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Abstract

Large language models (LLMs) are considered001
valuable Intellectual Properties (IP) for legit-002
imate owners due to the enormous computa-003
tional cost of training. It is crucial to protect004
the IP of LLMs from malicious stealing or005
unauthorized deployment. Despite existing ef-006
forts in watermarking and fingerprinting LLMs,007
these methods either impact the text genera-008
tion process or are limited in white-box access009
to the suspect model, making them impracti-010
cal. Hence, we propose DuFFin, a novel Dual-011
Level Fingerprinting Framework for black-box012
setting ownership verification. DuFFin extracts013
the trigger pattern and the knowledge-level fin-014
gerprints to identify the source of a suspect015
model. We conduct experiments on a variety of016
models collected from the open-source web-017
site, including four popular base models as018
protected LLMs and their fine-tuning, quanti-019
zation, and safety alignment versions which020
are released by large companies, start-ups,021
and personal users. Results show that our022
method can accurately verify the copyright of023
the base protected LLM on their model variants,024
achieving the IP-ROC metric greater than 0.95.025
Our code is available at https://anonymous.026
4open.science/r/acl-2025-duffin-B4EE.027

1 Introduction028

In recent decades, the emergence of Large Lan-029

guage Models (LLMs) has significantly evolved the030

entire AI community (Brown et al., 2020; OpenAI031

et al., 2024; Anil et al., 2023; Touvron et al., 2023;032

Jiang et al., 2023). On account of the difficulty in033

pre-train corpus collection, the high demand for034

GPU computing resources, and the tremendous035

manpower cost, training LLMs is a challenging036

and expensive task, which indicates that LLMs are037

highly valuable intellectual property (IP). However,038

the easy accessibility of the on-the-shelf LLMs en-039

ables users to customize their private models for040

commercial use, without necessarily claiming the041

copyright of the base model they utilized. Given 042

the potential risk caused by these malicious users 043

or third parties, it is crucial to protect the LLMs’ 044

intellectual property. 045

Given a suspect model, Deep IP protection can 046

determine whether it originated from a specific 047

protected model. There are two main methods 048

for verifying LLM ownership: invasive and non- 049

invasive. Invasive methods typically inject a water- 050

mark into the protected model with private back- 051

door triggers and decide the suspect model’s owner- 052

ship by checking its generated content in response 053

to the triggers (Xu et al., 2024; Russinovich and 054

Salem, 2024). Apart from the model watermarking, 055

Kirchenbauer et al. (2023); Wang et al. (2024a); 056

Christ et al. (2024) first proposed LLMs textual wa- 057

termark by splitting the vocabulary into Red-Green 058

list during the generation process. The textual wa- 059

termark is verified by checking whether the gener- 060

ated text contains specific tokens from the Green 061

list. Despite the progress they have made, inva- 062

sive methods either rely on modifying the model’s 063

parameters or intervening in the text generation pro- 064

cess, which brings unexpected effects to the text 065

generation quality. 066

By contrast, the noninvasive method aims to ex- 067

tract fingerprints containing IP information without 068

modifying the model’s parameters or generation 069

process. Hence, the fingerprint method will have 070

no impact on the quality of generated text and in- 071

curs no additional computational cost for modify- 072

ing protected models. Given these benefits, some 073

initial efforts have been conducted in ownership 074

verification by noninvasive fingerprinting (Zhang 075

et al., 2024; Pasquini et al., 2024; Iourovitski et al., 076

2024; Yang and Wu, 2024). However, many of 077

these methods extract fingerprints from the LLM’s 078

intermediate layer output, which is impractical to 079

access for suspect LLMs. Furthermore, pirated 080

models are often created with the modification of 081

their original LLM through method such as super- 082
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vised fine-tuning, quantization, and direct prefer-083

ence optimization, which challenges the applicabil-084

ity of existing methods in real-world scenarios.085

Therefore, in this work, we investigate a practi-086

cal fingerprinting method, which aims to address087

the following two challenges in real-world applica-088

tions: (i) how to extract high-quality fingerprints089

containing IP information in a black-box setting,090

where LLM’s parameters and intermediate layer091

outputs are inaccessible; (ii) how to effectively ver-092

ify the protected model’s ownership on a pirated093

model, which is derived from the protected model094

by parameter modification, e.g., supervised fine-095

tuning. To address these challenges, we propose096

DuFFin, a Dual-Level Fingerprint Framework to097

protect the IP of LLMs.098

As Fig. 1 shows, DuFFin will extract the finger-099

prints from the LLMs in both trigger-pattern level100

and knowledge level. The trigger-pattern level fin-101

gerprint is based on the insight that pirated models102

derived from the protected model tend to produce103

similar responses to certain prompts. The trigger-104

pattern level fingerprints are extracting from the105

model’s response to deliberately selected prompt106

triggers. In addition, DuFFin introduce a novel107

approach to optimize the trigger-pattern fingerprint108

extractor to capture the intrinsic patterns of LLMs109

that are resistant to the model modification. The110

knowledge-level fingerprint is to exploit the con-111

sistency of knowledge capabilities across domains112

between protected models and pirated models, as113

the knowledge capabilities will not challenge sig-114

nificantly in the parameter modification phase of115

model stealing. More precisely, the knowledge-116

level fingerprints are obtained from the answers to117

diverse knowledge questions. A knowledge ques-118

tion set that containing questions from various do-119

mains is constructed in DuFFin. Moreover, the120

fingerprints of two levels can be combined together121

to further enhance the IP protection with finger-122

printing. In summary, our main contributions are:123

• We study a novel problem of practical finger-124

printing, which identifies pirated models that can125

modify protected model parameters with black-126

box accessibility to the pirated model.127

• We propose a novel framework, DuFFin, which128

extracts both trigger-pattern and knowledge-level129

fingerprints for effective IP protection.130

• Extensive experiments on a large number of real-131

istic test models demonstrate the effectiveness of132

our DuFFin in fingerprinting LLMs.133
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Figure 1: Our framework of DuFFin.

