|E[l(w(z)), Y] —
E[¢(w(2)),Y¢]]) — 0, and is more tightly bounded by the representation & during learning
d5(P., Por) = Suppser(IRe(f) — Rer (f)]) = Suppia([Re(®) — Rer(P)]).

Next, we provide proof of Theorem where local hypothesis is f, = (w, ®.) and global hypothesis
is fg = (w, ®y).

Theorem [2| (Generalization bound of personalized model). Assume that ((.,.) < M and fi =
argmin ;. » Re(f), then for any e € Eyy and 6 > 0, with probability at least 1 — & over the data,
the excess risk of the learned personalized model f. can be bounded by:

Re(fe) SRe(f2) + M - Exp, [D(2e(X), (X)) + Y avHe(F)

elegtrain
o~ (12)
+2 > awdp(Pe,Po)+C [ Y 5
e’ €€¢rain e’ €€¢rain | e’|
Proof.
Re(fe) :Re(fe) _Re(fg) "’Re(fg) (13)
N————

Ay
Assume z = ®(z), for the first term A;, we have
A1 =E. p@,(x)Ey~pv)z=2 [l(w(2), )] — Ez o p@, (x) [Ey~py)z=2) [l (w(2), y)
=E..p@.(x)|Ey~p(v|z=2[l(w(2), y)]] = E.~p@, (x) [Ey~pvz=2) [l(w(2), y)
+E.op@.x) By~ py|z=21 [E(w(2), V)] — Bz op@, x) [Ey~pviz=- [{(w(2), y)]]
9(2) 9(2)

(a)
<E. p@.x)09(2)] — Exap@,x)lg(2)]

M By, [D(D(X), By (X))

(14)
where (a) is from Assumption [I} (b) is from the condition that |g(z)| < M if £(.,.) < M, and D
represents a function to measure distance.

Plugging back the bounds on A; and Lemmal|[I] obtaining
Re(fe) SRe(fe) + M -Exop, [D(Pe(X), 2e(X))] + Z s Her (F

e'€Erain

+2 Z Oée/d]:(Pe,Pe/)—‘rC Z Qe

’
|Ser]
e'€&train e/’ €&train

15)
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E CONVERGENCE ANALYSIS

E.1 TECHNICAL LEMMAS

We first present some technical lemmas involved in later proofs, where Lemma[2]and Lemma [3]can
be found in (Karimireddy et al.,[2020) and (T Dinh et al., 2020), respectively.

Lemma 2. (Relaxed triangle inequality). For any vectors vy, vy € R® and a > 0, we have

1
(o1 +v2\l2S(1+a)||v1||2+(1+5)||v2|\2- (16)

Lemma 3. (Relaxed triangle inequality). For any x € R,n € N, we have

xt = )
e (17)
x
1 T\ £ T
1+ 2y <e
Lemma 4. (Heterogenity Bound). Suppose that Assumptiond| holds true, we have
E|[VR(¢)||* < 2E[|VR()||* + 2G (18)
Proof. Using Lemma 2and Assumption[4 we have
E[|VR(¢)||* =E||VR(¢) — VRe(¢) + VR.(9)|I? (19)

<2E[|VR.(9)|* +2G°

E.2 CONVERGENCE RESULTS
In this section, we provide proof of Theorem 3] focusing exclusively on the small tunable parameter
¢, while disregarding the frozen parameters.

We begin by defining the local updates for each client e. The client’s global model, with parameter
¢!, and the personalized model, initialized with ¢! ; = ¢L~!, undergo K local updates with L.2-
distance function D, as follows:

Ot = k1 — MGe(PL 1, D)
= dh ko1 — MIVR(Ph p_1;€) + AVD(D(L 1,13 €), B(¢) 5 €))] (20)
= ¢2,k—1 —m[VR( Z,k—l;f) + 2AV<I>(¢£7,€_1;§)|<I>( Z,k—ﬁ ) — ‘I)(éf’ffl;f)”

‘We then bound the client drift error.

