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Abstract
We propose a new method for optimistic planning
in infinite-horizon discounted Markov decision
processes based on the idea of adding regular-
ization to the updates of an otherwise standard
approximate value iteration procedure. This tech-
nique allows us to avoid contraction and mono-
tonicity arguments typically required by existing
analyses of approximate dynamic programming
methods, and in particular to use approximate
transition functions estimated via least-squares
procedures in MDPs with linear function approxi-
mation. We use our method to recover known
guarantees in tabular MDPs and to provide a
computationally efficient algorithm for learning
near-optimal policies in discounted linear mixture
MDPs from a single stream of experience, and
show it achieves near-optimal statistical guaran-
tees.

1. Introduction
The idea of constructing a confidence set of statistically
plausible models and picking a policy that maximizes the
expected return in the best of these models can be traced
back to the pioneering work of Lai & Robbins (1985) in the
context of multi-armed bandit problems, and has been suc-
cessfully extended to address the exploration-exploitation
dilemma in reinforcement learning (RL, Sutton & Barto,
2018). This popular design principle came to be known
as optimism in the face of uncertainty, and the associated
optimization task as the problem of optimistic planning.
The optimistic principle has driven the development of sta-
tistically efficient RL algorithms for a variety of problem
settings. Following the work of Brafman & Tennenholtz
(2002); Strehl et al. (2009) on optimistic exploration meth-
ods for RL in Markov decision processes (MDPs), a break-
through was achieved by Jaksch, Ortner, and Auer (2010),
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whose UCRL2 algorithm was shown to achieve near-optimal
regret guarantees in a broad class of tabular MDPs. In sub-
sequent years, their work inspired an impressive amount of
follow-up work, leading to a variety of extensions, improve-
ments, and other mutations.

The computational efficiency of such optimistic methods
crucially hinges on the implementation of the optimistic
planning subroutine. In the work of Jaksch et al. (2010),
this was addressed by a procedure called extended value it-
eration (EVI), which performs dynamic programming (DP)
in an auxiliary MDP where the confidence set of models is
projected to the space of actions, allowing the realization
of arbitrary transitions that are statistically plausible given
all past experience. After mild adjustments, the EVI pro-
cedure can be shown to give near-optimal solutions to the
optimistic planning problem in a computationally efficient
manner (cf. Fruit et al., 2018 and Section 38.5.2 in Lattimore
& Szepesvári, 2020). Other, even more effective optimistic
dynamic programming procedures have been proposed and
analyzed (Fruit et al., 2018; Qian et al., 2018). However,
these computational developments have been largely re-
stricted to the relatively simple tabular setting.

In recent years, the RL theory literature has seen a mas-
sive revival largely due to the breakthrough achieved by
Jin, Yang, Wang, and Jordan (2020), who successfully ex-
tended the idea of optimistic exploration to a class of large-
scale MDPs using linear function approximation. While
extremely influential, their approach (and virtually all of its
numerous follow-ups) are limited to the relatively simple
setting of finite-horizon MDPs. The reason for this limita-
tion is inherent in their algorithm design that crucially uses
the fact that optimistic planning in finite-horizon MDPs can
be solved via a simple backward recursion over the time in-
dices within each episode (Neu & Pike-Burke, 2020). This
idea completely fails for infinite-horizon problems where
dynamic programming methods should aim to approximate
the solution of a fixed-point equation. Solving such fixed-
point equations is possible in the tabular case but no known
efficient method exists for linear function approximation,
the short reason being that the least-squares transition es-
timator used in the construction of Jin et al. (2020) cannot
be straightforwardly used to build an approximate Bellman
operator that satisfies the necessary contraction properties.
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The best attempt at attacking the infinite-horizon setting
under function approximation we are aware of is by Wei,
Jahromi, Luo, and Jain (2021), who propose a set of
algorithms that are either statistically or computationally
efficient, but eventually fall short of providing an algorithm
with both of these desired properties. Another good
contribution was made by Vial, Parulekar, Shakkottai, and
Srikant (2022), who provided approximate DP methods
for stochastic shortest path problems with linear transition
functions, and analyzed them via studying the concentration
properties of the empirical transition operator. This
technique did allow them to prove regret bounds, but the
guarantees did not reach optimality in terms of scaling
with the time horizon unless strong assumptions are made.
Notably, Vial et al. (2022) only managed to perform a
tight analysis in the special case where the features are
orthogonal, which allowed them to reason about contraction
properties of the empirical Bellman operator. Lacking a
general contraction argument, or another idea that would
enable computationally efficient optimistic planning,
efficient exploration-exploitation in infinite-horizon MDPs
under function approximation has remained unsolved so far.

This is the problem we address in this paper in the context
of discounted infinite-horizon MDPs. Instead of relying on
a contraction argument (or an approximate version thereof),
we propose to solve the optimistic planning problem using
regularized dynamic programming. In particular, we con-
sider a variant of the Mirror-Descent Modified Policy Itera-
tion (MD-MPI) algorithm of Geist, Scherrer, and Pietquin
(2019) that uses a least-squares estimator of the transition
kernel and an exploration bonus to define an optimistic regu-
larized Bellman operator. Using arguments from the classic
analysis of mirror descent methods, we show that each ap-
plication of this optimistic operator improves the quality of
the policy up to an additive error term that telescopes over
the iterations. In other words, we show that each iteration
improves over the last one in an average sense. This is
in stark contrast to arguments used for analyzing previous
optimistic planning methods that relied on contraction argu-
ments which guarantee strict improvements to the policy in
each iteration. The advantage is that it remains applicable
even when the approximate dynamic programming operator
is not contractive or monotone (even approximately).

Our concrete contribution is applying the above scheme
to discounted linear mixture MDPs and showing that
it achieves a near-optimal regret bound of order√

(B2dH + d2H3 + log |A|H4)T , where d is the feature
dimension, B is a bound on the norm of the features, and
H = 1

1−γ is the effective horizon. This result implies
that our algorithm produces an ε-optimal policy after about(
B2dH + d2H3 + log |A|H4

)
/ε2 iterations. Each policy

update takes poly(d,H, T ) iterations of regularized dynamic
programming, each consisting of poly(d,H, T ) elementary

operations. This is to be contrasted with previous contri-
butions on a similar1 setting by Zhou, He, and Gu (2021),
whose policy updates rely on a version of EVI adapted to
linear function approximation. Their EVI variants require
globally constraining the model parameters in a way that the
model is a valid transition kernel. While this last constraint
allowed them to reason about contractive properties of the
EVI iterations, it is practically impossible to enforce with-
out making strong assumptions on the feature maps and the
MDP itself. The difficulty remains even when the property
is only required to hold locally in each state. In this sense,
our method is the first to obtain near-optimal statistical rates
while also being entirely computationally feasible.

The rest of this paper is organized as follows. After present-
ing the notation at the end of this section and the background
in Section 2, we introduce our algorithmic framework in
Section 3. We provide generic performance guarantees and
explain the key steps of the analysis in Section 4. The guar-
antees are instantiated in the context of tabular and linear
mixture MDPs in Section 5. We conclude in Section 6 with
a discussion of our contribution along with its limitations.

Notation. For a natural number N > 0, we denote
[N ] = {1, 2, . . . , N}. For a real number M , we define
the truncation operator ΠM that acts on functions f defined
on a domain A via ΠMf : x 7→ max (min [f (x) ,M ] , 0).
For a measurable space (A,F), we define the set of all prob-
ability distributions ∆(A), and for any two distributions
P,Q ∈ ∆(A) such that P ≪ Q, we define the relative
entropy as DKL (P∥Q) = Ea∼P

[
ln
(

dP
dQ (a)

)]
. For a dis-

tribution P ∈ ∆(A) and a bounded function f ∈ RA, we
write ⟨P, f⟩ = Ea∼P [f(a)] to denote the expectation of
f under P , and we will use the same notation for finite-
dimensional vector spaces to denote inner products. For
a finite-dimensional vector v ∈ Rd and a square matrix
Z ∈ Rd×d, we will use the notation ∥v∥Z =

√
⟨v, Zv⟩.

2. Preliminaries
We consider a discounted MDP M = (X ,A, r, P, γ, ν0),
where X is the finite state space2, A is the finite action
space, r : X × A → [0, 1] is the deterministic reward
function assumed to be known3, P : X ×A → ∆(X ) is the
transition probability distribution, γ ∈ (0, 1) is the discount
factor, and ν0 ∈ ∆(X ) is the initial state distribution. The

1We provide a detailed discussion about the differences be-
tween our settings in Section 6.1.

2Our results extend to the case where X is a measurable space.
The precise definitions require measure-theoretic concepts (Bert-
sekas & Shreve, 1996). For the sake of readability and because
they are well understood, we only consider finite state spaces here.