2 Problem Definition 134

In this work, we explore the non-invasive LLM fin- 135

gerprinting, which aims to protect the IP of LLMs 136

by identifying their pirated versions. Specifically, 137

the pirated LLM refer to the model that is unautho- 138

rizedly derived from protected LLM. In this work, 139

we focus on the pirated models created through fine- 140

tuning, quantization, or RLHF alignment from the 141

protected model. In addition, we assume a black- 142

box fingerprinting setting, where only the pirated 143

model’s output token sequences and corresponding 144

logits are accessible. The goal of LLM fingerprint- 145

ing is to extract an effective fingerprint fpro from 146

the protected model ψpro in an non-invasive way. 147

And for any pirated model ψpir derived from the 148

protected model, the fingerprinting method can ex- 149

tract its fingerprint fpir that is highly similar to fpro, 150

enabling accurate identification of pirated LLMs. 151

3 Method 152

In this work, we propose a novel framework DuF- 153

Fin to protect the LLMs ownership at two different 154

levels. In this section, we first introduce the over- 155

all framework of DuFFin, which consists of two 156

stages: fingerprint extraction and ownership verifi- 157

cation. Then, we illustrate our trigger-pattern level 158

fingerprinting and knowledge level fingerprinting 159

methods, respectively. Next, we provide the details 160

of each part. 161

3.1 Overall Framework 162

As shown in Fig. 1, our framework consists of two 163

stages: the fingerprint extraction phase and the 164

ownership verification phase. During the finger- 165

print extraction phase, fingerprints that convey IP 166

information are extracted from both protected and 167

suspect models. During the ownership verification 168

phase, we compare the extracted fingerprints from 169

the protected and suspect models to determine if 170
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the suspect model is pirated from the protected171

