Closing the Evaluation Gap: Ensembling LLM-Judges Generates More
Reliable Inference-Time Reference-Free Critiques

Anonymous ACL submission

Abstract

LILM-as-a-Judge allows for efficient and scal-
able natural language evaluations of complex
generated outputs, such as code, without the
need for a ground-truth reference. These eval-
uation protocols have become a crucial part
for inference-time refinement approaches like
prompt optimization. However, an important
question arises of whether a pre-trained LLM
can generate a reliable evaluation of the out-
put. In this work, we derive an interesting,
insightful result showing that a single LLM-
based judge is insufficient in generating an op-
timal critique. We then provide a solution by
demonstrating that aggregating multiple LLM-
generated evaluations can better model the opti-
mal critique. We empirically show the merits of
ensembling multiple LLM-judges via prompt
optimization experiments for code generation.
Ensembling judges leads to up to a ~ 9% in-
crease in solved coding problems over using a
single-judge. We perform ablations utilizing
different aggregation methods and diverse eval-
uation instructions, emphasizing the non-trivial
design of ensembling LL.M-judges to suggest
further research. We provide anonmyzied
code: https://anonymous.4open.science/
r/ensemble_eval-891B/ReadMe.md

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023) have demonstrated ever-
increasing performance in various tasks such as
code generation, document summarization, and im-
age captioning (Chen et al., 2024; Gulwani, 2010;
Basyal and Sanghvi, 2023; Chen et al., 2022). With
the broad applicability of LLMs in society, reliably
evaluating LLM outputs during inference time is
a pressing matter. For example, although LLMs
in deployment can output realistic code, the code
may not necessarily run as intended (Stroebl et al.,
2024). Training or fine-tuning an LLM for ev-
ery task has high computational cost (Zan et al.,

2022; Kaplan et al., 2020). Thus, inference-time
approaches, such as prompt optimization, refine
the output without updating the model with an end-
to-end feedback loop.

To achieve this inference-time refinement, we
need a natural language evaluation, or critique as
part of the feedback loop to direct the update direc-
tion of the next output (Cheng et al., 2023; Wang
et al., 2023; Zhou et al., 2022; Yuksekgonul et al.,
2024). For example, a critique such as “this code
has a logical error...” catches errors and can be used
as part of the prompt for updating the generated
code in the next iteration. Thus, critiques are a
fundamental component of iterative inference-time
improvement.

However, obtaining critiques is a challenge. Hu-
man evaluators are expensive, time-consuming, and
may require domain experts. Therefore, LL.M-as-
a-Judge (LLM-judges) has been utilized to verify
the LLM output automatically (Verga et al., 2024;
He et al., 2024; Kim et al., 2024). While an LLM
can judge efficiently and automatically, for com-
plex generative tasks such as code generation, they
can output incorrect critiques (Stroebl et al., 2024).
Many prior work assumes that the LLM-judge has
reference information, such as unit test results or
even a ground-truth solution (He et al., 2024; Yuk-
sekgonul et al., 2024). This information is often
unavailable (Chen et al., 2024; Nguyen et al., 2024)
Therefore, we must rely on point-wise, reference-
free critique that is generated from an LLM-judge
that is only given the output. A natural question
arises for this practical, yet challenging scenario:
Does a reference-free LLM judge generate an opti-
mal critique for iterative refinement?

In this work, we tackle this question by deriv-
ing an interesting result demonstrating that using
a single reference-free LLM-based judge cannot
perfectly model the unknown, oracle critique, cre-
ating a suboptimality gap in critique. This gap can
cause issues where a ground-truth solution is not

https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md
https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md
https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md

Problem Statement :

You are given two strings 's’ and

L

Return the minimum possible score
to make 't" a subsequence of 's’.

Single LLM Judge

def minimumScore(s: str, t: str) -> int:
n, m = len(s), len(t)

Calculate the longest prefix of t that is a
subsequence of s

prefix =[0] * (m + 1)

i=0

Does Not Catch
Error and Gives 1

Correctness: The code Appears to handle the

task of finding the minimum score based on the logic
provided in the problem description...

Readability: The code is relatively readable, but it could
benefit from additional comments to clarify the intention

Readability behind the calculations of “prefix” and “suffix” arrays and
Suggestion the subsequent determination of ‘'min_score".
LLM Judge 1: .
Correctness The code is almost correct, DUT there is a

mistake...

for i in range(n):
ifj<m gné im == {j}: Does Catch Error and
j+=1 Gives Multiple
prefix[j] = i + 1 Readability
Suggestions

LLM Judge 2:
Readability

*

Fails All Test Cases

The code snippet provided is fairly readable, but there
are areas that could be improved for clarity:
Variable Names: ...

*Comments™**: ...

**White Space™*: ...

Figure 1: On the left, generated zero-shot output from GPT-40 for a LeetCodeHard problem that fails all test cases.
On the right, critiques were generated from a single judge (red) and from multiple judges (green). The ensemble of
judges detects errors that the single judge misses. The readability judge of the ensemble gives more suggestions for
improvement while the single-judge approach gives just one.

Reference Multiple LLM Point-Wise/ Critique(s) Theoretical Prompt Optimization
Judges Reference-Free Insights Experiments

Madaan et al. (2024) X v v X v
Shinn et al. (2024) X X v X v
Verga et al. (2024) v v X X X
Xu et al. (2024) v X X v X
Kim et al. (2024)* v v v X X
He et al. (2024) v X 4 X v
Yuksekgonul et al. (2024) X X v X v
Badshah and Sajjad (2024) v X 4 X X
This Work v v v v v

Table 1: Summary of key elements of our work compared to recent relevant work. Our work is the first to use
multiple LLM natural language evaluators for prompt optimization without reference information and provide
theoretical insights. *Kim et al. (2024) does have prompt optimization experiments but does not use multiple judges

for those experiments.

available, such as code generation. Incorrect cri-
tiques can lead to negative update directions for
inference-time processes. To mitigate the impact
of the suboptimality gap, we prove that an ensem-
ble of reference-free LLM evaluators decreases it.
We empirically validate this insight extensively by
utilizing multiple LLM-judges in a prompt opti-
mization process for code generation. We explore
different aggregation methods, concatenation and
summarization, and utilizing diverse LLM-judges
where each one judges the output on distinct cri-
teria. These empirical results emphasize that de-
signing the ensemble LLM-judge protocol is non-
trivial and warrants further research for more reli-

able reference-free critique.