3It is a standard assumption, and removing it only costs a
constant factor in the regret (Jaksch et al., 2010).
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model describes a sequential interaction scheme between
a decision-making agent and its environment, where the
following steps are repeated for a sequence of rounds t =
1, 2, . . . after the initial state is drawn as X0 ∼ ν0: the
agent observes the state Xt ∈ X , selects an action At ∈ A,
obtains reward r (Xt, At), and the environment generates
the next state Xt+1 ∼ P (·|Xt, At). The goal of the agent
is to pick its sequence of actions in a way that the total
discounted return

∑∞
t=0 γ

tr (Xt, At) is as large as possible.

Below we describe the most fundamental objects relevant
to our work, and refer the reader to the classic book of
Puterman (2014) for more context and details. A (stationary)
policy is a mapping π : X → ∆(A) from a state to a
probability measure over actions. The value function and
action-value function of a policy π are respectively defined
as the functions V π ∈ RX and Qπ ∈ RX×A mapping each
state x and state-action pair x, a to

V π(x) = Eπ

[ ∞∑
t=0

γtr (Xt, At)

∣∣∣∣∣X0 = x

]
,

Qπ(x, a) = Eπ

[ ∞∑
t=0

γtr (Xt, At)

∣∣∣∣∣X0 = x,A0 = a

]
,

where Eπ denotes the expectation with respect to the proba-
bility measure Pπ , generated by the interaction between the
environment and the policy π. With some abuse of notation,
we define the conditional expectation operator P : RX →
RX×A as (Pf) (x, a) =

∑
x′∈X P (x′|x, a) f (x′), for

f ∈ RX . Its adjoint P T acts on distributions µ ∈ ∆(X ×A)
as (P Tµ) (x′) =

∑
x,a∈X×A P (x′|x, a)µ (x, a). It returns

the state distribution realized after starting from the state-
action distribution µ and then taking a step forward in the
MDP dynamics. With these, we can simply state the Bell-
man equations tying together the value functions as

V π (x) = Ea∼π(·|x) [Q
π (x, a)] , Qπ = r + γPV π.

We also introduce the operator E : RX → RX×A acting on
functions f ∈ RX via the assignment (Ef) (x, a) = f (x),
and its adjoint via its action ETµ (x) =

∑
a µ (x, a) on

distributions µ ∈ ∆(X×A). The operatorE can be thought
of as a “padding” operator over the action space that allows
us to use vector notation, while ET applied to a state-action
distribution returns the corresponding marginal distribution
of states. The adjoint P T (resp. ET) is the operator such
that, for any f, g, ⟨Pf, g⟩ = ⟨f, P Tg⟩ (resp. E, ET).

In a discounted MDP, a policy π induces a unique normal-
ized discounted occupancy measure over the state space,
defined for any state x ∈ X as

νπ (x) = (1− γ)

∞∑
t=0

γtPπ [Xt = x] .

The normalization term (1− γ) guarantees νπ is a prob-
ability measure over X . We call the inverse of this nor-
malization constant the effective horizon and denote it by
H = 1

1−γ . We also define the associated state-action occu-
pancy measure µπ, defined as µπ (x, a) = νπ (x)π (a|x).
State-action occupancy measures are known to satisfy the
following recurrence relation that is sometimes called the
system of Bellman flow constraints:

ETµπ = γP Tµπ + (1− γ) ν0. (1)

Using the state-action occupancy measure, the discounted
return of a policy can be written as Rπ

γ = 1
1−γ ⟨µπ, r⟩. We

will use µ∗ to denote an occupancy measure with maximal
return and ν∗ = ETµ∗ to denote the associated state-
occupancy measure. Finally, given two policies π, π′, we
denote DKL (π∥π′) = (DKL (π (·|x) ∥π′ (·|x)))x∈X , and
we define H (π∥π′) = ⟨νπ,DKL (π∥π′)⟩, the conditional
relative entropy4.

In this paper, we will consider the setting of online learning
in discounted MDPs, where the agent aims to produce an
ε-optimal policy πout satisfying ⟨µ∗ − µπout , r⟩ ≤ ε based
on a single stream of experience in the MDP. We will
assume that the learner has access to a reset action that
drops the agent back to a state randomly drawn from the
initial-state distribution ν0, and that the learner follows a
stationary policy πt in each round t. We will measure the
performance in terms of the number of samples necessary
to guarantee that the output policy is ε-optimal. As an
auxiliary performance measure, we will also consider the
expected regret (or simply, regret)5 of the learner defined as

RT = E

[
T∑

t=1

(
⟨µ∗ − µπt , r⟩

)]
.

It is easy to see that a regret bound can be converted into
sample complexity guarantees. In particular, selecting
a time index I uniformly at random from 1, . . . , T and
returning πout = πI guarantees that

E
[
⟨µ∗ − µπout , r⟩

]
=

RT

T
,

which can be made arbitrarily small if RT grows sublin-
early and T is set large enough. We note here that, while
superficially similar to the discounted regret criterion
considered in earlier works like Liu & Su (2020); He

4Technically, this is the conditional relative entropy between
the occupancy measures µπ and µπ′

, but we will keep referring to
it in terms of the policies to keep our notations light. We refer to
Neu et al. (2017) for further discussion.

5In the related literature, it is more common to define regret as a
random variable and bound it with high probability. Our algorithm
is only suitable for bounding the expected regret, and thus we only
define this quantity here; we defer further discussion to Section 6.
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et al. (2021) or Zhou et al. (2021), there are some major
differences between our objectives. We only point out
here that we consider the complexity of producing a good
policy to execute from the initial state distribution, whereas
theirs measures the suboptimality of the policies along
the trajectory traversed by the learner. We defer a further
discussion of the two settings to Section 6.1.

3. Algorithm
Our approach implements the principle of optimism in the
face of uncertainty in discounted MDPs. Instead of aiming
to solve an optimistic version of the Bellman optimality
equations via extended value iteration as done by Jaksch
et al. (2010), our method draws on techniques from con-
vex optimization aiming at average policy improvement. In
particular, our planning procedure is based on a regular-
ized version of approximate value iteration and incorporates
an optimistic estimate of the associated Bellman operator.
Consequently, we refer to our algorithm as RAVI-UCB,
standing for Regularized Approximate Value Iteration with
Upper Confidence Bounds.

RAVI-UCB performs a sequence of regularized Q-function
and policy updates as follows. Starting with an initial esti-
mate V0 = 0 and an initial policy π0, it calculates a sequence
of updates for k = 1, . . . ,K as

Qk+1(x, a) = ΠH

[
r(x, a) + CBk(x, a) + γ

(
P̂ Vk

)
(x, a)

]
,

Vk+1(x) =
1

η
log

(∑
a

πk(a|x)eηQk+1(x,a)

)
,

πk+1(a|x) =
πk(a|x)eηQk+1(x,a)∑

a′ πk (a′|x) eηQk+1(x,a′)
.

Here, P̂ is a nominal transition model and CBk is an ex-
ploration bonus defined to be large enough to ensure that
γP̂Vk + CBk ≥ γPVk and so that Qk+1 is an upper bound
on the regularized Bellman update r + γPVk. The Q-
functions are truncated to the range [0, H] to make sure
that the optimistic property above can be ensured by setting
a reasonably sized exploration bonus CBk. It is important to
note that Qk+1 does not directly attempt to approximate the
optimal action-value function Q∗ in the true MDP, which
marks a clear departure from previously known optimism-
based regret analyses. Instead, our analysis will show that
(1− γ) ⟨ν0, Vk⟩ acts as an optimistic estimate of the optimal
return (1− γ) ⟨ν0, V ∗⟩ in an “average” sense, and that the
total reward of our algorithm can also be bounded in terms
of the same quantity.

The overall procedure is presented as Algorithm 1. The
algorithm proceeds in a sequence of epochs k = 1, 2, . . . ,
where a new epoch is started by taking the reset action with
probability 1− γ in each round, which results in epochs of

Algorithm 1 RAVI-UCB.
Inputs: Horizon T , learning rate η > 0, initial value V0,
initial policy π0.
Initialize: t = 1, Q1 = EV0, D1 = ∅.
for k = 1, . . . do
Tk = t.
P̂k = TRANSITION-ESTIMATE (DTk

).
Vk (x) =

1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
CBk = BONUS (DTk

).
Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt).
Observe xt+1.
Update Dt+1 = ADD (Dt, {(xt, at, xt+1)}).
t = t+ 1.
With probability 1− γ, reset to initial distribution:
xt ∼ ν0 and break.

until t = T
end for

average length H = 1
1−γ . At the beginning of each epoch,

we update the model estimate P̂k and perform one step of
online mirror descent to produce the new policy πk and the
associated softmax value function Vk. We then update the
exploration bonuses CBk such that they satisfy, for all x, a∣∣〈γP (·|x, a)− γP̂k (·|x, a) , Vk

〉∣∣ ≤ CBk (x, a) . (2)

We will refer to exploration bonuses satisfying the above
condition as valid. As we will see explicitly in Section 5,
the model estimate and bonuses are computed using the data
gathered so far, DTk

, where Tk denotes the first time index
of epoch k. Finally, we apply an optimistic Bellman update
to produce a state-action value estimate Qk+1.