model. Next, we will discuss the formalization of172

the fingerprint extraction and ownership verifica-173

tion processes.174

Fingerprint Extraction. The objective of finger-175

print extraction is to capture distinctive character-176

istics of a model that can be used for ownership177

verification. To achieve this, we utilize a private178

secret key K to extract the model fingerprint with a179

fingerprint extractor E . Given any model ψ to be180

examined, the fingerprint extraction process can be181

formally written as:182

f = E(K, ψ), (1)183

where the secret key could be in various forms184

such as prompts and knowledge questions.185

Ownership Verification. In this stage, we deter-186

mine whether a suspect model ψsus was obtained187

by modifying the protected model ψpro. The fin-188

gerprints the suspect model and protected model189

are obtained by extractor E with the secret key K.190

Then, we adopt a metric function F is to measure191

the distance d between the fpro and the fsus for192

ownership verification by:193

d = F(E(K, ψpro)︸ ︷︷ ︸
fpro

, E(K, ψsus)︸ ︷︷ ︸
fsus

). (2)194

A smaller distance d between the extracted finger-195

prints of ψsus and ψpro suggests a higher likelihood196

that the suspect model is derived from the protected197

model. In practical scenarios, we can additionally198

set a threshold to assist in ownership verification.199

To conduct effective fingerprinting, a well-200

designed secret key and fingerprint extractor are201

crucial for obtaining high-quality fingerprints that202

capture the model’s intrinsic characteristics. In this203

work, we propose to extract two levels of LLM204

fingerprints, i.e, trigger-pattern level and knowl-205

edge level. Next, we introduce how the fingerprint206

framework is detailed in two levels.207

3.2 Trigger-Pattern Fingerprint208

Intuitively, given a query input to the model, the209

protected and pirated models derived from the pro-210

tected model will produce similar responses. There-211

fore, we can construct a set of prompt triggers as212

the secret key. These responses, which remain sim-213

ilar across LLMs from the same origin, can then214

serve as fingerprints.215

However, in real-world scenarios, pirated models216

are often obtained by fine-tuning, quantization, and217

alignment based on a base model version, which218

disrupts the similarity of their responses. This is 219

demonstrated by the following preliminary experi- 220

ments. Specifically, we collected a set of prompts 221

as triggers and obtained responses from LLMs de- 222

rived from different protected base models. We 223

then measure the edit distance of linguistic features 224

(e.g., n-gram) in the responses between the base 225

LLM and its fine-tuned variants. 226

We conduct preliminary experiments with Mis- 227

tral. The results show that the edit distance achieves 228

0.33 IP-ROC score while 2-gram reaches 0.85. 229

None of these measurements can effectively iden- 230

tify the pirated models that are fine-tuned from the 231

protected models. To address this problem, we pro- 232

pose to train a fingerprint extractor that captures the 233

invariant patterns in the responses from protected 234

LLMs and their fine-tuned variants. Additionally, 235

a private prompt trigger set is constructed as the 236

secret key to activate the fingerprints reflected in 237

the response patterns. Next, we will introduce this 238

trigger-pattern fingerprint in details. 239

Trigger Set Construction. In trigger-pattern fin- 240

gerprint, we collect a set of prompt triggers X as 241

the secret key K. For an ideal trigger set, inde- 242

pendent models should produce distinct responses, 243

whereas the protected and pirated models should 244

yield highly similar responses. Independently 245

trained LLMs are usually obtained through differ- 246

ent instruction fine-tuning datasets, safety align- 247

ment datasets, and various fine-tuning and align- 248

ment strategies. Therefore, responses to security- 249

related issues and reasoning ability can well exhibit 250

the origin of LLMs. Inspired by this, we collect 251

hundreds of prompts from a series of datasets re- 252

garding safety alignment (e.g., jailbreak), common- 253

sense reasoning, and mathematical reasoning to 254

construct the trigger set X as the secret key. The 255

dataset information can be found in Appendix A.1. 256

Fingerprint Extraction. The fingerprints are ex- 257

tracted from the model’s responses on the trigger 258

set X. Specifically, given a model ψ, we query it 259

with each trigger x in X and obtain its response and 260

corresponding token-level logits. We then formal- 261

ize the output into a trajectory t using the template 262

“Output: {} <SEP> Mean Entropy: {}.”, where 263

the output is the model’s response, and the mean 264

entropy is calculated as the average entropy of all 265

tokens in the response based on the logits. By us- 266

ing this template for the input of the extractor, the 267

responses and logits are unified into text form. This 268

enables us to leverage the pretrained text encoder as 269

the fingerprint extractor. Formally, the fingerprint 270
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extraction can be written as:271

f = E(Template(ψ(x))), (3)272

where we deploy the T5 encoder (Raffel et al.,273

2020) as the extractor E , and the average pooling274

representation of E’s last layer hidden states are275

used as the fingerprint f .276

Fingerprint Extractor Training. To train the ex-277

tractor E , we need to ensure that: (i) The extracted278

fingerprint of the protected model is sufficiently279

close to that of the pirated model; (ii) The finger-280

print of the protected model maintains a certain dis-281

tance from that of independent models. To achieve282

this, we train the extractor to minimize the distance283

between the fingerprints of the protected and pi-284

rated models, while simultaneously maximizing285

the distance between the fingerprints of the pro-286

tected model and those of independent models. In287

addition, to facilitate the generalization ability of288

the fingerprint extractor on unseen LLMs, we in-289

corporate multiple LLMs as the protected model290

set O in the training. In practice, for each protected291

model ψpro ∈ O, we collect its fine-tuned variants292

from HuggingFace to simulate the pirated models,293

resulting a positive sample set P . Similarly, multi-294

ple independently trained LLMs and their variants295

are attained as the independent model set N for296

the extractor training. For each trigger x ∈ X, let297

(f, f+) denote the positive fingerprint pair of ppro298

and its pirated model ψpir ∈ P , and (f, f−) denote299

the negative fingerprint pair of ψpro and an indepen-300

dent model ψind ∈ N . The objective function of301

optimizing the fingerprint extractor E is formulated302

as follows:303

max
θ

∑
ψpro∈O

∑
ψpir∈P

∑
x∈X

log
exp

{
(f · f+)/τ)

}∑
ψind∈N exp {(f · f−)/τ} ,

(4)

304

where θ represents the parameter of the extractor305

E , τ represents the temperature coefficient.306

Ownership Verification. With the Eq.(4), the fin-307

gerprints of pirated models should be highly similar308

to its original protected LLM. Hence, given a pro-309

tected model ψpro and a suspect model ψsus, we310

utilize the trigger set X and the trained extractor E311

to conduct ownership verification. Specifically, a312

cosine similarity-based distance is deployed as the313

metric function F in Eq.(2), defined as follows:314

d = − 1

|X|
∑
x∈X

CosineSim(E(ψpro(x))︸ ︷︷ ︸
fpro

, E(ψsus(x))︸ ︷︷ ︸
fsus

), (5)315

where |X| denote the number of triggers, fpro 316

and fsus are fingerprints of the protected model 317

and suspected model extracted by the optimized 318

extractor E with Eq.(3). We iterate the entire trigger 319

set and take the mean of the final negative similarity 320

as the distance. If the d is small enough, which 321

indicates that the fsus is close enough to the fsus, 322

and we will claim the ψsus is derived from the ψpro. 323

More practical validation scenarios are in Sec. 4. 324

3.3 Knowledge-Level Fingerprint 325

The trigger-pattern fingerprint requires training an 326

extractor E to capture the patterns embedded in 327

the embedding space of the LLMs given specific 328

triggers. In this subsection, we further explore a 329

training-free knowledge-level fingerprint, which is 330

more interpretable compared to the invariant hid- 331

den patterns. Intuitively, different protected models 332

are typically pre-trained on distinct corpora and 333

later refined through instruction tuning and RLHF 334

to acquire specialized knowledge in a specific do- 335

main and enhance their conversational capabili- 336

ties. In this process, the overall knowledge profi- 337

ciency of an LLM across multiple domains is not 338

easily altered. Therefore, independently trained 339

LLMs will exhibit distinct tendencies when an- 340

swering specific knowledge questions from diverse 341

domains, whereas pirated models should exhibit 342

similar knowledge capabilities. 343

Inspired by this property, we construct knowl- 344

edge questions set across various domains as secret 345

key and directly utilize the LLM’s answers toward 346

the knowledge questions as the knowledge-level 347

fingerprint. Next, we will provide a detailed in- 348

troduction to our knowledge-level fingerprint, fol- 349

lowing the knowledge question set construction, 350

fingerprint extraction, and ownership verification. 351

Knowledge Questions Set Construction. Inde- 352

pendently trained models exhibit varying degrees 353

of proficiency in answering knowledge questions 354

from diverse domains. Intuitively, the more diverse 355

the domains, the more distinct the performance of 356

each protected model in responding to these ques- 357

tions. Therefore, we collect knowledge question- 358

answer pairs QA across N domains including 359

chemistry, economics, etc. Each domain subset Di 360

consists of |Di| multiple-choice question-answer 361

pairs, denoted as Di = {(qj , aj)}|Di|j=1, where qj rep- 362

resents the multiple-choice question whose choice 363

candidate set is {A,B,C,D}, and aj denotes the 364

corresponding ground truth choice. To ensure the 365
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effectiveness of the questions in distinguishing366