While multiple LLM judges have been analyzed
in other work (cf. Table 1), to the best of our knowl-
edge, we are the first to include both a theoretical
motivation for multiple reference-free LLMs to
generating critiques and an empirical validation of
the theory via prompt optimization experiments.
Prior work that introduces multiple LLM judges
such as Verga et al. (2024) do not generate critiques
to be used for inference-time improvement meth-
ods. Here, we show the direct benefits of ensemble
judges that generate critiques as part of a LLM
feedback loop.

Our contributions are summarized as follows:

* Theoretical Motivation for Ensemble LLM-
Judges: We propose a novel formulation for
the prompt optimization task that specifically
highlights the suboptimality gap in critiques
for a single LLM-judge. With this formula-
tion, we prove that increasing the number of
LLM judges reduces this gap with a linear
additivity assumption.

* Empirical Performance Over Single-
Evaluation Approach: We thoroughly test
this method via prompt optimization pipeline
for code generation on three benchmarks. We
show up to ~ 9% in coding problems solved
over a single-judge approach.

* Extensive Study of Evaluation Design: We
provide multiple studies that demonstrate that
the choice of aggregation method, the number
of judges, and the combination of criteria can
significantly affect performance, emphasizing
that the design of an ensemble of LLM-judges
is non-trivial.

2 Related Works

LLM-as-a-Judge. LL.M-as-a-Judge (Zheng et al.,
2023; Li et al., 2024), has been growing in inter-
est due to the ability of LLMs to evaluate large
outputs like text (Sellam et al., 2020; Kocmi and
Federmann, 2023) quickly and to align with human
preferences. Prior work has also studied finetuning
LLMs to be judges (Zhou et al., 2022; Xiong et al.,
2024). Ankner et al. (2024) used LLM-generated
critiques to augment the scalar reward from a re-
ward model. Li et al. (2023) used discussion be-
tween multiple LLMs to select a strong LLM-judge
for question-answering. Strong LLM judges have
been shown to generalize across tasks (Huang et al.,
2024). Weak LLM evaluators have been used to
judge the debate between two stronger LLMs (Ken-
ton et al., 2024).

Ensemble LLM-Judges. Verga et al. (2024)
showed a panel of smaller LLM judges can pro-
vide numeric scores correlating to human judgment
than a single larger LLM model can. Similarly,
(Kim et al., 2024) has shown repeated sampling
of evaluations can also correlate to human judge-
ment better. (Badshah and Sajjad, 2024) used mul-
tiple reference-guided LLM judges for question-
answering. Other work has used multiple LLM-
judges for iterative fine-tuning (Xu et al., 2024;
Agrawal et al., 2024). While for prompt optimiza-
tion, we theoretically characterize that increasing

evaluators reduces a evaluation suboptimality gap
and provide results with various aggregation meth-
ods. Concurrent work, CRISPO by He et al. (2024),
also looks at multiple evaluators for prompt opti-
mization for tasks with multiple criteria like we do.
However, they rely on access to reference informa-
tion to generate a critique. Here, we remove that
access that may not be available and only input the
Al output to the evaluators.

Natural Language Critiques and Prompt Op-
timization. Many prior works have studied us-
ing critiques for prompt optimization. Madaan
et al. (2024) was one of the first works to propose a
prompt iterative feedback loop for refining LLMs,
and Pryzant et al. (2023) established prompt gradi-
ents, or Textual Gradients, as feedback to an Al sys-
tem. Concurrent work, CRISPO by He et al. (2024),
also looks at multiple evaluators for prompt opti-
mization for tasks with multiple criteria. Prompt
reinforcement learning with natural language cri-
tiques has also been used to improve LLM-based
systems (Shinn et al., 2024; Feng et al., 2024). Due
to the abstract nature of raw text, theoreicall

3 Problem Formulation

Reference-Free LLM for Generating Critiques.
Let y be the output for a given task and y* be the
optimal response. For code generation, y* would
be a functionally correct, readable, and efficient so-
lution code snippet to the problem and y would be a
snippet attempting to solve the problem. We would
want y to match y* as closely as possible. Mathe-
matically, we can write the optimization problem,

argmin [(y", y), (1)
Y

where [is an objective function to capture the close-
ness of sampled response y to the ground truth y*.
[is akin to a loss function in machine learning.
[(y*,y) is a natural language critique ¢ of y com-
paring it to y*. We use the terms “critique” and
“loss” interchangeably as prior literature has estab-
lished the analogy (Yuksekgonul et al., 2024).
Limitations and Challenges in Critiques. In
an ideal setting, if we had access to y* as a ground-
truth label for a supervised loss (Tiwari, 2022), then
we can achieve the optimal performance. How-
ever, in practice, they are hard to obtain or simply
unknown for many tasks such as code generation
(Chen et al., 2024). Therefore, a direct comparison
to an optimal output y* and the resulting calcula-
tion of c are both infeasible. Current SoTA work

instead sample an evaluation c from an evaluation
LLM policy conditioned by the response output
y and prompt z as ¢ ~ 7(-|z,y). Let us denote
7. = 7(-|z,y) for notation simplicity. When pa-
rameterizing 7. with an LLM, it is known as the
LLM-judge. Ideally, we would like the evaluation ¢
of y to be l(y*, y). More specifically, let us assume
the existence of an optimal LLM-judge denoted
by 7, sampling from which will give us samples
of the true loss function I(y*, y). However, LLM-
judges tend to fail with no reference (Stureborg
et al., 2024). Figure 1 demonstrates this with an
example LLM-judge letting an error go undetected.
A Single Reference-Free LLM-Judge Outputs
Suboptimal Critques. As 7} is unavailable as
discussed before, current SOTA methods sample
the critique loss from a single evaluator as ¢ ~ .
Now, we know that in the majority of the scenarios,
me Will not be the true evaluator policy 7. We now
define the suboptimality between 7. and 7’.

