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Abstract

Large language models (LLMs) are considered
valuable Intellectual Properties (IP) for legit-
imate owners due to the enormous computa-
tional cost of training. It is crucial to protect
the IP of LLMs from malicious stealing or
unauthorized deployment. Despite existing ef-
forts in watermarking and fingerprinting LLMs,
these methods either impact the text genera-
tion process or are limited in white-box access
to the suspect model, making them impracti-
cal. Hence, we propose DuFFin, a novel Dual-
Level Fingerprinting Framework for black-box
setting ownership verification. DuFFin extracts
the trigger pattern and the knowledge-level fin-
gerprints to identify the source of a suspect
model. We conduct experiments on a variety of
models collected from the open-source web-
site, including four popular base models as
protected LLMs and their fine-tuning, quanti-
zation, and safety alignment versions which
are released by large companies, start-ups,
and personal users. Results show that our
method can accurately verify the copyright of
the base protected LLM on their model variants,
achieving the IP-ROC metric greater than 0.95.
Our code is available at https://anonymous.
4open.science/r/acl-2025-duffin-B4EE.

1 Introduction

In recent decades, the emergence of Large Lan-
guage Models (LLMs) has significantly evolved the
entire Al community (Brown et al., 2020; OpenAl
et al., 2024; Anil et al., 2023; Touvron et al., 2023;
Jiang et al., 2023). On account of the difficulty in
pre-train corpus collection, the high demand for
GPU computing resources, and the tremendous
manpower cost, training LL.Ms is a challenging
and expensive task, which indicates that LLMs are
highly valuable intellectual property (IP). However,
the easy accessibility of the on-the-shelf LLMs en-
ables users to customize their private models for
commercial use, without necessarily claiming the

copyright of the base model they utilized. Given
the potential risk caused by these malicious users
or third parties, it is crucial to protect the LLMs’
intellectual property.

Given a suspect model, Deep IP protection can
determine whether it originated from a specific
protected model. There are two main methods
for verifying LLLM ownership: invasive and non-
invasive. Invasive methods typically inject a water-
mark into the protected model with private back-
door triggers and decide the suspect model’s owner-
ship by checking its generated content in response
to the triggers (Xu et al., 2024; Russinovich and
Salem, 2024). Apart from the model watermarking,
Kirchenbauer et al. (2023); Wang et al. (2024a);
Christ et al. (2024) first proposed LLMs textual wa-
termark by splitting the vocabulary into Red-Green
list during the generation process. The textual wa-
termark is verified by checking whether the gener-
ated text contains specific tokens from the Green
list. Despite the progress they have made, inva-
sive methods either rely on modifying the model’s
parameters or intervening in the text generation pro-
cess, which brings unexpected effects to the text
generation quality.

By contrast, the noninvasive method aims to ex-
tract fingerprints containing IP information without
modifying the model’s parameters or generation
process. Hence, the fingerprint method will have
no impact on the quality of generated text and in-
curs no additional computational cost for modify-
ing protected models. Given these benefits, some
initial efforts have been conducted in ownership
verification by noninvasive fingerprinting (Zhang
et al., 2024; Pasquini et al., 2024; Iourovitski et al.,
2024; Yang and Wu, 2024). However, many of
these methods extract fingerprints from the LLM’s
intermediate layer output, which is impractical to
access for suspect LLMs. Furthermore, pirated
models are often created with the modification of
their original LLM through method such as super-
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vised fine-tuning, quantization, and direct prefer-
ence optimization, which challenges the applicabil-
ity of existing methods in real-world scenarios.

Therefore, in this work, we investigate a practi-
cal fingerprinting method, which aims to address
the following two challenges in real-world applica-
tions: (i) how to extract high-quality fingerprints
containing IP information in a black-box setting,
where LLM’s parameters and intermediate layer
outputs are inaccessible; (ii) how to effectively ver-
ify the protected model’s ownership on a pirated
model, which is derived from the protected model
by parameter modification, e.g., supervised fine-
tuning. To address these challenges, we propose
DuFFin, a Dual-Level Fingerprint Framework to
protect the IP of LL.Ms.

As Fig. 1 shows, DuFFin will extract the finger-
prints from the LLMs in both trigger-pattern level
and knowledge level. The trigger-pattern level fin-
gerprint is based on the insight that pirated models
derived from the protected model tend to produce
similar responses to certain prompts. The trigger-
pattern level fingerprints are extracting from the
model’s response to deliberately selected prompt
triggers. In addition, DuFFin introduce a novel
approach to optimize the trigger-pattern fingerprint
extractor to capture the intrinsic patterns of LLMs
that are resistant to the model modification. The
knowledge-level fingerprint is to exploit the con-
sistency of knowledge capabilities across domains
between protected models and pirated models, as
the knowledge capabilities will not challenge sig-
nificantly in the parameter modification phase of
model stealing. More precisely, the knowledge-
level fingerprints are obtained from the answers to
diverse knowledge questions. A knowledge ques-
tion set that containing questions from various do-
mains is constructed in DuFFin. Moreover, the
fingerprints of two levels can be combined together
to further enhance the IP protection with finger-
printing. In summary, our main contributions are:

* We study a novel problem of practical finger-
printing, which identifies pirated models that can
modify protected model parameters with black-
box accessibility to the pirated model.

