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ABSTRACT

In medical image segmentation, although end-to-end deep learning has achieved
substantial progress, obtaining accurate results typically requires many training
iterations and large-scale annotated datasets, which limits efficiency and practi-
cality in data-scarce clinical scenarios. To address this issue, we propose a Predic-
tive—Corrective (PC) paradigm that decouples segmentation into a fast, anatomy-
informed prediction stage followed by a focused refinement stage. Based on this
paradigm, we develop PCMambaNet, which comprises two cooperative modules:
a Predictive Prior Module (PPM) that generates a coarse anatomical approxima-
tion at low computational cost and injects symmetry priors via inter-hemispheric
similarity and thresholding to highlight diagnostically relevant asymmetric re-
gions, and a Corrective Residual Network (CRN) that models the residual error,
concentrating capacity on refining challenging regions and delineating pathologi-
cal boundaries. Experiments on multiple high-resolution brain MRI benchmarks
show that PCMambaNet attains competitive accuracy with relatively few train-
ing epochs and exhibits clear advantages in data-limited settings. Extended ex-
periments further indicate that the proposed PC paradigm remains applicable to
organs without strong left-right symmetry. Overall, this work demonstrates that
explicitly incorporating anatomy-informed priors and decoupling prediction from
refinement is an effective way to improve both training efficiency and data effi-
ciency in medical image segmentation.

1 INTRODUCTION

In medical image segmentation, the end-to-end learning paradigm (Rayed et al., 2024; Zhang et al.,
2024b), especially when implemented with Convolutional Neural Networks (CNNs) (Ronneberger
et al., 2015) and Transformers (Rahman et al., 2024; Cao et al., 2022), has achieved remarkable
success in computer vision and is widely used in medical image analysis, improving the accuracy
of diagnosis and treatment planning (Chen et al., 2024b). Yet a fundamental paradox remains:
prevailing end-to-end models essentially follow a “brute-force” strategy, where a single monolithic
network (Long et al., 2015) is asked to directly learn a highly non-linear mapping from raw input
to final output. This all-in-one design is flexible but often incurs high training and inference costs,
a strong reliance on large labeled datasets, and heavy computational demands (LeCun et al., 2015;
He et al., 2016). In the medical domain—where data are scarce, annotation is costly, and efficiency
and robustness are critical—this demand for data and computation has become a major bottleneck
to further progress and clinical deployment (Dong et al., 2024). Figure 1 illustrates this behavior on
two benchmarks by plotting validation-loss trajectories and inter-epoch parameter Lo distances for
several representative models, showing that strong performance for standard end-to-end baselines
typically comes at the price of long training schedules and many small parameter updates.

To mitigate these limitations, numerous strategies have been explored (Zheng et al., 2024). Transfer
learning pre-trains models on large public datasets such as ImageNet (Matsoukas et al., 2022), but
cannot remove the dependence on target-domain annotations (Cheplygina et al., 2019). Advanced
data augmentation enlarges the effective dataset, yet may introduce artifacts and distribution shifts
(Fabian et al., 2021). More powerful architectures, including Vision Transformers (ViTs) (Doso-
vitskiy et al., 2020) and State Space Models (SSMs) (Gu & Dao, 2023; Zhu et al., 2024), further
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Figure 1: The efficacy of the Predictive—Corrective (PC) paradigm. We compare PCMambaNet with
representative end-to-end baselines in terms of validation-loss trajectories (first and third plots) and
inter-epoch parameter Ly distances between consecutive epoch pairs (second and fourth plots) on
the OASIS-1 and MRBrainS13 datasets. Compared with standard end-to-end models, PCMambaNet
shows a faster reduction in validation loss and larger parameter updates in the early training stage.
These observations indicate that reformulating the task as a predictive prior plus a corrective residual,
guided by anatomy-informed priors, can lead to more efficient use of training data and optimization
budget during training.

boost performance, but do not change the brute-force nature of end-to-end learning and can even
exacerbate data and computation requirements (Liu et al., 2024a). These approaches mainly im-
prove how we fit the model to the data, without simplifying the underlying learning problem itself.
This naturally raises a key question: instead of asking a single network to solve everything at once,
can we reformulate medical image segmentation as a prediction—correction process that leverages
anatomy-informed priors to make learning more efficient and more data-efficient?

To answer this, we propose a Predictive—Corrective (PC) paradigm that decomposes segmen-

tation into two tractable stages. A lightweight Predictive Prior Module (PPM) first generates
a coarse, anatomy-guided initial guess that narrows the search space. A subsequent Corrective
Residual Network (CRN) then focuses on modeling the residual error to refine boundaries and
difficult regions, effectively simplifying the overall learning objective.

We instantiate this paradigm on high-resolution brain MRI segmentation by exploiting the approxi-
mate left-right symmetry of the human brain. The PPM builds an inter-hemispheric similarity map
and applies thresholding to generate a focus map highlighting asymmetric and diagnostically rele-
vant areas. When symmetry is weak, the PPM adaptively produces a smoother, more conservative
mask, avoiding overly strong prior bias. The CRN, implemented with dynamically density-weighted
convolutions, refines details within these high-probability regions, naturally combining anatomical
priors with deep representations.

Built on this design, we develop PCMambaNet. Experiments on multiple brain MRI benchmarks
show that PCMambaNet achieves competitive or state-of-the-art performance while requiring fewer
training epochs and exhibiting clear advantages under limited-data conditions. Additional experi-
ments on cardiac segmentation—an organ without strong bilateral symmetry—confirm the general-
ity of the proposed paradigm. The main contributions of this work can be summarized as follows:

* We introduce the Predictive-Corrective (PC) paradigm, a novel framework designed to sub-
stantially enhance data efficiency by simplifying the learning objective through predictive
priors and residual correction.

* We demonstrate how to successfully instantiate this paradigm in a challenging medical
segmentation task by leveraging anatomical prior knowledge.

* We show that PCMambaNet attains state-of-the-art performance with substantially fewer
training epochs, mitigating issues related to data inefficiency and overfitting.
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2 METHOD

2.1 ARCHITECTURE OVERVIEW

Our method is built upon the previously introduced Predictive—-Corrective (PC) paradigm, which
reformulates medical image segmentation as two explicitly decoupled stages: a fast, anatomy-
informed prediction stage and a subsequent residual refinement stage. This design alleviates the
limitations of conventional monolithic end-to-end modeling by simplifying the learning objective
and reducing reliance on large-scale labeled datasets; a conceptual discussion of this decomposition
is provided in Appendix D. To instantiate this paradigm, we propose PCMambaNet, a U-shaped
segmentation network whose core component is the newly designed PCMamba module. As illus-
trated in Figure 2, each PCMamba module realizes the PC principle through two parallel branches: a
Predictive Prior Module (PPM) that generates a coarse, anatomy-guided prediction, and a Correc-
tive Residual Network (CRN) that focuses on refining residual errors and delineating fine structural
boundaries. The outputs of these two branches are then fused within the module to form a unified
representation, which is further propagated through the network for accurate segmentation.
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Figure 2: Architecture of PCMambaNet, which instantiates the proposed Predictive—Corrective
(PC) paradigm. Each module contains two branches: a Predictive Prior Module (PPM) producing
a coarse anatomy-guided prediction, and a Corrective Residual Network (CRN) refining residual
errors and boundaries. This decoupled design enables efficient training and strong performance
under full and limited data.

2.2 PRELIMINARIES

State space models (SSMs) are widely employed for analyzing sequential data and modeling con-
tinuous linear time-invariant (LTT) systems (Gu & Dao, 2023). Given an input sequence u(t) € R,
the system maps it to an output sequence y(t) € R through the hidden state 2(t) € CV. Here, t > 0
denotes the time index and N is the state dimension. The dynamics of the system can be described
by the following state transition and observation equations:

z(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (1)

where A € CV*V is the state transition matrix, B € C¥*! and C € C™¥ are the input and
output projection matrices, and D & C represents the skip connection. These equations specify how
the hidden state evolves over time and how it relates to the observable output.

To integrate continuous-time SSMs into deep learning frameworks, it is necessary to discretize them.
A common approach is the Zero-Order Hold (ZOH) discretization. Given the sampling interval A,
the discrete system parameters can be expressed as

A= A4, B=A""'(e#*-1)B. )
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In practice, however, real-world processes are often time-varying and cannot be sufficiently modeled
by a fixed LTI system. To address this limitation, improved SSM formulations allow the parameters
to adapt to the input, thereby enhancing the modeling capacity. Specifically, the parameters A, B,
and C can be defined as functions of the input sequence {u;}:

Ay = sa(ug), B; = sp(uy), Ci = sc(u). (3)
Based on these input-dependent parameters, the discrete dynamics can be written as
zy = Ay 1 + By, yr = Cyxy + Duy, “4)

where A, and B, are computed from the adaptive parameters.

2.3 PREDICTIVE-CORRECTIVE MAMBA BLOCK (PCMAMBA)

The Predictive-Corrective Mamba (PCMamba) block is the core of our method, designed to
instantiate our PC paradigm within the state space model. Its central mechanism is to modulate
the original Mamba state evolution by explicitly incorporating predictive priors and corrective local
details. To achieve this, we introduce a novel state modulation equation into the original Mamba
formulation.The overall architecture of the PCMamba block is illustrated in Appendix A.2, Figure 7
(b). Its workflow can be described by contextual modulation factor z; to the state equation:

zy = Ayxzi—1 + By, )
ht = z¢ © x4, (6)
ys = Cihy + Duy. (N

Here, Eq. 5 is the standard Mamba state transition. Our key innovation lies in Eq. 6, where the
original state x; is element-wise modulated by z; to produce a new, context-aware state h;. The
observation y; is then computed from this modulated state. The modulation factor z; is dynamically
generated by two parallel branches that work in concert to implement our PC paradigm.

In practice, we implement the computation of the modulation factor z; through two specialized
branches: a Predictive Branch based on symmetric mask aggregation and a Corrective Branch based
on dynamically density-weighted local modeling. The outputs of these two branches are fused to
form the final modulation factor.

2.3.1 PREDICTIVE BRANCH: SYMMETRIC MASK AGGREGATION (PPM)

This branch implements our Predictive Prior Module (PPM), whose core objective is to lever-
age the anatomical symmetry prior to automatically identify and focus on structurally anomalous
regions, which are indicative of potential pathologies. The detailed architecture of the module is
illustrated in Figure 2. This process is achieved in the following three steps:

Step 1: Constructing the Comparative Feature Set. For each spatial location ¢ in the feature map,
we construct a feature set for comparison, 7;. Critically, this set includes not only features from its
local neighborhood N (7) but also the feature from its symmetric counterpart position ¢’, such that

Ti ={x; [j € N(i) U{i'}}.