LLMs, we then filter out overly difficult questions367

in each domain, for which the majority of protected368

models could not provide a valid answer. Finally,369

to reduce the cost of fingerprint extraction, we ran-370

domly sampleQ questions from each domain. This371

process of constructing knowledge question set Xi372

from the each domain subset Di can be written as:373

Xi = RandSelect(Filter(Di), Q) (6)374

where Q is the number of questions selected375

from each domain. Once Xi is obtained for each376

domain, the complete knowledge question set X377

is constructed as the secret key for the knowledge-378

level fingerprint.379

Fingerprint Extraction. Due to the inherent380

differences in knowledge capabilities among in-381

dependently trained LLMs, we can leverage the382

model’s answers to domain-specific questions for383

knowledge-level fingerprints. Specifically, given a384

suspect model ψsus and knowledge question set X,385

we collect ψsus’s response by querying model with386

each question qi of the pair (qi, ai) ∈ X. For each387

the multiple-choice question qi, the ψsus is forced388

to directly give the answer by ti = ψ(qi) . Then,389

we aggregate these answers across all knowledge390

questions in X to form the fingerprint f of ψsus:391

f = [t1, · · · , tQ×N ], (7)392

where N and Q denotes the number of domains393

and number of questions per domain.394

Ownership Verification. Since the pirated model395

shares similar knowledge capability with its orig-396

inal protected LLM, their answers to knowledge397

questions are also expected to be similar. In con-398

trast, independent models would provide distinct399

answers. To quantize this similarity in knowledge400

capabilities, we compute hamming distance be-401

tween the knowledge-level fingerprints of the pro-402

tected model ψpro and the suspected model ψsus403

as follows:404

d = HammingDistance(fpro, fsus), (8)405

where fpro and fsus denote the knowledge-level406

fingerprints of ψpro and ψsus obtained by Eq.(7).407

If the d is small enough, the ψsus is likely to be408

pirated from the ψpro.409

4 Experiment410

In this section, we conduct experiments to answer411

the following research questions.412

• RQ1: Can our DuFFin accurately identify the 413

models that pirated from the protected LLMs 414

under various real scenarios? 415

• RQ2: Can our DuFFin be generalized to protect 416

the IP of unseen LLMs? 417

• RQ3: How do the number of triggers and knowl- 418

edge questions affect the performance of two 419

levels of fingerprinting, respectively? 420

4.1 Experimental Setup 421

Protected Models. We aim to evaluate the ef- 422

fectiveness of our fingerprint method in detecting 423

the piracy of the protected LLMs. Specifically, 424

four popular LLMs, i.e., Llama-3.1-8B-Instruct, 425

Qwen-2.5-7B-Instruct, and Mistral-7B-Instruct- 426

v0.1, and Llama-3.2-8B-Instruct, serve as the pro- 427

tected models in our evaluation. 428

Suspect Models. To conduct effective ownership 429

verification, the fingerprints need to be capable 430

of distinguishing piracy models from independent 431

models. Hence, a suspect model set consisting of 432

both variants of the target protected LLM and inde- 433

pendently developed LLMs is necessary for evalu- 434

ation. To obtain realistic suspect models, we lever- 435

age the HuggingFace which has a rich collection 436

of LLMs that are derived from the protected base 437

LLMs. In particular, we construct a diverse suspect 438

model set that contains models modified by four dif- 439

ferent methods: full-parameter instruction tuning, 440

instruction tuning with LoRA (Hu et al., 2021), di- 441

rect preference optimization (Rafailov et al., 2024), 442

and quantization. The suspect model set consists 443

of a total of 32 models, comprising 9 variants each 444

for Llama-3.1, Qwen, and Mistral, and 5 variants 445

for Llama-3.2 and Deepseek-R1. More details of 446

the collected suspect models can be found in Ap- 447

pendix 3. 448

Evaluation Metrics. For trigger-pattern finger- 449

prints, a subset of the collected LLM variants is 450

used for training the fingerprint extractor. There- 451

fore, the evaluation of trigger-level fingerprints is 452

conducted on the remaining suspect models for 453

testing. More details of the suspect model splitting 454

are in Tab. 3. Since knowledge-level fingerprints 455

do not require training, all suspect models are uti- 456

lized as test models to evaluate the effectiveness 457

of the knowledge-level fingerprints. In this work, 458

we adopt the following metrics to evaluate the ca- 459

pability of the proposed fingerprinting methods in 460

detecting piracy models: 461

• IP ROC evaluates how the fingerprint can sep- 462
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arate the pirated LLMs and independent LLMs463

given a protected model. Take the evaluation of464

Llama-3.1 as an example. The variants of Llama-465

3.1 in the test set serve as positive samples. All466

other LLMs serve as negative samples. Then,467

the ROC score is applied based on the distance468

calculated through Eq. 5 and Eq. 8.469

• Rank evaluates the performance of fingerprints470

for a given pirated model. For example, given a471

model pirated from the Mistral, we will compute472

its fingerprint similarity to the Mistral. And we473

then compare this score to the Mistral’s finger-474

print similarity to independently trained LLMs475

and their variants. Rank 1 indicates a successful476

detection of the pirated model.477
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Figure 2: IP ROC curves of ownership verification.