Definition 1. Let ¢ = I(y,y), where § is an
implicit approximation of y* from w.. Under
this scenario, we define the suboptimality gap
in the critique of prior SoTA as,

AT Cri-sub-opt
=Ecnr (o) [€] = Eenn(foy) [d]
< ‘Cmax|dTV(7r;(”l‘a y)a 7T('|.T, y)) (2)

In this definition, we first expand upon the
sub-optimality in the critique and then upper-
bound using the total variation distance (Sripe-
rumbudur et al., 2009). We see that the term
dry (7} (|x,y), 7(-|z,y)) is fixed and it cannot be
improved once we have the evaluator 7. This result
shows the hardness of a single evaluator reaching
7, due to this constant gap and it will only reduce
if our current LLM evaluator is near-optimal which
is not true in the majority of the scenarios.

An Ensemble of Reference-free LLM-Judges
Better Models the Optimal Critique. Our key
idea is to utilize multiple critiques. The thought
that multiple LLM-judges would work better than
one sounds intuitive but a naive introduction of
multiple evaluators does not work in practice.

We start our theoretical justification by defining
the sub-optimality metric to measure the critique
performance between 7> and II as

Definition 2. Let IT = {my(:|z,y) }<_,| be the

set of diverse judges for x,y. We then define
the sub-optimality metric, Agri-sub-opt’ as

A" i sub-opt = Ecmrs (fayy) [d]
a E{CkNWk('lfﬂvy)}le [g(cr, -+ s ex)] -

3)
Agri_sub_opt is difference between the expected value

of the critique under the optimal unknown critique
distribution, and the expected function g which
maps the K different critiques to one. In practice,
g can be seen as an aggregation function such as
concatenation. For the following theorem, we pro-
vide the following assumption.

Assumption 1. g is a linear function.

If we had access to the optimal evaluator 7,

we would have been able to get the ground-truth
critique ¢* = [(y*,y) to perform the prompt op-
timization. However, in place of that, we have
a set of evaluators II = (m,m2- - 7g) and
g(c1, -+ -) is the aggregation function to com-
bine the critiques. We now present the follow-
ing theorem to relate the number of critiques to
Agri—sub—opt'
Theorem 1. Let dyy denote the total varia-
tion distance between two distributions and let
Zszl ayp = 1. Assuming all pairs mp, 7o € 11
are independent of one another,

K

Algri-sub-opl‘ < lelmaxdrv(mz, Z). (4)
k=1

characterize the
proposed cri-
EC*NTT: [C*] —
Eclwﬂl(-|:13,y),02~71'2(-\x,y)-qu [g(cl, c2,C3 - CK)]-
Note that if A is zero, we have the optimal critique.
Thus, we want A to be as low as possible. For
notation simplicity of the expression, we will keep
to two evaluators without loss of generality. We
provide a version with K evaluators in Appendix
Al

Proof. First, we
sub-optimality of our
tique method as A =

A = Eesrops (]
— By oy (o) camma (o) [9(C15 €2)]
= Eeenrs [€"] = Bearny(oy [+
Ay
Benra(lay) [c] = Ecymmy canms [9(c1, c2)],

Ao

where we add and subtract the terms E.r;(|z.y)>
with 7y = am + (1 — @)1 (0 < a < 1) and
then separate the two terms as A1, Ay. We next
individually analyze the terms A, As.

We can now bound A as,

Ay =Eer s [¢] = Eemy(g]
<|c*|drv(m*, 7q)

= |C*|dTv(7T*, amy + (1 — Oé)ﬂ'Q),

where we use the property of integral probability
metric to bound A; as the total variation distance
between the optimal critique policy and the mixture
critique policy. Next, we proceed to Ao,

Ag =Eermy(fay) €] =
Ec)mmi (fay) comma(-Jz,y) [9(C15 C2)]
=Ecnrmy(lay) [—
Ee, oy (|2,y),camma (-Jzyy) €1 4 (1 —)]
=E s omy(fay) (€] —
Ao (o) [€1] = (1 =) Eymmy (i) [€2]
=0, (5)

where we expand upon the definition of A, and
use Assumption 1 on the aggregation function. Un-
der this assumption, the two terms cancel out with
the final result Ay = 0. Combining both terms
concluded the proof. This bound indicates that
the sub-optimality in critique can be expressed as
the total variation distance between the optimal
evaluator and the available mixture of evaluators.
We know from Blei et al. (2003); Nguyen et al.
(2016) that as we increase the number of mixture
components and diversity amongst the components
increase, it can approximate any distribution under
certain assumptions.

Our theoretical finding is for a one-shot cri-
tique generation. In the following section, we will
discuss how to introduce them into the iterative
prompt optimization pipeline. Our idea is that at
any iteration, aggregating multiple critiques will
better model the unknown, optimal critique for the
current output, thus leading to faster improvement
than using a single LLM-judge.

3.1 Prompt Optimization with Ensemble
LLM-Judges

Optimal Prompt Search. Let 7(-|x) be the LLM

system parameterized by fixed LLM policy that

samples an output response y ~ 7(-|z) given an

input prompt z € & from the set of prompts X.

We aim to sample a y ~ 7(-|z*) by finding an
input prompt z* corresponding to x prompt such
that y is closer to the optimal response y*. For
code generation, my would be the LLM generator;
x would be the input prompt; y is the generated
code; and the y* here would be a code snippet that
is a functionally correct, readable, and efficient
solution to the problem. Mathematically, we can
write,

r* =argminEy) [[(y", y)]- (0)
reX

Iterative prompt optimization. Given an initial
prompt x1, we perform an iterative prompt opti-
mization method to find z* as follows. For each
iteration t = 1 to 1", we start by (i) sampling y; ~
mo(+|z¢), (i) evaluate the response y; to obtain cri-
tique ¢; = I(y*, y¢), and then finally (iii) generate
the next prompt z¢41 ~ 7(-|ys, ¢,). Recent
work by Yuksekgonul et al. (2024) decompose step
(iii) into two separate steps and (iii.a) first generate
the feedback f; ~ 7(-|ys,ct, x¢), and then (iii.b)
generate the next prompt xy11 ~ 7(-|ys, fr, x¢).
For simplicity, we use the same variable 7 for all
LLM policies because the outputs are dependent
on the input variables the policy is conditioned on,
so the same LLM model can be utilized.