* We propose a novel framework, DuFFin, which
extracts both trigger-pattern and knowledge-level
fingerprints for effective IP protection.

* Extensive experiments on a large number of real-
istic test models demonstrate the effectiveness of
our DuFFin in fingerprinting LLMs.

Secret Key = Ownership

Fi int Extracti P
ingerprint Extraction Verification

Safety & (0] Can you make a bomb?
Reasoning °
Commonsense 4 Trigger Pattern
Triggers A Cosine
i Model Similarity
b Fingerprints
Health ~ w Knowledge Level n
Business~ ¥ | Model 1 Hamming
Law <= 7' Distance
Engineering X
444444 @ <k Under common law principles...? 1'@’ Tnput ":
K led ti * The reaction time difference between... ?  '(@: Extract !
nowledge Questions R Determine the available energy of...? 1@ Parse |

Figure 1: Our framework of DuFFin.

2 Problem Definition

In this work, we explore the non-invasive LLM fin-
gerprinting, which aims to protect the IP of LLMs
by identifying their pirated versions. Specifically,
the pirated LLM refer to the model that is unautho-
rizedly derived from protected LLM. In this work,
we focus on the pirated models created through fine-
tuning, quantization, or RLHF alignment from the
protected model. In addition, we assume a black-
box fingerprinting setting, where only the pirated
model’s output token sequences and corresponding
logits are accessible. The goal of LLM fingerprint-
ing is to extract an effective fingerprint f,,, from
the protected model v, in an non-invasive way.
And for any pirated model vp;, derived from the
protected model, the fingerprinting method can ex-
tract its fingerprint f;, that is highly similar to fy,,
enabling accurate identification of pirated LLMs.

3 Method

In this work, we propose a novel framework DuF-
Fin to protect the LLMs ownership at two different
levels. In this section, we first introduce the over-
all framework of DuFFin, which consists of two
stages: fingerprint extraction and ownership verifi-
cation. Then, we illustrate our trigger-pattern level
fingerprinting and knowledge level fingerprinting
methods, respectively. Next, we provide the details
of each part.

3.1 Overall Framework

As shown in Fig. 1, our framework consists of two
stages: the fingerprint extraction phase and the
ownership verification phase. During the finger-
print extraction phase, fingerprints that convey IP
information are extracted from both protected and
suspect models. During the ownership verification
phase, we compare the extracted fingerprints from
the protected and suspect models to determine if



the suspect model is pirated from the protected
model. Next, we will discuss the formalization of
the fingerprint extraction and ownership verifica-
tion processes.

Fingerprint Extraction. The objective of finger-
print extraction is to capture distinctive character-
istics of a model that can be used for ownership
verification. To achieve this, we utilize a private
secret key K to extract the model fingerprint with a
fingerprint extractor £. Given any model 1 to be
examined, the fingerprint extraction process can be
formally written as:

[ =EK, ), (1)

where the secret key could be in various forms
such as prompts and knowledge questions.
Ownership Verification. In this stage, we deter-
mine whether a suspect model 15,,s was obtained
by modifying the protected model v,,,. The fin-
gerprints the suspect model and protected model
are obtained by extractor £ with the secret key K.
Then, we adopt a metric function F is to measure
the distance d between the f,,., and the fg,s for
ownership verification by:

d= ]:(S(IC, wPT‘O)vg(’C7¢SuS))' (2)
—— — —
fpro fsus

A smaller distance d between the extracted finger-
prints of ¥4, and 1, suggests a higher likelihood
that the suspect model is derived from the protected
model. In practical scenarios, we can additionally
set a threshold to assist in ownership verification.

To conduct effective fingerprinting, a well-
designed secret key and fingerprint extractor are
crucial for obtaining high-quality fingerprints that
capture the model’s intrinsic characteristics. In this
work, we propose to extract two levels of LLM
fingerprints, i.e, trigger-pattern level and knowl-
edge level. Next, we introduce how the fingerprint
framework is detailed in two levels.

3.2 Trigger-Pattern Fingerprint

Intuitively, given a query input to the model, the
protected and pirated models derived from the pro-
tected model will produce similar responses. There-
fore, we can construct a set of prompt triggers as
the secret key. These responses, which remain sim-
ilar across LLMs from the same origin, can then
serve as fingerprints.

However, in real-world scenarios, pirated models
are often obtained by fine-tuning, quantization, and
alignment based on a base model version, which

disrupts the similarity of their responses. This is
demonstrated by the following preliminary experi-
ments. Specifically, we collected a set of prompts
as triggers and obtained responses from LLMs de-
rived from different protected base models. We
then measure the edit distance of linguistic features
(e.g., n-gram) in the responses between the base
LLM and its fine-tuned variants.

We conduct preliminary experiments with Mis-
tral. The results show that the edit distance achieves
0.33 IP-ROC score while 2-gram reaches 0.85.
None of these measurements can effectively iden-
tify the pirated models that are fine-tuned from the
protected models. To address this problem, we pro-
pose to train a fingerprint extractor that captures the
invariant patterns in the responses from protected
LLMs and their fine-tuned variants. Additionally,
a private prompt trigger set is constructed as the
secret key to activate the fingerprints reflected in
the response patterns. Next, we will introduce this
trigger-pattern fingerprint in details.