4.2 Results of Fingerprinting with DuFFin478

To answer RQ1, we firstly evaluate how two lev-479

els of fingerprints can separate the pirated LLMs480

and independent LLMs. In this scenario, given a481

protected model and multiple suspect models of482

unknown origin, we need to verify whether our483

DuFFin can successfully identify all the pirated484

models contained in the suspect model set. We485

report the IP ROC curves to evaluate DuFFin’s per-486

formance. For the trigger-pattern fingerprint, we487

conduct 3-fold cross-validation and report the mean488

IP ROC of the three folds in the first row of Fig. 2.489

For the knowledge-level fingerprint, we randomly490

select knowledge questions 5 times and report the491

mean IP ROC in the second row of Fig. 2. From492

the figure, we observe that:493

• Both fingerprint methods achieve strong results494

in ownership verification for Qwen and Mistral495

models. Compared to the trigger-pattern finger-496

print, the knowledge-level fingerprint also per-497

forms well in identifying Llama models while is498

slightly less effective for Mistral models. This 499

indicates that the two fingerprint methods exhibit 500

complementarity to some extent. 501

• The trigger-pattern fingerprint did not achieve 502

ideal protection for the Llama, the mean IP-ROC 503

is around 0.71. We attribute this to the fact that 504

Llama models were among the earliest open- 505

source LLMs and remain the most widely used. 506

The fine-tuned or quantized versions we collected 507

often undergo significant modifications, which 508

increases the difficulty of training the trigger- 509

pattern fingerprint extractor. 510

To further answer RQ1, we evaluate the ability 511

of our DuFFin in identifying each pirated model 512

from a group of independent models. Specifically, 513

given a protected model, we merely select one of its 514

pirated models as the positive sample, while all of 515

the other independent models serve as the negative 516

samples. We report the IP-ROC for the trigger pat- 517

tern, knowledge level, and merged fingerprinting 518

in Tab. 2. We provide the details of the evaluation 519

process of the merged fingerprints in Appendix A.3. 520

We found that the trigger-pattern fingerprint does 521

not achieve ideal results for identifying the Llama 522

series of pirated models, while the knowledge-level 523

fingerprint exhibits relatively low performance on 524

the Mistral series. After integrating the two fin- 525

gerprints, the IP-ROC has shown significant im- 526

provement across all models. Moreover, except for 527

the RC-Potpourri-Induction derived from Llama, 528

the merged fingerprint completed ownership veri- 529

fication for the pirated model with a Rank 1 score. 530

This demonstrates the complementarity of the two 531

fingerprints and the powerful capability of DuFFin. 532

Table 1: Performance on Unseen Llama-3.2.

Unseen Protected Models IP-ROC

Llama-3.2-3B-Instruct 1.0
Llama-Doctor-3.2-3B-Instruct 1.0
Llama-Sentient-3.2-3B-Instruct 1.0

4.3 Fingerprinting Unseen LLMs 533

To answer RQ2, we apply DuFFin to a series of pro- 534

tected models which are unseen during the frame- 535

work construction. Tab. 4 provides the information 536

about our collected unseen model list. 537

Merged Fingerprint Evaluation on Llama-3.2. 538

We first evaluate the merged fingerprint on the 539

Llama-3.2-3B-Instruct and its two fine-tuning ver- 540

sions. Here, we form these three Llama-3.2 series 541
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Table 2: Results of verifying the ownership of models pirated from the protected LLM.

Protected LLMs Pirated Models Type Trigger-Pattern Knowledge-Level Merged

IP-ROC↑ IP-ROC↑ IP-ROC↑ Rank↓

Llama

—ARC-Potpourri-Induction(L0-0) Fine-tuning 0.29 0.81 0.88 2
—8bit-Instruct-sql-v3(L1-0) 8-Bit 0.71 0.96 1.00 1
—ultrafeedback-single-judge(L3-1) DPO 0.58 1.00 1.00 1
—SuperNova-Lite(L4-1) Fine-tuning 0.67 0.94 1.00 1
—prop-logic-ft(L6-2) Fine-tuning 0.67 0.94 1.00 1
—fake-news(L8-2) Fine-tuning 0.50 0.69 1.00 1

Qwen

—Human-Like(Q1-0) DPO 0.75 0.96 1.00 1
—Uncensored(Q4-1) Fine-tuning 0.79 0.96 100 1
—Math-IIO(Q5-1) Fine-tuning 0.83 0.96 1.00 1
—T.E-8.1(Q6-2) Fine-tuning 1.00 0.96 1.00 1
—FinancialAdvice(Q7-2) Fine-tuning 1.00 0.81 1.00 1
—Rui-SE(Q8-2) 8-Bit 1.00 0.96 1.00 1

Mistral

—radia-lora(M0-0) Fine-tuning 0.79 0.78 1.00 1
—Code-SG1-V5(M2-0) Fine-tuning 0.79 0.10 1.00 1
—instruct-generation (M3-1) DPO 0.79 0.96 1.00 1
—WeniGPT(M6-2) Fine-tuning 1.00 0.96 1.00 1
—finetuned(M7-2) Fine-tuning 0.96 0.85 1.00 1
—v2-astromistral(M8-2) Fine-tuning 1.00 0.96 1.00 1

of models as the positive samples and the three542

base-protected models in Tab. 3 as the negative543

samples. The IP-ROC is reported in Tab 1. We544

found that DuFFin can successfully separate the545

LLama-3.2 series of models from the three pro-546

tected models, which indicates our method indi-547

cates that our method has a certain degree of gener-548

alization ability on unseen models.549

Knowledge-Level Fingerprint to Detect the Dis-550

tillation by DeepSeek-R1. We further validate551

the performance of the knowledge-level fingerprint552

on the recently released DeepSeek-R1 (DeepSeek-553

AI et al., 2025). Here, the Qwen2.5-14B is uti-554

lized as the protected model, and its distillation555

version DeepSeek-R1-Distill-Qwen-14B is the pi-556

rated model. Then, we collect the DeepSeek-R1-557

Distill-Llama-8B and the Llama2-13B-chat-hf to558

serve as the negative samples. We compute the sim-559

ilarity based on the Hamming Distance between560

the protected model and the other three models561

with their knowledge-level fingerprints. As shown562

in Fig. 3 (a), compared to the other two indepen-563

dent models, R1-Distill-Qwen-14B demonstrates564

the closest alignment to the protected model across565

all domains, which further indicates the good trans-566

portability of DuFFin on the out-of-test-set models.567

4.4 Analysis in Knowledge Domains568

To explore the mechanism of the knowledge-level569

fingerprint, we visualize the fingerprint similarity570

(based on the negative Hamming Distance in Eq. 8)571

between the protected model and the suspect mod-572

els across all domains. Analysis of other models573

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

(a) Knowledge Boundary of Qwen-14B
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Figure 3: Visualization of knowledge-level fingerprint
similarity across various domains.