The success of this method is heavily dependent
on step (ii), obtaining the LLM-generated critiques.
A suboptimal critique can hinder the optimization
process. We now show that in the reference-free
case, using an ensemble of LLM-judges will pro-
vide faster prompt optimization and improved LLM
system output.

4 Experiments and Results

Code Generation Experiments: We test the mer-
its of our ensemble judge approach via the code
generation task because of its practicalness and
its multiple plausible criteria (e.g., correctness, ef-
ficiency). Here, the LLM generator is given a
code prompt and must produce a code snippet
that passes the unit tests for that prompt. This
code generation task is a form of instance opti-
mization (Yuksekgonul et al., 2024), whereby the
optimization variable, the input prompt, is defined
as 41 := (Y, ft)- Yo, fo are empty strings. We
provide empirical results showing that prompt op-
timization with an ensemble of judges achieves
higher success in test cases than single-judge-based
optimization. Experiments were run on an Apple
M1 Pro and macOS 14.5.

S 1 Judge

2Judges DN 4Judges NN 6 Judges
75

®
o

o
o

w
=}

o
-
— o 0
g =
g z &
&70 (o > 55
s =
o Q 50 45.0
o ©
2 k]
'-'El ©
]
o o<
]

67.0

~
3

o
o

o
3

48.75

'
&

39.25

8

w
]

w
8

Optimization Iterations

2 4
10 Number of Judges

Figure 2: Completion Rate (CR) over 10 iterations Readability Points (RP) for code generation on LeetCodeHard.
Over 10 iterations for each coding problem, increasing the number of judges significantly increases the functional
correctness, and having 2 judges greatly increases the RP. The line plot shows the average over the 3 trials with
a 95% confidence interval. However, for readability, continual increase does not continuously improve RP. This
shows empirically that increasing judges does not monotonically improve all aspects of task.

Judge Method Agg CR (%) RP
Self-Refine (Baseline) - 70.0 £24.08 | 52.3
Vanilla Feedback Loop (Baseline) - 65.0 £ 14.72 | 52.8
1 Judge (Baseline) — 71.674+2.36 | 52.6

6 Judges — All Criteria C 80.0 +-4.08 | 4.4

6 Judges — All Criteria Sum | 71.67 £8.5 | 57.7

6 Judges — All Criteria Sel | 78.33+6.24 | 44.8

6 Judges — One Criterion Each C | 78.334+2.36 | 37.0
6 Judges — One Criterion Each Sum | 76.67 £6.24 | 29.2
6 Judges — One Criterion Each Sel | 75.0+£4.08 | 19.2

Table 2: The Completion Rate (CR) and Readability Points (RP) over LeetCodeHard comparing various ensemble
evaluation methods against inference-time improvement baselines. Ensemble methods consistently outperform
baselines in terms of CR and the two highest-ranking methods in terms of readability are ensemble. The difference
in CR and RP between ensemble methods emphasizes the non-trivial nature of designing the ensemble evaluation

protocol.

Implementation Details: We use TextGrad
from (Yuksekgonul et al., 2024) to implement the
prompt optimization pipeline. We chose TextGrad
because it separates the critique and feedback into
two separate LLM calls, making it better to analyze
the critique module in isolation. In TextGrad, the
system prompt that generates the initial code, pin;,
is different from the system prompt that updates the
code in the following refinement iterations pypdate-
At t = 0, pinic specifies to the LLM that it is a code
generator while the pypgaee from 1 < ¢ < T' speci-
fies that it generates a new version ;11 given the
current code y; and the feedback f;. The transition
from pipit tO Pypdace 1 €xplicitly programmed and
not caused by the optimization process.

LLM Setup Details: We use GPT-4o0 for all
LLM calls. In the Appendix, we provide additional

experiments and ablations. Across all trials for
both methods, we use the same initial generated
code for a given problem so both critique protocols
can judge the same code in the initial iteration. We
share the critique system prompt for both methods
in Appendix A.2. Because we want a diversity
of critiques, we set the temperature of all LLM-
judge call to be 1. We ablate on the judge call
temperature in the Appendix. All other LLM calls
in the Textgrad pipeline with call temperature set
to 0 similar to Yuksekgonul et al. (2024). For all
experiments, the top_p = 0.99.

Criteria for Critiquing Code. The set of cri-
tique criteria we used for this task are as follows:
syntax errors, logic errors, correctness, readabil-
ity, runtime, and code redundancy. The following
results are based on utilizing all these roles. We

Criteria Judge Method Agg CR (%)
Single (Baseline) - 66.67 +4.71
Ensemble - All Criteria C 78.33 + 2.36
Correctness, Logic, Readability Ensemble - One Criter.ionl Each C 71.67 £ 8.5
’ ’ ’ Ensemble - All Criteria Sum | 66.67 +8.5
Redundancy, Runtime, Syntax Ensemble - One Criterion Each | Sum 75.0 +4.08
Ensemble - All Criteria Sel 75.0 £ 8.16
Ensemble - One Criterion Each | Sel 73.33 £4.71
Single (Baseline) - 66.67 &+ 2.36
Ensemble - All Criteria C 71.67 £4.71
Ensemble - One Criterion Each C 76.67 + 4.71
Readability, Redundancy, Runtime Ensemble - All Criteria Sum | 73.33 +£6.24
Ensemble - One Criterion Each | Sum | 70.00 + 7.07
Ensemble - All Criteria Sel 70.00 £+ 4.08
Ensemble - One Criterion Each | Sel 71.67 +£6.24
Single (Baseline) - 78.33 + 6.24
Ensemble - All Criteria C 73.33 £2.36
Ensemble - One Criterion Each C 76.67 £+ 2.36
Correctness, Logic, Syntax Ensemble - All Criteria Sum | 78.33 + 2.36
Ensemble - One Criterion Each | Sum | 75.00 &+ 7.07
Ensemble - All Criteria Sel 78.33 + 6.24
Ensemble - One Criterion Each | Sel 75.00 £+ 4.08
Single (Baseline) - 76.67 +=4.71
Ensemble - All Criteria C 72.5 + 7.50
Ensemble - One Criterion Each C 70.0 £ 7.07
Logic, Readability Ensemble - All Criteria Sum | 75.00 & 10.80
Ensemble - One Criterion Each | Sum | 75.00 + 7.07
Ensemble - All Criteria Sel 80.0 + 4.08
Ensemble - One Criterion Each | Sel 70.00 &+ 7.07

