
Closing the Evaluation Gap: Ensembling LLM-Judges Generates More
Reliable Inference-Time Reference-Free Critiques

Anonymous ACL submission

Abstract

LLM-as-a-Judge allows for efficient and scal-001
able natural language evaluations of complex002
generated outputs, such as code, without the003
need for a ground-truth reference. These eval-004
uation protocols have become a crucial part005
for inference-time refinement approaches like006
prompt optimization. However, an important007
question arises of whether a pre-trained LLM008
can generate a reliable evaluation of the out-009
put. In this work, we derive an interesting,010
insightful result showing that a single LLM-011
based judge is insufficient in generating an op-012
timal critique. We then provide a solution by013
demonstrating that aggregating multiple LLM-014
generated evaluations can better model the opti-015
mal critique. We empirically show the merits of016
ensembling multiple LLM-judges via prompt017
optimization experiments for code generation.018
Ensembling judges leads to up to a ∼ 9% in-019
crease in solved coding problems over using a020
single-judge. We perform ablations utilizing021
different aggregation methods and diverse eval-022
uation instructions, emphasizing the non-trivial023
design of ensembling LLM-judges to suggest024
further research. We provide anonmyzied025
code: https://anonymous.4open.science/026
r/ensemble_eval-891B/ReadMe.md027

1 Introduction028

Large Language Models (LLMs) (Achiam et al.,029

2023; Touvron et al., 2023) have demonstrated ever-030

increasing performance in various tasks such as031

code generation, document summarization, and im-032

age captioning (Chen et al., 2024; Gulwani, 2010;033

Basyal and Sanghvi, 2023; Chen et al., 2022). With034

the broad applicability of LLMs in society, reliably035

evaluating LLM outputs during inference time is036

a pressing matter. For example, although LLMs037

in deployment can output realistic code, the code038

may not necessarily run as intended (Stroebl et al.,039

2024). Training or fine-tuning an LLM for ev-040

ery task has high computational cost (Zan et al.,041

2022; Kaplan et al., 2020). Thus, inference-time 042

approaches, such as prompt optimization, refine 043

the output without updating the model with an end- 044

to-end feedback loop. 045

To achieve this inference-time refinement, we 046

need a natural language evaluation, or critique as 047

part of the feedback loop to direct the update direc- 048

tion of the next output (Cheng et al., 2023; Wang 049

et al., 2023; Zhou et al., 2022; Yuksekgonul et al., 050

2024). For example, a critique such as “this code 051

has a logical error...” catches errors and can be used 052

as part of the prompt for updating the generated 053

code in the next iteration. Thus, critiques are a 054

fundamental component of iterative inference-time 055

improvement. 056

However, obtaining critiques is a challenge. Hu- 057

man evaluators are expensive, time-consuming, and 058

may require domain experts. Therefore, LLM-as- 059

a-Judge (LLM-judges) has been utilized to verify 060

the LLM output automatically (Verga et al., 2024; 061

He et al., 2024; Kim et al., 2024). While an LLM 062

can judge efficiently and automatically, for com- 063

plex generative tasks such as code generation, they 064

can output incorrect critiques (Stroebl et al., 2024). 065

Many prior work assumes that the LLM-judge has 066

reference information, such as unit test results or 067

even a ground-truth solution (He et al., 2024; Yuk- 068

sekgonul et al., 2024). This information is often 069

unavailable (Chen et al., 2024; Nguyen et al., 2024) 070

Therefore, we must rely on point-wise, reference- 071

free critique that is generated from an LLM-judge 072

that is only given the output. A natural question 073

arises for this practical, yet challenging scenario: 074

Does a reference-free LLM judge generate an opti- 075

mal critique for iterative refinement? 076

In this work, we tackle this question by deriv- 077

ing an interesting result demonstrating that using 078

a single reference-free LLM-based judge cannot 079

perfectly model the unknown, oracle critique, cre- 080

ating a suboptimality gap in critique. This gap can 081

cause issues where a ground-truth solution is not 082

1

https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md
https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md
https://anonymous.4open.science/r/ensemble_eval-891B/ReadMe.md

Figure 1: On the left, generated zero-shot output from GPT-4o for a LeetCodeHard problem that fails all test cases.
On the right, critiques were generated from a single judge (red) and from multiple judges (green). The ensemble of
judges detects errors that the single judge misses. The readability judge of the ensemble gives more suggestions for
improvement while the single-judge approach gives just one.

Reference Multiple LLM Point-Wise/ Critique(s) Theoretical Prompt Optimization
Judges Reference-Free Insights Experiments

Madaan et al. (2024) ✗ ✓ ✓ ✗ ✓

Shinn et al. (2024) ✗ ✗ ✓ ✗ ✓

Verga et al. (2024) ✓ ✓ ✗ ✗ ✗

Xu et al. (2024) ✓ ✗ ✗ ✓ ✗

Kim et al. (2024)* ✓ ✓ ✓ ✗ ✗

He et al. (2024) ✓ ✗ ✓ ✗ ✓

Yuksekgonul et al. (2024) ✗ ✗ ✓ ✗ ✓

Badshah and Sajjad (2024) ✓ ✗ ✓ ✗ ✗

This Work ✓ ✓ ✓ ✓ ✓

Table 1: Summary of key elements of our work compared to recent relevant work. Our work is the first to use
multiple LLM natural language evaluators for prompt optimization without reference information and provide
theoretical insights. *Kim et al. (2024) does have prompt optimization experiments but does not use multiple judges
for those experiments.