can be found in Appendix A.4. As Fig. 3 shows, 574

we found some interesting phenomena: 575

• In each domain, compared to independent mod- 576

els, the pirated model exhibits more similar 577

knowledge capabilities to the protected model, 578

e.g., the pirated model L2-0 achieved higher sim- 579

ilarity in all domains except for the economics. 580

• The performance of the knowledge-level finger- 581

print varies across different domains, e.g., for 582

the Qwen-14B-R1, compared to the engineer- 583

ing and the computer science domain, the fin- 584

gerprint works significantly better on the math 585

and physics domain, which reflects that the 586

knowledge-level fingerprint has a certain prefer- 587

ence for specific domains. Moreover, considering 588
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that DeepSeek-R1 has strong reasoning capabil-589

ities, which is consistent with the fingerprint’s590

preference for specific domains.591

1050 200 400 600
Trigger Number

0.2

0.4

0.8

1.0

IP
-R

O
C

(a) Trigger-Pattern Level

Llama
Qwen

Mistral
Qwen Outlier

14 70 140 280 420
Question Number

0.7

0.8

0.9

1.0

IP
-R

O
C

(b) Knowledge Level

Llama
Qwen

Mistral

Figure 4: Impact of the size of the Screct Key.

4.5 Impacts of the the Size of the Secret Key592

To answer RQ3, we conduct experiments to ex-593

plore the impact of different sizes of the secret key594

on the performance of both fingerprints. For the595

trigger pattern fingerprinting, we vary the number596

of the triggers as {10, 50, 200, 400, 600}, and con-597

duct 3-fold cross-validation to train and evaluate598

the performance of trigger pattern fingerprint on the599

three protected models. For the knowledge-level600

fingerprint, we vary the number of the knowledge601

questions as {1, 5, 10, 20, 30} for each domain602

and obtain {14, 70, 140, 280, 420} in total. We re-603

peat experiments three times per value and average604

the results. We report the IP-ROC for both of the605

fingerprints. As shown in Fig. 4, we observed that:606

• For trigger pattern fingerprinting, increasing the607

number of triggers (except for two outliers at 50608

for Qwen) improves performance, as more trig-609

gers allow the extractor to capture model-specific610

patterns more effectively.611

• The knowledge-level fingerprint is less sensitive612

to the number of questions. Performance peaks613

at 280 questions, after which further increases614

offer minimal improvement. Thus, 20 questions615

per domain provide a good balance between cost616

and performance.617

5 Related Work618

Deep IP Protection. Training Deep Neural Net-619

works (DNNs) requires high-quality datasets, do-620

main expertise, and significant computational re-621

sources, making the resulting models valuable Intel-622

lectual Property (IP). Much research has focused on623

machine learning methods to protect DNNs from624

unauthorized use (Sun et al., 2023). These methods625

are broadly categorized into deep watermarking626

and deep fingerprinting. Deep watermarking em- 627

beds identification information in the model, inputs, 628

or outputs to detect unauthorized use (Uchida et al., 629

2017; Nagai et al., 2018; Wang and Kerschbaum, 630

2021; Li et al., 2022; Sablayrolles et al., 2020; Chen 631

et al., 2021; Yang et al., 2021a; Wang et al., 2022), 632

but requires invasive model modifications. In con- 633

trast, deep fingerprinting (Liu et al., 2022; Yang 634

et al., 2021b; Chen et al., 2022; Guan et al., 2022) 635

extracts unique model features, such as decision 636

boundaries, without altering the model, making it 637

non-invasive. This paper focuses on fingerprinting 638

methods for LLMs. 639

LLMs IP Protection. LLM watermarking embeds 640

watermark information in the generated text to pro- 641

tect model copyrights. Previous work introduced 642

watermarking by modifying logits, splitting the vo- 643

cabulary at each token position based on previous 644

tokens (Kirchenbauer et al., 2023). Lee et al. (2024) 645

refined this for low-entropy text, while Fernandez 646

et al. (2023) extended it to multi-bit watermarking. 647

Kuditipudi et al. (2023) proposed sampling-based 648

watermarking, which does not modify logits but 649

guides token sampling with watermark messages. 650

However, these methods can degrade text quality 651

and lack robustness against attacks like paraphras- 652

ing. In contrast, fingerprinting is more resilient 653

to such issues. Recently, several fingerprinting 654

techniques have been applied to protect LLM copy- 655

rights (Xu et al., 2024; Russinovich and Salem, 656

2024; Zhang et al., 2024; Pasquini et al., 2024; 657

Iourovitski et al., 2024; Yang and Wu, 2024), but 658

they have limitations. This work either requires the 659

full accessibility of the model’s full or partial pa- 660

rameters or does not take the wide range of suspect 661

models into consideration, which do not apply to 662

real-world scenarios. We propose DuFFin, a novel 663

framework to bridge the gap. 664

6 Conclusion 665

In this paper, we propose a novel dual-level frame- 666

work DuFFin to protect IP for LLMs. Specifically, 667

we train an extractor to extract trigger pattern fin- 668

gerprints based on the carefully collected triggers. 669

Meanwhile, we extract the knowledge-level finger- 670

print from the answers given specific knowledge 671

questions across various domains without any train- 672

ing. Extensive experiments on a real-world test 673

model set demonstrate our DuFFin’s excellent per- 674

formance. Moreover, we observed some instructive 675

phenomena by analyzing the two fingerprints. 676
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7 Limitations677