We highlight that the assignments in Algorithm 1 are only
made symbolically for all x, a, and a practical implementa-
tion will not necessarily need to loop over the entire state-
action space. Rather, all quantities of interest can be com-
puted on demand while executing the policy in runtime.

Finally, to make some of the arguments in Section 4 more
convenient to state, we introduce some notation. We let
Tk = {Tk, Tk + 1, . . . , Tk+1 − 1} denote the set of time
indices belonging to epoch k, and K (T ) denote the total
number of epochs. For the sake of analysis, it will be useful
to pad out the trajectory of states and actions with the arti-
ficial observations (XT+1, AT+1, . . . , XT+ , AT+), where
T+ is the first time that a reset would have occurred had
the algorithm been executed beyond time step T . These
observations are well-defined random variables, and are in-
troduced to make sure that the last epoch does not require
special treatment.
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4. Main Result & Analysis
Our main technical result regarding the performance of
RAVI-UCB is the following regret bound.
Theorem 4.1. Let {πk}k and {CBk}k be the policies
and exploration bonuses produced by RAVI-UCB over
T timesteps, where the input is η =

√
2 log |A| / (H2T ),

V0 = 0 and any policy π0. Suppose that the sequence of
bonuses {CBk}k is valid in the sense of Equation (2). Then
the policies {πk}k satisfy the following bound:

RT ≤ 2E

 T+∑
t=1

CBt (Xt, At)

+
√
2H4 log |A|T + 2H2.

We present the proof of Theorem 4.1 below. In particular,
we state a sequence of lemmas whose combination will
yield the complete proof. We will provide the proofs that we
believe to be most insightful in the main text, and relegate
the more technical ones to Appendix A.

The analysis will be split into two main parts: one pertaining
to the general properties of our optimistic planning proce-
dure and to the eventual regret bound that can be derived
from it, and one concerning the specifics of the setting con-
sidered. In particular, we first analyze RAVI-UCB using a
generic exploration bonus that we will suppose to be “valid”,
and then show in Section 5 how to derive such valid explo-
ration bonuses in the concrete settings of tabular MDPs and
linear mixture MDPs.

4.1. Optimistic Planning

We first study the properties of our optimistic planning pro-
cedure, without making explicit references to the setting.
For this general analysis, we will fix an epoch index k, as-
sume that P̂k is some estimator of the transition kernel P
and that the exploration bonus CBk is valid in the sense of
Equation (2). We provide the following inequality that will
be useful for bounding the suboptimality gaps.
Lemma 4.2. Let Qk+1 be the state-action value estimate
produced by RAVI-UCB in epoch k, with any input, and as-
sume the bonuses CBk are valid in the sense of Equation (2).
Then,

r + γPVk ≤ Qk+1 ≤ r + 2CBk + γPVk,

where Vk is the value estimate defined in Algorithm 1.

Proof. We start by proving the lower-bound. For each state-
action pair (x, a), we need to handle two separate cases
corresponding to whether or not Qk+1 (x, a) is truncated
from above. In the first case, we have Qk+1 (x, a) = H ,
which implies

Qk+1 (x, a) = H = 1 + γH ≥ r (x, a) + γ
(
PVk

)
(x, a) .

(3)

Here, we have crucially used the condition Vk ≤ H in
the inequality, which was made possible by truncating the
Q-functions to the range [0, H]. In the other case where
Qk+1 (x, a) ≤ H , we use the validity of CBk to show the
following inequality:

Qk+1 (x, a) ≥ r (x, a) + CBk (x, a) + γ
(
P̂kVk

)
(x, a)

≥ r (x, a) + γ (PVk) (x, a) ,

where the first inequality is valid even when a truncation
from below happens.

For the upper-bound, we proceed similarly and consider
the two cases corresponding to whether or not Qk+1 (x, a)
is truncated from below in each state-action pair. First
considering the case where Qk+1 (x, a) = 0, we observe
that

Qk+1 (x, a) = 0 ≤ r (x, a) + γ (PVk) (x, a) ,

from which the claim follows due to non-negativity of CBk.
As for the other case, we have

Qk+1 (x, a) ≤ r (x, a) + CBk (x, a) + γ
(
P̂kVk

)
(x, a)

≤ r (x, a) + 2CBk (x, a) + γ
(
PVk

)
(x, a) ,

where the last step follows from the validity condition on
CBk.

Our key result regarding the quality of the policies produced
by RAVI-UCB is the following.
Lemma 4.3. Let K be a fixed number of epochs, and let πk
and CBk be the policy and exploration bonus produced by
RAVI-UCB in epoch k, where the input is V0 = 0, any pol-
icy π0, and any η > 0. Suppose that {CBk}k is a sequence
of valid exploration bonuses in the sense of Equation (2).
Then, the sequence {πk}k satisfies the following bound:

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) ≤ 2

K∑
k=1

⟨µπk ,CBk⟩+ 2H

+
1

η
H (π∗∥π0) +

ηH3K

2
.

Proof. The main idea of the proof is to show that, un-
der the validity condition of the exploration bonuses,
(1− γ) ⟨ν0, Vk⟩ acts as an approximate upper bound on the
optimal return ⟨µ∗, r⟩, up to some additional terms resulting
from the use of incremental updates. Thanks to the use
of regularization, we can show that these additional terms
are small on average, and that the gap between the opti-
mistic value and the return of πk can be bounded in terms
of ⟨µπk ,CBk⟩. With this in mind, we begin by rewriting the
performance gap of the output policy as follows:

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) =
K∑

k=1

(∆∗
k +∆k) ,
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where we defined ∆∗
k = ⟨µ∗, r⟩ − (1− γ) ⟨ν0, Vk⟩ and

∆k = (1− γ) ⟨ν0, Vk⟩ − ⟨µπk , r⟩ for all k.

Let us now fix some k and consider the first term, ∆∗
k. We

start by observing that (1− γ) ν0 = ETµ∗−γP Tµ∗, which
allows us to write

∆∗
k = ⟨µ∗, r⟩ − (1− γ) ⟨ν0, Vk⟩
= ⟨µ∗, r + γPVk⟩ − ⟨µ∗, EVk⟩ .

(4)

In order to treat the first term in Equation (4), we use the
lower-bound from Lemma 4.2 to obtain

∆∗
k ≤ ⟨µ∗, Qk+1 − EVk⟩
= ⟨µ∗, Qk+1 − EVk+1⟩+ ⟨µ∗, EVk+1 − EVk⟩ .

Summing up for all k = 1, . . . ,K, we get

K∑
k=1

∆∗
k ≤

〈
µ∗, QK+1 − EV K+1

〉
+ ⟨µ∗, E (VK+1 − V1)⟩ ,

where we defined Qk =
∑k

i=1Qi and V k =
∑k

i=1 Vi for
any k. By a classic telescoping argument (presented in
Lemma C.1), one can show that, for all k,

V k (x) = max
p∈∆(A)

{〈
p,Qk (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
≥
〈
π∗ (·|x) , Qk (x, ·)

〉
− 1

η
DKL

(
π∗(·|x)∥π0(·|x)

)
.

Combining this with the previous inequality, we get

K∑
k=1

∆∗
k ≤ 1

η
H (π∗∥π0) + ⟨µ∗, EVK+1⟩ , (5)

by definition of the conditional entropy and V1 = 0.

We now move on to bounding ∆k. Then, using the upper-
bound of Lemma 4.2 to lower-bound r, we bound ∆k as
follows:

∆k = (1− γ) ⟨ν0, Vk⟩ − ⟨µπk , r⟩
≤ (1− γ) ⟨ν0, Vk⟩ −

〈
µπk , Qk+1 − 2CBk − γPVk

〉
= ⟨ETµπk − γP Tµπk , Vk⟩

− ⟨µπk , Qk+1 − γPVk⟩+ 2 ⟨µπk ,CBk⟩ ,

where we have used (1− γ) ν0 = ETµπk − γP Tµπk in the
third line. We can then rewrite the current upper-bound as

∆k ≤ ⟨µπk , EVk −Qk+1⟩+ 2 ⟨µπk ,CBk⟩
= ⟨µπk , EVk⟩ − ⟨µπk+1 , Qk+1⟩

+ ⟨µπk+1 − µπk , Qk+1⟩+ 2 ⟨µπk ,CBk⟩ .

To proceed, we use Lemma C.1 to note that

⟨µπk+1 , Qk+1⟩ =
〈
ETµπk+1 , Vk+1 +

1

η
DKL (πk+1∥πk)

〉
,

which allows us to continue as

∆k ≤ ⟨µπk , EVk⟩ − ⟨µπk+1 , EVk+1⟩

+ ⟨µπk+1 − µπk , Qk+1⟩ −
1

η
H (πk+1∥πk) (6)

+ 2 ⟨µπk ,CBk⟩ .