Lemma 5. Suppose that Assumption [ and [3| hold true, our method updates with constant local

-si < -t . R
step-size such that n; < Ty Then, for all t € [T, we can bound the client drift error

as follows:

Ellge e — deoll® < 32K (1 + 2K)N0* L7 El| ¢  — 0[P + 4K (1 + 2K)o™nf  (21)

Proof.
Equ;K - ¢270H2 = E”(bé,K—l - ¢é,0 - 7719c(¢2,1<—17 ¢§_1)H2
(@) 1 _
< (1 g Blleh k1 = 0bol” + (1 -+ 26)n7El lgc (0%, i1, 05 DIIP 2

Ay
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where (a) is from Lemma[2] with « = 2K For the second term, we have
A1 =1+ 2EK)07 ||V Re(0p g —15€) + 22V (¢ 15 )| (0L 13 €) — D0 LI

()
§2(1+2K) EHVR ( e, K— 17 )||2

+8(1 + 2K) NP E[|[VO(¢L k 1: O - [|9(h k136 — B(d} O]
c (23)
(§)2(1+2K)a2m2+8(1+2K))\202L2 PE|pL iy — o571

(d)
<2(1+ 2K)a?nf +16(1 4+ 2K) N0 L* P E[¢f i1 — ¢t ol[?
1601+ 20) N0 L6t — 6|
where (b) is from Lemma|2|with a =1, (¢) is from Assumption|2|and Assumption@, and (d) is from

Lemma[2)with a = 1. Plugging back the bounds on A;, we obtain the recursive bound of the client
drift error:

1
B¢ s — d)z,oHZ <(1+ K +16(1 + 2K)A\?0* L?n; )]E||¢e K—1— 270”2

+ 16(1 +2K)N 0 L*0iEl¢e o — by ' |* +2(1 + 2K) o™

( )
<(1+ )E||¢6K 1 2,0||2+16(1+2K))\202L27712EH¢;0_¢271H2
+ 2(1 + 2K)o’n?
) 2 272 2 t t—112 =
<(16(1+ 2K)N 0 L*n7El|gL o — ¢} ' |I” + 2(1 +2K)o”n) Y (1+
=0

(9)
<B2K(1+ 2K)N0?LPnfE||gL o — ¢4 12 + 4K (1 + 2K )0}
(24)
where (e) is from the condition on local step-size that 7; < —4 B2 oL implying that 16(1 +

2K)\202L*n? < 55, (f) is from the unrolling recursion, and (g) is from Lemmawith SETa+
1yi = (41/K)R -1 1
?) - 1/K = 1/K <2K.

Lemma 6. Suppose that Assumptlon 2 Bland M hold true, our method updates Wlth constant local

and global step-size such that n; < S/A(aTIT (1+2K)K)\O'L and ng < W Then, we
have:

Ellgl — ¢4[|* < 3E|[[¢2 — ¢2|[* + 16(1 + 3T)TK (1 + 2K)o?n; +8(1 + 31)Tn2G*  (25)

Proof.
EllgL — ¢! ||> =El|gL " — ¢! + ¢f — ¢t + ol — ¢l

> _ _ _
<1+—>E||¢“ G2+ (14 3T)E||gh — ¢t +of =gt |2 (20)

Ay

where (a) is from Lemma[2] with a = 3T. For the second term, we have
Ay =(1+3D)Ell¢e — ot + o5t — oI

()
<2(1+3T)E[|¢! — oL "||> + 2(1 + 3T)n2E||VR(¢})]|?