Table 3: Utilzing Different Roles Affects CR: This table summarizes the CR and RP for the various evaluation
methods given different combinations of roles. We report the mean and standard deviation of 3 trials for CR. We

use 10 problem of LeetCodeHard for 4 iterations each.

chose three roles that correlate to maximizing the
number of passed test cases: correctness, logic, and
syntax. We specifically chose these three to incor-
porate an overall correctness role with two more
specific roles.

Ensemble Design: One decision in design is
to give the separate LLM calls different criteria to
judge the output. In all criteria, we specify to each
LLM judge call that it should generate a critique of
the output based on all the criteria. Effectively, we
are doing repeated sampling of the LLM-judge. In
one criterion each, we give each judge a single cri-
terion to focus its judgment. Once we have gener-
ated the critiques from all the judge LLM calls, we
aggregate them. We experiment with three different
aggregation methods. 1) String concatenation (C):
a form of addition for string objects that maintains
the semantic meaning of the individual critiques;
we chose concatenation to model a linear function
for g with uniform weights «. 2) Summarization
(Sum): another LLM to take in the critiques to
give a final response; summarization is analogous
to applying a non-linear g aggregation method to
the critiques. 3) Selection (Sel): an LLM selects
the one critique that it believes will help improve

the output the most, modeling a max operator on
the critiques.

Baselines: For baselines other than a single-
judge approach, we chose Self-Refine (Madaan
et al., 2024) where the LLM code generator it-
eratively reflects and updates on its own output.
We implement this by having a consistent system
prompt throughout all the LLM calls and only
changing the user prompts. We also compared
with a vanilla feedback loop, where there is a sep-
arate feedback LLM call but there is no LLM call
for explicitly critique generation. Please see the
Appendix for more details on the prompts.

Metrics for Code: For correctness, we report
the Completion Rate (CR), the percentage of
coding problems with all test cases passed (Yuk-
sekgonul et al., 2024). Since we are focused on
the effect of the evaluation protocol, we report the
best-performing code generated in the optimiza-
tion process after the initial zero-shot generation.
Specifically, if a generated snippet at any iteration
after the initial generation passes all test cases, that
problem is considered completed. For readability,
we take the code snippet of the last iteration of
each method we are comparing and ask a panel of

LLM-judges, GPT-40, GPT-40-mini, GPT-4-turbo,
and GPT-4, to rank their readability of the code
snippets. We then calculate the Borda Count for
each method. The Borda Count for a method is
the number of methods that rank below it. For ex-
ample, a method that is the highest ranked out of
four methods gets 3 points. For each method, we
sum all of the Borda Counts across all problems.
To normalize across experiments that have varying
sets of methods, we divide the total Borda Count
by the number of methods. We call this value the
Readability Points (RP).

Dataset. We use the LeetCodeHard (Shinn et al.,
2024) dataset containing a set of coding problem
prompts and multiple unit tests for each problem to
evaluate the generated code. We use 20 LeetCode-
Hard (Shinn et al., 2024) dataset problems with an
average of 2 — 3 unit tests per problem. We with-
hold giving any of the evaluators of either method
any information on unit tests to simulate the sce-
nario where unit tests may be unavailable to help
judge (Chen et al., 2024). Please see the Appendix
where we provide additional results on Humaneval
(Chen et al., 2021) and EvoEval benchmarks (Xia
et al., 2024).

How does increasing judges help empirically?
We plot the performance over 3 trials on LeetCode-
Hard in Figure 2. In this experiment, we give the
judge LLMs for all approaches all the criteria to
critique the output and we use concatenation to
aggregate. For functional correctness, ensembling
judges achieve higher CR rates than a single judge.
Furthermore, while using a single judge achieves
similar RP to using 6 judges, it has significantly
less than RP using 2 evaluators. These results em-
pirically show that increasing judges can improve
code in both aspects but not necessarily monotoni-
cally.

How Do Design Choices for Ensemble Im-
pact Performance? In Table 2 we report the
mean and standard deviation for CR. We see that
the lowest-performing ensemble method, 6 judges
with all criteria with summarization, achieves the
same mean CR as the highest-performing baseline,
single-judge. Showing the superiority of ensem-
bling over baselines for correctness. There is a 9%
difference in mean CR between ensemble methods.
For readability, the two highest-ranked methods are
ensemble methods. All other ensemble methods
fall below the baselines in the rankings. This dif-
ference in CR and RP between ensemble methods
highlights the importance of design.

Criteria Order CR (%)
e o Ko | 161 50
S el LT
Readabiity. Logie Conctnees | 7500+ 707

Table 4: Impact of Criteria Order CR from 10 prob-
lems of LeetCodeHard for 4 iterations. We used LLM
judges with separate criteria with concatenation. Crite-
ria Order specifies the order the LLM judges, affecting
the resulting concatenated critique string.