Trigger Set Construction. In trigger-pattern fin-
gerprint, we collect a set of prompt triggers X as
the secret key K. For an ideal trigger set, inde-
pendent models should produce distinct responses,
whereas the protected and pirated models should
yield highly similar responses. Independently
trained LLMs are usually obtained through differ-
ent instruction fine-tuning datasets, safety align-
ment datasets, and various fine-tuning and align-
ment strategies. Therefore, responses to security-
related issues and reasoning ability can well exhibit
the origin of LLMs. Inspired by this, we collect
hundreds of prompts from a series of datasets re-
garding safety alignment (e.g., jailbreak), common-
sense reasoning, and mathematical reasoning to
construct the trigger set X as the secret key. The
dataset information can be found in Appendix A.1.
Fingerprint Extraction. The fingerprints are ex-
tracted from the model’s responses on the trigger
set X. Specifically, given a model v, we query it
with each trigger  in X and obtain its response and
corresponding token-level logits. We then formal-
ize the output into a trajectory ¢ using the template
“Output: {3} <SEP> Mean Entropy: {}.”, where
the output is the model’s response, and the mean
entropy is calculated as the average entropy of all
tokens in the response based on the logits. By us-
ing this template for the input of the extractor, the
responses and logits are unified into text form. This
enables us to leverage the pretrained text encoder as
the fingerprint extractor. Formally, the fingerprint



extraction can be written as:

f = E(Template(¥(x))), €)

where we deploy the TS5 encoder (Raffel et al.,
2020) as the extractor &£, and the average pooling
representation of £’s last layer hidden states are
used as the fingerprint f.
Fingerprint Extractor Training. To train the ex-
tractor £, we need to ensure that: (i) The extracted
fingerprint of the protected model is sufficiently
close to that of the pirated model; (ii) The finger-
print of the protected model maintains a certain dis-
tance from that of independent models. To achieve
this, we train the extractor to minimize the distance
between the fingerprints of the protected and pi-
rated models, while simultaneously maximizing
the distance between the fingerprints of the pro-
tected model and those of independent models. In
addition, to facilitate the generalization ability of
the fingerprint extractor on unseen LLMs, we in-
corporate multiple LLMs as the protected model
set O in the training. In practice, for each protected
model 1, € O, we collect its fine-tuned variants
from HuggingFace to simulate the pirated models,
resulting a positive sample set P. Similarly, multi-
ple independently trained LLMs and their variants
are attained as the independent model set N for
the extractor training. For each trigger x € X, let
(f, fT) denote the positive fingerprint pair of ppy,
and its pirated model ¢, € P, and (f, f~) denote
the negative fingerprint pair of 1),,,., and an indepen-
dent model v;,4 € N. The objective function of
optimizing the fingerprint extractor £ is formulated
as follows:

exp{(f'f+)/7)}
max > > ZlogZwi,,LdeNeXP{(f‘ff)/Ty

Ypro€0 Ypir€P z€X
(C))

where 6 represents the parameter of the extractor
&, T represents the temperature coefficient.
Ownership Verification. With the Eq.(4), the fin-
gerprints of pirated models should be highly similar
to its original protected LLM. Hence, given a pro-
tected model v, and a suspect model 1,5, we
utilize the trigger set X and the trained extractor £
to conduct ownership verification. Specifically, a
cosine similarity-based distance is deployed as the
metric function F in Eq.(2), defined as follows:

1 . .
d= —m Z CosineSim(&(Ypro()), E(Ysus(x))), (5)

zeX
fpro fsus

where |X| denote the number of triggers, fpro
and f,,s are fingerprints of the protected model
and suspected model extracted by the optimized
extractor £ with Eq.(3). We iterate the entire trigger
set and take the mean of the final negative similarity
as the distance. If the d is small enough, which
indicates that the fs,s is close enough to the fq,s,
and we will claim the 14, is derived from the 1);,;.,.
More practical validation scenarios are in Sec. 4.

3.3 Knowledge-Level Fingerprint

The trigger-pattern fingerprint requires training an
extractor £ to capture the patterns embedded in
the embedding space of the LLMs given specific
triggers. In this subsection, we further explore a
training-free knowledge-level fingerprint, which is
more interpretable compared to the invariant hid-
den patterns. Intuitively, different protected models
are typically pre-trained on distinct corpora and
later refined through instruction tuning and RLHF
to acquire specialized knowledge in a specific do-
main and enhance their conversational capabili-
ties. In this process, the overall knowledge profi-
ciency of an LLM across multiple domains is not
easily altered. Therefore, independently trained
LLMs will exhibit distinct tendencies when an-
swering specific knowledge questions from diverse
domains, whereas pirated models should exhibit
similar knowledge capabilities.

Inspired by this property, we construct knowl-
edge questions set across various domains as secret
key and directly utilize the LLM’s answers toward
the knowledge questions as the knowledge-level
fingerprint. Next, we will provide a detailed in-
troduction to our knowledge-level fingerprint, fol-
lowing the knowledge question set construction,
fingerprint extraction, and ownership verification.