In this work, we propose a fingerprinting method678

that can extract the trigger-pattern level and knowl-679

edge level fingerprints for IP protection of LLMs.680

There are two major limitations to be addressed.681

Firstly, the proposed DuFFin lacks the ability to682

handle the vision language model, which incorpo-683

rates the multi-modal information in the genera-684

tion process. In the future, we will investigate the685

image-text triggers for VLM. Secondly, the secret686

key for both levels are currently fixed in DuFFin,687

which poses a risk of the targeted fingerprint eras-688

ing. Therefore, we will explore a dynamic process689

of secret key generation, which avoids the targeted690

erasing on the fixed set of secret keys.691
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A Appendix904

A.1 Dataset Information905

We collect triggers and knowledge questions from906

a various on-the-shelf dataset to construct our se-907

cret key Xs. For the triggers, we collect hundreds908

of prompts from GSM8K (Cobbe et al., 2021),909

MathInstruct (Yue et al., 2024), HarmfulDataset1,910

AdvBench (Zou et al., 2023), CommonsenCandi-911

dates2, and CommonsenseQA (Talmor et al., 2019),912

focusing on the safety alignment, math reasoning,913

and commonsense reasoning. For the knowledge914

questions, we collect questions mainly from the915

MMLU-Pro (Wang et al., 2024b), which includes a916

large scale of question-answer pairs across various917

domains.918

A.2 Test Model Set919

We collect three protected models to evaluate our920

DuFFin: LLama-3.1-8B-Instruct, Qwen2.5-7B-921

Instruct, and Mistral-7B-Insturct. The 27 on-the-922

shelf modified models derived from these three923

protected models serve as the pirated models for924

evaluation. Moreover, we collect the LLama-3.2-925

3B-Instruct as the unseen protected model for eval-926

uation. The complete list of collected models can927

be found in Table 3 and Table 4. Next, we will928

provide more details.929

Model Selection Rules. We collect models from930

the HuggingFace under the following rules:931

• We never choose models fine-tuned on the low932

resource language.933

• We focus on three types of variant models: those934

fine-tuned through Supervised Fine-tuning, those935

trained with RLHF techniques, e.g., direct pref-936

erence optimization (Rafailov et al., 2024), and937

those that have been quantized.938

• For Supervised Fine-tuning, we sample models939

fine-tuned using both full-parameter fine-tuning940

and LoRA (Hu et al., 2021) fine-tuning.941

1https://huggingface.co/datasets/LLM-LAT/
harmful-dataset

2https://huggingface.co/datasets/
commonsense-index-dev/commonsense-candidates

• Overall, we collect models from three categories: 942

widely popular models released by major compa- 943

nies, open-source models developed by startups, 944

and models trained and published by individual 945

users. 946

Train-Test Set Split. To train the fingerprint ex- 947

tractor for trigger-pattern fingerprinting, we split 948

the test model set into 3 subsets to conduct the 3- 949

fold Cross-Validation. At one time, we train the 950

extractor with 2 subsets and evaluate with the re- 951

maining subset. We organize the split shown in 952

the Table 3. We represent each pirated model with 953

a code, the first letter represents their related pro- 954

tected model, which “L”, “Q”, and “M” represent 955

the Llama, Qwen, and Mistral respectively. The 956

second letter represents the number of pirated mod- 957

els within their protected model’s family, while the 958

third letter represents their fold located in. Take 959

L3-1 for example, it represents the fourth model 960

derived from Llama and used for fold 2’s evalua- 961

tion. 962

A.3 Evaluation Metrics 963

In this section, we give more details about our eval- 964

uation metrics under various settings. 965

A.3.1 IP ROC 966

We first illustrate how to obtain the logit for trigger 967

pattern, knowledge level, and merge fingerprint 968

respectively. 969

Trigger Pattern Logit. Given a suspect model, fol- 970

lowing Eq. 5, we compute the negative distance be- 971

tween its fingerprint and each other positive sample 972

models and negative sample models for evaluation. 973

We then assign these distance values to the speci- 974

fied positions in the logits, hence each logit element 975

represents the similarity between the suspect model 976

and the trigger-pattern fingerprint of a particular 977

model, e.g., given a suspect ψsus and its protect 978

model as positive sample ψ+ and an independent 979

model as negative sample ψ−, then we compute 980

the negative distance between the ψsus and ψ+, ψ− 981

respectively, denoted as −d+ and −d−, then the 982

logit is a vector denote as [−d+,−d−]. 983

Knowledge Level Logit. Similar to the trigger 984

pattern logit, we compute the negative distance 985

between its fingerprint and each other positive sam- 986

ples and negative samples with Eq. 8. 987

Merged Logit. In this scenario, we simply use 988

vector addition to combine the trigger-pattern logit 989

and the knowledge-level logit. 990
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Table 3: The collected model set.