Step 2: Generating the Similarity Mask. We quantify the structural difference between the center
token x; and each feature x; in 7; by computing their cosine similarity, s; ;. We select cosine
similarity as it is invariant to the magnitude of the features, allowing it to measure differences in
structure (i.e., direction) more purely. Subsequently, based on a predefined similarity threshold 6, a
binary mask is generated:

mi; = Isi; <0]. (8)
This mask is designed to "filter out a-normalcy”: when two regions are structurally similar (s; ; >
), likely corresponding to healthy, symmetric tissue, the mask value is 0. Conversely, when a
significant difference exists (s; ; < ), indicating a potential disruption of symmetry by a lesion, the
mask value is 1.

Step 3: Aggregating Anomaly Features. Finally, using the mask generated in the previous step,
we aggregate only those features identified as “’structurally anomalous” via a normalized weighted
summation. This produces the final output of the predictive branch, z"*¥. This process explicitly
encodes the “where to look” prior, providing precise guidance for the subsequent corrective module.
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2.3.2 CORRECTIVE BRANCH: DYNAMICALLY DENSITY-WEIGHTED LOCAL MODELING
(CRN)

This branch constitutes the core of our Corrective Residual Network (CRN), with its primary
responsibility being fine-grained local detail modeling, which is essential for the precise delineation
of lesion boundaries. The detailed architecture of the module is illustrated in Figure 2. This process
is realized through the following steps:

Step 1: Receptive Field Expansion and Local Feature Extraction. For each spatial position 4,
we employ dilated convolution to extract a local feature patch P;. We opt for dilated convolution
as it effectively expands the receptive field without increasing computational cost or the number of
parameters. This allows the model to capture a broader local context, which is critical for under-
standing complex tissue structures.

Step 2: Dynamic Weight Generation. The extracted local feature patch P; is flattened and fed into
a lightweight Multilayer Perceptron (MLP) to dynamically generate an adaptive weight vector 3;
for each pixel within that local region:

B; = Softmax (MLP (Flatten(F;))) . )

The Softmax function ensures the normalization of these weights. This weight vector, 3;, can be
interpreted as an attention map learned by the model based on the local content, indicating which
pixels are more informative for an accurate segmentation.

Step 3: Weighted Feature Aggregation. Finally, we use the dynamic weights 3; generated in the
previous step to perform a weighted summation of the pixels within the local feature patch, yielding
a finely refined local representation, pS. This representation is then passed through a linear mapping

to produce the final output of the corrective branch, z?enmy. This process provides the model with
crucial information on “how to refine details,” serving as the perfect complement to the “where to
look” guidance from the predictive branch.

3 EXPERIMENTS

In this section, we present a series of comprehensive experiments to validate the effectiveness of
our proposed Predictive—Corrective (PC) paradigm. We systematically evaluate our approach by (1)
comparing its segmentation accuracy and training dynamics with state-of-the-art (SOTA) methods,
(2) analyzing the necessity of each component within the PC paradigm, namely the PPM and the
CRN, (3) assessing its performance in data-scarce scenarios, and (4) demonstrating its qualitative
advantages through visual analysis. The datasets used in the extended experiments are provided in
Appendix B.1, and the corresponding detailed results are reported in Appendix B, Tables 10 and 11.

3.1 DATASETS

OASIS-1: The dataset used in this study is derived from the Open Access Series of Imaging Studies
(OASIS) (Marcus et al., 2007) and is referred to as OASIS-1. It consists of data collected from 421
individuals, aged 18 to 96 years, each of whom underwent a T1-weighted magnetic resonance imag-
ing (MRI) scan. The MRI acquisition parameters are as follows: TR (9.7 ms), TE (4.0 ms), flip angle
(10°), TT (20 ms), TD (200 ms), with a slice thickness of 1.25 mm and a resolution of 176x208 pix-
els, without any gaps between slices. MRBrainS13: This dataset comprises multi-sequence brain
MRI scans of 20 subjects acquired on a 3.0 T Philips Achieva scanner at the University Medical
Center Utrecht, the Netherlands (Mendrik et al., 2015). The cohort includes older adults (age > 50
years) with cardiovascular risk factors, such as patients with type 2 diabetes mellitus and age- and
sex-matched controls, and thus exhibits varying degrees of brain atrophy and white matter hyper-
intensities, while individuals with large territorial infarcts, major stroke, or other overt focal brain
pathology were excluded. For each subject, T1-weighted, T1-weighted inversion recovery (T1-IR),
and T2-FLAIR images were acquired and subsequently rigidly registered using Elastix (Klein et al.,
2009) and bias-field corrected using SPM8 (Ashburner & Friston, 2005), resulting in a unified voxel
spacing of 0.96 x 0.96 x 3.00 mm.
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3.2 IMPLEMENTATION DETAILS

Our model is implemented in PyTorch, and all experiments are conducted on a single NVIDIA A40
GPU with 48 GB of memory under Ubuntu 22.04 and Python 3.10. We use the AdamW optimizer
with an initial learning rate of 0.0001, decayed using a cosine annealing schedule. The hyperpa-
rameter 6 is empirically selected and fixed at 0.95 for all experiments; detailed hyperparameter
sensitivity analysis is provided in Appendix C. Training is performed on 2D axial slices from two
datasets, which are split into training, validation, and test sets in an 8 : 1 : 1 ratio. Specifically,
the training set of OASIS-1 contains 52,094 slices, and that of MRBrainS13 contains 768 slices.
All input images are resampled to a resolution of 224 x 224, the batch size is set to 12, and no
data augmentation is applied during training. Unless otherwise specified, models are trained for 50
epochs on large-scale datasets and 200 epochs on small-scale datasets, and the checkpoint achieving
the highest Dice score on the validation set is used for final evaluation. The code will be released
upon acceptance of the paper.

3.3 COMPARISON WITH STATE-OF-THE-ART METHODS

To comprehensively evaluate the effectiveness of the proposed PCMambaNet, we compare it against
several representative segmentation baselines, including classic CNN-based methods (U-Net (Ron-
neberger et al., 2015) and nnUNet (Isensee et al., 2021)), the Transformer-based model Swin-UNet
(Cao et al., 2022), and the end-to-end Mamba-based model Mamba-UNet (Wang et al., 2024b). This
comparative setup enables us to verify that the observed performance improvements stem from the
predictive—corrective paradigm itself rather than being solely attributable to the Mamba architecture.

Quantitative Results. The quantitative results in Table 1 show that PCMambaNet achieves state-
of-the-art segmentation performance while maintaining strong efficiency. On the large-scale OASIS-
1 dataset, PCMambaNlet trained for 50 epochs attains the best results across all tissues and metrics,
and its HD95 and ASD scores are consistently lower than those of all baselines, indicating more
accurate and stable boundary delineation. Moreover, even with only 5 epochs of training, PCMam-
baNet already reaches performance comparable to or better than several fully trained baselines, re-
flecting the benefits of the proposed Predictive—Corrective design for efficient optimization. On the
small-scale MRBrainS13 dataset, the advantages become more pronounced. PCMambaNet achieves
the best Dice, IOU, HD95, and ASD across all tissues and clearly outperforms the strongest CNN
baseline, UNet. On average, PCMambaNet improves Dice and IOU by roughly 1-2 percentage
points over UNet, while also yielding consistently lower HD95 and ASD. These results indicate that
the proposed PC paradigm is particularly effective in limited-data regimes. These results, consis-
tent across datasets of varying scales, validate the strong inductive bias and fine-grained modeling
capabilities endowed by our Predictive-Corrective paradigm. A more comprehensive evaluation
including additional metrics (Acc, Pre, Sen, Spe) is provided in Appendix A.4, Table 5.

Table 1: PCMambaNet achieves state-of-the-art efficiency without compromising accuracy.
This table presents a quantitative comparison on the OASIS-1 and MRBrainS13 test sets. Our
method (highlighted) matches state-of-the-art (SOTA) performance on accuracy metrics while con-
sistently outperforming all competitors in terms of efficiency. Dice and IOU are reported as percent-
ages, while HD95 and ASD are scaled by a factor of 10 for readability. Best results are in bold.

Model Dice (%) T HDY5 (mmx10) | ASD (mmx10) | 10U (%) t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM
OASIS-1 dataset
UNet OLIS£0.61 9243060 93164023  1254+008 1267008 19.66+£039 260000 295016  520£0.15 8543+ 106  S7.91=098  §9.20 +0.44
nnUNet 9038+0.01 9200004 92924002 14074009 1163£0.03 1777015 4255001 307002  512+£007 83994001  ST.38=0.04  88.65+0.02
Swin-UNet 90.98+£0.51  0243£032  9257+0.05 13534049  12.02£031 10442137  3.88+£0.32 3.08£001 4824028  85.05+£091  87.92£048  88.76=0.11
Mamba-UNet 91954028 9280006 93314032  1160+020 1178£024 I875+£084 274025 2762022  426£026  S6.73£0.56  SR77=036  89.25+0.64

PCMambaNet(1 epoch) 91.21 £0.25 91 3 92.03 +0.24 11.72 £ 0.02 13.53 £ 0.06 29.72 £ 0.04 3.41£0.05  3.85+£0.35 5.36 £ 0.04 83.75 £ 0.04 86.72 £0.21 86.31 +0.24
PCMambaNet(5 epochs) 92.58 +£0.25 92.39 +0.52 92.91 4 0.34 10.80 + 0.03 11.49 £ 0.26 18.32 £ 0.26 2.104£0.03  2.53 +0.06 3.55 4 0.06 87.38 £ 0.65 88.17 £ 0.46 89.45 +0.37
PCMambaNet(50 epochs) ~ 94.10 +0.38 94.33+0.35 94.29+0.34 10.58+0.03 10.81+0.17 15.00+1.25 1.76+0.02 1.88+0.18 2.70+0.38 89.91+0.08 91.22+0.50 92.23 4 0.66