The last remaining difficulty is to control the second differ-
ence in the last inequality. This can be done thanks to the
regularization, that makes the occupancy measures change
“slowly enough”. To proceed, we use Pinsker’s inequality
and the boundedness of Qk+1 to show

⟨µπk+1 − µπk , Qk+1⟩ ≤ H
√

2DKL (µπk+1∥µπk).

Appealing to Lemma A.1, we can bound the last term as

DKL (µ
πk+1∥µπk) ≤ H · H (πk+1∥πk) .

Using these results, we obtain

⟨µπk+1 − µπk , Qk+1⟩ −
1

η
H (πk+1∥πk)

≤
√
2H3H (πk+1∥πk)−

1

η
H (πk+1∥πk)

≤ sup
z

{√
2H3 · z − 1

η
z2
}

=
ηH3

2
,

where the last step follows from the Fenchel–Young in-
equality applied to the convex function f (z) = z2/2. Then,
summing up both sides of Equation (6) for all k = 1, . . . ,K,

K∑
k=1

∆k ≤ −⟨µπK+1 , EVK+1⟩+
ηH3

2
K

+ 2

K∑
k=1

⟨µπk ,CBk⟩ , (7)

where we used V1 = 0. Combining Equations (5) and (7),

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) ≤ 2

K∑
k=1

⟨µπk ,CBk⟩+ 2H

+
1

η
H (π∗∥π0) +

ηH3

2
K,

where we used ⟨µ∗ − µπK+1 , EVK+1⟩ ≤ 2H .

4.2. The Epoch Schedule

The final part is to account for the effects of the randomized
epoch schedule. Provided that the exploration bonuses are
valid, we need to control the sum

∑T
t=1 ⟨µπt ,CBt⟩. We

relate it to a more easily tractable sum in the next lemma.
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Lemma 4.4. The sequence of policies selected by
RAVI-UCB satisfies

E

[
T∑

t=1

⟨µπt ,CBt⟩

]
≤ E

 T+∑
t=1

CBt (Xt, At)

 .
The proof is in Appendix A.3. This bound is guaranteed by
the epoch schedule used by RAVI-UCB that ensures that
within each epoch k of geometric length, the sequence of
realized state-action trajectory is distributed according to
the occupancy measure of πk.

4.3. Putting Everything Together

The proof of Theorem 4.1 concludes by combining the
above claims. In anticipation of Section 5, for our main
assumption to be satisfied we let δ = 1/T and define the
exploration bonuses as in Lemma 5.1 or Lemma 5.4. This
implies the resulting exploration bonuses are valid with prob-
ability at least 1− δ, so on this event we can use Lemma 4.3
to bound the expected regret of RAVI-UCB. Setting π0 as
the uniform policy, we get

RT ≤ 2E

[
T∑

t=1

⟨µπt ,CBt⟩

]

+HE
[
1

η
log |A|+ ηH3

2
K (T ) + 2H

]
,

where we used that the expected epoch length is H and
H (π∗∥π0) ≤ log |A|. Noticing that E [K] = (1− γ)T
and setting the learning rate η =

√
2 log |A| / (H2T ), the

expected optimization error becomes

E
[
1

η
log |A|+ ηH3K

2

]
=
√
2H2T log |A|.

The remaining terms in the regret bound corresponding to
the sum of exploration bonuses can be bounded by appealing
to Lemma 4.4. This concludes the proof.

5. Applications
We now consider two classes of MDPs and show how to
implement our algorithm and derive a regret bound.

5.1. Tabular MDPs

For didactic purposes, we first instantiate RAVI-UCB
in the setting of tabular MDPs with small state and ac-
tion spaces. As we will see, a simple application of
our framework allows us to recover known guarantees
in this setting. The algorithm can be found in Ap-
pendix B.1. Let N1(x, a) = 1 and N ′

1(x, a, x
′) =

0 denote the initial counts6 for the tuples (x, a) and

6We initialize N1 at 1 to avoid divisions by zero.

(x, a, x′). At epoch k, for t ∈ Tk, we update Dt+1 =(
Nt+1, N

′
t+1

)
as Nt+1(x, a) = Nt(x, a) + I{Xt=x,At=a}

andN ′
t+1(x, a, x

′) = N ′
t(x, a, x

′)+I{Xt=x,At=a,Xt+1=x′}.
We use P̂k (x

′|x, a) = NTk
(x, a, x′)/NTk

(x, a) as a model
estimate, and given β > 0, the exploration bonuses are
defined as

CBk(x, a) =
β√

NTk
(x, a)

. (8)

The following lemma shows that an appropriate choice of
the scaling parameter β ensures the validity of the explo-
ration bonuses.

Lemma 5.1. Let δ ∈ (0, 1). Then, setting the coeffi-
cient β = 8H

√
|X | log (|X | |A|T/δ) guarantees that, with

probability 1 − δ, the validity condition (2) is satisfied by
CBk as defined in Equation (8) for all k.

Then, we can bound the bonuses as follows.

Lemma 5.2. The sum of exploration bonuses generated by
RAVI-UCB satisfies

E

 T+∑
t=1

CBt (Xt, At)

 = O
(
β
√
|X | |A|T

)
.

We refer the reader to previous works for the proofs of
the above two lemmas (see, e.g., Jaksch et al., 2010; Fruit
et al., 2018). Combining the above two results gives a regret
bound of order |X |H

√
|A|T , as expected.

5.2. Linear Mixture MDPs

We now focus on a class of MDPs commonly referred to as
linear mixture MDPs (Modi et al., 2020; Ayoub et al., 2020)
formally defined as follows.

Assumption 5.3 (Linear mixture MDP). There exist a
known feature map ψ : X × A × X → Rd, and an un-
known θ ∈ Rd with ∥θ∥2 ≤ B such that P (x′|x, a) =∑d

i=1 θiψi(x, a, x
′). Furthermore, for any (x, a) ∈ X ×A,

V ∈ [0, H]
X ,∥∥∥∥∥∑

x′∈X
ψ(x, a, x′)V (x′)

∥∥∥∥∥
2

≤ BH.

Here, we suppose M satisfies Assumption 5.3. While re-
motely related to the notion of linear MDPs (Jin et al., 2020;
Yang & Wang, 2019), linear mixture MDPs are a distinct
class of models that cannot be captured in that framework,
and have been widely studied in the past few years as linear
MDPs—we refer to Zhou et al. (2021) for further discus-
sion. As often assumed in the related literature, we assume
the map φk(x, a) =

∑
x′ ψ(x, a, x′)Vk (x

′) can be com-
puted (or approximated) efficiently. We provide a detailed
discussion of all such computational matters in Section 6.2.
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The algorithm is in Appendix B.2. Let λ > 0 be a reg-
ularization parameter, Λ1 = λI , and b1 = 0. At epoch
k, for t ∈ Tk, the data is stored as Dt+1 = (Λt+1, bt+1)
where Λt+1 = Λt + φk (xt, at)φk (xt, at)

T and bt+1 =

bt + φk (xt, at)Vk (xt+1). P̂k =
∑

i θ̂k,iψi is computed
via a least-squares regression, where θ̂k = Λ−1

Tk
bTk

. Given
β > 0, the exploration bonuses are defined as

CBk(x, a) = β ∥φk(x, a)∥Λ−1
Tk

. (9)

We now turn to the validity condition required by
Lemma 4.3.

Lemma 5.4. Let δ ∈ (0, 1). Then, setting the coefficient

β = H
√
2
(
d
2 log

[
1 + TB2H2

λd

]
+ log 1

δ

)
+

√
λB guaran-

tees that, with probability 1− δ, the validity condition (2)
is satisfied by CBk as defined in Equation (9) for all k.

The proof is in Appendix A.2. It relies on standard tech-
niques regarding linear mixture MDPs (Zhou et al., 2021;
Cai et al., 2020). One important property required is the
boundedness of each Vk that is guaranteed by the truncation.
Then, we can bound the sum of the exploration bonuses
with the following lemma.

Lemma 5.5. The sum of exploration bonuses generated by
RAVI-UCB satisfies

E

 T+∑
t=1

CBt (Xt, At)

 = O
(
β
√
dHT log (T )

)
.

The proof (Appendix A.4) follows from a series of small
(but somewhat tedious) adjustments of a classic result often
referred to as the “elliptical potential lemma”, the main chal-
lenge being dealing with the randomized epoch schedule.

Our main technical result regarding the performance of
RAVI-UCB is the following.

Theorem 5.6. Suppose that RAVI-UCB is run with the
uniform policy as π0, V0 = 0, λ = 1, a learning rate
η =

√
2 log |A| / (H2T ), and an exploration parameter

β = H
√
2
(
d
2 log

[
1 + TB2H2

d

]
+ log T

)
+ B. Then, the

expected regret of RAVI-UCB satisfies

RT = Õ
(√

(d2H3 +B2dH +H4 log |A|)T
)
.