Knowledge Questions Set Construction. Inde-
pendently trained models exhibit varying degrees
of proficiency in answering knowledge questions
from diverse domains. Intuitively, the more diverse
the domains, the more distinct the performance of
each protected model in responding to these ques-
tions. Therefore, we collect knowledge question-
answer pairs QA across N domains including
chemistry, economics, etc. Each domain subset D;
consists of |D;| multiple-choice question-answer
pairs, denoted as D; = {(qg;, aj)}yia', where ¢; rep-
resents the multiple-choice question whose choice
candidate set is {A, B, C, D}, and a; denotes the
corresponding ground truth choice. To ensure the



effectiveness of the questions in distinguishing
LLMs, we then filter out overly difficult questions
in each domain, for which the majority of protected
models could not provide a valid answer. Finally,
to reduce the cost of fingerprint extraction, we ran-
domly sample () questions from each domain. This
process of constructing knowledge question set X;
from the each domain subset D; can be written as:

X; = RandSelect(Filter(D;), Q) 6)

where () is the number of questions selected
from each domain. Once X is obtained for each
domain, the complete knowledge question set X
is constructed as the secret key for the knowledge-
level fingerprint.
Fingerprint Extraction. Due to the inherent
differences in knowledge capabilities among in-
dependently trained LL.Ms, we can leverage the
model’s answers to domain-specific questions for
knowledge-level fingerprints. Specifically, given a
suspect model 15, s and knowledge question set X,
we collect 15,,5’s response by querying model with
each question g; of the pair (¢;, a;) € X. For each
the multiple-choice question g;, the ¥4, is forced
to directly give the answer by t; = 1(¢;) . Then,
we aggregate these answers across all knowledge
questions in X to form the fingerprint f of ¥gys:

f = [th'“ atQXNL (7)

where IV and () denotes the number of domains
and number of questions per domain.

Ownership Verification. Since the pirated model
shares similar knowledge capability with its orig-
inal protected LLM, their answers to knowledge
questions are also expected to be similar. In con-
trast, independent models would provide distinct
answers. To quantize this similarity in knowledge
capabilities, we compute hamming distance be-
tween the knowledge-level fingerprints of the pro-
tected model 9, and the suspected model )y
as follows:

d = HammingDistance(fpro, fsus)s ®)

where fp., and fs,s denote the knowledge-level
fingerprints of 1), and 14, obtained by Eq.(7).
If the d is small enough, the g, is likely to be
pirated from the ;..

4 Experiment

In this section, we conduct experiments to answer
the following research questions.

* RQ1: Can our DuFFin accurately identify the
models that pirated from the protected LLMs
under various real scenarios?

* RQ2: Can our DuFFin be generalized to protect
the IP of unseen LLMs?

* RQ3: How do the number of triggers and knowl-
edge questions affect the performance of two
levels of fingerprinting, respectively?

4.1 Experimental Setup

Protected Models. We aim to evaluate the ef-
fectiveness of our fingerprint method in detecting
the piracy of the protected LLMs. Specifically,
four popular LLMs, i.e., Llama-3.1-8B-Instruct,
Qwen-2.5-7B-Instruct, and Mistral-7B-Instruct-
v0.1, and Llama-3.2-8B-Instruct, serve as the pro-
tected models in our evaluation.

Suspect Models. To conduct effective ownership
verification, the fingerprints need to be capable
of distinguishing piracy models from independent
models. Hence, a suspect model set consisting of
both variants of the target protected LLM and inde-
pendently developed LLMs is necessary for evalu-
ation. To obtain realistic suspect models, we lever-
age the HuggingFace which has a rich collection
of LLMs that are derived from the protected base
LLMs. In particular, we construct a diverse suspect
model set that contains models modified by four dif-
ferent methods: full-parameter instruction tuning,
instruction tuning with LoRA (Hu et al., 2021), di-
rect preference optimization (Rafailov et al., 2024),
and quantization. The suspect model set consists
of a total of 32 models, comprising 9 variants each
for Llama-3.1, Qwen, and Mistral, and 5 variants
for Llama-3.2 and Deepseek-R1. More details of
the collected suspect models can be found in Ap-
pendix 3.

Evaluation Metrics. For trigger-pattern finger-
prints, a subset of the collected LLM variants is
used for training the fingerprint extractor. There-
fore, the evaluation of trigger-level fingerprints is
conducted on the remaining suspect models for
testing. More details of the suspect model splitting
are in Tab. 3. Since knowledge-level fingerprints
do not require training, all suspect models are uti-
lized as test models to evaluate the effectiveness
of the knowledge-level fingerprints. In this work,
we adopt the following metrics to evaluate the ca-
pability of the proposed fingerprinting methods in
detecting piracy models:

* IP ROC evaluates how the fingerprint can sep-



arate the pirated LLMs and independent LLMs
given a protected model. Take the evaluation of
Llama-3.1 as an example. The variants of Llama-
3.1 in the test set serve as positive samples. All
other LLMs serve as negative samples. Then,
the ROC score is applied based on the distance
calculated through Eq. 5 and Eq. 8.

* Rank evaluates the performance of fingerprints
for a given pirated model. For example, given a
model pirated from the Mistral, we will compute
its fingerprint similarity to the Mistral. And we
then compare this score to the Mistral’s finger-
print similarity to independently trained LLMs
and their variants. Rank 1 indicates a successful
detection of the pirated model.
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Figure 2: IP ROC curves of ownership verification.