MRBrainS13 dataset

UNet 67.68+0.71 7380+£0.64  2277+0.55  20.02£099  43.99+£263  467+£007 ATL£0.06  16.10£204  5879+0.82  6318£0.58  66.36+0.75

nnUNet 62.36 + 1.69 6617+ 118 4269+0.22 5089021 74024185 9384127 1545+£292 54304258 50384262  56.27+1.96 5814+ 1.78
Swin-UNet 64.43 + 1.87 69704111 28314460  3568+1.19 59974300 6894115 10.63+£1.15 23374571 54234249  6048+091  62.32+£1.03
Mamba-UNet 6486+£040  68.99£046  T057+0.52 2838039  33.17£393  5280+4.08  6IS£0.13  9.35+£1.16 1743+3.45 54742046 6081052 63.01+0.64
PCMambaNet(1 epoch) 56.47 £ 0.45 60.12 = 0.03 51154+ 0.33 48.61 £0.03 51.56 = 0.10 99.66 + 0.45 9.084£0.06 17.05+£0.59  24.75+1.25 44.91 £0.42 48.22£0.28 41.04 £ 2.86

PCMambaNet(5 epochs) 62.87 +0.55 65.97 + 2.64 64.18 +0.34 29.98 £ 0.67 39.03 +0.53 45.26 +0.43 6.734+0.88  11.96+0.48  14.34 +0.59 51.26 4 5.97 55.76 + 6.77 56.91 +2.23
PCMambaNet(200 epochs) ~ 69.37 +0.41 71.79+0.80 74.26+0.93 19.31+1.98 17.46+2.00 38.90+£7.33 4.4740.23 4.60+0.51 11.4142.18 60.67£0.97 64.63+1.14 67.48+1.08
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Figure 3: Qualitative comparison of segmentation results on the OASIS-1 and MRBrainS13 datasets.
For the OASIS-1 dataset, the columns are: (a) original image, (b) ground-truth (GT) annotation,
(c) UNet, (d) nnUNet, (e) Swin-UNet, (f) Mamba-UNet, and (g) PCMambaNet (ours). For the
MRBrainS13 dataset, the columns are: (h) original image, (i) ground-truth (GT) annotation, (j)
UNet, (k) nnUNet, (1) Swin-UNet, (m) Mamba-UNet, and (n) PCMambaNet (ours). The proposed
PCMambaNet (last column in each group) produces segmentations that are more consistent with
the ground truth in terms of boundary delineation, structural coherence, reduced false positives, and
finer depiction of complex anatomical regions. The zoomed-in regions within red boxes highlight
representative areas where the advantages of our method are particularly evident.

Qualitative Results. The qualitative results shown in Figure 3 visually corroborate the aforemen-
tioned quantitative findings and further highlight the architectural advantages of PCMambaNet. On
the large-scale dataset, baseline models often struggle to accurately capture fine boundaries, tending
to produce noisy or incomplete segmentations. In contrast, our model leverages the PPM to focus
on critical regions, thereby enabling the CRN to delineate complex contours that are highly consis-
tent with the ground truth. The superiority of our method becomes even more pronounced under
data-limited conditions (small-scale datasets): competing models typically generate overly smooth
results that fail to capture fine-grained, infiltrative structures, whereas our “predict-then-correct”
strategy effectively recovers these complex boundary details. Consequently, PCMambaNet yields
visually sharper and more anatomically plausible segmentation results, particularly in challenging
low-data scenarios.

Training dynamics. Figure 4 compares the validation Dice trajectories of PCMambaNet and repre-
sentative end-to-end baselines. To make the optimization behaviour comparable, all models are
trained with the same relatively small learning rate. Under this setting, the validation Dice of
PCMambaNet increases more rapidly in the early stage and reaches a stable high-performance
regime within roughly the first 510 epochs. In contrast, baseline end-to-end models such as U-Net,
Swin-UNet, and Mamba-UNet improve more gradually and require substantially more epochs to
approach their best performance. These observations suggest that reformulating the task under the
PC paradigm enables more effective use of early optimization steps and leads to more favourable
training dynamics.

3.4 ABLATION STUDY

As shown in Table 2, the ablation results on OASIS-1 and MRBrainS13 indicate that the PPM
and CRN are both indispensable and complementary. Removing the PPM or replacing it with a
random mask significantly degrades Dice/IOU and boundary metrics, especially on the small-scale
MRBrainS13 dataset, confirming that the PPM provides an effective inductive bias under limited
data. Likewise, removing or weakening the CRN consistently harms performance, demonstrating
that a high-capacity, carefully designed refinement module is critical to the superiority of the PC
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Figure 4: PCMambaNet enables much faster training in practice. The validation Dice score
of our model (blue curve) reaches near-optimal performance within the first 5 epochs. In contrast,
conventional end-to-end models require substantially more training iterations to achieve their peak
accuracy. This rapid convergence is a direct result of our Predictive-Corrective paradigm, which
creates a smoother and more tractable optimization landscape.

Table 2: Ablation study on the OASIS-1 and MRBrainS13 test sets, validating the contributions
of our core components. The results demonstrate that removing either the Predictive Prior Mod-
ule (PPM) or the Corrective Residual Network (CRN) leads to a degradation in performance. Our
full model (PCMambaNet, highlighted), which integrates both components, consistently achieves
the best overall results (in bold), confirming their essential roles and synergistic effect. Dice and
IOU are reported as percentages, while HD95 and ASD are scaled by a factor of 10 for readability.

Dice (%) T HDYS (mm>x10), ASD (mm>x10)| 10U (%)1
CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Confl

OASIS-1 dataset
PCMambaNet (Full Model)  94.10 £0.38 94.33£0.35 94.20+0.34 10.58+0.03 1081+£017 15004125 1.76£0.02 188+£018  270+£038 89.91:+£0.08 91.22+0.50 92.23 % 0.66
(R\%}Z\RXY 35 93224099 9387122 13664244 12364215 20924766 7104096 2804012  TOL£095  ST37TL£232 8924173 89434200

(2) wi Simple PPM

92.29

(Random Mask) 93534018 94224020  94214+0.67  10.65+£001 10.744+0.04 14.96+0.33 191+£010 1.83+0.06 2.48+0.09 89.35£050 9086075 91744047
‘?L,‘;:‘(‘,AR‘;?;’ 91234158  9346+037 93494041 19834000 11654032  1819+£069  9.38+£065 2514012 3694063 82424296 8888061  89.74+0.66
(4) w/ CNN-CRN 91.52 +2.31 93.35 + 0.49 93.58 £ 0.61 13.91 + 4.58 11.57 £ 0.46 17.00 + 0.90 3384146  2.48+0.39 2.90 £ 0.43 86.65 + 4.40 89.70 + 0.93 90.42 £ 0.64

MRBrainS13 dataset
PCMambaNet (Full Model)  69.37 +£0.41 71.79 £ 0.80 74.26 +£0.93 19.31 +1.98 17.46+2.00 38.90+7.33 4.47+0.23 4.60+0.51 14.41+2.18 60.67+0.97 64.63+1.14 67.48+1.08
“(:S(F‘I,\IP((:;V 67.40 +1.90 70.16 + 1.65 72.53 + 1.87 21.29 + 2.47 27.68 +0.94 39.50 £ 0.69 5.49 £ 0.95 7.92+317 19.96 + 4.49 58.06 + 2.73 62.18 + 2.46 64.88 + 2.60
(2) w/ Simple PPM
(Random Mask)
(3) PPM only B T 13904205 99994999 msaods 5 . . 107457 ; o
(wlo CRN) 68.84 + 1.64 7013+ 1.74 73.29 + 2.05 22.29+2.22 27.55+ 245 5248 + 1.73 5.61£0.70 7.01+£2.99 21.07 £ 5.78 61.04 +2.38 64.23 + 2.68

(4) w/ CNN-CRN G658 +£238  G957+200 TLHS8£243  25.46+535  25.79+£286  4871+£270  596+£131  676+232 1764481 56.99£322  6152£279  63.95+3.25

65714045  6867+0.08  7TLI6+0.26 24944053 27384126  5287+£228  6.02+£009 7.04+046 2162301 5572060  60.28+0.06  63.09+0.37

paradigm; this conclusion is further supported by the additional quantitative results in Appendix A.4
(Table 6).

3.5 DATA EFFICIENCY ANALYSIS

Our PCMambaNet exhibits strong data efficiency, achieving near-saturated segmentation perfor-
mance with only a small amount of labeled data. As shown in Table 3, when trained on merely 10 %
of the OASIS-1 dataset, PCMambaNet attains the highest Dice scores for CSF/GM/WM, not only
outperforming all competing methods under the same data budget, but also surpassing the best GM
Dice (92.89%) achieved by any baseline trained on the full 100% dataset; for WM, the Dice score
of 92.86% at 10% data is also very close to the fully supervised baselines (up to 93.31%). As the
labeled fraction increases from 10% to 25%, 50%, and 100% , PCMambaNet consistently achieves
the best Dice, HD95, ASD, and IOU scores across all three tissue classes, while the marginal per-
formance gains remain relatively small (e.g., GM Dice improves only from 93.11% to 94.33%).
This behavior indicates that PCMambaNet can already learn robust and well-regularized represen-
tations under limited supervision, with additional data mainly providing fine-grained refinement.
We attribute this pronounced “capital efficiency” (i.e., data efficiency) to the PC paradigm itself:
by explicitly injecting domain priors into the architecture, PCMambaNet substantially reduces its
reliance on large-scale annotated datasets, making it particularly suitable for medical imaging sce-
narios where labeled data are scarce; further quantitative evidence is provided in Appendix A.4
(Table 7).
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Table 3: PCMambaNet demonstrates superior data efficiency on the OASIS-1 dataset. Our
model consistently outperforms the baseline when trained on fractions of the data. Notably, PC-
MambaNet using just [e.g., 10%] of the data surpasses the baseline trained on the entire dataset.
Dice and IOU are reported as percentages, while HD95 and ASD are scaled by a factor of 10 for
readability.