available, such as code generation. Incorrect cri-083

tiques can lead to negative update directions for084

inference-time processes. To mitigate the impact085

of the suboptimality gap, we prove that an ensem-086

ble of reference-free LLM evaluators decreases it.087

We empirically validate this insight extensively by088

utilizing multiple LLM-judges in a prompt opti-089

mization process for code generation. We explore090

different aggregation methods, concatenation and091

summarization, and utilizing diverse LLM-judges092

where each one judges the output on distinct cri-093

teria. These empirical results emphasize that de-094

signing the ensemble LLM-judge protocol is non-095

trivial and warrants further research for more reli-096

able reference-free critique. 097

While multiple LLM judges have been analyzed 098

in other work (cf. Table 1), to the best of our knowl- 099

edge, we are the first to include both a theoretical 100

motivation for multiple reference-free LLMs to 101

generating critiques and an empirical validation of 102

the theory via prompt optimization experiments. 103

Prior work that introduces multiple LLM judges 104

such as Verga et al. (2024) do not generate critiques 105

to be used for inference-time improvement meth- 106

ods. Here, we show the direct benefits of ensemble 107

judges that generate critiques as part of a LLM 108

feedback loop. 109

Our contributions are summarized as follows: 110

2

• Theoretical Motivation for Ensemble LLM-111

Judges: We propose a novel formulation for112

the prompt optimization task that specifically113

highlights the suboptimality gap in critiques114

for a single LLM-judge. With this formula-115

tion, we prove that increasing the number of116

LLM judges reduces this gap with a linear117

additivity assumption.118

• Empirical Performance Over Single-119

Evaluation Approach: We thoroughly test120

this method via prompt optimization pipeline121

for code generation on three benchmarks. We122

show up to ∼ 9% in coding problems solved123

over a single-judge approach.124

• Extensive Study of Evaluation Design: We125

provide multiple studies that demonstrate that126

the choice of aggregation method, the number127

of judges, and the combination of criteria can128

significantly affect performance, emphasizing129

that the design of an ensemble of LLM-judges130

is non-trivial.131

2 Related Works132

LLM-as-a-Judge. LLM-as-a-Judge (Zheng et al.,133

2023; Li et al., 2024), has been growing in inter-134

est due to the ability of LLMs to evaluate large135

outputs like text (Sellam et al., 2020; Kocmi and136

Federmann, 2023) quickly and to align with human137

preferences. Prior work has also studied finetuning138

LLMs to be judges (Zhou et al., 2022; Xiong et al.,139

2024). Ankner et al. (2024) used LLM-generated140

critiques to augment the scalar reward from a re-141

ward model. Li et al. (2023) used discussion be-142

tween multiple LLMs to select a strong LLM-judge143

for question-answering. Strong LLM judges have144

been shown to generalize across tasks (Huang et al.,145

2024). Weak LLM evaluators have been used to146

judge the debate between two stronger LLMs (Ken-147

ton et al., 2024).148

Ensemble LLM-Judges. Verga et al. (2024)149

showed a panel of smaller LLM judges can pro-150

vide numeric scores correlating to human judgment151

than a single larger LLM model can. Similarly,152

(Kim et al., 2024) has shown repeated sampling153

of evaluations can also correlate to human judge-154

ment better. (Badshah and Sajjad, 2024) used mul-155

tiple reference-guided LLM judges for question-156

answering. Other work has used multiple LLM-157

judges for iterative fine-tuning (Xu et al., 2024;158

Agrawal et al., 2024). While for prompt optimiza-159

tion, we theoretically characterize that increasing160

evaluators reduces a evaluation suboptimality gap 161

and provide results with various aggregation meth- 162

ods. Concurrent work, CRISPO by He et al. (2024), 163

also looks at multiple evaluators for prompt opti- 164

mization for tasks with multiple criteria like we do. 165

However, they rely on access to reference informa- 166

tion to generate a critique. Here, we remove that 167

access that may not be available and only input the 168

AI output to the evaluators. 169

Natural Language Critiques and Prompt Op- 170

timization. Many prior works have studied us- 171

ing critiques for prompt optimization. Madaan 172

et al. (2024) was one of the first works to propose a 173

prompt iterative feedback loop for refining LLMs, 174

and Pryzant et al. (2023) established prompt gradi- 175

ents, or Textual Gradients, as feedback to an AI sys- 176

tem. Concurrent work, CRISPO by He et al. (2024), 177

also looks at multiple evaluators for prompt opti- 178

mization for tasks with multiple criteria. Prompt 179

reinforcement learning with natural language cri- 180

tiques has also been used to improve LLM-based 181

systems (Shinn et al., 2024; Feng et al., 2024). Due 182

to the abstract nature of raw text, theoreicall 183

3 Problem Formulation 184

Reference-Free LLM for Generating Critiques. 185

Let y be the output for a given task and y∗ be the 186

optimal response. For code generation, y∗ would 187

be a functionally correct, readable, and efficient so- 188

lution code snippet to the problem and y would be a 189

snippet attempting to solve the problem. We would 190

want y to match y∗ as closely as possible. Mathe- 191

matically, we can write the optimization problem, 192

argmin
y

l(y∗, y), (1) 193

where l is an objective function to capture the close- 194

ness of sampled response y to the ground truth y∗. 195

l is akin to a loss function in machine learning. 196

l(y∗, y) is a natural language critique c of y com- 197

paring it to y∗. We use the terms “critique” and 198

“loss” interchangeably as prior literature has estab- 199

lished the analogy (Yuksekgonul et al., 2024). 200

Limitations and Challenges in Critiques. In 201

an ideal setting, if we had access to y∗ as a ground- 202

truth label for a supervised loss (Tiwari, 2022), then 203

we can achieve the optimal performance. How- 204

ever, in practice, they are hard to obtain or simply 205

unknown for many tasks such as code generation 206

(Chen et al., 2024). Therefore, a direct comparison 207

to an optimal output y∗ and the resulting calcula- 208

tion of c are both infeasible. Current SoTA work 209

3

instead sample an evaluation c from an evaluation210

LLM policy conditioned by the response output211

y and prompt x as c ∼ π(·|x, y). Let us denote212

πc = π(·|x, y) for notation simplicity. When pa-213

rameterizing πc with an LLM, it is known as the214

LLM-judge. Ideally, we would like the evaluation c215

of y to be l(y∗, y). More specifically, let us assume216

the existence of an optimal LLM-judge denoted217

by π∗
c , sampling from which will give us samples218

of the true loss function l(y∗, y). However, LLM-219

judges tend to fail with no reference (Stureborg220

et al., 2024). Figure 1 demonstrates this with an221

example LLM-judge letting an error go undetected.222

A Single Reference-Free LLM-Judge Outputs223

Suboptimal Critques. As π∗
c is unavailable as224

discussed before, current SoTA methods sample225

the critique loss from a single evaluator as c ∼ πc.226

Now, we know that in the majority of the scenarios,227

πe will not be the true evaluator policy π∗
c . We now228

define the suboptimality between πc and π∗
c .229

Definition 1. Let c = l(ŷ, y), where ŷ is an
implicit approximation of y∗ from πc. Under
this scenario, we define the suboptimality gap
in the critique of prior SoTA as,

∆π
Cri-sub-opt

= Ec∗∼π∗(·|x,y) [c
∗]− Ec∼π(·|x,y) [c]

≤ |cmax|dTV(π
∗
c (·|x, y), π(·|x, y)). (2)