Õ (·) hides logarithmic factors of T ,B, d, andH . A perhaps
more useful result is the following, derived from an online-
to-batch conversion. Suppose RAVI-UCB returns a policy
πout = πU with U being an epoch index chosen uniformly at
random from the range of epochs. The following corollary
provides a guarantee on the quality of this policy.

Corollary 5.7. Let ε > 0. Then, RAVI-UCB run with the
same parameters as before outputs a policy πout satisfying
E [⟨µ∗ − µπout , r⟩] ≤ ε after Tε steps, with

Tε = Õ
((
B2dH + d2H3 +H4 log |A|

)
ε−2
)
.

The expectation appearing in the first statement is with
respect to the random transitions in the MDP and the epoch
scheduling, whereas the expectation in the second one is
also with respect to the random choice of the policy. It is
possible to remove the former expectation, but the latter is
inherent to the online-to-batch conversion process used by
our analysis. We will return to this point in Section 6.2.

6. Discussion
We now discuss the merits and limitations of our results,
and point out directions for future research.

6.1. Results and Comparisons

There are many differences between our approach and pre-
viously proposed optimistic exploration methods that we
are aware of. Perhaps the most interesting novelty in our
method is that it radically relaxes the optimistic properties
that previous methods strive for: instead of calculating es-
timates of the value function or the MDP model that are
strictly optimistic, we only guarantee that our value esti-
mates are optimistic in an average sense. Thus, during its
runtime, our algorithm may execute several policies that
do not individually satisfy any optimistic properties, even
approximately. We find this property to be curious and be-
lieve that the ideas we develop to tackle such notions of
“average optimism” may find other applications. We note
though that our planning procedure can be used to produce
optimistic policies in a stricter sense by executing several
regularized value iteration steps per policy update, until the
resulting optimization error vanishes. Doing so results in an
improved dependency on H by a factor

√
H but comes at

the cost of a major computational overhead.

While our algorithm is closely related to the MD-MPI
method of Geist, Scherrer, and Pietquin (2019) and our
proofs feature several similar steps, we remark that the pur-
pose of our analysis is quite different from theirs, even
when disregarding the optimistic adjustment we make to the
Bellman operators. Taking a close look at their proofs for
the special case of zero approximation errors, one can de-
duce bounds on our quantity of interest that are of the order
(H +H(π∗∥πK)) /K after K iterations. This is faster than
what our analysis provides for approximate DP, which is due
to the monotonicity of the exact Bellman operator which
allows fast last-iterate convergence. The same rate appears
in the analysis of regularized policy iteration methods by
Agarwal et al. (2021) (see Theorem 16). Either way, all of
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these analyses use tools from the analysis of mirror descent
first developed by Martinet (1970), Rockafellar (1976), and
Nemirovski & Yudin (1983) (see also Beck & Teboulle,
2003). Note that, as the guarantees of these regularization-
based methods hold on arbitrary data sequences, our regret
guarantees trivially generalize to the case where the rewards
change over time in a potentially adversarial fashion (as in,
e.g., Even-Dar et al., 2009; Cai et al., 2020).

Another line of work that our contribution seemingly fits into
is the one initiated by Liu & Su (2020) on the topic of regret
minimization for discounted MDPs (see also He et al., 2021;
Zhou et al., 2021). A closer look reveals that their objective
is quite different from ours, in that they aim to upper bound∑T

t=1 (V
∗ (Xt)− V πt (Xt)) along the trajectory traversed

by the learning agent. This notion of regret has been moti-
vated by a formerly popular notion of “sample complexity
of exploration” in discounted MDPs—we highlight Kakade
(2003); Strehl et al. (2009) out of the abundant “PAC-MDP”
literature on this subject. This performance measure is in
fact not comparable to ours in almost any possible sense. In
fact, it is easy to see that this notion may fail to capture the
sample complexity of learning a good policy in a meaning-
ful way: a policy that immediately enters a “trap” state that
yields zero reward until the end of time will only incur a
constant regret of order 1

1−γ , even if there is a policy that
yields a steady stream of +1 rewards in each round. Thus,
without making stringent assumptions about the MDP that
rule out such undesirable scenarios, the value of minimizing
this notion of discounted regret may be questionable.

6.2. Limitations and Future Directions

On a related note, our method suffers from the limitation
of requiring access to a reset action taking the agent back
to the initial distribution ν0 at any time. In general, this is
necessary to achieve our objectives. Indeed, in MDPs where
all states around the initial distribution are transient, it is
impossible to learn a good policy from a single stream of
experience without resets since the agent only gets to visit
the relevant part of the state space once. We thus believe
these issues are inherent to learning in discounted MDPs.

Another limitation is that our guarantees only hold on ex-
pectation as opposed to high probability. In fact, several of
our results can be strengthened to hold in this stronger sense,
albeit at the cost of a more involved analysis. In particular,
the only parts of our analysis that need to be changed are
Lemmas 4.4 and 5.5, to deal with the randomized epoch
schedule. The first of these can be handled via a martin-
gale argument and the second by bounding the number and
length of the epochs with high probability. Both of these
changes are conceptually simple, but practically tedious so
we omit them for clarity. On the other hand, Corollary 5.7
relies on a randomized online-to-batch conversion, and the

result is stated on expectation with respect to the randomiza-
tion step. Once again, this result can be strengthened to hold
with high probability by running a “best-policy-selection”
subroutine on the sequence of policies produced by the al-
gorithm. This post-processing step is standard in the related
literature and we omit details here to preserve clarity.

Based on our current results, generalizing our techniques to
the infinite-horizon average-reward setting seems to be chal-
lenging but not impossible. The key step in our proof that
requires discounting is setting the truncation level at H =
1

1−γ , which serves the purpose of guaranteeing that our ap-
proximate Bellman operator is optimistic. In particular, the
truncation level needs to be set large enough so that the in-
equality of Equation 3 goes through. We see no natural way
to extend this condition to the undiscounted setup. We re-
main hopeful that this challenge can be overcome with more
effort (but may potentially need some significant new ideas).

Finally, let us remark on the linear mixture MDP assump-
tion that we have used. While arguably well-studied in the
past years, this model for linear function approximation has
limitations that make it rather difficult to adapt to practical
scenarios. The biggest is that learning algorithms in this
model need access to an oracle to evaluate sums of the
form

∑
x′ ψ (x, a, x′)V (x′), which can only be performed

efficiently in special cases. Options include assuming that
ψ (x, a, ·) is sparse or the integral can be approximated ef-
fectively via Monte Carlo sampling. A major inconvenience
that this causes in the implementation of our method is that
Q-functions (and policies) cannot be represented effectively
with a single low-dimensional object, so these values have
to be recalculated on the fly while executing the policy,
requiring excessive Monte Carlo integration in runtime.
We thus wish to extend our analysis to more tractable
MDP models like the model of Jin et al. (2020). While it
is straightforward to implement our algorithm for linear
MDPs, unfortunately the covering number of the value
function class used by our algorithm appears to be too large
to allow proving strong performance bounds. On a more
positive note, we wish to point out that linear mixture MDPs
are still a rich family of models that in general is incom-
parable to linear MDPs, and can subsume many interesting
models—we refer to (Ayoub et al., 2020) for further discus-
sion. We are optimistic that the limitations of our current
analysis can be eventually removed and our method can be
adapted to a much broader class of infinite-horizon MDPs.
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A. Omitted Proofs
A.1. Technical Tools for the Proof of Lemma 4.3

Lemma A.1. Let π and π′ be two policies, with their corresponding state-action occupancy measures being µπ and µπ′
,

and their state occupancy measures being νπ and νπ
′
. Then,

DKL

(
µπ
∥∥∥µπ′

)
≤ 1

1− γ
H (π∥π′) .

Proof. Using the chain rule of the relative entropy, we write

DKL

(
µπ
∥∥∥µπ′

)
= DKL

(
νπ
∥∥∥νπ′

)
+H (π∥π′) .

By the Bellman flow constraints in Equation (1) and the joint convexity of the relative entropy, we bound the second term as

DKL

(
νπ
∥∥∥νπ′

)
= DKL

(
γP Tµπ + (1− γ) ν0

∥∥∥γP Tµπ′
+ (1− γ) ν0

)
≤ (1− γ)DKL (ν0∥ν0) + γDKL

(
P Tµπ

∥∥∥P Tµπ′
)

= γDKL

(
P Tµπ

∥∥∥P Tµπ′
)
≤ γDKL

(
µπ
∥∥∥µπ′

)
,

where we also used the data-processing inequality in the last step. The proof is concluded by reordering the terms.