Number Model Dice (%) 1 HD9S5 (mmx10)] ASD (mmx10)| 10U (%)T
CSF GM WM CSF GM WM CSF GM WM CSF GM WM
UNet 85.12 87.77 87.72 19.22 2084 4454 431 6.19 1589 7570 80.33 80.86

. nnUNet 87.22 89.46 8925 1846 16.54 3096 559 494 957 7889 8329 83.11
10% Swin-UNet 9021 91.73 9190 1399 1345 2255 408 3.74 588 8370 86.71 87.07
Mamba-UNet 8834 91.55 9143 18.62 1325 21.67 528 3.62 517 80.64 86.23 86.35
PCMambaNet 92.79 93.11 92.86 10.83 11.73 19.22 221 259 3.80 88.15 88.96 88.80

UNet 86.31 87.40 87.52 1831 19.75 42.69 4.09
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nnUNet 87.84 90.33 90.70 1851 1440 2451 557 407 723 79.86 84.67 85.27

25% Swin-UNet  90.62 92.02 92.04 1426 1291 21.14 415 349 493 8438 87.12 87.40
Mamba-UNet  89.07 91.73 92.03 1876 1291 2085 526 331 473 8026 86.58 87.26
PCMambaNet 9290 93.31 9347 10.68 11.45 18.02 2.06 233 3.65 8849 89.49 89.75

UNet 88.62 9027 91.25 19.54 15.00 24.01 447 404 7.08 7795 84.11 86.03

nnUNet 8798 90.94 9142 18.83 13.18 2126 5.60 3.60 595 80.10 85.56 86.39

50% Swin-UNet  91.00 9226 9257 1321 1241 2049 373 325 478 8515 87.62 88.20
Mamba-UNet 88.92 91.99 9242 1731 12.61 2051 4.68 3.14 472 81.64 87.03 87.88
PCMambaNet 9290 93.63 93.79 11.02 11.24 17.18 2.16 2.16 3.10 8845 89.98 90.29

UNet 91.18 9243 93.16 1254 1267 19.66 2.69 295 520 8543 8791 89.20

nnUNet 90.38 92.09 9292 14.17 11.63 17.77 425 3.07 512 8399 87.38 88.65

100% Swin-UNet  90.98 9243 9257 13.53 12.02 1944 388 3.08 482 8505 87.92 88.76
Mamba-UNet  91.95 92.89 9331 11.60 11.78 1875 274 276 426 86.73 8877 89.25
PCMambaNet 94.10 9433 9429 10.58 10.81 15.00 1.76 1.88 2.70 89.91 91.22 92.23

3.6 ANALYSIS OF INTERNAL FEATURE REPRESENTATIONS

To better understand how PCMambaNet operates under the proposed PC paradigm, we visualize
its internal feature maps and compare them with those of Mamba-UNet in Figure 5. After only 5§
epochs of training, PCMambaNet already exhibits more focused and interpretable representations.
At shallow and middle layers, its feature maps concentrate on salient brain tissues and suppress many
spurious background responses, indicating that the anatomy-informed PPM effectively guides atten-
tion toward relevant regions from the early stage of training. At deeper layers, the effect of the CRN
becomes apparent: PCMambaNet captures finer textures and more coherent structural boundaries,
while the baseline features remain comparatively diffuse. Overall, these visualizations suggest that
the predictive—corrective design helps allocate model capacity to diagnostically meaningful struc-
tures and filter out redundant activations, contributing to more efficient use of training data.

3.7 ANALYSIS OF CLASS ACTIVATION MAPS

To further investigate the model’s decision-making process, we utilize Class Activation Maps
(CAM) to visualize class-specific attention, with results presented in Figure 6. The heatmaps re-
veal that PCMambaNet learns to accurately localize target tissues for each class with remarkable
efficiency. After only S epochs on limited data, our model generates clean, well-defined activation
maps that focus precisely on the relevant anatomical structures. While the baseline Mamba-UNet’s
performance improves with more data (e.g., 200 epochs), its activation maps often remain diffuse or
highlight irrelevant regions. In stark contrast, PCMambaNet, with just 5 epochs on the same large-
scale dataset, produces significantly more focused and semantically meaningful heatmaps. This
superior localization ability provides strong evidence for our central thesis: the PPM effectively
guides the model’s focus, while the CRN refines the representation, enabling the network to rapidly
learn and generalize the intrinsic characteristics of each tissue class.

4 LIMITATIONS

Despite the promising results of the PC paradigm, several limitations remain. First, its effective-
ness relies on well-defined domain priors that can be encoded into the PPM, requiring task-specific
design. This makes the paradigm less “plug-and-play” than fully generic end-to-end models, partic-
ularly for problems lacking clear structural priors. Second, the framework may be sensitive to error
propagation: if the PPM produces inaccurate initial predictions, the CRN’s corrective ability can be
constrained. Finally, because the overall architecture is built around anatomy-informed priors, there
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Figure 5: The visualization of internal feature maps illustrates the effectiveness of our Predic-
tive—Corrective paradigm. The PCMambaNet, trained for only 5 epochs (bottom rows), shows
more focused responses to salient anatomical structures and better suppression of background noise
across shallow (first encoder layer), middle (bottleneck layer), and deep (third decoder layer) fea-
tures. In contrast, the representations extracted by Mamba-UNet (top rows) remain relatively in-
distinct even after 50 epochs of training. Comparative results are shown on the OASIS-1 (left) and
MRBrainS13 (right) datasets.

Figure 6: Qualitative comparison demonstrating the efficient learning behavior and high-quality
segmentation results of PCMambaNet. Despite being trained for only 5 epochs, our PCMambaNet
(bottom rows) produces significantly more accurate and well-defined segmentation heatmaps on
both the OASIS-1 and MRBrainS13. This performance markedly surpasses the baseline Mamba-
UNet (top rows), which was trained for 50/200 epochs. For each dataset, columns display heatmaps
for individual classes (Background, CSF, GM, WM) followed by the final prediction overlay.

is a certain computational overhead in terms of parameter count, GFLOPs, throughput, and infer-
ence time, as shown in Table 4. These factors indicate potential directions for future improvements
in balancing structural priors with computational efficiency.

Table 4: Comparison of model parameters, FLOPs, throughput, and inference time (batch size = 1).

Model Params (M) | GFLOPs | Throughput (FPS) T Inference time (ms/batch) |
U-Net 1.81 2.28 267.00 2.20
nnNet 18.69 325 127.01 4.94
Swin-UNet 4138 8.98 53.86 8.92
Mamba-UNet 35.86 7.65 37.20 11.86
PCMambaNet (Ours) 92.88 20.12 20.61 32.12

5 CONCLUSION

In this paper, we challenged the dominant end-to-end learning paradigm in deep learning, highlight-
ing its limitations in training efficiency and data dependence, particularly in data-scarce domains
such as medical imaging. To address this bottleneck, we proposed the Predictive—Corrective (PC)
paradigm, which decomposes a complex segmentation task into a lightweight prior prediction stage
(PPM) and a powerful residual correction stage (CRN). On brain MRI segmentation, our PCMam-
baNet instantiation achieves competitive, and in some cases state-of-the-art, accuracy with relatively
few training epochs, and extensive ablation and data-efficiency analyses confirm that the comple-
mentary roles of PPM and CRN are key to these improvements and to the robustness of the learned
representations under limited data. Nevertheless, the current PC instantiation still relies on man-
ually designed priors and has so far been validated only on brain MRI segmentation, pointing to
future work on more automated prior construction and broader applications across tasks and imag-
ing modalities.
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Appendix to The Predictive-Corrective Paradigm: Decoupling
Prediction and Refinement for Efficient Anatomy-Informed Brain
MRI Segmentation

In this appendix, we provide the following materials:
A. Supplementary details in the main paper;

B. Scalability of the PC Paradigm;

C. Hyperparameter 6 Analysis;

D. Proof of the method;

E. LLM Contribution.

A  SUPPLEMENTARY DETAILS

A.1 RELATED WORK

In recent years, with the continuous advancement of deep learning, medical image segmentation
techniques have undergone rapid updates and iterations (Rayed et al., 2024; Azad et al., 2024).
In the early stages of this field, convolutional neural network (CNN)-based methods were widely
adopted for various segmentation tasks (Azad et al., 2024; Ronneberger et al., 2015). The fully
convolutional network (FCN) pioneered end-to-end pixel-wise segmentation (Long et al., 2015).
UNet (Ronneberger et al., 2015) and its variants (such as UNet++ (Zhou et al., 2018), UNet3+
(Huang et al., 2020), and nnUNet (Isensee et al., 2021)) have significantly improved the fusion of
multi-scale features and the localization of lesion boundaries through a symmetric encoder-decoder
structure with multi-level skip connections (Li et al., 2023). However, due to the limited local
receptive field of CNN-based models, it remains challenging for them to effectively capture global
contextual information, resulting in performance bottlenecks for medical image segmentation tasks
involving complex structures or long-range dependencies (Dosovitskiy et al., 2020; Gu & Dao, 2023;
Zhu et al., 2024; Ren et al., 2022; 2024a;b).

To enhance the modeling capability of global contextual information, Transformers (Vaswani et al.,
2017) and their vision variants (ViT) (Dosovitskiy et al., 2020) have gradually become mainstream
approaches for medical image segmentation. Methods such as TransUNet (Chen et al., 2021), UT-
Net (Gao et al., 2021), ViT-UNet (Zhou et al., 2024), and Swin-UNet (Cao et al., 2022) incorporate
self-attention mechanisms to efficiently integrate multi-level features, thereby substantially improv-
ing segmentation accuracy. Further, models like DS-TransUNet (Lin et al., 2022) and TransFuse
(Zhang et al., 2021) explore the integration of parallel architectures and multi-branch designs, en-
abling effective fusion of both local and global information. However, Transformer-based models
suffer from quadratic computational complexity concerning self-attention (Gu & Dao, 2023), which
poses significant challenges in terms of efficiency and resource consumption when processing high-
resolution medical images or deploying on edge devices (Zhang et al., 2024a; Zhu et al., 2024; Guo
et al., 2024; Chen et al., 2024a; Diao et al., 2025).