In this definition, we first expand upon the230

sub-optimality in the critique and then upper-231

bound using the total variation distance (Sripe-232

rumbudur et al., 2009). We see that the term233

dTV(π
∗
c (·|x, y), π(·|x, y)) is fixed and it cannot be234

improved once we have the evaluator π. This result235

shows the hardness of a single evaluator reaching236

π∗
c due to this constant gap and it will only reduce237

if our current LLM evaluator is near-optimal which238

is not true in the majority of the scenarios.239

An Ensemble of Reference-free LLM-Judges240

Better Models the Optimal Critique. Our key241

idea is to utilize multiple critiques. The thought242

that multiple LLM-judges would work better than243

one sounds intuitive but a naive introduction of244

multiple evaluators does not work in practice.245

We start our theoretical justification by defining246

the sub-optimality metric to measure the critique247

performance between π∗
c and Π as248

Definition 2. Let Π = {πk(·|x, y)}Kk=1 be the249

set of diverse judges for x, y. We then define
the sub-optimality metric, ∆Π

Cri-sub-opt, as

∆Π
Cri-sub-opt = Ec∼π∗

c (·|x,y) [c]

− E{ck∼πk(·|x,y)}Kk=1
[g(c1, · · · , cK)] .

(3) 250

∆Π
Cri-sub-opt is difference between the expected value 251

of the critique under the optimal unknown critique 252

distribution, and the expected function g which 253

maps the K different critiques to one. In practice, 254

g can be seen as an aggregation function such as 255

concatenation. For the following theorem, we pro- 256

vide the following assumption. 257

Assumption 1. g is a linear function.

If we had access to the optimal evaluator π∗
c , 258

we would have been able to get the ground-truth 259

critique c∗ = l(y∗, y) to perform the prompt op- 260

timization. However, in place of that, we have 261

a set of evaluators Π = (π1, π2 · · ·πK) and 262

g(c1, c2 · · · cK) is the aggregation function to com- 263

bine the critiques. We now present the follow- 264

ing theorem to relate the number of critiques to 265

∆Π
Cri-sub-opt. 266

Theorem 1. Let dTV denote the total varia-
tion distance between two distributions and let∑K

k=1 αk = 1. Assuming all pairs π1, π2 ∈ Π
are independent of one another,

∆Π
Cri-sub-opt ≤ |c|maxdTV(π

∗
c ,

K∑
k=1

αkπk). (4)

Proof. First, we characterize the 267

sub-optimality of our proposed cri- 268

tique method as ∆ = Ec∗∼π∗
c
[c∗] − 269

Ec1∼π1(·|x,y),c2∼π2(·|x,y)···πK
[g(c1, c2, c3 · · · cK)]. 270

Note that if ∆ is zero, we have the optimal critique. 271

Thus, we want ∆ to be as low as possible. For 272

notation simplicity of the expression, we will keep 273

to two evaluators without loss of generality. We 274

provide a version with K evaluators in Appendix 275

A.1. 276

∆ = Ec∗∼π∗
c
[c∗]

− Ec1∼π1(·|x,y),c2∼π2(·|x,y) [g(c1, c2)]