(¢

<2(1+ 3T)E[|¢! — ¢ ° + 4(1 + 3T)n2E||VRe (6} 1)I|* + 4(1 + 3T)n2G?
(d) 27)
t t—12 2 t—1 t—1 2
<2(1+37)E||¢pe — ¢ |7 +8(1 + 3T E||VR.(dy *) — VRe(¢e )|
+8(1 4 3T)n;E||[ VR (oL )| + 4(1 + 3T)n2G?
()
<64(1+ 3T)K (14 2K)N*o” L*n7E||¢L " — ¢} 1||> + 8(1 + 3T) K (1 + 2K )0’}
2 2 —1 —1712 2 22
+8(1+ 3T)L*n2E[|¢ " — ¢l 7112 + 8(1+ 3T)on2 + 4(1 + 3T)n2G
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where (b) is from Lemma|2|w1th o= 1, (c) is from Lemmafd] (d) is from Lemma]with a = 1, (e)
is from Lemma with 21 = ¢! ¢t = ¢te & and Assumption (2} I and Assumpation [3 l Plugging
back the bounds on A;, we obtain the recursive bound as:

ElI6, — 6412 <(1 4+ S Bllg" — 947 4+ 6401+ 3T)K (1 + 2K)N 0 L7 E| 6t — ot

+8(1+4 3T)K (14 2K)o’nf + 8(1 + 3T)L*nEl[¢ " — ¢/~
+8(1+ 3T)o*n; + 4(1 + 3Ty, G*

f) 1
<(1+ T)Equi’l — ¢! P+ 8(1 4 3T)K (1 4 2K)o”n} + 4(1 + 3T)nG?

(9) =1 1. 1
<(8(1+3T)K(1+ 2K)o’nf +4(1+ 3T)n2G*) Y (1 + )+ 0+ T)TEHgbg -
=0

(h)
<3E||¢? — ¢|1> + 16(1 + 3T)TK (1 + 2K)o’n} + 8(1 + 3T)Tn2G?
(28)
where (f) is from the condition on global step-size that 7, < W implying that

8(1 + 3T) L%} < 7, and local step-size that 7, <
64(1+3T) K (14+2K) N0 L2

Next, we prove the progress made in each round.

84/3(1+3T)T(1+2K)KX oL implying that

< 3T , (g) is from the unrolling recursion, and (h) is from Lemmal

Lemma 7. Suppose that Assumptlon 2l Bland 4 l hold true, our method updates Wlth constant local

and global step-size such that m; < S/ 1+3T)T(1+2K)K>\UL and ng < m Then, our
method makes progress in each round as follows:

1
ER.(¢!) <ER.(¢; ") — §||Vl?e(<252*1)||2 +A48K(1+2K)N0®(L — 1) L*n7 M*

+ 128K (1 + 2K)T(1 4 3T)A\*0*(L — 1) L*G*nin; + 4K (1 + 2K)(L — 1)o?n;
(29)

Proof. Starting from the smoothness, we have
L
ERc(¢c) SER(9.") + E(VR($ ), 6 — &™) + SEllge — oL
(a) _ 1 _ 1 _
<ER.(¢L ") + ]E\Isbt oL IP - §|IVRE(¢>Z DI - 5EII¢>2—¢Z |2
(b)
<ER.(¢, ") — §||VR6(¢Z’1)H2 + 16K (14 2K)N*0*(L — 1) L*nfE||¢ " — o5 I
+2K(1 4+ 2K)(L — 1)on?

(© 1
<ER.(¢'"") — 5||v.%%e(¢£‘1)\|2 + 48K (1 + 2K)A20%(L — 1) L*n2 M

+ 128K (1 + 2K)T(1 + 3T)A\°0*(L — 1) L*G*ni'm, + 4K (1 4 2K)(L — 1)o”n}
(30)
where (a) is from that —(a, b) < 3(||a||* + [|b]|?), (b) is from that ¢! ; = ¢’~" and substituting
with Lemmal5} and (c) is from that E|[¢? — ¢°||> < M? and substituting with Lemmalg]

Finally, we can get convergence results for the general non-convex case of our method.
Theorem[3} Suppose that Assumpnon 2} Bland lhold true, our method updates wzth constant local

and global step-size such that n; < 8\/3(1+3T)T(1+2K)KML and ng < m. Then, the
sequence of iterates generated by our method satisfies:

T
1 2(ER.(¢?) — ER.(F
7 2 ElIVR(¢ DI < ( (d)e)T Bel@2)) L sie(1 + 21)(L - 1)(1 + 12022 M2)0%7

=1

+ 256K (1 + 2K)T (1 + 3T)\°0*(L — 1) L*G*nin,
(€29)
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If we choose the step sizes m; = O(77=) and ng = O(77), we have the convergence rates of our
method as follows

(ER.(¢?) —ER:(¢}) 1+ NL2M? \*G?