In recent years, state space models (SSMs) represented by Mamba have emerged as a promising
research direction in medical image segmentation, owing to their linear computational complex-
ity and strong capability for long-range dependency modeling. VMamba (Liu et al., 2024b) first
introduced a multi-directional scanning vision Mamba backbone network, demonstrating excellent
performance in medical image segmentation tasks (Ruan et al., 2024). Building upon Swin-UNet
(Cao et al., 2022), Mamba-UNet (Wang et al., 2024b) incorporated pure vision Mamba modules
into the segmentation architecture, significantly improving both segmentation accuracy and infer-
ence efficiency. To meet practical deployment requirements, lightweight vision Mamba variants
such as LightM-UNet (Liao et al., 2024) and UltraLight VM-UNet (Wu et al., 2024) were proposed,
offering extremely low parameter counts and high computational efficiency suitable for mobile and
resource-constrained environments. MedMamba (Yue & Li, 2024) systematically applied Mamba
to multi-modal medical image classification and segmentation, utilizing a hybrid structure that com-
bines convolutional layers with state space modeling to balance local detail and global context. To
further enhance spatial structural awareness and multi-scale information fusion, many Mamba-based
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Figure 7: (a) The overall architecture of our proposed PCMambaNet, which follows a U-Net-like
structure with our novel PCMamba Blocks as the core building components. (b) The structural
diagram of the PCMamba Block.

variants have introduced various architectural innovations. For instance, LMa-UNet (Wang et al.,
2024a) inserts large-window state space modules at multiple scales in the UNet encoder to expand
the receptive field and improve global modeling capability. LocalMamba ()localmamba employs
window-based local scanning and dynamic directional search to strengthen local spatial correla-
tions effectively. Selective and Multi-Scale Fusion Mamba (SMM-UNet) (Li et al., 2025) proposes
multi-scale feature fusion and selective dynamic weighting mechanisms, achieving precise segmen-
tation of complex lesion structures with a minimal number of parameters. Spatial-Mamba (Xiao
et al., 2025) introduces a structure-aware state fusion module to directly aggregate local and global
information in the latent space, further enhancing the modeling of complex spatial structures and
ambiguous boundaries.

In addition, domain generalization and three-dimensional medical image segmentation represent
important application directions for Mamba-based architectures (Xie et al.). Approaches such as
Mamba-Sea (Cheng et al., 2025) and SegMamba (Xing et al., 2024) integrate global-local sequence
enhancement with 3D state space modeling, thereby improving the generalization ability and spatial
consistency of segmentation across multi-center and multi-modal medical datasets. VMAXL-UNet
(Zhong et al., 2025) achieves both high accuracy and efficiency on multiple medical segmentation
benchmarks by combining vision Mamba modules with lightweight LSTM (Greff et al., 2016) com-
ponents.

Overall, Mamba and its variants have achieved multidimensional breakthroughs in medical image
segmentation, ranging from lightweight design and structure awareness to multi-scale fusion, three-
dimensional modeling, and domain generalization. These advances have extensively promoted the
development of efficient, accurate, and generalizable segmentation models. However, most existing
Mamba-based models rely on end-to-end optimization; thus, their convergence speed and general-
ization ability still have room for improvement, especially in real-world clinical scenarios involving
limited data and the incorporation of prior knowledge. To address these challenges, this paper pro-
poses a prediction-correction paradigm that integrates domain knowledge with an efficient Mamba
architecture, aiming to achieve a more efficient and robust solution for medical image segmentation.

A.2 ARCHITECTURE OVERVIEW

Figure 7 (a) shows the segmentation architecture of the proposed PCMambaNet. First, the input
2D image of size H x W x 1 is divided into patches and then flattened into a one-dimensional se-
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quence. This sequence is then projected to a dimension of C' through a linear embedding layer and
processed through a series of Predictive-Corrective Mamba (PCMamba) Blocks and downsampling
layers. Each encoder stage in PCMambaNet extracts features using two PCMamba blocks, and the
feature map sizes at each stage are H/4 x W/4, H/8 x W/8, H/16 x W/16, and H/32 x W/32,
respectively. The bottleneck of PCMambaNet is composed of two PCMamba Blocks. Symmetri-
cally, each decoder stage also utilizes two PCMamba Blocks for feature reconstruction, with feature
map sizes of H/16 x W/16, H/8 x W/8, and H/4 x W /4, respectively. Skip connections are used
to fuse multi-scale features from the encoder to the decoder.

A.3 FUSION AND STATE MODULATION

In the final step, the outputs from the predictive branch (2%K) and the corrective branch (z?eHSity)
are concatenated and fused to generate the final contextual modulation factor, 2%, We employ
a lightweight MLP for this fusion, as it can learn the optimal non-linear combination of the two
signals, which is more powerful than a simple linear aggregation:

zlfused = MLP <[Zima3k; Z?ensity]> . (10)

This fused factor is then used to modulate the original Mamba state x; as shown in Eq. 6. By
synergistically integrating the “where to look” guidance from the PPM with the "how to refine”
details from the CRN, the resulting state h; becomes significantly more informed.

A.4 QUANTITATIVE

To provide a more comprehensive and granular validation of our model, we present supplemen-
tary results across several standard evaluation metrics. The detailed metrics in Table 5 further sub-
stantiate the superiority of PCMambaNet, demonstrating its consistent outperformance against all
baseline models across Accuracy (Acc), Precision (Pre), Sensitivity (Sen), and Specificity (Spe) on
both the OASIS-1 and MRBrainS13 datasets. Similarly, the supplementary ablation results in Ta-
ble 6 reinforce our core findings; these metrics confirm that the removal or simplification of either
the Predictive Prior Module (PPM) or the Residual Corrective Network (CRN) leads to a general
degradation in performance, underscoring their individual necessity and synergistic effect. Finally,
Table 7 offers a more detailed view of our model’s remarkable data efficiency, showing strong per-
formance across all metrics even when trained with only a fraction of the data. Collectively, these
results provide robust, multi-faceted evidence for the effectiveness and efficiency of the proposed
PC paradigm.

Table 5: Quantitative comparison on the OASIS-1 and MRBrainS13 test sets. Our method (high-
lighted with a light background) achieves accuracy comparable to state-of-the-art (SOTA) ap-
proaches while exhibiting significant advantages across all efficiency metrics. All metrics (Acc,
Pre, Sen, Spe) are reported as percentages, and the best results are highlighted in bold.

Model Ace (%) Pre (%)" Sen (%) 1 Spe (%)1
CSF GM WM CSF GM WM CSF GM WM CSF GM WM
OASIS-1 dataset
97444006 96894015 98714007 94.37+£0.95 92334079  91.91£108 88594198 92784047 95.91+£0.60 98.08+£0.74 97.97+£0.71  98.06+0.80

nnUNet 97374001 9686+£001 9866001  $8.80+0.04 9236011  92.91+£006 9230 +0.04 94454006 97.69+£0.01 9740001  98.91+0.01
Swin-UNet 97424002 96.92+0.03 9870002 90444036  92.69+0.18  94.06+£0.17 92384007 9266013 93244047  97.74£0.02  97.37+£0.03  99.00+0.01
Mamba-UNet 97444005  96.94+£001  9873+£0.04 92664012 92714062  94.04+£018  9L.63+045  9351+0.27  93.99+£044 9786003 9730001  98.98+0.02
PCMambaNet(1 epoch) ~ 9657+0.01  9584+0.22  97.19+£0.03 91324002  90.88+0.23  9245+0.33  89.97+£251  91.88+033  91.66+0.22 97.77+0.05 9628004  98.2440.03

PCMambaNet(5 epochs) 97.13 £ 0.01 96.57 £ 0.04 97.91 +0.02 92.59 £ 0.02 91.79 £ 0.01 94.37 4 0.04 91.55 4 0.21 93.16 £ 0.30 92.88 +0.18 96.81 £ 0.01 96.11 £ 0.06 98.51 £ 0.05
PCMambaNet(50 epochs)  97.56 +0.04 97.12£0.08 98.7740.06 93.69+030 93.42+1.75 94.79+0.11 93.334+0.21 95.02+0.51 93.79+0.11 98.81£0.06 97.36£021 99.12+0.04

MRBrain$13 dataset

79184066 78984066 8959+ 1.76 71.27+0.73 70.59+0.13 73304036  65.02+£0.78  70.81£064 77.59+£0.91 80.25+061  7984+£059  89.8241.76
nnUNet 78524027 78424026  89.95+4.08 62.34+£122 64754101 62284259 68074085  69.04+1.50 79834006  79.55+£012 90.41+4.18
Swin-UNet 78.99+£025  7828+0.72  S8A5E278  65.83+ 158 TLIS£1.96  6410+180  70.59+034  7L57+£120  80.11+0.13  79.07+0.70  88.95+2.77
Mamba-UNet 79084003  79.03+007 8880+ 115  67.03+0.04 70104127 63614072 70674040 74194062 80234002 79844005  89.23+116
PCMambaNet(1 epoch) ~ 77.19+0.06  76.52+0.09  76.99+£023  59.8840.14 .22 65.89+0.31 65.88+0.12  46.87+0.23 7874+002 77.85+£031  7854+041
PCMambaNet(5 epochs) ~ 77.44+0.52  77.77+£029  7872+002  62.89+0.33 2 64.64 + 3.58 66.80+0.65  66.96+041  7895+0.04 7875+£0.03 78434088

+0.22
PCMambaNet(200 epochs)  79.62+0.11  79.49+0.10  89.72+0.09  70.73£0.67 70424082  74.50 +2.42 73.814+0.35 74714018 80.49+0.05 80.11+0.08 90.18+0.04
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Table 6: Ablation study results on the OASIS-1 and MRBrainS13 test sets, where the full model is
highlighted with a light background. All metrics (Acc, Pre, Sen, Spe) are reported as percentages,
and the best-performing results are highlighted in bold.

c Ace (%) Pre (%)t Sen (%) Spe (%)1

CSF GM WM CSF GM WM CSF GM WM CSF GM WM

OASIS-1 dataset

PCMambaNet (Full Model)  97.56 £0.04  97.12+£0.08  98.77£0.06 93.60+0.30 93.42+1.75 0479£0.11 93.33£0.21 95.02£0.51 9379011 98.81+0.06 97.36£0.21 99.12:£0.04
(1) CRN only

(wlo PPM) 97.54 £ 0.10 97.04£0.19 98.67+0.04  93.89+0.47  92.59 + 0.87 93.96 + 2.88 91.03 £ 2.09 94.11 £+ 1.05 94.07 £0.97 97.95 + 0.02 97.29 £0.12 98.84 & 0.05
QA{;’L:;‘;"I‘Q::{?" 97534004 97.15£0.07 9816058 93804052 93414028 96.04£0.64 93154023 9482064 9416+0.17 9781005 973006 98TAE056
(?L];:(Mlgﬁiv 97.21+0.31 96.97 £0.13 98.74 £ 0.08 88.22 £ 2.06 9242+ 091 94.94 £+ 0.49 90.78 £ 1.41 93.86 & 0.39 93.38 £ 1.77 97.60 +0.22 97.26 £ 0.20 99.01 £ 0.05
(4) w/ CNN-CRN 97.43+0.27 97.03 £0.14 98.46 + 0.51 91.49 +3.11 92.94+0.77 95.41 £ 0.40 92,11+ 1.65 94.25 +0.29 93.30 £0.38 97.77 £ 0.19 97.32£0.14 99.03 +0.07