= Ec∗∼π∗
c
[c∗]− Ec∼πd(·|x,y) [c]︸ ︷︷ ︸

∆1

+

Ec∼πd(·|x,y) [c]− Ec1∼π1,c2∼π2 [g(c1, c2)]︸ ︷︷ ︸
∆2

,

277

4

where we add and subtract the terms Ec∼πd(·|x,y),278

with πd = απ1 + (1 − α)π2 (0 < α < 1) and279

then separate the two terms as ∆1,∆2. We next280

individually analyze the terms ∆1,∆2.281

We can now bound ∆1 as,282

∆1 = Ec∗∼π∗
c
[c∗]− Ec∼πd(·|x,y) [c]283

≤ |c∗|dTV(π
∗, πd)284

= |c∗|dTV(π
∗, απ1 + (1− α)π2),285

where we use the property of integral probability286

metric to bound ∆1 as the total variation distance287

between the optimal critique policy and the mixture288

critique policy. Next, we proceed to ∆2,289

∆2 =Ec∼πd(·|x,y) [c]−290

Ec1∼π1(·|x,y),c2∼π2(·|x,y) [g(c1, c2)]291

=Ec∼πd(·|x,y) [c]−292

Ec1∼π1(·|x,y),c2∼π2(·|x,y) [αc1 + (1− α)c2]293

=Ec∗∼πd(·|x,y) [c
∗]−294

αEc1∼π1(·|x,y) [c1]− (1− α)Ec2∼π2(·|x,y) [c2]295

=0, (5)296

where we expand upon the definition of ∆2 and297

use Assumption 1 on the aggregation function. Un-298

der this assumption, the two terms cancel out with299

the final result ∆2 = 0. Combining both terms300

concluded the proof. This bound indicates that301

the sub-optimality in critique can be expressed as302

the total variation distance between the optimal303

evaluator and the available mixture of evaluators.304

We know from Blei et al. (2003); Nguyen et al.305

(2016) that as we increase the number of mixture306

components and diversity amongst the components307

increase, it can approximate any distribution under308

certain assumptions.309

Our theoretical finding is for a one-shot cri-310

tique generation. In the following section, we will311

discuss how to introduce them into the iterative312

prompt optimization pipeline. Our idea is that at313

any iteration, aggregating multiple critiques will314

better model the unknown, optimal critique for the315

current output, thus leading to faster improvement316

than using a single LLM-judge.317

3.1 Prompt Optimization with Ensemble318

LLM-Judges319

Optimal Prompt Search. Let π(·|x) be the LLM320

system parameterized by fixed LLM policy that321

samples an output response y ∼ π(·|x) given an322

input prompt x ∈ X from the set of prompts X .323

We aim to sample a y ∼ π(·|x∗) by finding an 324

input prompt x∗ corresponding to x prompt such 325

that y is closer to the optimal response y∗. For 326

code generation, πθ would be the LLM generator; 327

x would be the input prompt; y is the generated 328

code; and the y∗ here would be a code snippet that 329

is a functionally correct, readable, and efficient 330

solution to the problem. Mathematically, we can 331

write, 332

x∗ = argmin
x∈X

Ey∼πθ(·|x)[l(y
∗, y)]. (6) 333

Iterative prompt optimization. Given an initial 334

prompt x1, we perform an iterative prompt opti- 335

mization method to find x∗ as follows. For each 336

iteration t = 1 to T , we start by (i) sampling yt ∼ 337

πθ(·|xt), (ii) evaluate the response yt to obtain cri- 338

tique ct = l(y∗, yt), and then finally (iii) generate 339

the next prompt xt+1 ∼ π(·|yt, ct, xt). Recent 340

work by Yuksekgonul et al. (2024) decompose step 341

(iii) into two separate steps and (iii.a) first generate 342

the feedback ft ∼ π(·|yt, ct, xt), and then (iii.b) 343

generate the next prompt xt+1 ∼ π(·|yt, ft, xt). 344

For simplicity, we use the same variable π for all 345

LLM policies because the outputs are dependent 346

on the input variables the policy is conditioned on, 347

so the same LLM model can be utilized. 348

The success of this method is heavily dependent 349

on step (ii), obtaining the LLM-generated critiques. 350

A suboptimal critique can hinder the optimization 351

process. We now show that in the reference-free 352

case, using an ensemble of LLM-judges will pro- 353

vide faster prompt optimization and improved LLM 354

system output. 355

4 Experiments and Results 356

Code Generation Experiments: We test the mer- 357

its of our ensemble judge approach via the code 358

generation task because of its practicalness and 359

its multiple plausible criteria (e.g., correctness, ef- 360

ficiency). Here, the LLM generator is given a 361

code prompt and must produce a code snippet 362

that passes the unit tests for that prompt. This 363

code generation task is a form of instance opti- 364

mization (Yuksekgonul et al., 2024), whereby the 365

optimization variable, the input prompt, is defined 366

as xt+1 := (yt, ft). y0, f0 are empty strings. We 367

provide empirical results showing that prompt op- 368

timization with an ensemble of judges achieves 369

higher success in test cases than single-judge-based 370

optimization. Experiments were run on an Apple 371

M1 Pro and macOS 14.5. 372

5

Figure 2: Completion Rate (CR) over 10 iterations Readability Points (RP) for code generation on LeetCodeHard.
Over 10 iterations for each coding problem, increasing the number of judges significantly increases the functional
correctness, and having 2 judges greatly increases the RP. The line plot shows the average over the 3 trials with
a 95% confidence interval. However, for readability, continual increase does not continuously improve RP. This
shows empirically that increasing judges does not monotonically improve all aspects of task.

Judge Method Agg CR (%) RP
Self-Refine (Baseline) – 70.0± 4.08 52.3

Vanilla Feedback Loop (Baseline) – 65.0± 14.72 52.8
1 Judge (Baseline) – 71.67± 2.36 52.6

6 Judges – All Criteria C 80.0 ± 4.08 54.4
6 Judges – All Criteria Sum 71.67± 8.5 57.7
6 Judges – All Criteria Sel 78.33± 6.24 44.8

6 Judges – One Criterion Each C 78.33± 2.36 37.0
6 Judges – One Criterion Each Sum 76.67± 6.24 29.2
6 Judges – One Criterion Each Sel 75.0± 4.08 19.2

Table 2: The Completion Rate (CR) and Readability Points (RP) over LeetCodeHard comparing various ensemble
evaluation methods against inference-time improvement baselines. Ensemble methods consistently outperform
baselines in terms of CR and the two highest-ranking methods in terms of readability are ensemble. The difference
in CR and RP between ensemble methods emphasizes the non-trivial nature of designing the ensemble evaluation
protocol.

Implementation Details: We use TextGrad373

from (Yuksekgonul et al., 2024) to implement the374

prompt optimization pipeline. We chose TextGrad375

because it separates the critique and feedback into376

two separate LLM calls, making it better to analyze377

the critique module in isolation. In TextGrad, the378

system prompt that generates the initial code, pinit,379

is different from the system prompt that updates the380

code in the following refinement iterations pupdate.381

At t = 0, pinit specifies to the LLM that it is a code382

generator while the pupdate from 1 ≤ t ≤ T speci-383

fies that it generates a new version yt+1 given the384

current code yt and the feedback ft. The transition385

from pinit to pupdate is explicitly programmed and386

not caused by the optimization process.387

LLM Setup Details: We use GPT-4o for all388

LLM calls. In the Appendix, we provide additional389

experiments and ablations. Across all trials for 390

both methods, we use the same initial generated 391

code for a given problem so both critique protocols 392

can judge the same code in the initial iteration. We 393

share the critique system prompt for both methods 394

in Appendix A.2. Because we want a diversity 395

of critiques, we set the temperature of all LLM- 396

judge call to be 1. We ablate on the judge call 397

temperature in the Appendix. All other LLM calls 398

in the Textgrad pipeline with call temperature set 399

to 0 similar to Yuksekgonul et al. (2024). For all 400

experiments, the top_p = 0.99. 401

Criteria for Critiquing Code. The set of cri- 402

tique criteria we used for this task are as follows: 403

syntax errors, logic errors, correctness, readabil- 404

ity, runtime, and code redundancy. The following 405

results are based on utilizing all these roles. We 406

6

Criteria Judge Method Agg CR (%)

Correctness, Logic, Readability,

Single (Baseline) – 66.67± 4.71
Ensemble - All Criteria C 78.33 ± 2.36

Ensemble - One Criterion Each C 71.67± 8.5
Ensemble - All Criteria Sum 66.67± 8.5

Redundancy, Runtime, Syntax Ensemble - One Criterion Each Sum 75.0± 4.08
Ensemble - All Criteria Sel 75.0± 8.16

Ensemble - One Criterion Each Sel 73.33± 4.71

Readability, Redundancy, Runtime

Single (Baseline) – 66.67± 2.36
Ensemble - All Criteria C 71.67± 4.71

Ensemble - One Criterion Each C 76.67 ± 4.71
Ensemble - All Criteria Sum 73.33± 6.24

Ensemble - One Criterion Each Sum 70.00± 7.07
Ensemble - All Criteria Sel 70.00± 4.08

Ensemble - One Criterion Each Sel 71.67± 6.24

Correctness, Logic, Syntax

Single (Baseline) – 78.33 ± 6.24
Ensemble - All Criteria C 73.33± 2.36

Ensemble - One Criterion Each C 76.67± 2.36
Ensemble - All Criteria Sum 78.33 ± 2.36

Ensemble - One Criterion Each Sum 75.00± 7.07
Ensemble - All Criteria Sel 78.33 ± 6.24

Ensemble - One Criterion Each Sel 75.00± 4.08

Logic, Readability

Single (Baseline) – 76.67± 4.71
Ensemble - All Criteria C 72.5± 7.50

Ensemble - One Criterion Each C 70.0± 7.07
Ensemble - All Criteria Sum 75.00± 10.80