- E t 1 2 e 32
}j IVR(¢ )12 = O - ) Y
Proof. Summing up all the T inequalities in Equation of Lemma[7] we have
T T _
1 2 ER. (¢ 1) — ER.(¢!
?E E||VR6(¢271)||2 S Zt:l( (¢; ) (¢e)) +8K(1+2K)(L*1)(1+12>\2L2M2)0'2 2

+ 256K (1 + 2K)T(1 4 3T)\*0*(L — 1) LG

@2(BR(¢9) ~ ER. (1))
= T
+ 256K (1 + 2K)T (1 + 3T)A%0%(L — 1) L2G2nir?

+8K(1+2K)(L — 1)(1 + 12X L2 M?*)o*n?

(33)
where (a) is from that ER, (¢}) < ER.(¢1).

F ADDITIONAL EXPERIMENTS

F.1 SCALABILITY ANALYSIS

To assess the scalability of our approach, we conducted experiments by increasing the number of
clients to 30. We compared our method against the top two personalized methods and a global
model method specifically on the Reading Comprehension task. The results, as detailed in Table[6]
demonstrate that our method consistently outperforms the others, showcasing superior stability and
effectiveness under expanded client scenarios. These findings highlight the potential of our approach
to be effectively scaled, catering to more complex and larger federated settings while maintaining
performance benchmarks.

Table 6: Ablation study of scalability with 30 clients. RC represents reading comprehension task.
FedIT are tested on a single global model, while the remaining models are tested on personalized
models with average results reported.

Methods | FedIT PRADA FedLoRA FedOA
RC | 58.04 3930 46.90 58.84

F.2 ADAPTABILITY ANALYSIS

To enhance applicability across diverse non-I1ID environments, our method is strategically designed
for high flexibility, enabling adaptation across various global learning frameworks, backbones and
PEFT methods for different scenarios. This adaptability is simply achieved through the straightfor-
ward substitution of the FedAvg, LLM and LoRA with alternative aggregation methods, transformer-
based foundation models and adapter-based PEFT methods during the training. In our experiment,
we employ FedAvg, LLM and LoRA as representative examples, demonstrating our methods’ supe-
rior performance compared to other baselines as indicated in Table 2}

To further validate the effectiveness and versatility of our approach across different federated foun-
dation model contexts, we extend our methods to include the ViT (Dosovitskiyl [2020) framework
and also implement other baselines within ViT to maintain a fair comparison. We conduct exper-
iments on OfficeHome datatset (Venkateswara et al., 2017),which comprises images across four
distinct domains with 65 categories. In line with our previous experiments, we employed a “’leave-
one-domain-out” strategy, where each of the three clients maintains data from one distinct domain,
setting aside the remaining domain as the testing data for evaluating OOD generalization. Results
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presented in Table[7]indicate that our methods outperform other personalized models and have com-
parable results with global models. These findings underscore the robustness and consistent efficacy
of our methods across various federated foundation models context.

Table 7: OOD results of different models using “leave-one-domain-out” validation. FedIT are tested
on a single global model, while the remaining models are tested on personalized models with average

results reported.

Methods | Art CliPart Product Real World | Average
FedIT ‘ 68.11 56.66 77.18 77.94 ‘ 69.97
pFedMe 54.72  41.25 59.22 60.67 53.96
FedLoRA | 60.49 51.31 72.93 73.15 64.47
PRADA 54.73 41.25 59.24 60.68 53.98
FedOA ‘ 6749 56.51 75.96 77.45 ‘ 69.35
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