MRBrainS13 dataset

PCMambaNet (Full Model) 79.62+£0.11 79.49£0.10 8972009 70.73+0.67 70.42+0.82 74.50+2.42 68.45+0.12 73.81+0.35 74.71:+0.18 80.49+0.05 80.1140.08 90.18%0.04
(1) CRN only

(wlo PPM) 79364026 79194030 90304226 70.16+£212  6876+£1985 73844165 67004168  TLIGELLIS  73.01+£144 80284016  79.92+021  90.78+2.32

%k‘:ﬁ;’)z’fll\;}:i;’[ 7913+£004  79.01+003  9021+0.58  66.18+0.33 6851012 72224118 6561+ 111 69494013  7LI2+£0.73  80.04+0.06  79.89+0.02  90.70 +0.56
‘?i«‘/’«‘:(l\;lkur\"!? 79294022 79134027  90.58+£2.61 6753166 68624204 72454152 6654+ 159 70074130 7426+£168 80244011 7997022 9103+ 2.67

(4) w/ CNN-CRN 79284031 79.014+0.32  89.90+200  68.09+£229 6871+£202 7228+176  65.63+2.30 7088176 74.00£200 80.29+0.15  79.92+022  90.35+2.10

Table 7: Data efficiency comparison on the OASIS-1 dataset, where the metrics highlighted with a
light background correspond to models trained with the entire dataset. All metrics (Acc, Pre, Sen,
Spe) are reported as percentages.

Number Model Acc (%)t Pre (%)1 Sen (%)t Spe (%)t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM
UNet 96.85 9585 98.12 92.05 8745 82.86 79.72 88.56 96.57 9790 96.71 98.13

nnUNet 97.02 96.31 9835 86.48 89.27 83.28 8883 90.13 93.01 97.61 97.06 98.59

10% Swin-UNet ~ 97.30 96.70 98.56 90.52 91.13 9271 90.37 9259 93.08 97.75 97.16 98.89
Mamba-UNet  97.07 96.57 98.49 8797 9047 9347 89.22 9298 9142 97.60 97.00 98.88
PCMambaNet 97.58 97.00 98.70 92.98 93.08 9455 9293 9337 93.03 97.89 97.40 99.00

UNet 9696 9571 97.89 9275 8844 81.68 81.18 86.81 7121 97.94 9691 97.76

nnUNet 97.07 96.50 9846 86.26 90.37 9046 90.19 90.64 9334 97.56 97.15 98.75

25% Swin-UNet ~ 97.33 96.75 98.58 89.58 9237 93.09 92.17 9193 9292 97.68 97.38 98.82
Mamba-UNet 97.05 96.64 98.58 87.90 90.86 93.41 88.79 9295 9248 97.60 97.03 98.90
PCMambaNet 97.46 96.96 98.77 93.60 92.84 9535 9249 94.06 9321 97.78 97.20 99.10

UNet 96.94 9630 9842 91.01 89.76 88.76 83.02 91.09 9578 97.84 9691 98.46
nnUNet 97.09 96.61 9853 86.14 90.63 91.99 90.55 91.63 93.07 97.54 97.15 98.85
50% Swin-UNet 9740 96.85 98.66 90.74 9240 9381 91.80 9244 93.08 97.76 97.31 98.98

Mamba-UNet 97.15 96.72 98.62 89.03 9146 9293 89.33 9286 93.62 97.66 97.14 99.90
PCMambaNet 97.52 97.07 98.80 93.67 93.02 9585 92.40 9447 9320 97.85 9727 99.11

UNet 9744 96.89 98.71 9437 9233 9191 8859 9278 9591 98.08 97.97 98.06

nnUNet 97.37 96.86 98.66 88.80 9236 9291 9230 91.96 9445 97.69 97.40 9891

100% Swin-UNet 9742 96.92 9870 90.44 92.69 94.06 9238 92.66 9324 97.74 97.37 99.00
Mamba-UNet 97.44 9694 98.73 92.66 9271 94.04 91.63 9351 9399 97.86 97.30 98.98
PCMambaNet 97.56 97.12 98.77 93.69 9342 9479 9333 95.02 9379 9881 9736 99.12

A.5 ROBUSTNESS UNDER PERTURBATIONS

To assess the robustness of PCMambaNet to acquisition perturbations, we simulate MRI misalign-
ment on the MRBrainS13 dataset by introducing random rotations and random flips during training.
Tables 8 and 9 compare PCMambaNet trained without augmentation (Aug-PCMambaNet) and with
augmentation (PCMambaNet). Overall, data augmentation yields consistent improvements across
most overlap-based (Dice, IOU) and distance-based (HD95, ASD) metrics, indicating more accu-
rate and stable boundary delineation under geometric perturbations. Similarly, PCMambaNet with
augmentation attains slightly higher Acc, Pre, Sen, and Spe for all three tissues, while maintaining
strong overall performance. These results suggest that PCMambaNet is robust to acquisition-like
perturbations and can further benefit from such variability during training.

We attribute this robustness to the joint effect of the PPM and the CRN. The PPM employs a
symmetry-aware masking mechanism that selects or suppresses features based on the similarity
between tokens at mirrored positions across the two hemispheres, allowing it to emphasize sta-
ble bilateral patterns and attenuate spurious activations even under mild geometric perturbations.
When perturbations become stronger and inter-hemispheric similarity falls below the threshold 6,
this mechanism naturally degrades into an approximate random masking scheme, which acts as a
regularizer by suppressing redundant responses and encouraging more robust representations. In
parallel, the high-capacity CRN is designed to model fine-grained residuals and correct errors in
the PPM’s coarse predictions, thereby recovering precise boundaries and tissue-specific details. To-
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gether, these components enable PCMambaNet to maintain high performance and exhibit strong
robustness under acquisition-like perturbations on symmetric brain structures.

Table 8: Robustness analysis on the MRBrainS13 dataset. Model sensitivity to perturbations is
evaluated by introducing random rotations and random flips during training to simulate acquisition
variations in MRI, and all metrics are reported with and without data augmentation for comparison.

Dice (%)1 HD95 (mmx10){ ASD (mmx10){ 10U (%)t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Aug—PCMambaNet 68.60 71.39 73.06 21.08 18.76 3947 4.65 4.47 1411 5993 64.19 6643
PCMambaNet 69.37 71.79 7426 1931 1746 3890 447 460 1441 60.67 64.63 67.48

Model

Table 9: Robustness analysis on the MRBrainS13 dataset. Model sensitivity to perturbations is
evaluated by introducing random rotations and random flips during training to simulate acquisition
variations in MRI, and all metrics are reported with and without data augmentation for comparison.

Acc (%) Pre (%) Sen (%)1 Spe (%)t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM

Aug—PCMambaNet 79.58 79.45 88.68 70.37 70.13 7359 67.53 7298 7449 80.47 80.08 89.07
PCMambaNet 79.62 7949 89.72 70.73 7042 7450 6845 73.81 7471 80.49 80.11 90.18

Model

B SCALABILITY OF THE PC PARADIGM

On the extended ACDC cardiac MRI dataset, we further examine the effectiveness of the proposed
PC paradigm on organs that lack pronounced left-right symmetry. It is worth emphasizing that, in
this experiment, we do not introduce any architectural modifications to the backbone network.

B.1 DATASET

ACDC: Automated Cardiac Diagnosis Challenge. We conducted our experiments using the publicly
available ACDC MRI cardiac segmentation dataset from the MICCAI 2017 Challenge (Bernard
et al., 2018). This dataset comprises MRI scans from 100 patients, annotated for multiple cardiac
structures, such as the right ventricle and the endocardial and epicardial walls of the left ventricle.
It encompasses a diverse range of pathological conditions, categorized into five subgroups: normal,
myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, and abnormal right
ventricle, ensuring a broad distribution of feature characteristics. Four classes of regions of interest
(ROIs) are evaluated in the ACDC dataset.

B.2 EXPRERIMENTS

As reported in Table 10, PCMambaNet achieves the best Dice scores on all three cardiac structures
(RV, MYO, and LV), surpassing Mamba-UNet by approximately 4.23, 8.82, and 2.75 percentage
points, respectively. At the same time, PCMambaNet attains the lowest HD95 and ASD values for all
structures, indicating that the model can still produce more accurate and stable boundary delineations
even on organs without clear bilateral symmetry. Table 11 further shows that PCMambaNet obtains
the highest Precision (Pre) and Sensitivity (Sen) for MYO and LV, while maintaining competitive
overall Accuracy (Acc) and Specificity (Spe) compared with strong baselines such as UNet, nnUNet,
and Mamba-UNet.

These results demonstrate that, even on asymmetric organs and without modifying the backbone,
injecting anatomical priors through the PPM and refining them via the CRN can consistently im-
prove segmentation quality. We attribute this behavior to the design of the PPM and the strong
corrective capability of the CRN. Specifically, the PPM employs a masking mechanism based on
the similarity between tokens at correspondingly mirrored positions. When applied to organs with-
out left-right symmetry, these similarities often fail to exceed the predefined threshold 6, causing
the symmetry-aware masking to naturally degenerate into an approximate random masking scheme.
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Table 10: This table presents a quantitative comparison on the ACDC test set. Our method (high-
lighted) matches state-of-the-art (SOTA) performance on accuracy metrics while consistently out-
performing all competitors in terms of efficiency. Dice and IOU are reported as percentages, while
HD95 and ASD are scaled by a factor of 10 for readability. Best results are in bold.