Ensemble - One Criterion Each Sum 75.00± 7.07
Ensemble - All Criteria Sel 80.0 ± 4.08

Ensemble - One Criterion Each Sel 70.00± 7.07

Table 3: Utilzing Different Roles Affects CR: This table summarizes the CR and RP for the various evaluation
methods given different combinations of roles. We report the mean and standard deviation of 3 trials for CR. We
use 10 problem of LeetCodeHard for 4 iterations each.

chose three roles that correlate to maximizing the407

number of passed test cases: correctness, logic, and408

syntax. We specifically chose these three to incor-409

porate an overall correctness role with two more410

specific roles.411

Ensemble Design: One decision in design is412

to give the separate LLM calls different criteria to413

judge the output. In all criteria, we specify to each414

LLM judge call that it should generate a critique of415

the output based on all the criteria. Effectively, we416

are doing repeated sampling of the LLM-judge. In417

one criterion each, we give each judge a single cri-418

terion to focus its judgment. Once we have gener-419

ated the critiques from all the judge LLM calls, we420

aggregate them. We experiment with three different421

aggregation methods. 1) String concatenation (C):422

a form of addition for string objects that maintains423

the semantic meaning of the individual critiques;424

we chose concatenation to model a linear function425

for g with uniform weights α. 2) Summarization426

(Sum): another LLM to take in the critiques to427

give a final response; summarization is analogous428

to applying a non-linear g aggregation method to429

the critiques. 3) Selection (Sel): an LLM selects430

the one critique that it believes will help improve431

the output the most, modeling a max operator on 432

the critiques. 433

Baselines: For baselines other than a single- 434

judge approach, we chose Self-Refine (Madaan 435

et al., 2024) where the LLM code generator it- 436

eratively reflects and updates on its own output. 437

We implement this by having a consistent system 438

prompt throughout all the LLM calls and only 439

changing the user prompts. We also compared 440

with a vanilla feedback loop, where there is a sep- 441

arate feedback LLM call but there is no LLM call 442

for explicitly critique generation. Please see the 443

Appendix for more details on the prompts. 444

Metrics for Code: For correctness, we report 445

the Completion Rate (CR), the percentage of 446

coding problems with all test cases passed (Yuk- 447

sekgonul et al., 2024). Since we are focused on 448

the effect of the evaluation protocol, we report the 449

best-performing code generated in the optimiza- 450

tion process after the initial zero-shot generation. 451

Specifically, if a generated snippet at any iteration 452

after the initial generation passes all test cases, that 453

problem is considered completed. For readability, 454

we take the code snippet of the last iteration of 455

each method we are comparing and ask a panel of 456

7

LLM-judges, GPT-4o, GPT-4o-mini, GPT-4-turbo,457

and GPT-4, to rank their readability of the code458

snippets. We then calculate the Borda Count for459

each method. The Borda Count for a method is460

the number of methods that rank below it. For ex-461

ample, a method that is the highest ranked out of462

four methods gets 3 points. For each method, we463

sum all of the Borda Counts across all problems.464

To normalize across experiments that have varying465

sets of methods, we divide the total Borda Count466

by the number of methods. We call this value the467

Readability Points (RP).468

Dataset. We use the LeetCodeHard (Shinn et al.,469

2024) dataset containing a set of coding problem470

prompts and multiple unit tests for each problem to471

evaluate the generated code. We use 20 LeetCode-472

Hard (Shinn et al., 2024) dataset problems with an473

average of 2− 3 unit tests per problem. We with-474

hold giving any of the evaluators of either method475

any information on unit tests to simulate the sce-476

nario where unit tests may be unavailable to help477

judge (Chen et al., 2024). Please see the Appendix478

where we provide additional results on Humaneval479

(Chen et al., 2021) and EvoEval benchmarks (Xia480

et al., 2024).481

How does increasing judges help empirically?482

We plot the performance over 3 trials on LeetCode-483

Hard in Figure 2. In this experiment, we give the484

judge LLMs for all approaches all the criteria to485

critique the output and we use concatenation to486

aggregate. For functional correctness, ensembling487

judges achieve higher CR rates than a single judge.488

Furthermore, while using a single judge achieves489

similar RP to using 6 judges, it has significantly490

less than RP using 2 evaluators. These results em-491

pirically show that increasing judges can improve492

code in both aspects but not necessarily monotoni-493

cally.494

How Do Design Choices for Ensemble Im-495

pact Performance? In Table 2 we report the496

mean and standard deviation for CR. We see that497

the lowest-performing ensemble method, 6 judges498

with all criteria with summarization, achieves the499

same mean CR as the highest-performing baseline,500

single-judge. Showing the superiority of ensem-501

bling over baselines for correctness. There is a 9%502

difference in mean CR between ensemble methods.503

For readability, the two highest-ranked methods are504

ensemble methods. All other ensemble methods505

fall below the baselines in the rankings. This dif-506

ference in CR and RP between ensemble methods507

highlights the importance of design.508

Criteria Order CR (%)
Correctness, Logic, Readability,

71.67± 8.50
Redundancy, Runtime, Syntax

Redundancy, Logic, Correctness,
73.33± 2.36

Runtime, Readability, Syntax
Syntax, Runtime, Redundancy, 75.00 ± 7.07
Readability, Logic, Correctness

Table 4: Impact of Criteria Order CR from 10 prob-
lems of LeetCodeHard for 4 iterations. We used LLM
judges with separate criteria with concatenation. Crite-
ria Order specifies the order the LLM judges, affecting
the resulting concatenated critique string.