A.2. Proof of Lemma 5.4

Let us fix k ∈ [K], t ∈ {Tk, Tk + 1, . . . , Tk+1 − 1}, δ ∈ (0, 1). We start by recalling the definition of the nominal
transition model P̂k acting on functions V as

(
P̂kV

)
(x, a) =

〈
φV (x, a) , θ̂k

〉
, where we denoted the state-action feature

map φV (x, a) =
∑

x′∈X ψ (x, a, x′)V (x′), and the parameter θ̂k can be written out as

θ̂k = Λ−1
Tk
bTk

=

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)φi (xj , aj)
T
+ λI

−1
k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)Vi (xj+1) .

To proceed, we notice that the true transition operator acting on V can be written in a similar form as

(PV ) (x, a) =
∑
x′∈X

P (x′|x, a)V (x′) (by definition of P )

=
∑
x′∈X

⟨θ, ψ (x, a, x′)⟩V (x′) (by Assumption 5.3)

=

〈
θ,
∑
x′∈X

ψ (x, a, x′)V (x′)

〉
= ⟨θ, φV (x, a)⟩ ,

where we used the definition of φV in the last line. Proceeding further with the same expression, we write

(PV ) (x, a) =
〈
φV (x, a) ,Λ−1

Tk
ΛTk

θ
〉

=

〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)φi (xj , aj)
T
θ + λΛ−1

Tk
θ

〉

=

〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj) (PVi) (xj , aj) + λΛ−1
Tk
θ

〉
,

12
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where we used the definition of ΛTk
and Assumption 5.3 in the last line. Comparing the expressions for PV and P̂kV , we

obtain

∣∣∣P̂kV (x, a)− PV (x, a)
∣∣∣ =

∣∣∣∣∣∣
〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj) [Vi (xj+1)− (PVi) (xj , aj)]− λΛ−1
Tk
θ

〉∣∣∣∣∣∣ .
Using the Cauchy–Schwartz inequality and taking V = Vk, we get∣∣∣P̂kVk (x, a)− PVk (x, a)

∣∣∣ ≤ ∥φk (x, a)∥Λ−1
Tk

(|ξk|+ |bk|) ,

where ξk =
∥∥∥∑k−1

i=0

∑Ti+1−1
j=Ti

φi (xj , aj) [Vi (xj+1)− (PVi) (xj , aj)]
∥∥∥
Λ−1

Tk

, and bk = λ ∥θ∥Λ−1
Tk

. The second term can be

easily bounded as |bk| ≤
√
λ ∥θ∥2 ≤

√
λB, using that λmin (ΛTk

) ≥ λ and the boundedness of the features.

For the first term, observe that Vi (xj+1)− (PVi) (xj , aj) forms a martingale difference sequence, with increments bounded
in [−H,H] by the truncation made in the algorithm. Additionally, the feature vectors are bounded as ∥φi (xj , aj)∥2 ≤ BH
and the true parameter as ∥θ∥2 ≤ B by Assumption 5.3. Therefore, we can apply the self-normalized concentration result in
Theorem C.2 (stated in Appendix C.2), which guarantees that with probability at least 1− δ, the following bound holds for
all k ∈ [K]:

ξk ≤ H

√√√√2 log

[
det (ΛTk

)
1/2

det (λI)
−1/2

δ

]
.

The determinants appearing in the bound can be further upper bounded by using that det (λI) = λd and

det (ΛTk
) ≤

(
tr (ΛTk

)

d

)d

(by the trace-determinant inequality)

=
1

dd

λd+ k−1∑
i=0

Ti+1−1∑
j=Ti

∥φi (xj , aj)∥22

d

(by the definition of ΛTk
)

≤
(
λ+

TkB
2H2

d

)d

(by the boundedness of the features)

≤
(
λ+

TB2H2

d

)d

,

where in the last step we used Tk ≤ T . We plug this back in the upper-bound on ξk to obtain the bound

ξk ≤ H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
.

Putting everything together, we have verified that, for all k ∈ [K],

∣∣∣〈P (·|x, a)− P̂k (·|x, a) , Vk
〉∣∣∣ ≤ ∥φk (x, a)∥Λ−1

Tk

(
H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
+
√
λB

)
= β ∥φk (x, a)∥Λ−1

Tk

.

holds with probability at least 1− δ, where we have defined β as

β = H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
+
√
λB. (10)

This concludes the proof.

13
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A.3. Proof of Lemma 4.4

For the sake of this proof, we slightly update our notation for Tk by setting TK(T ) =
{
TK(T ), TK(T ) + 1, . . . , T+

}
. We

will use Fk−1 to denote the filtration generated by the observations up to the end of epoch k − 1, and Lk to denote the
length of epoch k. We start by rewriting the sum of exploration bonuses up to step T+ as

T+∑
t=1

CBt (Xt, At) =

K(T )∑
k=1

∑
t∈Tk

CBt (Xt, At) . (11)

By virtue of the definition of T+, all epochs are of geometric length with mean 1
1−γ . Now, let us consider a fixed epoch k

and define the auxiliary infinite sequence of state-action pairs Xk,0, Ak,0, Xk,1, Ak,1, . . . that is generated independently
from the realized sample trajectory (Xt, At)t∈Tk

given Fk−1 as follows. The initial state Xk,0 is drawn from ν0, and
then subsequently for each i = 0, 1, . . . , the actions are drawn as Ak,i ∼ πk (·|Xk,i) and follow-up states are drawn as
Xk,i+1 ∼ P (·|Xk,i, Ak,i). Recalling the notational convention that CBt = CBk for all t ∈ Tk, we observe that for any k,
we have

E

[∑
t∈Tk

CBt (Xt, At)

∣∣∣∣∣Fk−1

]
= E

[
Lk−1∑
i=0

CBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

= E

[ ∞∑
i=0

I{i<Lk}CBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

= E

[ ∞∑
i=0

γiCBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

=

∞∑
i=0

γi ⟨uk,i,CBk⟩ =
⟨µπk ,CBk⟩

1− γ

= E [Lk ⟨µπk ,CBk⟩| Fk−1] = E

[∑
t∈Tk

⟨µπk ,CBk⟩

∣∣∣∣∣Fk−1

]
,

where in the third line we have observed that Lk follows a geometric law with parameter 1 − γ, and is independent of
(Xk,i, Ak,i)i. In the fourth line we introduced the notation uk,i to denote the joint distribution of Xk,i, Ak,i given Fk−1 and
noticed that the discounted sum of these distributions exactly matches the definition of the occupancy measure µπk up to the
normalization constant (1− γ), and finally concluded by observing that E [Lk| Fk−1] =

1
1−γ .

The proof is completed by summing up over all epochs, taking marginal expectations, and noticing that

E

[
T∑

t=1

⟨µπt ,CBt⟩

]
≤ E

 T+∑
t=1

⟨µπt ,CBt⟩

 = E

K(T )∑
k=1

∑
t∈Tk

⟨µπk ,CBk⟩

 .

A.4. Proof of Lemma 5.5

The proof is based on a classic “pigeonhole” argument often called the “elliptical potential lemma” (e.g., Lemma 19.4 in
Lattimore & Szepesvári, 2020, or Section 11.7 in Cesa-Bianchi & Lugosi, 2006, but see also Lai et al., 1979; Lai & Wei,
1982). The main challenge of adapting this result to our setting is accounting for the randomized epoch schedule. Another
subtle difficulty comes from the fact that Lemma 4.3 only bounds the total regret as opposed to the instantaneous regrets in
each round, which necessitates arguments that are slightly more involved than what is commonly seen in closely related
work.

As for the actual proof, we start by introducing some useful notation that we will use throughout the proof. For t ∈ [T ], we
use kt to denote the index of the epoch that t belongs to. For simplicity, for all k and t, we will write φk,t = φk (Xt, At),

Λk = ΛTk
. We also define N (T ) =

{
t ∈ [T ] : ∥φkt,t∥Λ−1

kt

≥ 1
}

as the set of “bad” time indices where state-action

14
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pairs with large feature norms are observed, and E (T ) =
{
k ∈ [K (T )] : ∃t ∈ Tk, ∥φk,t∥Λ−1

k
≥ 1
}

be the set of epochs
containing at least one bad time index. Using these definitions, we rewrite the sum of exploration bonuses as follows:

E

 T+∑
t=1

CBt (Xt, At)

 = βE

 ∑
k∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

+
∑

k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k


≤ βE

BH√
λ

∑
k∈E(T )

|Tk|+
∑

k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

 (using ∥φ∥2 ≤ BH and Λk ⪰ λI)

= βE [|E (T )|] BH
2

√
λ

+ βE

 ∑
k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

 (using Wald’s identity)

= βE [|E (T )|] BH
2

√
λ

+ βE

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ,
where in the last step we used the definition of E(T ). We treat the first term separately in Lemma A.3, stated after this proof.
This gives the following bound:

E

 T+∑
t=1

CBt (Xt, At)

 ≤ βdBH2

√
λ log (2)

log

(
1 +

B2H2T

λd

)
+ βE

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) .
Thus, we can focus on the second term in the right hand side. This term can be upper-bounded using the Cauchy–Schwarz
inequality as

∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

√
T

√√√√K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥2Λ−1

k

)
.