Combination and Order of Evaluation Crite-
ria Affects Optimization Performance. In Table
6, we analyze the effect the different combinations
of evaluation criteria have on the CR over Leet-
CodeHard. Similar studies have been performed
with finetuning using diverse reward models (Rame
et al., 2024). Surprisingly and counter-intuitively,
we see some methods increase in correctness when
the three criteria for correctness are removed. We
do see an overall increase in methods when the
non-correctness criterion are removed, suggesting
the LLM judges can better focus on analyzing the
functionality of the code. Because concatenating
strings is not commutative like adding scalar num-
bers. in Table 4, we provide an ablation where we
change the order of the criteria in the judge system
prompt. In this experiment, we used judges with
one criterion each. Thus, changing the order of the
call changes the concatenated string. We do not see
a significant change in performance between the
orderings suggesting that using ensemble judges is
unaffected by the order of critiques.

5 Conclusion

In this work, we tackle reference-free LLM-judges
for generating natural language critiques. Our key
insight was that aggregating multiple generated cri-
tiques reduces the suboptimality gap in evaluations
for a given output. We theoretically motivate en-
semble LLM-judges and empirically validate the
paradigm with extensive prompt optimization ex-
periments in code generation. We also provide
ablations such as on the diversity of roles, role com-
binations, and evaluation temperature, consistently
demonstrating the need for multiple evaluators.

Limitations and Further Work

We only empirically study our approach in code
generation. Further work could extend this evalu-
ation approach to other tasks that require multiple
criteria like molecule optimization or text gener-
ation. In terms of system complexity, we only
study multiple evaluators for Al systems compris-
ing a single LL.M-based agent, and using a com-
pound system with multiple elements such as a
web search agent (Agentic Al system) could be
interesting. Another aspect of the work that can be
explored further is weighting the different LLM-
based evaluations. We gave uniform weighting via
concatenation. However, further work could try
and adaptively change the weighting as the out-
put progresses, representing the need to change the
focus of evaluation over time. Another research di-
rection involves removing the linearity assumption
on g.

Acknowledgements

ChatGPT (40) was used to help with coding exper-
iments.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao
Deng, Anirudh Satheesh, John Langford, and Furong
Huang. 2024. Ensemw?2s: Can an ensemble of 1lms
be leveraged to obtain a stronger Ilm? arXiv preprint
arXiv:2410.04571.

Zachary Ankner, Mansheej Paul, Brandon Cui,
Jonathan D Chang, and Prithviraj Ammanabrolu.
2024. Critique-out-loud reward models. arXiv
preprint arXiv:2408.11791.

Sher Badshah and Hassan Sajjad. 2024. Reference-
guided verdict: Llms-as-judges in automatic
evaluation of free-form text. arXiv preprint
arXiv:2408.09235.

Lochan Basyal and Mihir Sanghvi. 2023. Text
summarization using large language models: a
comparative study of mpt-7b-instruct, falcon-7b-
instruct, and openai chat-gpt models. arXiv preprint
arXiv:2310.10449.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993-1022.

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed
Elhoseiny. 2022. Visualgpt: Data-efficient adapta-
tion of pretrained language models for image caption-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18030-18040.

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing
Gao, Jindong Wang, et al. 2024. A survey on evalu-
ating large language models in code generation tasks.
arXiv preprint arXiv:2408.16498.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2023. Black-Box Prompt Optimization: Aligning
Large Language Models without Model Training.
arXiv e-prints, arXiv:2311.04155.

Xidong Feng, Ziyu Wan, Mengyue Yang, Ziyan Wang,
Girish A Koushik, Yali Du, Ying Wen, and Jun
Wang. 2024. Natural language reinforcement learn-
ing. CoRR.

Sumit Gulwani. 2010. Dimensions in program synthe-
sis. In Proceedings of the 12th international ACM
SIGPLAN symposium on Principles and practice of
declarative programming, pages 13-24.

Han He, Qianchu Liu, Lei Xu, Chaitanya Shivade,
Yi Zhang, Sundararajan Srinivasan, and Katrin Kirch-
hoff. 2024. Crispo: Multi-aspect critique-suggestion-
guided automatic prompt optimization for text gener-
ation. arXiv preprint arXiv:2410.02748.

Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, and
Tiejun Zhao. 2024. An empirical study of llm-
as-a-judge for llm evaluation: Fine-tuned judge
models are task-specific classifiers. arXiv preprint
arXiv:2403.02839.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Zachary Kenton, Noah Y Siegel, Janos Kramdr,
Jonah Brown-Cohen, Samuel Albanie, Jannis Bu-
lian, Rishabh Agarwal, David Lindner, Yunhao Tang,
Noah D Goodman, et al. 2024. On scalable oversight
with weak 1lms judging strong llms. arXiv preprint
arXiv:2407.04622.

Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne
Longpre, Chaeeun Kim, Dongkeun Yoon, Guijin
Son, Yejin Cho, Sheikh Shafayat, Jinheon Baek, et al.
2024. The biggen bench: A principled benchmark
for fine-grained evaluation of language models with
language models. arXiv preprint arXiv:2406.05761.

https://doi.org/10.48550/arXiv.2311.04155
https://doi.org/10.48550/arXiv.2311.04155
https://doi.org/10.48550/arXiv.2311.04155

Tom Kocmi and Christian Federmann. 2023. Large lan-
guage models are state-of-the-art evaluators of trans-
lation quality. In Proceedings of the 24th Annual
Conference of the European Association for Machine
Translation, pages 193-203, Tampere, Finland. Euro-
pean Association for Machine Translation.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,
et al. 2024. From generation to judgment: Opportuni-
ties and challenges of llm-as-a-judge. arXiv preprint
arXiv:2411.16594.

Ruosen Li, Teerth Patel, and Xinya Du. 2023. Prd: Peer
rank and discussion improve large language model
based evaluations. arXiv preprint arXiv:2307.02762.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Hien D Nguyen, Luke R Lloyd-Jones, and Geoffrey J
McLachlan. 2016. A universal approximation theo-
rem for mixture-of-experts models. Neural computa-
tion, 28(12):2585-2593.

Huyen Nguyen, Haihua Chen, Lavanya Pobbathi, and
Junhua Ding. 2024. A comparative study of quality
evaluation methods for text summarization. arXiv
preprint arXiv:2407.00747 .