Combination and Order of Evaluation Crite- 509

ria Affects Optimization Performance. In Table 510

6, we analyze the effect the different combinations 511

of evaluation criteria have on the CR over Leet- 512

CodeHard. Similar studies have been performed 513

with finetuning using diverse reward models (Rame 514

et al., 2024). Surprisingly and counter-intuitively, 515

we see some methods increase in correctness when 516

the three criteria for correctness are removed. We 517

do see an overall increase in methods when the 518

non-correctness criterion are removed, suggesting 519

the LLM judges can better focus on analyzing the 520

functionality of the code. Because concatenating 521

strings is not commutative like adding scalar num- 522

bers. in Table 4, we provide an ablation where we 523

change the order of the criteria in the judge system 524

prompt. In this experiment, we used judges with 525

one criterion each. Thus, changing the order of the 526

call changes the concatenated string. We do not see 527

a significant change in performance between the 528

orderings suggesting that using ensemble judges is 529

unaffected by the order of critiques. 530

5 Conclusion 531

In this work, we tackle reference-free LLM-judges 532

for generating natural language critiques. Our key 533

insight was that aggregating multiple generated cri- 534

tiques reduces the suboptimality gap in evaluations 535

for a given output. We theoretically motivate en- 536

semble LLM-judges and empirically validate the 537

paradigm with extensive prompt optimization ex- 538

periments in code generation. We also provide 539

ablations such as on the diversity of roles, role com- 540

binations, and evaluation temperature, consistently 541

demonstrating the need for multiple evaluators. 542

8

Limitations and Further Work543

We only empirically study our approach in code544

generation. Further work could extend this evalu-545

ation approach to other tasks that require multiple546

criteria like molecule optimization or text gener-547

ation. In terms of system complexity, we only548

study multiple evaluators for AI systems compris-549

ing a single LLM-based agent, and using a com-550

pound system with multiple elements such as a551

web search agent (Agentic AI system) could be552

interesting. Another aspect of the work that can be553

explored further is weighting the different LLM-554

based evaluations. We gave uniform weighting via555

concatenation. However, further work could try556

and adaptively change the weighting as the out-557

put progresses, representing the need to change the558

focus of evaluation over time. Another research di-559

rection involves removing the linearity assumption560

on g.561

Acknowledgements562

ChatGPT (4o) was used to help with coding exper-563

iments.564

References565

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama566
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,567
Diogo Almeida, Janko Altenschmidt, Sam Altman,568
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.569
arXiv preprint arXiv:2303.08774.570

Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao571
Deng, Anirudh Satheesh, John Langford, and Furong572
Huang. 2024. Ensemw2s: Can an ensemble of llms573
be leveraged to obtain a stronger llm? arXiv preprint574
arXiv:2410.04571.575

Zachary Ankner, Mansheej Paul, Brandon Cui,576
Jonathan D Chang, and Prithviraj Ammanabrolu.577
2024. Critique-out-loud reward models. arXiv578
preprint arXiv:2408.11791.579

Sher Badshah and Hassan Sajjad. 2024. Reference-580
guided verdict: Llms-as-judges in automatic581
evaluation of free-form text. arXiv preprint582
arXiv:2408.09235.583

Lochan Basyal and Mihir Sanghvi. 2023. Text584
summarization using large language models: a585
comparative study of mpt-7b-instruct, falcon-7b-586
instruct, and openai chat-gpt models. arXiv preprint587
arXiv:2310.10449.588

David M Blei, Andrew Y Ng, and Michael I Jordan.589
2003. Latent dirichlet allocation. Journal of machine590
Learning research, 3(Jan):993–1022.591

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed 592
Elhoseiny. 2022. Visualgpt: Data-efficient adapta- 593
tion of pretrained language models for image caption- 594
ing. In Proceedings of the IEEE/CVF Conference 595
on Computer Vision and Pattern Recognition, pages 596
18030–18040. 597

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin 598
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing 599
Gao, Jindong Wang, et al. 2024. A survey on evalu- 600
ating large language models in code generation tasks. 601
arXiv preprint arXiv:2408.16498. 602

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 603
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 604
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 605
Greg Brockman, et al. 2021. Evaluating large 606
language models trained on code. arXiv preprint 607
arXiv:2107.03374. 608

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning 609
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang. 610
2023. Black-Box Prompt Optimization: Aligning 611
Large Language Models without Model Training. 612
arXiv e-prints, arXiv:2311.04155. 613

Xidong Feng, Ziyu Wan, Mengyue Yang, Ziyan Wang, 614
Girish A Koushik, Yali Du, Ying Wen, and Jun 615
Wang. 2024. Natural language reinforcement learn- 616
ing. CoRR. 617

Sumit Gulwani. 2010. Dimensions in program synthe- 618
sis. In Proceedings of the 12th international ACM 619
SIGPLAN symposium on Principles and practice of 620
declarative programming, pages 13–24. 621

Han He, Qianchu Liu, Lei Xu, Chaitanya Shivade, 622
Yi Zhang, Sundararajan Srinivasan, and Katrin Kirch- 623
hoff. 2024. Crispo: Multi-aspect critique-suggestion- 624
guided automatic prompt optimization for text gener- 625
ation. arXiv preprint arXiv:2410.02748. 626

Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, and 627
Tiejun Zhao. 2024. An empirical study of llm- 628
as-a-judge for llm evaluation: Fine-tuned judge 629
models are task-specific classifiers. arXiv preprint 630
arXiv:2403.02839. 631

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 632
Brown, Benjamin Chess, Rewon Child, Scott Gray, 633
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 634
Scaling laws for neural language models. arXiv 635
preprint arXiv:2001.08361. 636

Zachary Kenton, Noah Y Siegel, János Kramár, 637
Jonah Brown-Cohen, Samuel Albanie, Jannis Bu- 638
lian, Rishabh Agarwal, David Lindner, Yunhao Tang, 639
Noah D Goodman, et al. 2024. On scalable oversight 640
with weak llms judging strong llms. arXiv preprint 641
arXiv:2407.04622. 642

Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne 643
Longpre, Chaeeun Kim, Dongkeun Yoon, Guijin 644
Son, Yejin Cho, Sheikh Shafayat, Jinheon Baek, et al. 645
2024. The biggen bench: A principled benchmark 646
for fine-grained evaluation of language models with 647
language models. arXiv preprint arXiv:2406.05761. 648

9

https://doi.org/10.48550/arXiv.2311.04155
https://doi.org/10.48550/arXiv.2311.04155
https://doi.org/10.48550/arXiv.2311.04155

Tom Kocmi and Christian Federmann. 2023. Large lan-649
guage models are state-of-the-art evaluators of trans-650
lation quality. In Proceedings of the 24th Annual651
Conference of the European Association for Machine652
Translation, pages 193–203, Tampere, Finland. Euro-653
pean Association for Machine Translation.654

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad655
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat-656
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu,657
et al. 2024. From generation to judgment: Opportuni-658
ties and challenges of llm-as-a-judge. arXiv preprint659
arXiv:2411.16594.660

Ruosen Li, Teerth Patel, and Xinya Du. 2023. Prd: Peer661
rank and discussion improve large language model662
based evaluations. arXiv preprint arXiv:2307.02762.663

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler664
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,665
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,666
et al. 2024. Self-refine: Iterative refinement with667
self-feedback. Advances in Neural Information Pro-668
cessing Systems, 36.669