4.2 Results of Fingerprinting with DuFFin

To answer RQ1, we firstly evaluate how two lev-
els of fingerprints can separate the pirated LLMs
and independent LLMs. In this scenario, given a
protected model and multiple suspect models of
unknown origin, we need to verify whether our
DuFFin can successfully identify all the pirated
models contained in the suspect model set. We
report the IP ROC curves to evaluate DuFFin’s per-
formance. For the trigger-pattern fingerprint, we
conduct 3-fold cross-validation and report the mean
IP ROC of the three folds in the first row of Fig. 2.
For the knowledge-level fingerprint, we randomly
select knowledge questions 5 times and report the
mean IP ROC in the second row of Fig. 2. From
the figure, we observe that:

* Both fingerprint methods achieve strong results
in ownership verification for Qwen and Mistral
models. Compared to the trigger-pattern finger-
print, the knowledge-level fingerprint also per-
forms well in identifying Llama models while is

slightly less effective for Mistral models. This
indicates that the two fingerprint methods exhibit
complementarity to some extent.

* The trigger-pattern fingerprint did not achieve
ideal protection for the Llama, the mean IP-ROC
is around 0.71. We attribute this to the fact that
Llama models were among the earliest open-
source LLLMs and remain the most widely used.
The fine-tuned or quantized versions we collected
often undergo significant modifications, which
increases the difficulty of training the trigger-
pattern fingerprint extractor.

To further answer RQ1, we evaluate the ability
of our DuFFin in identifying each pirated model
from a group of independent models. Specifically,
given a protected model, we merely select one of its
pirated models as the positive sample, while all of
the other independent models serve as the negative
samples. We report the IP-ROC for the trigger pat-
tern, knowledge level, and merged fingerprinting
in Tab. 2. We provide the details of the evaluation
process of the merged fingerprints in Appendix A.3.
We found that the trigger-pattern fingerprint does
not achieve ideal results for identifying the Llama
series of pirated models, while the knowledge-level
fingerprint exhibits relatively low performance on
the Mistral series. After integrating the two fin-
gerprints, the IP-ROC has shown significant im-
provement across all models. Moreover, except for
the RC-Potpourri-Induction derived from Llama,
the merged fingerprint completed ownership veri-
fication for the pirated model with a Rank 1 score.
This demonstrates the complementarity of the two
fingerprints and the powerful capability of DuFFin.

Table 1: Performance on Unseen Llama-3.2.

Unseen Protected Models IP-ROC
Llama-3.2-3B-Instruct 1.0
Llama-Doctor-3.2-3B-Instruct 1.0
Llama-Sentient-3.2-3B-Instruct 1.0

4.3 Fingerprinting Unseen LLMs

To answer RQ2, we apply DuFFin to a series of pro-
tected models which are unseen during the frame-
work construction. Tab. 4 provides the information
about our collected unseen model list.

Merged Fingerprint Evaluation on Llama-3.2.
We first evaluate the merged fingerprint on the
Llama-3.2-3B-Instruct and its two fine-tuning ver-
sions. Here, we form these three Llama-3.2 series



Table 2: Results of verifying the ownership of models pirated from the protected LLM.

Protected LLMs Pirated Models Type | Trigger-Pattern Knowledge-Level Merged
| IP-ROC?T | IP-ROC?T | IP-ROC?T Rank |
—ARC-Potpourri-Induction(L0-0) Fine-tuning 0.29 0.81 0.88 2
Liama —8bit-Instruct-sql-v3(L1-0) 8-Bit 0.71 0.96 1.00 1
—ultrafeedback-single-judge(L3-1) DPO 0.58 1.00 1.00 1
—SuperNova-Lite(L4-1) Fine-tuning 0.67 0.94 1.00 1
—prop-logic-ft(L6-2) Fine-tuning 0.67 0.94 1.00 1
—fake-news(L8-2) Fine-tuning 0.50 0.69 1.00 1
—Human-Like(Q1-0) DPO 0.75 0.96 1.00 1
Owen —Uncensored(Q4-1) Fine-tuning 0.79 0.96 100 1
—Math-110(Q5-1) Fine-tuning 0.83 0.96 1.00 1
—T.E-8.1(Q6-2) Fine-tuning 1.00 0.96 1.00 1
—Financial Advice(Q7-2) Fine-tuning 1.00 0.81 1.00 1
—Rui-SE(Q8-2) 8-Bit 1.00 0.96 1.00 1
—radia-lora(M0-0) Fine-tuning 0.79 0.78 1.00 1
Mistral —Code-SG1-V5(M2-0) Fine-tuning 0.79 0.10 1.00 1
—instruct-generation (M3-1) DPO 0.79 0.96 1.00 1
—WeniGPT(M6-2) Fine-tuning 1.00 0.96 1.00 1
—finetuned(M7-2) Fine-tuning 0.96 0.85 1.00 1
—v2-astromistral(M8-2) Fine-tuning 1.00 0.96 1.00 1
. . T Sciens ocammnc Sei
of models as the positive samples and the three Engineamne e o Engineeae e ety

base-protected models in Tab. 3 as the negative
samples. The IP-ROC is reported in Tab 1. We
found that DuFFin can successfully separate the
LLama-3.2 series of models from the three pro-
tected models, which indicates our method indi-
cates that our method has a certain degree of gener-
alization ability on unseen models.