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Alexandre Rame, Guillaume Couairon, Corentin
Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. 2024. Rewarded
soups: towards pareto-optimal alignment by inter-
polating weights fine-tuned on diverse rewards. Ad-
vances in Neural Information Processing Systems,
36.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881-7892, Online. Association for Computational
Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur
Gretton, Bernhard Scholkopf, and Gert RG Lanck-
riet. 2009. On integral probability metrics,\phi-
divergences and binary classification. arXiv preprint
arXiv:0901.2698.

10

Benedikt Stroebl, Sayash Kapoor, and Arvind
Narayanan. 2024. Inference scaling Flaws: The

limits of llm resampling with imperfect verifiers.
Preprint, arXiv:2411.17501.

Rickard Stureborg, Dimitris Alikaniotis, and Yoshi
Suhara. 2024. Large language models are in-
consistent and biased evaluators. arXiv preprint
arXiv:2405.01724.

Ashish Tiwari. 2022. Chapter 2 - supervised learn-
ing: From theory to applications. In Rajiv Pandey,
Sunil Kumar Khatri, Neeraj kumar Singh, and Parul
Verma, editors, Artificial Intelligence and Machine
Learning for EDGE Computing, pages 23-32. Aca-
demic Press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yix-
uan Su, Aleksandra Piktus, Arkady Arkhangorodsky,
Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing judges with juries: Evaluating llm gen-
erations with a panel of diverse models. Preprint,
arXiv:2404.18796.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. 2023. PromptAgent:
Strategic Planning with Language Models Enables
Expert-level Prompt Optimization. arXiv e-prints,
arXiv:2310.16427.

Chungiu Steven Xia, Yinlin Deng, and Lingming Zhang.
2024. Top leaderboard ranking = top coding pro-
ficiency, always? evoeval: Evolving coding bench-
marks via llm. arXiv preprint.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye,
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun-
yuan Li. 2024. Llava-critic: Learning to evaluate mul-
timodal models. arXiv preprint arXiv:2410.02712.

Tengyu Xu, Eryk Helenowski, Karthik Abinav
Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shao-
liang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou,
et al. 2024. The perfect blend: Redefining rlhf with
mixture of judges. arXiv preprint arXiv:2409.20370.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic “differentiation” via
text. arXiv preprint arXiv:2406.07496.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. 2022. Large language mod-
els meet nl2code: A survey. arXiv preprint
arXiv:2212.09420.

https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

11

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Appendix

A.1 Proof of Theorem 1 Extended to K
evaluators

We present the proof of Theorem 4 generalized to

K evaluators.

Proof. First,
sub-optimality of proposed cri-
tique method as A Eesops [¢*] —
Ec1~7r1(-\x,y),02~7r2(-|x,y)---71'K [9(017 C2,C3 - CK)]
Note that if A is zero, we have the optimal critique.
Thus, we want A to be as low as possible.

we characterize the

our

A =]EC* ~rk [C*]

-]Ecl"/ﬂ'l("ch?l)ac2"‘7\'2("Cca?/)"""K [g(cl7 €2y -0 CK)}
= Eer s [€7] = Benry(la [+
Ag
Ecnmy(lz,y) [C] —Eeymmy ()i [9(01702» m,CK)L
Ag

where we add and subtract the terms E.r,(|z,4)
with 74 = S5 aim (OF o = 1) and then
separate the two terms as A1, As. We next individ-
ually analyze the terms A1, A,.

We can now bound A; as,

A1 = Eerory [¢] = By () [d]
<|c*|drv (7", 7q)
K

= |¢*ldrv (7", aimy),
=1

where we use the property of integral probability
metric to bound A; as the total variation distance
between the optimal critique policy and the mixture
critique policy. Next, we proceed to Ao,

Ag :Ecwﬂd(-|m,y) [C} -

EClNWl('|xzy)7"' 7CKN7TK('Ix7y) I:g(c]" o CK)]
=E

croma(c|z,y) [C}

K
By oy (fasg) e e~ (lag) | D QiCi
=1

K
=Eee oyl [€] = D @iBeiomi (o) [€i]
=1

=0, @)
where we expand upon the definition of A, and
use Assumption 1 on the aggregation function. Un-
der this assumption, the two terms cancel out with
the final result A; = 0. Combining both terms
concluded the proof.

12

A.2 Judge System Prompt

We provide the judge system prompt in Figure 3.
For Single-Eval the system prompt is given to only
one LLM call and all the roles utilized are listed
together in [INSERT UTILIZED CRITERIA]. For
ensemble with separate criteria, each evaluator gets
one specified in [INSERT UTILIZED CRITERIA].

A.3 Baseline Details

Here are the details for the two baselines that do
not incorporate a separate evaluation protocol.

Self-Refine: In self-refine (Madaan et al., 2024),
the system prompt p is constant throughout the
initial generation, feedback, and update stages.
During the feedback and update stages, the user
prompts is modified to specify that an output is
already given and the LLM must either now self-
reflect to generate feedback or must use both the
output and feedback to generate and update the re-
sponse. We provide the feedback and user prompts
in Figure 4.

Vanilla Feedback Loop: A separate LLM pro-
vides feedback to the LLM generator. The system
prompt for the update generation is different than
the one for the initial generation.

We provide addtional results with HumanEval
(Chen et al., 2021) and EvoEval (Xia et al., 2024)
benchmarks. HumanEval is a standard code gener-
ation benchmark and EvoEval (we specifically use
EvoEval-Difficult) is a more recent one that adapts
the questions of HumanEval to have more addi-
tional constraints and requirements. We see that
for the harder benchmark of EvoEval, the benefits
of ensembling LLM judges is more clear.

Evaluation System Prompt for Evaluator LLM

"You are a smart language model that evaluates code snippets. You do not
solve problems or propose new code snippets, only evaluate existing
solutions critically and give very concise feedback. Please focus on [INSERT
UTILIZED ROLE]. DO NOT PROPOSE NEW CODE!!!”

Figure 3: Judge System Prompt.