Hien D Nguyen, Luke R Lloyd-Jones, and Geoffrey J670
McLachlan. 2016. A universal approximation theo-671
rem for mixture-of-experts models. Neural computa-672
tion, 28(12):2585–2593.673

Huyen Nguyen, Haihua Chen, Lavanya Pobbathi, and674
Junhua Ding. 2024. A comparative study of quality675
evaluation methods for text summarization. arXiv676
preprint arXiv:2407.00747.677

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-678
guang Zhu, and Michael Zeng. 2023. Automatic679
prompt optimization with" gradient descent" and680
beam search. arXiv preprint arXiv:2305.03495.681

Alexandre Rame, Guillaume Couairon, Corentin682
Dancette, Jean-Baptiste Gaya, Mustafa Shukor,683
Laure Soulier, and Matthieu Cord. 2024. Rewarded684
soups: towards pareto-optimal alignment by inter-685
polating weights fine-tuned on diverse rewards. Ad-686
vances in Neural Information Processing Systems,687
36.688

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.689
BLEURT: Learning robust metrics for text genera-690
tion. In Proceedings of the 58th Annual Meeting of691
the Association for Computational Linguistics, pages692
7881–7892, Online. Association for Computational693
Linguistics.694

Noah Shinn, Federico Cassano, Ashwin Gopinath,695
Karthik Narasimhan, and Shunyu Yao. 2024. Re-696
flexion: Language agents with verbal reinforcement697
learning. Advances in Neural Information Process-698
ing Systems, 36.699

Bharath K Sriperumbudur, Kenji Fukumizu, Arthur700
Gretton, Bernhard Schölkopf, and Gert RG Lanck-701
riet. 2009. On integral probability metrics,\phi-702
divergences and binary classification. arXiv preprint703
arXiv:0901.2698.704

Benedikt Stroebl, Sayash Kapoor, and Arvind 705
Narayanan. 2024. Inference scaling Flaws: The 706
limits of llm resampling with imperfect verifiers. 707
Preprint, arXiv:2411.17501. 708

Rickard Stureborg, Dimitris Alikaniotis, and Yoshi 709
Suhara. 2024. Large language models are in- 710
consistent and biased evaluators. arXiv preprint 711
arXiv:2405.01724. 712

Ashish Tiwari. 2022. Chapter 2 - supervised learn- 713
ing: From theory to applications. In Rajiv Pandey, 714
Sunil Kumar Khatri, Neeraj kumar Singh, and Parul 715
Verma, editors, Artificial Intelligence and Machine 716
Learning for EDGE Computing, pages 23–32. Aca- 717
demic Press. 718

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 719
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 720
Baptiste Rozière, Naman Goyal, Eric Hambro, 721
Faisal Azhar, et al. 2023. Llama: Open and effi- 722
cient foundation language models. arXiv preprint 723
arXiv:2302.13971. 724

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yix- 725
uan Su, Aleksandra Piktus, Arkady Arkhangorodsky, 726
Minjie Xu, Naomi White, and Patrick Lewis. 2024. 727
Replacing judges with juries: Evaluating llm gen- 728
erations with a panel of diverse models. Preprint, 729
arXiv:2404.18796. 730

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, 731
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. 732
Xing, and Zhiting Hu. 2023. PromptAgent: 733
Strategic Planning with Language Models Enables 734
Expert-level Prompt Optimization. arXiv e-prints, 735
arXiv:2310.16427. 736

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. 737
2024. Top leaderboard ranking = top coding pro- 738
ficiency, always? evoeval: Evolving coding bench- 739
marks via llm. arXiv preprint. 740

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, 741
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun- 742
yuan Li. 2024. Llava-critic: Learning to evaluate mul- 743
timodal models. arXiv preprint arXiv:2410.02712. 744

Tengyu Xu, Eryk Helenowski, Karthik Abinav 745
Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shao- 746
liang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou, 747
et al. 2024. The perfect blend: Redefining rlhf with 748
mixture of judges. arXiv preprint arXiv:2409.20370. 749

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, 750
Sheng Liu, Zhi Huang, Carlos Guestrin, and James 751
Zou. 2024. Textgrad: Automatic “differentiation” via 752
text. arXiv preprint arXiv:2406.07496. 753

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie 754
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and 755
Jian-Guang Lou. 2022. Large language mod- 756
els meet nl2code: A survey. arXiv preprint 757
arXiv:2212.09420. 758

10

https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427
https://doi.org/10.48550/arXiv.2310.16427

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan759
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,760
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,761
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-762
ing llm-as-a-judge with mt-bench and chatbot arena.763
Preprint, arXiv:2306.05685.764

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,765
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy766
Ba. 2022. Large language models are human-level767
prompt engineers. arXiv preprint arXiv:2211.01910.768

11

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Appendix769

A.1 Proof of Theorem 1 Extended to K770

evaluators771

We present the proof of Theorem 4 generalized to772

K evaluators.773
Proof. First, we characterize the774

sub-optimality of our proposed cri-775
tique method as ∆ = Ec∗∼π∗

c
[c∗] −776

Ec1∼π1(·|x,y),c2∼π2(·|x,y)···πK
[g(c1, c2, c3 · · · cK)].777

Note that if ∆ is zero, we have the optimal critique.778
Thus, we want ∆ to be as low as possible.779

∆ = Ec∗∼π∗
c
[c∗]

− Ec1∼π1(·|x,y),c2∼π2(·|x,y)···πK
[g(c1, c2, ..., cK)]

= Ec∗∼π∗
c
[c∗]− Ec∼πd(·|x,y) [c]︸ ︷︷ ︸

∆1

+

Ec∼πd(·|x,y) [c]− Ec1∼π1(·|x,y),···πK
[g(c1, c2, ..., cK)]︸ ︷︷ ︸

∆2

,

780

where we add and subtract the terms Ec∼πd(·|x,y),781

with πd =
∑K

i=1 αiπi (
∑K

i=1 α = 1) and then782

separate the two terms as ∆1,∆2. We next individ-783

ually analyze the terms ∆1,∆2.784

We can now bound ∆1 as,785

∆1 = Ec∗∼π∗
c
[c∗]− Ec∼πd(·|x,y) [c]786

≤ |c∗|dTV(π
∗, πd)787

= |c∗|dTV(π
∗,

K∑
i=1

αiπi),788

where we use the property of integral probability789

metric to bound ∆1 as the total variation distance790

between the optimal critique policy and the mixture791

critique policy. Next, we proceed to ∆2,792

∆2 =Ec∼πd(·|x,y) [c]−793

Ec1∼π1(·|x,y),··· ,cK∼πK(·|x,y) [g(c1, · · · , cK)]794

=Ec∼πd(·|x,y) [c]−795

Ec1∼π1(·|x,y),··· ,cK∼πK(·|x,y)