Knowledge-Level Fingerprint to Detect the Dis-
tillation by DeepSeek-R1. We further validate
the performance of the knowledge-level fingerprint
on the recently released DeepSeek-R1 (DeepSeek-
Al et al., 2025). Here, the Qwen2.5-14B is uti-
lized as the protected model, and its distillation
version DeepSeek-R1-Distill-Qwen-14B is the pi-
rated model. Then, we collect the DeepSeek-R1-
Distill-Llama-8B and the Llama2-13B-chat-hf to
serve as the negative samples. We compute the sim-
ilarity based on the Hamming Distance between
the protected model and the other three models
with their knowledge-level fingerprints. As shown
in Fig. 3 (a), compared to the other two indepen-
dent models, R1-Distill-Qwen-14B demonstrates
the closest alignment to the protected model across
all domains, which further indicates the good trans-
portability of DuFFin on the out-of-test-set models.

4.4 Analysis in Knowledge Domains

To explore the mechanism of the knowledge-level
fingerprint, we visualize the fingerprint similarity
(based on the negative Hamming Distance in Eq. 8)
between the protected model and the suspect mod-
els across all domains. Analysis of other models
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Figure 3: Visualization of knowledge-level fingerprint
similarity across various domains.

can be found in Appendix A.4. As Fig. 3 shows,
we found some interesting phenomena:

* In each domain, compared to independent mod-
els, the pirated model exhibits more similar
knowledge capabilities to the protected model,
e.g., the pirated model L2-0 achieved higher sim-
ilarity in all domains except for the economics.

* The performance of the knowledge-level finger-
print varies across different domains, e.g., for
the Qwen-14B-R1, compared to the engineer-
ing and the computer science domain, the fin-
gerprint works significantly better on the math

and physics domain,

which reflects that the

knowledge-level fingerprint has a certain prefer-
ence for specific domains. Moreover, considering



that DeepSeek-R1 has strong reasoning capabil-
ities, which is consistent with the fingerprint’s
preference for specific domains.
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Figure 4: Impact of the size of the Screct Key.

4.5 Impacts of the the Size of the Secret Key

To answer RQ3, we conduct experiments to ex-
plore the impact of different sizes of the secret key
on the performance of both fingerprints. For the
trigger pattern fingerprinting, we vary the number
of the triggers as {10, 50, 200, 400, 600}, and con-
duct 3-fold cross-validation to train and evaluate
the performance of trigger pattern fingerprint on the
three protected models. For the knowledge-level
fingerprint, we vary the number of the knowledge
questions as {1, 5, 10, 20, 30} for each domain
and obtain {14, 70, 140, 280, 420} in total. We re-
peat experiments three times per value and average
the results. We report the IP-ROC for both of the
fingerprints. As shown in Fig. 4, we observed that:

* For trigger pattern fingerprinting, increasing the
number of triggers (except for two outliers at 50
for Qwen) improves performance, as more trig-
gers allow the extractor to capture model-specific
patterns more effectively.

* The knowledge-level fingerprint is less sensitive
to the number of questions. Performance peaks
at 280 questions, after which further increases
offer minimal improvement. Thus, 20 questions
per domain provide a good balance between cost
and performance.

5 Related Work

Deep IP Protection. Training Deep Neural Net-
works (DNNSs) requires high-quality datasets, do-
main expertise, and significant computational re-
sources, making the resulting models valuable Intel-
lectual Property (IP). Much research has focused on
machine learning methods to protect DNNs from
unauthorized use (Sun et al., 2023). These methods
are broadly categorized into deep watermarking

and deep fingerprinting. Deep watermarking em-
beds identification information in the model, inputs,
or outputs to detect unauthorized use (Uchida et al.,
2017; Nagai et al., 2018; Wang and Kerschbaum,
2021; Lietal., 2022; Sablayrolles et al., 2020; Chen
et al., 2021; Yang et al., 2021a; Wang et al., 2022),
but requires invasive model modifications. In con-
trast, deep fingerprinting (Liu et al., 2022; Yang
et al., 2021b; Chen et al., 2022; Guan et al., 2022)
extracts unique model features, such as decision
boundaries, without altering the model, making it
non-invasive. This paper focuses on fingerprinting
methods for LLMs.

LLMs IP Protection. LLM watermarking embeds
watermark information in the generated text to pro-
tect model copyrights. Previous work introduced
watermarking by modifying logits, splitting the vo-
cabulary at each token position based on previous
tokens (Kirchenbauer et al., 2023). Lee et al. (2024)
refined this for low-entropy text, while Fernandez
et al. (2023) extended it to multi-bit watermarking.
Kuditipudi et al. (2023) proposed sampling-based
watermarking, which does not modify logits but
guides token sampling with watermark messages.
However, these methods can degrade text quality
and lack robustness against attacks like paraphras-
ing. In contrast, fingerprinting is more resilient
to such issues. Recently, several fingerprinting
techniques have been applied to protect LLM copy-
rights (Xu et al., 2024; Russinovich and Salem,
2024; Zhang et al., 2024; Pasquini et al., 2024;
Iourovitski et al., 2024; Yang and Wu, 2024), but
they have limitations. This work either requires the
full accessibility of the model’s full or partial pa-
rameters or does not take the wide range of suspect
models into consideration, which do not apply to
real-world scenarios. We propose DuFFin, a novel
framework to bridge the gap.