Feedback System Prompt for Vanilla Feedback Loop

Feedback User Prompt for Self-Refine and Vanilla
Feedback Loop

You are a Python programming assistant. \n

You will be given a function implementation.\n

Your goal is to write a few sentences to explain why your implementation is wrong if you
think it is. \n

You will need this as a hint when you try again to implement the function later. \n

Please be as concrete and actionable as you can to improve the code. \n

Please focus your feedback on the following [INSERT NUMBER OF
CRITERIA]criteria: [INSERT CRITERIA]. \n

Only provide the few sentence description in your answer, DO NOT PROPOSE NEW

Please provide feedback on the code you have just generated below. \n
[INSERT CODE] \n

Please be as concrete and actionable as you can to improve the code. \n
Please focus your feedback on the following [INSERT NUMBER OF CRITERIA]
criteria: [INSERT CRITERIA].'

Update System Prompt for Vanilla Feedback Loop

Update User Prompt for Self-Refine and Vanilla Feedback
Loop

You are a Python programming assistant. \n

You will be given a function implementation and feedback on how to improve
itAn

Please generate new code based on the current generated code and the
feedback generated for it. \n

YOUR RESPONSE SHOULD ONLY CONTAIN CODE!!! NO ENGLISH OR
NATURAL LANGUAGE!!!! \n

Restate the function signature in the beginning of your output.

Please generate new code based on the current generated code and the feedback
you just generated for it. \n

Current code: \n

[INSERT CODE] \n

Feedback: [INSERT FEEDBACK] \n

YOUR RESPONSE SHOULD ONLY CONTAIN CODE!!! NO ENGLISH OR
NATURAL LANGUAGE!!!!

Figure 4: System Prompts for Vanilla Feedback Loop (Left) and User Prompts for Self-Refine and Vanilla Feedback

Loop (Right)
Judge Method Agg | EvoEval CR (%) | HumanEval CR (%)

Vanilla Feedback Loop (Baseline) — 40.0 £ 16.33 90.0 + 0.0

Self-Refine (Baseline) — 33.33 +£9.43 90.0 + 0.0

1 Judge (Baseline) — 50.0 £0.0 90.0 + 0.0
6 Judges — All Criteria C 40.0 £8.16 86.67 +4.71
6 Judges — All Criteria Sum 50.0 £ 0.0 86.67 +4.71
6 Judges — All Criteria Sel 44.44 + 7.86 86.67 £ 4.71

6 Judges — One Criterion Each C 50.0 £ 8.16 90.0 = 0.0
6 Judges — One Criterion Each Sum 50.0 £ 8.16 86.67 +4.71
6 Judges — One Criterion Each Sel 60.0 = 8.16 82.59 4+ 5.32

Table 5: The CR over HumanEval and EvoEval-Difficult comparing various ensemble evaluation methods against
inference-time improvement baselines. Ensemble methods consistently outperform baselines CR and the two highest
ranking methods in terms of readability are ensemble. The difference in CR and RP between ensemble methods
emphasize the non-trivial nature of designing the ensemble evaluation protocol. We use 10 questions from each
dataset and use 4 iterations of prompt optimization per question.

13

Judge Temperature Judge Method CR (%)
Single (Baseline) 76.67 = 4.71
0 Ensemble - All Criteria 71.67 £4.71
Ensemble - One Criterion Each | 73.33 £4.71
Single (Baseline) 71.67+£4.71
0.25 Ensemble - All Criteria 73.33 £ 6.24
Ensemble - One Criterion Each | 71.67 £4.71
Single (Baseline) 75.0 +4.08
0.50 Ensemble - All Criteria 73.33 £6.24
Ensemble - One Criterion Each | 78.33 £+ 2.36
Single (Baseline) 75.0 £4.08
0.75 Ensemble - All Criteria 76.67 £4.71
Ensemble - One Criterion Each | 71.67 £ 8.5
Single (Baseline) 66.67 &= 4.71
1 Ensemble - All Criteria 78.33 £ 2.36
Ensemble - One Criterion Each | 71.67 £ 8.50

Table 6: Temperature Ablation: This table summarizes the CR for the various evaluation methods given different
combinations of roles. We report the mean and standard deviation of 3 trials for CR.

A.4 Ensemble Methods Outpeform
Single-Judge Method with Incorrect
Judge.

To highlight the robustness of ensemble judges to
incorrect evaluations, we introduce an adversarial
evaluator. For ensemble, methods with separate
evaluation instructions, we specify in the system
prompt of the correctness judge to always generate
a critique stating that the code solution works. Sim-
ilarly, for methods where the system prompt has all
the criteria, we specify to output a critique claiming
that code works when discussing correctness. We
repeat the same experiment but attack the readabil-
ity criteria by instructing the evaluation protocols
to generate a critique stating that the code is read-
able. We run all prompt optimization processes for
4 iterations.

The results of both experiments are shown in
Table 7. In both experiments, ensemble methods
still outperforms the single-judge approach in terms
of CR, with the worst-performing ensemble method
having at least the same mean CR as a single-judge.
We believe this results is intuitively because having
multiple critiques will lessen the influence of one

14

wrong one.
Judge Method Aggregation CR (%)
Single - 68.33 +6.24
6 - All Criteria C 75.0 £4.08
6 - All Criteria Sum 75.0 £4.08
6 - All Criteria Sel 78.33 + 4.71
6 - Separate Criteria C 76.67 £ 8.5
6 - Separate Criteria Sum 76.67 £ 6.24
6 - Separate Criteria Sel 71.67+£11.79

Table 7: CR on LeetCodeHard with one purposefully
incorrect judge that always says the code is correct.
Unsurprisingly, ensemble still outperforms single.

	Introduction
	Related Works
	Problem Formulation
	Prompt Optimization with Ensemble LLM-Judges

	Experiments and Results
	Conclusion
	Appendix
	Proof of Theorem 1 Extended to K evaluators
	Judge System Prompt
	Baseline Details
	Ensemble Methods Outpeform Single-Judge Method with Incorrect Judge.