[
K∑
i=1

αici

]
796

=Ec∗∼πd(·|x,y) [c
∗]−

K∑
i=1

αiEci∼πi(·|x,y) [ci]797

=0, (7)798

where we expand upon the definition of ∆2 and799

use Assumption 1 on the aggregation function. Un-800

der this assumption, the two terms cancel out with801

the final result ∆2 = 0. Combining both terms802

concluded the proof.803

A.2 Judge System Prompt 804

We provide the judge system prompt in Figure 3. 805

For Single-Eval the system prompt is given to only 806

one LLM call and all the roles utilized are listed 807

together in [INSERT UTILIZED CRITERIA]. For 808

ensemble with separate criteria, each evaluator gets 809

one specified in [INSERT UTILIZED CRITERIA]. 810

A.3 Baseline Details 811

Here are the details for the two baselines that do 812

not incorporate a separate evaluation protocol. 813

Self-Refine: In self-refine (Madaan et al., 2024), 814

the system prompt p is constant throughout the 815

initial generation, feedback, and update stages. 816

During the feedback and update stages, the user 817

prompts is modified to specify that an output is 818

already given and the LLM must either now self- 819

reflect to generate feedback or must use both the 820

output and feedback to generate and update the re- 821

sponse. We provide the feedback and user prompts 822

in Figure 4. 823

Vanilla Feedback Loop: A separate LLM pro- 824

vides feedback to the LLM generator. The system 825

prompt for the update generation is different than 826

the one for the initial generation. 827

We provide addtional results with HumanEval 828

(Chen et al., 2021) and EvoEval (Xia et al., 2024) 829

benchmarks. HumanEval is a standard code gener- 830

ation benchmark and EvoEval (we specifically use 831

EvoEval-Difficult) is a more recent one that adapts 832

the questions of HumanEval to have more addi- 833

tional constraints and requirements. We see that 834

for the harder benchmark of EvoEval, the benefits 835

of ensembling LLM judges is more clear. 836

12

Figure 3: Judge System Prompt.

Figure 4: System Prompts for Vanilla Feedback Loop (Left) and User Prompts for Self-Refine and Vanilla Feedback
Loop (Right)

Judge Method Agg EvoEval CR (%) HumanEval CR (%)
Vanilla Feedback Loop (Baseline) – 40.0± 16.33 90.0 ± 0.0

Self-Refine (Baseline) – 33.33± 9.43 90.0 ± 0.0

1 Judge (Baseline) – 50.0± 0.0 90.0 ± 0.0
6 Judges – All Criteria C 40.0± 8.16 86.67± 4.71
6 Judges – All Criteria Sum 50.0± 0.0 86.67± 4.71
6 Judges – All Criteria Sel 44.44± 7.86 86.67± 4.71

6 Judges – One Criterion Each C 50.0± 8.16 90.0 ± 0.0
6 Judges – One Criterion Each Sum 50.0± 8.16 86.67± 4.71
6 Judges – One Criterion Each Sel 60.0 ± 8.16 82.59± 5.32

Table 5: The CR over HumanEval and EvoEval-Difficult comparing various ensemble evaluation methods against
inference-time improvement baselines. Ensemble methods consistently outperform baselines CR and the two highest
ranking methods in terms of readability are ensemble. The difference in CR and RP between ensemble methods
emphasize the non-trivial nature of designing the ensemble evaluation protocol. We use 10 questions from each
dataset and use 4 iterations of prompt optimization per question.

13

Judge Temperature Judge Method CR (%)

0
Single (Baseline) 76.67± 4.71

Ensemble - All Criteria 71.67± 4.71
Ensemble - One Criterion Each 73.33± 4.71

0.25
Single (Baseline) 71.67± 4.71

Ensemble - All Criteria 73.33± 6.24
Ensemble - One Criterion Each 71.67± 4.71

0.50
Single (Baseline) 75.0± 4.08

Ensemble - All Criteria 73.33± 6.24
Ensemble - One Criterion Each 78.33± 2.36

0.75
Single (Baseline) 75.0± 4.08

Ensemble - All Criteria 76.67± 4.71
Ensemble - One Criterion Each 71.67± 8.5

1
Single (Baseline) 66.67± 4.71

Ensemble - All Criteria 78.33± 2.36
Ensemble - One Criterion Each 71.67± 8.50

Table 6: Temperature Ablation: This table summarizes the CR for the various evaluation methods given different
combinations of roles. We report the mean and standard deviation of 3 trials for CR.

A.4 Ensemble Methods Outpeform837

Single-Judge Method with Incorrect838

Judge.839

To highlight the robustness of ensemble judges to840

incorrect evaluations, we introduce an adversarial841

evaluator. For ensemble, methods with separate842

evaluation instructions, we specify in the system843

prompt of the correctness judge to always generate844

a critique stating that the code solution works. Sim-845

ilarly, for methods where the system prompt has all846

the criteria, we specify to output a critique claiming847

that code works when discussing correctness. We848

repeat the same experiment but attack the readabil-849

ity criteria by instructing the evaluation protocols850

to generate a critique stating that the code is read-851

able. We run all prompt optimization processes for852

4 iterations.853

The results of both experiments are shown in854

Table 7. In both experiments, ensemble methods855

still outperforms the single-judge approach in terms856

of CR, with the worst-performing ensemble method857

having at least the same mean CR as a single-judge.858

We believe this results is intuitively because having859

multiple critiques will lessen the influence of one860

wrong one. 861

Judge Method Aggregation CR (%)
Single – 68.33± 6.24

6 - All Criteria C 75.0± 4.08
6 - All Criteria Sum 75.0± 4.08
6 - All Criteria Sel 78.33 ± 4.71

6 - Separate Criteria C 76.67± 8.5
6 - Separate Criteria Sum 76.67± 6.24
6 - Separate Criteria Sel 71.67± 11.79

Table 7: CR on LeetCodeHard with one purposefully
incorrect judge that always says the code is correct.
Unsurprisingly, ensemble still outperforms single.

14

	Introduction
	Related Works
	Problem Formulation
	Prompt Optimization with Ensemble LLM-Judges

	Experiments and Results
	Conclusion
	Appendix
	Proof of Theorem 1 Extended to K evaluators
	Judge System Prompt
	Baseline Details
	Ensemble Methods Outpeform Single-Judge Method with Incorrect Judge.