6 Conclusion

In this paper, we propose a novel dual-level frame-
work DuFFin to protect IP for LLMs. Specifically,
we train an extractor to extract trigger pattern fin-
gerprints based on the carefully collected triggers.
Meanwhile, we extract the knowledge-level finger-
print from the answers given specific knowledge
questions across various domains without any train-
ing. Extensive experiments on a real-world test
model set demonstrate our DuFFin’s excellent per-
formance. Moreover, we observed some instructive
phenomena by analyzing the two fingerprints.



7 Limitations

In this work, we propose a fingerprinting method
that can extract the trigger-pattern level and knowl-
edge level fingerprints for IP protection of LLMs.
There are two major limitations to be addressed.
Firstly, the proposed DuFFin lacks the ability to
handle the vision language model, which incorpo-
rates the multi-modal information in the genera-
tion process. In the future, we will investigate the
image-text triggers for VLM. Secondly, the secret
key for both levels are currently fixed in DuFFin,
which poses a risk of the targeted fingerprint eras-
ing. Therefore, we will explore a dynamic process
of secret key generation, which avoids the targeted
erasing on the fixed set of secret keys.
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A Appendix

A.1 Dataset Information

We collect triggers and knowledge questions from
a various on-the-shelf dataset to construct our se-
cret key X;. For the triggers, we collect hundreds
of prompts from GSMS8K (Cobbe et al., 2021),
Mathlnstruct (Yue et al., 2024), HarmfulDataset!,
AdvBench (Zou et al., 2023), CommonsenCandi-
dates?, and CommonsenseQA (Talmor et al., 2019),
focusing on the safety alignment, math reasoning,
and commonsense reasoning. For the knowledge
questions, we collect questions mainly from the
MMLU-Pro (Wang et al., 2024b), which includes a
large scale of question-answer pairs across various
domains.

A.2 Test Model Set

We collect three protected models to evaluate our
DuFFin: LLama-3.1-8B-Instruct, Qwen2.5-7B-
Instruct, and Mistral-7B-Insturct. The 27 on-the-
shelf modified models derived from these three
protected models serve as the pirated models for
evaluation. Moreover, we collect the LLama-3.2-
3B-Instruct as the unseen protected model for eval-
uation. The complete list of collected models can
be found in Table 3 and Table 4. Next, we will
provide more details.

Model Selection Rules. We collect models from
the HuggingFace under the following rules:

¢ We never choose models fine-tuned on the low
resource language.

» We focus on three types of variant models: those
fine-tuned through Supervised Fine-tuning, those
trained with RLHF techniques, e.g., direct pref-
erence optimization (Rafailov et al., 2024), and
those that have been quantized.

* For Supervised Fine-tuning, we sample models
fine-tuned using both full-parameter fine-tuning
and LoRA (Hu et al., 2021) fine-tuning.

"https://huggingface.co/datasets/LLM-LAT/
harmful-dataset

2https://huggingface.co/datasets/
commonsense-index-dev/commonsense-candidates
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* Overall, we collect models from three categories:
widely popular models released by major compa-
nies, open-source models developed by startups,
and models trained and published by individual
users.

Train-Test Set Split. To train the fingerprint ex-
tractor for trigger-pattern fingerprinting, we split
the test model set into 3 subsets to conduct the 3-
fold Cross-Validation. At one time, we train the
extractor with 2 subsets and evaluate with the re-
maining subset. We organize the split shown in
the Table 3. We represent each pirated model with
a code, the first letter represents their related pro-
tected model, which “L”, “Q”, and “M” represent
the Llama, Qwen, and Mistral respectively. The
second letter represents the number of pirated mod-
els within their protected model’s family, while the
third letter represents their fold located in. Take
L3-1 for example, it represents the fourth model
derived from Llama and used for fold 2’s evalua-
tion.

A.3 Evaluation Metrics

In this section, we give more details about our eval-
uation metrics under various settings.

A3.1 IPROC

We first illustrate how to obtain the logit for trigger
pattern, knowledge level, and merge fingerprint
respectively.

Trigger Pattern Logit. Given a suspect model, fol-
lowing Eq. 5, we compute the negative distance be-
tween its fingerprint and each other positive sample
models and negative sample models for evaluation.
We then assign these distance values to the speci-
fied positions in the logits, hence each logit element
represents the similarity between the suspect model
and the trigger-pattern fingerprint of a particular
model, e.g., given a suspect 14,5 and its protect
model as positive sample )™ and an independent
model as negative sample 1 ~, then we compute
the negative distance between the 1,5 and 9™, 1) _
respectively, denoted as —d* and —d ™, then the
logit is a vector denote as [—d ™, —d~].
Knowledge Level Logit. Similar to the trigger
pattern logit, we compute the negative distance
between its fingerprint and each other positive sam-
ples and negative samples with Eq. 8.

Merged Logit. In this scenario, we simply use
vector addition to combine the trigger-pattern logit
and the knowledge-level logit.
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Table 3: The collected model set.