To proceed, we use the inequality (x ∧ |Tk|) ≤ |Tk|
log(|Tk|+1) log (1 + x) that is valid for all x ≥ 0. Setting Ck = |Tk|

log(|Tk|+1) ,
this gives

K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥2Λ−1

k

)
=

K(T )∑
k=1

1

|Tk|
∑
t∈Tk

(
|Tk| ∧ |Tk| ∥φk,t∥2Λ−1

k

)
≤

K(T )∑
k=1

Ck

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)

≤ max
k

Ck ·
K(T )∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
.

The sum is handled separately in Lemma A.2 stated and proved right after this proof. Putting the result together with our
previous calculations, we get

∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

√
T
√
max

k
Ck

√
d log

(
1 +

B2H2T

λd

)
.

The only random quantity left in the upper-bound is the maximum over Ck. By concavity of the square-root function and
Jensen’s inequality, we get

E

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ≤
√
T

√
E
[
max

k
Ck

]√
d log

(
1 +

B2H2T

λd

)
,

which we further upper bound by using Lemma A.4 as

E

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ≤
√
T
√
H (4 + 2 log T )

√
d log

(
1 +

B2H2T

λd

)
.
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We put together the two terms, and plug in the definition of β to get

E

 T+∑
t=1

CBt (Xt, At)

 ≤ C1 (T ) +
√
TC2 (T ) ,

where the two factors are defined as

C1 (T ) =

(
H

√
2

(
d

2
log

[
1 +

B2H2T

λd

]
+ log T

)
+
√
λB

)
dBH2

√
λ log (2)

log

(
1 +

B2H2T

λd

)

C2 (T ) =

(
H

√
2

(
d

2
log

[
1 +

B2H2T

λd

]
+ log T

)
+
√
λB

)√
H (4 + 2 log T )

√
d log

(
1 +

B2H2T

λd

)
.

The proof is then concluded by observing that C1 (T ) + C2 (T ) = O
(
BH3/2d log (T )

3/2
)

.

Lemma A.2. Following the same notations that in Section A.4

K∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
≤ d log

(
1 +

B2H2T

λd

)
.

Proof. We will follow the steps of the proof of Lemma 19.4 in Lattimore & Szepesvári (2020). First, notice that Λk can be
written as

Λk+1 = Λk +
∑
t∈Tk

φk,tφ
T

k,t = Λ
1/2
k

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)
Λ
1/2
k .

Taking the determinant of the above matrix, we get

det (Λk+1) = det (Λk) det

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)
.

Now, taking logarithms on both sides and using the concavity of log det, we obtain

log det (Λk+1) = log det (Λk) + log det

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)

= log det (Λk) + log det

(
1

|Tk|
∑
t∈Tk

(
I + |Tk|Λ−1/2

k φk,tφ
T

k,tΛ
−1/2
k

))

≥ log det (Λk) +
1

|Tk|
∑
t∈Tk

log det
(
I + |Tk|Λ−1/2

k φk,tφ
T

k,tΛ
−1/2
k

)
= log det (Λk) +

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
,

where the inequality is Jensen’s, and the final step follows from using the equality det(I + vvT) = (1 + ∥v∥22) that holds for
any v ∈ Rd. Summing up for k gives

log det
(
ΛK(T )

)
≥ log det (Λ1) +

K∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
,

and furthermore by the trace-determinant inequality we have

log

(
detΛK(T )

detΛ0

)
= log

(
det
(
ΛK(T )

)
λd

)
≤ d log

(
tr
(
ΛK(T )

)
λd

)
.
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Finally, the trace can be bounded as

tr
(
ΛK(T )

)
= λd+

K(T )∑
k=1

∑
t∈Tk

∥φk,t∥22 ≤ λd+B2H2T.

Plugging this back into the previous inequality proves the claim.

Lemma A.3. The number of epochs that contain a feature vector with a norm larger than one is bounded as

|E (T )| ≤ d

log (2)
log

(
1 +

B2H2T

λd

)
.

A simpler version of this statement is given as Exercise 19.3 in Lattimore & Szepesvári (2020), and our proof below drew
inspiration from the proof of Lemma 19 in (Ouhamma et al., 2022). We only have to deal with the challenge of randomized
epoch schedules, which we do by similar arguments as in the proof of Lemma 5.5 above.

Proof. Let k ∈ [K (T )]. We define G0 = λI and Gk+1 = Gk +
∑

t∈Tk
φk,tφ

T

k,tI{t∈N (T )}. We have the following
decomposition:

Gk+1 = G
1/2
k

(
I +

∑
t∈Tk

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

I{t∈N (T )}

)
G

1/2
k

= G
1/2
k

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

G
1/2
k .

Therefore, taking the log-determinant on both sides, we obtain

log det (Gk+1) = log det (Gk) + log det

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

 .

If Tk ∩N (T ) = ∅, or equivalently if k /∈ E (T ) (i.e., there is no “bad” state-action pair in the epoch k), the second term in
the right-hand side is zero. Hence, summing over k ∈ [E (T )], we get

log det
(
GK(T )

)
= log det (G0) +

∑
k∈E(T )

log det

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

 . (12)

Using the concavity of log det, Jensen’s inequality gives us

log det
(
GK(T )

)
≥ log det (G0)

+
∑

k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log det

(
I + |Tk ∩N (T )|

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T
)

= log det (G0) +
∑

k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log
(
1 + |Tk ∩N (T )| ∥φk,t∥2G−1

k

)
,

where the equality follows from the fact that det(I + vvT) = (1 + ∥v∥22) that holds for any v ∈ Rd. Then, we notice that
G−1

k ⪰ Λ−1
k , and thus we can further bound this expression as

log det
(
GK(T )

)
≥ log det (G0) +

∑
k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log
(
1 + |Tk ∩N (T )| ∥φk,t∥2Λ−1

k

)
.
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For k ∈ E (T ), t ∈ Tk ∩N (T ), we have |Tk ∩N (T )| ≥ 1, and ∥φk,t∥Λ−1
k

≥ 1 by definition of N (T ). This implies that

log det
(
GK(T )

)
≥ log det (G0) +

∑
k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log (2)

≥ log det (G0) + log (2) |E (T )| .

Thus, we have

|E (T )| ≤ 1

log (2)
log

(
det
(
GK(T )

)
det (G0)

)

=
1

log (2)
log

(
det
(
GK(T )

)
λd

)
(by the definition of G1)

≤ d

log (2)
log

(
tr
(
GK(T )

)
λd

)
. (by the trace-determinant inequality)

Finally, the trace can be bounded as

tr
(
GK(T )

)
= λd+

∑
k∈E(T )

∑
t∈Tk∩N (T )

∥φk,t∥22 1N (T ) (t) ≤ λd+B2H2T.

The proof is concluded by putting this bound together with the previous inequality.

Lemma A.4. The random variables {Ck}k, defined for all k by Ck = |Tk|
log(1+|Tk|) where |Tk| is a geometric random variable

with parameter 1− γ, satify the following

E
[
max

k
Ck

]
≤ 4 + 2 log T

1− γ
.

Proof. First, notice that log (1 + |Tk|) ≥ log 2 so that Ck = |Tk|
log(1+|Tk|) ≤ |Tk|

log 2 . Next, using the fact that the number of
epochs is at most T , and observing that each |Tk| is geometrically distributed with parameter 1−γ, we can bound maxk |Tk|
by a maximum over T independent geometric random variables Z1, . . . , ZT with parameter 1− γ:

E
[
max

k
|Tk|

]
≤ E

[
max
j∈[T ]

Zj

]
=

∞∑
i=0

P
[
max
j∈[T ]

Zj > i

]
(since each Zi is nonnegative)

≤ k + T

∞∑
i=k

P [Z1 > i] (upper bounding the first k > 0 terms by 1)

= k + T

∞∑
i=k

γi (using that Z1 is geometric with parameter 1− γ)

= k +
Tγk

1− γ
,

where we have used the formula for the geometric sum in the last step. Now, setting k =
⌈
log T
1−γ

⌉
, we get

E
[
max

k
|Tk|

]
= k + T

γk

1− γ
≤ 1 + log T

1− γ
+
T exp

(
log γ
1−γ · log T

)
1− γ

≤ 1 + log T

1− γ
+
T exp (− log T )

1− γ
=

2 + log T

1− γ
,

where in the second line we have used the inequality log γ
1−γ ≤ −1 that holds for all γ ∈ (0, 1). The proof is concluded by

using that log 2 > 1
2 and combining the above bound with the bound relating Ck to |Tk|.
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B. Applications: Algorithm Specifications
For clarity, we provide the complete algorithms in the context of tabular and linear mixture MDPs. The highlighted parts
correspond to the instantiations of the functions TRANSITION-ESTIMATE, BONUS, and ADD from Algorithm 1.