Model Dice (%) T HDYS (mmx10)) ASD (mmx10)) 10U (%)t
RV MYO LV RV MYO LV RV MYO LV RV MYO LV
ACDC dataset
UNet 75134030 85094021  89.02+£050  2259+£065 1750+ 119 15384084  7.96+0.05 649+0.38 6.20+0.22 69.94+0.30 77.10£0.34 8468+ 0.50
nnUNet 71.24 £0.83 80.54 £ 0.43 85.28 + 0.29 38.49 4 5.38 39.12 £ 0.63 31.62+£7.06 14.95+£1.93 1503 £4.08 14.04£2.69  64.70 = 0.89 70.57 £+ 0.52 79.72 4 0.38
Swin-UNet 63.40 + 0.01 73.36 £ 0.12 80.71 = 0.20 57.62 £ 0.00 43.07 £ 0.01 39.88+£0.00 2091 £0.12 16.05£0.02 16.74£0.00 55.16 +0.21 61.42+0.11 74.23 +0.01
Mamba-UNet 71.06 £ 0.24 81.84 £ 0.08 86.59 + 0.22 30.94 £+ 0.74 22.82+£0.19 19.39£0.16 1094 =044 879+ 0.05 8.42+0.04 65.03 = 0.20 72.32 £ 0.02 81.43 +£0.24

PCMambaNet(200 epochs)  75.29 £ 0.28 90.66 £0.90 89.34+0.44 22.31£0.99 16.39+0.31 15.30£0.08 7.31£0.26 6.24£0.13 626+£0.04 68.73 £ 0.27 76.31 £0.61  84.94 £ 0.45

Table 11: This table presents a quantitative comparison on the ACDC test set. Our method (high-
lighted) matches state-of-the-art (SOTA) performance on accuracy metrics while consistently out-
performing all competitors in terms of efficiency. All metrics (Acc, Pre, Sen, Spe) are reported as
percentages. Best results are in bold.

Model Ace (%) 1 Pre (%) Sen (%)1 Spe (%)1
RV MYO v RV MYO v RV MYO v RV MYO LV
ACDC dataset
93.44£0.30 9627=060  9537£0.60 76.77+£0.65 8121056 9024080 75.49+£0.65 87.13+£0.54 80.06=0.11 86.85+547 9636+£050 9542+ 061
nnUNet 83554002 96.51£0.02 95.6840.01 70804036 79924078  S409+£066 7385109  8208+045  S3.67+£052 8365001  96.67+£0.01 95.74 £0.01

Swin-UNet 81344002  9637+£021  91.97+£022  68.60+0.11 7489001 8196021 2494001  7435+£021  SL74£002 81554001  96.61+0.03  92.06+0.01
Mamba-UNet 8147+0.52 9601001 94474031 72414049  79.97+0.02  8817+£037 72204032  8495+0.07 86904018  8L57+£052  96.14+0.01  94.54+0.30
PCMambaNet(200 epochs) ~ 82.31+0.36  96.35+0.36  9546+0.37  75.75+£0.04 84.99+0.35 90.38+0.34 7450+£0.01 8634+046 90.13+0.51 82.38+0.37 9646+036 95514035

This core design enables the PPM to remain beneficial in non-symmetric scenarios by stochastically
suppressing redundant features and preserving representative local patterns. However, it should be
noted that, in such cases, the anatomical symmetry prior encoded in the PPM is no longer actively
exploited, which implies a potential reduction in efficiency.

On the other hand, even if the PPM may introduce larger prediction errors on asymmetric organs, our
high-capacity CRN module can effectively correct these errors thanks to its strong ability to model
fine-grained residual details. This complementary behavior explains why the model still performs
well on asymmetric organ segmentation. Collectively, these experiments validate the generality and
robustness of our model across different anatomical structures and suggest that the proposed PC
paradigm has the potential to serve as a versatile, “plug-in” framework for a wide range of medical
image segmentation backbones.

B.3 RANSFER EXPERIMENTS WITH PPM AND CRN

To further verify the transferability of the proposed PPM and CRN, we integrate them into the last
two encoder layers and the first two decoder layers of a U-Net architecture. The results demon-
strate that PPM and CRN can be effectively migrated to a pure CNN backbone: the resulting PPM-
CRN-UNet exhibits overall slightly better segmentation performance than the original U-Net on
the MRBrainS13 dataset for CSF and GM, with consistent improvements in Dice, IoU, accuracy,
sensitivity, and specificity, while still achieving competitive results for WM. The detailed results are
reported in Tables 12 and 13.

Table 12: PPM and CRN transfer experiments on the MRBrainS13 dataset. The PPM and CRN
modules are integrated into the last two encoder stages and the first two decoder stages of the U-Net
backbone, and their transferability is evaluated on the MRBrainS13 dataset under the same training
protocol as the baseline U-Net.

Dice (%) HDY5 (mmx 10)] ASD (mmx 10)] T0U (%)t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM

UNet 67.68 7058 73.80 22.77 20.02 4399 4.67 471 16.10 5879 63.18 66.36
PC-UNet 68.14 70.03 70.73 21.42 20.05 47.84 489 491 1653 5917 6209 63.94

Model
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Table 13: PPM and CRN transfer experiments on the MRBrainS13 dataset. The PPM and CRN
modules are integrated into the last two encoder stages and the first two decoder stages of the U-Net
backbone, and their transferability is evaluated on the MRBrainS13 dataset under the same training
protocol as the baseline U-Net.

Model Acc (%)T Pre (%)1 Sen (%) 7T Spe (%)t
CSF GM WM CSF GM WM CSF GM WM CSF GM WM

UNet 79.18 7898 89.59 71.27 7059 7330 6502 7081 77.59 80.25 79.84 89.82
PC-UNet 79.49 79.21 8540 70.04 70.13 68.83 66.76 70.50 75.19 80.44 80.16 85.61

C HYPERPARAMETER 6 ANALYSIS

As shown in Table 14, PCMambaNet exhibits stable performance across a range of 6 values on both
the OASIS-1 and MRBrainS13 test sets, with only minor fluctuations in Dice, HD95, ASD, and
IoU. Since the Dice score is one of the most important evaluation metrics in medical image seg-
mentation—directly reflecting the overlap between prediction and ground truth—we use Dice as the
primary criterion for hyperparameter selection. Based on the consistently superior Dice performance
on both datasets, we choose 6 = 0.95 as the final setting.

Table 14: Sensitivity analysis of the hyperparameter 6 on the OASIS-1 and MRBrainS13 test sets.
The results show that PCMambaNet is robust to a wide range of  values, with stable Dice perfor-
mance and only minor fluctuations across both datasets.

0 Dice (%)(Avg)t HD95 (mmx10)(Avg)] ASD (mmx10)(Avg)] IOU (%)(Avg)!
OASIS-1 dataset
0.75 91.74 15.99 3.53 86.61
0.8 92.76 15.35 3.57 86.85
0.95 93.35 13.14 2.23 89.36
MRBrainS13 dataset
0.75 70.52 26.83 8.35 62.75
0.8 70.87 26.88 7.39 62.2
0.95 72.46 29.49 8.93 63.12
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D PROOF OF THE METHOD

This document provides a formal theoretical analysis of the Predictive-Corrective (PC) paradigm.
We expand upon the claims made in the main paper by incorporating concepts from statistical learn-
ing and optimization theory to rigorously justify the observed improvements in data efficiency, op-
timization stability, and generalization. We demonstrate that the PC paradigm’s success stems from
fundamentally restructuring the learning problem to be more tractable.

D.1 PRELIMINARIES AND NOTATION

We establish the formal setting for our analysis (Shalev-Shwartz & Ben-David, 2014; Hastie et al.,
2009).

e Let X be the input space and ) be the output space.

e Let D be a fixed but unknown data distribution over X x ).

* A model is a function fy : X — ) parameterized by 6 € O.

* The hypothesis space H = {fy | 6 € O} is the set of all functions representable by the
model.

* Given aloss function £ : ' x Y — R, the true risk is R(fo) = Eqz.y~0lL(fo(@), y)]
* For a training set S = {(x;,y;)}", ~ D", the empirical risk is Rs(fo) _
%22;1 ‘C(f(’(xl)vyl)

» The Rademacher complexity %R, () measures the richness of the hypothesis space H
(Bartlett & Mendelson, 2002).

D.2 HYPOTHESIS SPACE REDUCTION AND GENERALIZATION
The PC paradigm’s primary advantage lies in its structural prior, which effectively reduces the com-

plexity of the hypothesis space, leading to improved generalization guarantees.

Theorem D.1 (Standard Generalization Bound (Shalev-Shwartz & Ben-David, 2014)). With proba-
bility at least 1 — § over the draw of a training set S of size n, for any f € H:

R(f) < Rs(f) +2R,(H) + log(1/0) (11)

2n

The generalization error, R(f) — Rg(f), is bounded by the complexity term R,, ().

Proposition D.2 (Complexity Reduction via Structural Priors). The Rademacher complexity of the
PC paradigm’s hypothesis space, Hpc, is strictly smaller than that of an unconstrained End-to-End
(E2E) hypothesis space, Hgag, of a comparable architectural size.

R (Hec) < Rn(Hek). (12)

D.2.1 FORMAL PROOF OF PROPOSITION D.2

To formally prove the proposition, we leverage standard properties of Rademacher complexity to
quantify the effect of decomposing the learning problem.

Lemma D.3 (Subadditivity of Rademacher Complexity). (Shalev-Shwartz & Ben-David, 2014)

For two function spaces Hy and Ho, the Rademacher complexity of their sum space Hi + Ho =
{h1 + h2 | h1 € H1,ha € Ha} is bounded as follows:

R (H1 + Ha) < R(Hi) + Rn(Ha). (13)
Lemma D.4 (Complexity of a Singleton Set). (Shalev-Shwartz & Ben-David, 2014)

If a function space H contains only a single, fixed function, i.e., H = {g}, then its Rademacher
complexity is zero.
Rn({g}) =0. (14
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Proof. By definition, the empirical Rademacher complexity Rg({g}) is:
. 1 &
Rs({9}) =Eo | sup — > oif(z:)
“1r e{gr 1 ;

=Eq li Z Jig(%‘)]
i=1

Il

| —
|'M\

Q

=

)

N2

o

|

o

Since the empirical complexity is O for any dataset .S, the true Rademacher complexity $,,({g}) =
Es[?Rs({g})] is also 0. O

Proof of Proposition D.2. We proceed in four steps.

1. Decomposition of the Hypothesis Space. For analytical tractability, we model the output
of the PC paradigm as an additive composition. This simplification captures the essence
of the paradigm, and the results generalize to more complex compositions like feature
concatenation.

* Let Hp = {P} be the function class containing only the fixed, deterministic prior
function from the PPM.

* Let Ho = {Cy.. | Oc € ©¢} be the hypothesis space of the learnable CRN module.
» The PC hypothesis space is thus the sum space Hpc = Hp + Hc-

2. Bounding the Complexity of the PC Space. Using the lemmas, we can now bound the
complexity of Hpc:

Ry (Hee) = Rn(Hp + He)

<R.(Hp) +R,.(He) (by Lemma D.3)
=0+ R, (He) (by Lemma D.4)
=R, (Hc).