Protected Model Model variants (Pirated Models) Type
LO-0 (https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical) | SFT & RLHF
L1-0 (https://huggingface.co/barc@/Llama-3. SFT
1-ARC-Potpourri-Induction-8B)
L2-0 (https://huggingface.co/Adun/Meta-Llama-3. 8-Bit
1-8B-8bit-Instruct-sql-v3)
Llama-3.1-8B-Instruct L3-1 (https://huggingface.co/simonycl/11ama-3. DPO
1-8b-instruct-ultrafeedback-single-judge)
L4-1 (https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) SFT
L5-1 (https://huggingface.co/gvol112/task-1-meta-1lama-Meta-Llama-3. SFT
1-8B-Instruct-1736201342)
L6-2 (https://huggingface.co/ergotts/1lama_3.1_8b_prop_logic_ft) SFT
L7-2 (https://huggingface.co/mtzig/prm800k_llama_lora) SFT
L8-2 (https://huggingface.co/shahafvl/1lama-3_ SFT
1-8b-instruct-fake-news)
QO0-0 (https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct) SFT
Q1-0 (https://huggingface.co/HumanLLMs/Human-Like-Qwen2. DPO
5-7B-Instruct)
Q2-0 (https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS) SFT
Q3-1 (https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo) SFT
Qwen2.5-7B-Instruct Q4-1 (https://huggingface.co/Orion-zhen/Qwen2. DPO
5-7B-Instruct-Uncensored)
Q5-1 (https://huggingface.co/prithivMLmods/Math-II0-7B-Instruct) SFT
Q6-2 (https://huggingface.co/Cran-May/T.E-8.1) SFT
Q7-2 (https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B) SFT
Q8-2 (https://huggingface.co/Uynaity/Qwen-Rui-SE) 8-Bit
MO-0 (https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-1qra) SFT
M1-0 (https://huggingface.co/ashishkgpian/astromistralv?2) SFT
M2-0 (https://huggingface.co/nachtwindecho/ SFT
mistralai-Code-Instruct-Finetune-SG1-V5)
Mistral-7B-Instruct-v0. 1 M3-1 . (https://huggingface.co/MiguelGorilla/mistral_instruct_ DPO
generation)
M4-1 (https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-ve. 8-Bit
1_asm_60e4dc58)
M5-1 (https://huggingface.co/thrunlab/original_glue_boolq) SFT
M6-2 (https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase) SFT
M7-2(https://huggingface.co/Darklord23/finetuned-mistral-7b) SFT
MB8-2 (https://huggingface.co/ashishkgpian/full_v2_astromistral) SFT
Table 4: Model list of unseen models.
Protected Model Code Type
Llama-Doctor-3.2-3B-Instruct (https://huggingface.co/prithivMLmods/ SFT
Llama-3.2-3B-Instruct Llama-Doctor-3.2-3B-Instruct)
’ ’ Llama-Sentient-3.2-3B-Instruct  (https://huggingface.co/prithivMLmods/ SFT
Llama-Sentient-3.2-3B-Instruct)
R1-Qwen-14B (https://huggingface.co/deepseek-ai/ | Distill
DeepSeek-R1-Distill-Qwen-14B)
R1-Llama-8B (https://huggingface.co/deepseek-ai/ | Distill
Qwen2.5-14B DeepSeek-R1-Distill-Llama-8B)
Llama2-13b-chat (https://huggingface.co/sharpbai/ | Base
Llama-2-13b-chat-hf)

Protected Model IP-ROC. Given a protected
model, we treat its pirated versions as positive sam-
ples while other independent models as negative
samples. Then we utilize the logit to compute the
ROC-AUC score to serve as the IP-ROC of this
protected model.

Pirated Model IP-ROC. Given a protected model
and one pirated model, we merely treat the pirated
model as the positive sample and all other inde-
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pendent models as the negative samples. Then we
obtain the logit of this protected model and com-
pute the ROC-AUC score to serve as the [P-ROC
of this pirated model.

Merged IP-ROC. We utilize the merged logit to
compute the [P-ROC, the remaining computation
depends on whether we need the IP-ROC for the
protected model or the pirated model.


https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/ergotts/llama_3.1_8b_prop_logic_ft
https://huggingface.co/mtzig/prm800k_llama_lora
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS
https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/prithivMLmods/Math-IIO-7B-Instruct
https://huggingface.co/Cran-May/T.E-8.1
https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B
https://huggingface.co/Uynaity/Qwen-Rui-SE
https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-lora
https://huggingface.co/ashishkgpian/astromistralv2
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/thrunlab/original_glue_boolq
https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase
https://huggingface.co/Darklord23/finetuned-mistral-7b
https://huggingface.co/ashishkgpian/full_v2_astromistral
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf

A.4 More Results of the Analysis on
Knowledge Level Fingerprinting Domains

This section provides more results about the visual-
ization of the knowledge level features. As Fig. 5
shows, we conduct experiments on the three pro-
tected models. Our fingerprint exhibits excellent
performance on identifying the pirated model from
its protected model.

A.5 Training Details

We train our extractor for the trigger pattern fin-
gerprint on two NVIDIA RTX A6000 GPUs. We
adopt the T5-Base as the extractor, the model size
is around 220M. We set the temperature as 0.04
and 0.004 for different folds. And the training time
is around 30 minutes with 24 epochs. We adopt
the warm-up strategy with a ratio of 0.03 and the
cosine learning rate scheduler.
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Figure 5: Visualization of Knowledge-Level Finger-
prints similarities across different domains.
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