B.1. Tabular MDPs

In tabular MDPs, we use the maximum likelihood estimates to compute P̂k and the classical count-based bonuses. Therefore,
we only need to store and update the counts Nt and N ′

t when interacting with the environment.

Algorithm 2 RAVI-UCB for tabular MDPs.
Inputs: Horizon T , learning rate η > 0, confidence parameter β > 0, value V0, policy π0.
Initialize: t = 1, N ′

1 = 0, N1 = 1, Q1 = EV0.
for k = 1, . . . do
Tk = t.
P̂k (x

′|x, a) = N ′
Tk

(x, a, x′) /NTk
(x, a).

Vk (x) =
1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
CBk (x, a) = β/

√
NTk

(x, a).

Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt), and observe xt+1.
Update N ′

t+1 (xt, at, xt+1) = N ′
t (xt, at, xt+1) + 1, and Nt+1 (xt, at) = Nt (xt, at) + 1.

t = t+ 1.
With probability 1− γ, reset to initial distribution: xt ∼ ν0 and break.

until t = T
end for

B.2. Linear Mixture MDPs

In linear mixture MDPs, P̂k is computed via a least-squares regression, and we use elliptical bonuses for CBk. Thus, we
only need to store and update the empirical covariance matrix Λt and the vector bt when interacting with the environment.

Algorithm 3 RAVI-UCB for linear mixture MDPs.
Inputs: Horizon T , learning rate η > 0, confidence parameter β > 0, regularization parameter λ, value V0, policy π0.
Initialize: t = 1, Λ1 = λI , b1 = 0, Q1 = EV0.
for k = 1, . . . do
Tk = t.
θ̂k = Λ−1

Tk
bTk

.
P̂k =

∑
i θ̂k,iψi.

Vk (x) =
1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
φk (x, a) =

∑
x′ ψ (x, a, x′)Vk (x

′).
CBk (x, a) = β ∥φk (x, a)∥Λ−1

Tk

.

Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt), and observe xt+1.
Update Λt+1 = Λt + φk (xt, at)φk (xt, at)

T, and bt+1 = bt + φk (xt, at)Vk (xt+1).
t = t+ 1.
With probability 1− γ, reset to initial distribution: xt ∼ ν0 and break.

until t = T
end for
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C. Standard Results
C.1. Softmax Policies and Value Functions

In this section, we recall a range of standard facts relating the softmax policies our algorithm uses and the associated value
functions. These can be found in numerous papers, textbooks, and lecture notes—for concreteness, see Section 28.1 in
Lattimore & Szepesvári, 2020 as an example.

Lemma C.1. Let {Vk}k∈[K], {πk}k∈[K], and {Qk}k∈[K] be the sequences of functions defined in Algorithm 1. Then, the
following equalities are satisfied for all k ∈ [K] and x ∈ X :

Vk (x) = max
p∈∆(A)

{
⟨p,Qk (x, ·)⟩ −

1

η
DKL (p∥πk−1 (·|x))

}
πk (·|x) = arg max p∈∆(A)

{
⟨p,Qk (x, ·)⟩ −

1

η
DKL (p∥πk−1 (·|x))

}
.

Furthermore, for all k ∈ [K] and x ∈ X , we have

k∑
i=1

Vi (x) = max
p∈∆(A)

{〈
p,

k∑
i=1

Qi (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
.

Proof. First, we show that the maximum indeed takes the form claimed in the main paper and that the maximizer is given
by a softmax policy. For simplicity, we drop the indices for now and consider the optimization problem

sup
p∈∆(A)

{
⟨p,Q⟩ − 1

η
DKL (p∥p′)

}
,

where Q ∈ RA, and p′ ∈ ∆(A). As the probability simplex is compact and
(
p 7→ ⟨p,Q⟩ − 1

ηDKL (p∥p′)
)

is continuous,

the supremum is attained at some p∗ ∈ ∆(A). The Lagrangian function of this optimization problem is given for all p ∈ RA
+

and α ∈ R as
L (p, α) = ⟨p,Q⟩ − 1

η
DKL (p∥p′) + α (⟨p,1⟩ − 1) .

Its partial derivative with respect to the primal variable p(a) is

∂L (p, α)

∂p(a)
= Q(a)− 1

η

(
log

(
p(a)

p′(a)

)
+ 1

)
+ α.

Setting it to zero gives us the expression

p∗(a) = p′(a) exp
(
η (Q(a) + α)− 1

)
.

Then, we use the constraint on p∗ to find the value of α. In particular, ⟨p∗,1⟩ = 1 implies∑
a∈A

p′ (a) exp (ηQ (a)) = exp (1− ηα) ,

from which we deduce that

α =
1

η

(
1− log

(∑
a∈A

p′ (a) exp (ηQ (a))

))
.

Denoting V ∗ = 1
η log

(∑
a∈A p

′ (a) exp [ηQ (a)]
)
, we plug back the expression of α into p∗:

p∗(a) = p′(a) exp
(
η (Q(a)− V ∗)

)
.

From this, we can directly express the relative entropy between p∗ and p′ as

DKL (p
∗∥p′) =

∑
a

p∗(a) log
p∗(a)

p′(a)
=
∑
a

p∗(a)
(
Q(a)− V ∗) = ⟨p∗, Q− V ∗1⟩ ,
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so that we can write
⟨p∗, Q⟩ − 1

η
DKL (p

∗∥p′) = ⟨p∗, Q⟩ − ⟨p∗, Q− V ∗1⟩ = V ∗.

The first statement of the lemma then follows from applying this result to Q = Qk (x, ·) and p′ = πk−1 (·|x), for k ∈ [K],
x ∈ X . That is, for any state-action pair (x, a) ∈ X ×A and k ≥ 1, denoting the maximum Vk and the maximizer πk, we
have that the following expressions are equivalent to the ones given in the statement of the lemma:

Vk (x) =
1

η
log

(∑
a∈A

πk−1 (a|x) eηQk(x,a)

)
,

πk (a|x) = πk−1 (a|x) exp (η [Qk (x, a)− Vk (x)]) .

For the second statement, we start by denoting V̄k =
∑k

i=1 Vi and Q̄k =
∑k

i=1Qi, for k ≥ 1, and show by induction that,
for x ∈ X , the following holds

πk (·|x) = π0 (·|x) exp
(
η
[
Q̄k (x, ·)− V̄k (x)1

])
.

Let x ∈ X . The case k = 1 follows immediately from the previous statement with Q = Q1 (x, ·) and p′ = π0 (·|x). Assume
the previous equation holds at k. Using the first statement with Q = Qk+1 (x, ·) and p′ = πk (·|x) we have, for a ∈ A,
πk+1 (a|x) = πk (a|x) eη[Qk+1(x,a)−Vk+1(x)]. Applying the inductive hypothesis, it gives

πk+1 (a|x) = π0 (a|x) exp
(
η
[
Q̄k (x, a)− V̄k (x)

])
exp (η [Qk+1 (x, a)− Vk+1 (x)])

= π0 (a|x) exp
(
η
[
Q̄k+1 (x, a)− V̄k+1 (x)

])
,

which finishes the induction. Then, we move on to the actual statement. We have

Vk (x) =
1

η
log

(∑
a∈A

πk−1 (a|x) eηQk(x,a)

)
(by the first statement)

=
1

η
log

(∑
a∈A

π0 (a|x) eη(Qk(x,a)+Q̄k−1(x,a)−V̄k−1(x))

)
(by induction)

=
1

η
log

(∑
a∈A

π0 (a|x) eη(Q̄k(x,a))

)
− V̄k−1 (x) .

Therefore, by definition of V̄k−1,

k∑
i=1

Vi (x) =
1

η
log

(∑
a∈A

π0 (a|x) eη(Q̄k(x,a))

)

= max
p∈∆(A)

{〈
p,

k∑
i=1

Qi (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
,

which concludes the proof.

C.2. A Self-Normalized Tail Inequality

Theorem C.2 (Theorem 14.7 in de la Peña et al. (2009), Theorem 2 in Abbasi-Yadkori et al. (2011)). Let {ηt}∞t=1 be a
real-valued stochastic process with corresponding filtration {Ft}∞t=0. Let ηt|Ft−1 be zero-mean and σ-subGaussian; i.e.
E [ηt|Ft−1] = 0, and

∀λ ∈ R,E
[
eληt

∣∣Ft−1

]
≤ e

λ2σ2

2 .

Let {φt}∞t=0 be an Rd-valued stochastic process where φt is Ft−1-measurable. Assume Λ0 is a d × d positive definite
matrix, and let Λt = Λ0 +

∑t
s=1 φsφ

T
s. Then, for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0,∥∥∥∥∥

t∑
s=1

φsηs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det (Λt)

1/2
det (Λ0)

−1/2

δ

]
.
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