This result is crucial: it formally shows that the complexity of the entire PC paradigm
is bounded by the complexity of its learnable component alone. The fixed, domain-
knowledge-driven component adds no learning complexity.

3. Comparison with the E2E Space. An E2E model fg,r must learn the entire mapping from
input to output. It must use its parametric capacity to implicitly learn both the low-level
anatomical priors (the function of P) and the high-level corrective details (the function of
C). Therefore, its hypothesis space Hgyg must be sufficiently rich to represent this entire
hierarchy of functions. It is a reasonable assumption that the complexity of Hpyg must be
strictly greater than that of H ¢, which is only tasked with the corrective sub-problem.

If this were not the case (i.e., if R, (Hee) < R (Hce)), the E2E model would lack the
necessary functional richness to learn the foundational priors that the PC paradigm receives
for free.

4. Conclusion of the Proof. Combining the results from steps 2 and 3, we arrive at the final
inequality:
Rn(Hec) <R (He) < R (Hezg)- (16)

This rigorously establishes that the Rademacher complexity of the PC paradigm is strictly lower than
that of the E2E paradigm. By embedding domain knowledge as a fixed, zero-complexity function,
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the PC paradigm effectively reduces the complexity of the space the model must search. Accord-
ing to Theorem D.1, this complexity reduction directly translates to a tighter generalization bound,
providing a theoretical foundation for the improved data efficiency and robustness observed in our
experiments. O

D.3 Lo0SS LANDSCAPE GEOMETRY AND OPTIMIZATION GUARANTEES

We formalize the simplification of the loss landscape by analyzing its smoothness, a key property
for facilitating stable optimization in gradient-based methods.

Definition D.5 (L-smoothness). (Nesterov, 2004)

A differentiable function g(0) is L-smooth if its gradient is Lipschitz continuous with constant L:
IVg(01) — Vg(02)|| < L||61 — 02|, V01,65 € O. 17)

A smaller constant L implies a smoother function with less curvature, which is more amenable to

optimization.

Proposition D.6 (Improved Smoothness of the PC Objective). The loss function of the Predictive-
Corrective (PC) paradigm, Lpc(0¢c), exhibits a smaller effective Lipschitz constant (is smoother)
than the loss function of the End-to-End (E2E) paradigm, Lgg(0). Formally,

Lpc < Lgg. (18)

D.3.1 FORMAL PROOF OF PROPOSITION D.6

To provide a rigorous proof, we analyze the structure of the Hessian matrix of the loss function
under each paradigm. For analytical clarity, we use the Mean Squared Error (MSE) loss, £(7,y) =
111§ — y|*. The insights derived here generalize to other commonly used loss functions.

Hessian Matrix Structure. The Lipschitz constant L of a twice-differentiable function is bounded
by the maximum eigenvalue (in absolute value) of its Hessian matrix, i.e., L < supg Amax(V2L(0)).
For a neural network fy(x), the Hessian of the MSE loss with respect to parameters 6 is given by:

dim(Y)
H(0) = V3L(O) = J7dy  + 3 (ful@s0) = yo) Vifu(as0), (19)
Gauss-Newton term
Error-sensitive term
where J; = Vg fg(x) is the Jacobian matrix. The Hessian consists of a positive semi-definite

Gauss-Newton term, which captures the geometry of the model’s output space, and an error-sensitive
term, which introduces non-convexity and is a primary source of optimization difficulty (Nocedal &
Wright, 2006; Martens, 2010).

Analysis of the E2E Hessian. In the E2E paradigm, the loss is Lop(0) = 1| fo(z) — y||%. Its

Hessian is:
Hiop(0) = 37,3, + > (fil(@:0) — yi) Vi fula; 0). (20)
k

During the initial stages of training, the network’s output fy(x) is far from the ground truth y. Con-
sequently, the error vector egyp = fo(x) — y has a large norm. This large error term amplifies the
contribution of the error-sensitive part of the Hessian, potentially introducing large positive or neg-
ative eigenvalues. This corresponds to a highly erratic and sharply curved loss landscape, resulting
in a large smoothness constant Lg)g.

Analysis of the PC Hessian. In the PC paradigm, the Corrective Residual Network (CRN) Cy,,

optimizes the loss Lpc(6c) = 3|Co.. (z) — 7|?, where the residual target is r = y — P(z). The
corresponding Hessian is:

Hec(0c) = 3¢, oo, + ) (Crlw;0c) — i) Vi Cr(x; 0c), @21
k

The critical distinction lies in the error vector epc = Cy, (x) — 7.
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1. Low-Energy Target: By design, the PPM provides a good approximation, ensuring the
residual target r is a sparse, low-energy signal. Formally, we have ||7|| < ||ly]|-

2. Small Initial Error: With standard initializations, the CRN output Cy,, () is close to zero
at the start of training. Therefore, the initial error vector epc ~ —7.

Since ||epc|| = ||7|| < ||yl =~ ||erzg]|, the magnitude of the error-sensitive term in Hpc is dramati-
cally suppressed compared to that in Hgg.

Conclusion of the Proof. The comparison reveals that the Hessian of the PC loss, Hpc, is domi-
nated by the stable, positive semi-definite Gauss-Newton term. The volatile, non-convex component
is attenuated by the small residual error. Since the spectral norm (maximum eigenvalue) of a matrix
is influenced by the magnitude of its components, the suppression of the error-sensitive term leads
to a smaller maximum eigenvalue for the PC Hessian:

)\maX(HPC) < Amax(HEZE); (22)
As the L-smoothness constant is bounded by this eigenvalue, we formally arrive at the conclusion:
Lpc < Lggg. (23)

This result rigorously demonstrates that the PC paradigm induces a smoother loss landscape. For
gradient-based optimization, a smaller L constant allows for a larger and more stable learning rate,
ensuring that each update makes more significant progress towards a minimum. This provides a
formal theoretical explanation for the efficient learning behavior observed in our experiments.

D.4 A RIGOROUS TREATMENT OF THE BIAS-VARIANCE DECOMPOSITION

We provide a formal proof of the Predictive-Corrective (PC) paradigm’s superiority in managing the
bias-variance tradeoff (Geman et al., 1992). We begin by introducing a key lemma that connects the
variance of a learned function to the complexity of its underlying function class.

Lemma D.7 (Variance Bound via Rademacher Complexity). (Mohri et al., 2018; Bousquet, 2002)
Let H be a class of functions mapping from X to [—B, B]. Let fD € H be a function learned from
a training set D of size n. The expected variance of the learned function at any point x is bounded
by a function of the Rademacher complexity of H.:

Ep[Var(fp(z))] < 4B*(R,(H))>. (24)
This lemma formalizes the intuition that a function class with lower complexity (smaller R, (H))
exhibits lower variance, as its learned instances are less sensitive to the specific training data D.
Theorem D.8 (Bias-Variance Superiority of the PC Paradigm). Let the following assumptions hold:
Assumption 1 (Prior Quality). The fixed PPM, P, is a high-bias, zero-variance estimator of the true
underlying function g(z), with bias Bp(z) = P(z) — g(x) # 0 and variance Var(P) = 0.
Assumption 2 (Corrector Capacity). The CRN, C, which is drawn from a hypothesis space Hc,
has sufficient capacity such that its expected prediction can learn the negative bias of the PPM:

Ep[Cp(z)] = —Bp(x).

Then, the PC predictor fpc = P+ Cp achieves low bias, and its expected variance is strictly lower
than that of an unconstrained E2E predictor fgg of comparable capacity, drawn from Hgg.

Proof. The proof proceeds in three parts: bias analysis, variance analysis, and a formal variance
comparison using Lemma D.7.

1. Bias Analysis. We compute the bias of the PC predictor fpcz
Bias(fpc) = Ep[P(z) + Cp(2)] — g(x)
= (P(z) — g(z)) + Ep[Cp(z)] (since P is deterministic)
= Bp(x) + Ep[Cp()],
By Assumption 2, the CRN is trained such that its expected prediction cancels the bias of the prior,
i.e., Ep[Cp(z)] — —Bp(x). Therefore, the total bias of the system is driven to zero:

Bias(fpc) = Bp(z) — Bp(z) =0,
The PC system is thus capable of achieving low bias.
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2. Variance Analysis. We compute the variance of the PC predictor fpc:

Var(foc) = Var(P(z) + Cp(z))
= Var(P(x)) + Var(Cp(z)) + 2Cov(P, Cp).

By Assumption 1, Var(P) = 0. As P is a constant with respect to the data sampling process D, its
covariance with any learned function Cp is also zero. This simplifies to:

Var( fpc) = Var(Cp). (25)

3. Formal Variance Comparison. The crucial step is to formally justify why Var(ép) <
Var( feoe). We leverage Lemma D.7 and the complexity results from the preceding sections (specif-
ically, Proposition 2.1 in the main text, which established R,,(Hpc) < R, (He) < Rn(HEk))-

Applying the bound from Lemma D.7 to the expected variance of the E2E model and the CRN
component of the PC model, we get:

Ep|Var(fese)] < 4B*(Rn,(Hee))?, (26)
Ep[Var(Cp)] < 4B%(R,,(Hc))% (27)

From Proposition 2.1, we have the strict inequality regarding the complexities:
Rn(He) < Rn(Heze), (28)

Since the variance bound is a monotonically increasing function of the Rademacher complexity, sub-
stituting the inequality from Eq. equation 28 into the bounds from Eq. equation 26 and equation 27
directly yields:

Ep[Var(Cp)] < Ep|[Var(feze)], (29

Combining this with Eq. equation 25, we conclude that the expected variance of the PC predictor is
strictly lower than that of the E2E predictor:

Ep|Var(fec)] < Ep[Var(feg)]. (30)
O

Conclusion. The PC paradigm intelligently decomposes the learning problem. It uses a deter-
ministic, zero-variance module (PPM) to anchor the prediction and a learning module (CRN) that
operates in a low-complexity hypothesis space. This structure allows the CRN to focus on correcting
the initial bias while inheriting a low-variance property, as formally demonstrated. The final result
is a model that achieves the desirable property of being both low-bias and low-variance, provid-
ing a rigorous theoretical foundation for its stable optimization behavior and strong generalization
performance.

E LLM CONTRIBUTION

In this paper, we employed a large language model (LLM) to polish the language, thereby making
the article more fluent and readable. We sincerely acknowledge the valuable assistance of the LLM
in the preparation of this manuscript.
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