Protected Model Model variants (Pirated Models) Type

Llama-3.1-8B-Instruct

L0-0 (https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical) SFT & RLHF
L1-0 (https://huggingface.co/barc0/Llama-3.
1-ARC-Potpourri-Induction-8B)

SFT

L2-0 (https://huggingface.co/Adun/Meta-Llama-3.
1-8B-8bit-Instruct-sql-v3)

8-Bit

L3-1 (https://huggingface.co/simonycl/llama-3.
1-8b-instruct-ultrafeedback-single-judge)

DPO

L4-1 (https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) SFT
L5-1 (https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.
1-8B-Instruct-1736201342)

SFT

L6-2 (https://huggingface.co/ergotts/llama_3.1_8b_prop_logic_ft) SFT
L7-2 (https://huggingface.co/mtzig/prm800k_llama_lora) SFT
L8-2 (https://huggingface.co/shahafvl/llama-3_
1-8b-instruct-fake-news)

SFT

Qwen2.5-7B-Instruct

Q0-0 (https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct) SFT
Q1-0 (https://huggingface.co/HumanLLMs/Human-Like-Qwen2.
5-7B-Instruct)

DPO

Q2-0 (https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS) SFT
Q3-1 (https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo) SFT
Q4-1 (https://huggingface.co/Orion-zhen/Qwen2.
5-7B-Instruct-Uncensored)

DPO

Q5-1 (https://huggingface.co/prithivMLmods/Math-IIO-7B-Instruct) SFT
Q6-2 (https://huggingface.co/Cran-May/T.E-8.1) SFT
Q7-2 (https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B) SFT
Q8-2 (https://huggingface.co/Uynaity/Qwen-Rui-SE) 8-Bit

Mistral-7B-Instruct-v0.1

M0-0 (https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-lora) SFT
M1-0 (https://huggingface.co/ashishkgpian/astromistralv2) SFT
M2-0 (https://huggingface.co/nachtwindecho/
mistralai-Code-Instruct-Finetune-SG1-V5)

SFT

M3-1 (https://huggingface.co/MiguelGorilla/mistral_instruct_
generation)

DPO

M4-1 (https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.
1_asm_60e4dc58)

8-Bit

M5-1 (https://huggingface.co/thrunlab/original_glue_boolq) SFT
M6-2 (https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase) SFT
M7-2(https://huggingface.co/Darklord23/finetuned-mistral-7b) SFT
M8-2 (https://huggingface.co/ashishkgpian/full_v2_astromistral) SFT

Table 4: Model list of unseen models.

Protected Model Code Type

Llama-3.2-3B-Instruct

Llama-Doctor-3.2-3B-Instruct (https://huggingface.co/prithivMLmods/
Llama-Doctor-3.2-3B-Instruct)

SFT

Llama-Sentient-3.2-3B-Instruct (https://huggingface.co/prithivMLmods/
Llama-Sentient-3.2-3B-Instruct)

SFT

Qwen2.5-14B

R1-Qwen-14B (https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-14B)

Distill

R1-Llama-8B (https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-8B)

Distill

Llama2-13b-chat (https://huggingface.co/sharpbai/
Llama-2-13b-chat-hf)

Base

Protected Model IP-ROC. Given a protected991

model, we treat its pirated versions as positive sam-992

ples while other independent models as negative993

samples. Then we utilize the logit to compute the994

ROC-AUC score to serve as the IP-ROC of this995

protected model.996

Pirated Model IP-ROC. Given a protected model997

and one pirated model, we merely treat the pirated998

model as the positive sample and all other inde-999

pendent models as the negative samples. Then we 1000

obtain the logit of this protected model and com- 1001

pute the ROC-AUC score to serve as the IP-ROC 1002

of this pirated model. 1003

Merged IP-ROC. We utilize the merged logit to 1004

compute the IP-ROC, the remaining computation 1005

depends on whether we need the IP-ROC for the 1006

protected model or the pirated model. 1007

12

https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/ergotts/llama_3.1_8b_prop_logic_ft
https://huggingface.co/mtzig/prm800k_llama_lora
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS
https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/prithivMLmods/Math-IIO-7B-Instruct
https://huggingface.co/Cran-May/T.E-8.1
https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B
https://huggingface.co/Uynaity/Qwen-Rui-SE
https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-lora
https://huggingface.co/ashishkgpian/astromistralv2
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/thrunlab/original_glue_boolq
https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase
https://huggingface.co/Darklord23/finetuned-mistral-7b
https://huggingface.co/ashishkgpian/full_v2_astromistral
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf


A.4 More Results of the Analysis on1008

Knowledge Level Fingerprinting Domains1009

This section provides more results about the visual-1010

ization of the knowledge level features. As Fig. 51011

shows, we conduct experiments on the three pro-1012

tected models. Our fingerprint exhibits excellent1013

performance on identifying the pirated model from1014

its protected model.1015

A.5 Training Details1016

We train our extractor for the trigger pattern fin-1017

gerprint on two NVIDIA RTX A6000 GPUs. We1018

adopt the T5-Base as the extractor, the model size1019

is around 220M. We set the temperature as 0.041020

and 0.004 for different folds. And the training time1021

is around 30 minutes with 24 epochs. We adopt1022

the warm-up strategy with a ratio of 0.03 and the1023

cosine learning rate scheduler.1024
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Figure 5: Visualization of Knowledge-Level Finger-
prints similarities across different domains.

13


	Introduction
	Problem Definition
	Method
	Overall Framework
	Trigger-Pattern Fingerprint
	Knowledge-Level Fingerprint

	Experiment
	Experimental Setup
	Results of Fingerprinting with DuFFin
	Fingerprinting Unseen LLMs
	Analysis in Knowledge Domains
	Impacts of the the Size of the Secret Key

	Related Work
	Conclusion
	Limitations
	Appendix
	Dataset Information
	Test Model Set
	Evaluation Metrics
	IP ROC

	More Results of the Analysis on Knowledge Level Fingerprinting Domains
	Training Details


