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Abstract
While deep neural networks have demonstrated
groundbreaking performance in various settings,
these models often suffer from catastrophic for-
getting when trained on new tasks in sequence.
Several works have empirically demonstrated that
increasing the width of a neural network leads to a
decrease in catastrophic forgetting but have yet to
characterize the exact relationship between width
and continual learning. We designed one of the
first frameworks to analyze continuous learning
theory and prove that width is directly related to
forgetting in feed-forward networks (FFN). In par-
ticular, we demonstrate that increasing network
widths to reduce forgetting yields diminishing re-
turns. We empirically verify our claims at widths
hitherto unexplored in prior studies where the
diminishing returns are clearly observed as pre-
dicted by our theory.

1. Introduction
Deep Neural Networks (DNNs) have achieved breakthrough
performance in numerous challenging computational tasks
that serve as a proxy for intelligence (LeCun et al., 2015).
An essential and practical question is whether the same neu-
ral network can continuously learn over a series of tasks
while maintaining performance. Practically, using a well-
trained neural network to achieve similar quality over a
series of tasks is essential for reducing expensive retrain-
ing and computational costs (Diethe et al., 2019) and for
mimicking the human-like ability to continually update its
knowledge (Hadsell et al., 2020; Kudithipudi et al., 2022;
Parisi et al., 2019). In practice, DNNs exhibit catastrophic
forgetting when trained over a series of tasks, experiencing
a sharp drop in performance on the previously learned tasks.
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However, preventing catastrophic forgetting is theoretically
and empirically tricky in many situations (Knoblauch et al.,
2020; Kim et al., 2022). Many empirical studies of Con-
tinual Learning (CL) have observed that a model’s hidden
dimension or width is positively correlated with the ability
to continually learn (Mirzadeh et al., 2022b;a; Ramasesh
et al., 2021). Moreover, catastrophic forgetting is more
easily mitigated in the infinite-width or Neural Tangent Ker-
nel regime (Bennani & Sugiyama, 2020; Doan et al., 2021;
Chizat et al., 2019; Geiger et al., 2020). However, the ex-
act relationship between width and continual learning still
needs to be clarified in the more practical finite-width set-
ting. Theoretically, explaining this relationship requires
understanding the effects of training and retraining a model
on different datasets, which is a complex and difficult-to-
analyze process. Through pure experimentation, most works
observe a roughly linear relationship between width and
continual learning, such as in small FFNs (Mirzadeh et al.,
2022a) or in large CNNs and ResNets (Ramasesh et al.,
2021; Mirzadeh et al., 2022b), suggesting that increasing
the scale of models is a simple method for improving con-
tinual learning.

In this paper, we explicitly investigate the relationship be-
tween width and continual learning. We have observed em-
pirically and theoretically that simply increasing a model’s
width suffers diminishing returns in improving continual
learning. To rigorously analyze these phenomena, we estab-
lish one of the first theoretical frameworks for analyzing the
continual learning error of Feed-Forward Networks, con-
necting fundamental properties like depth, number of tasks,
sparsity, activation smoothness, and width to continual learn-
ing error. We use this framework to prove the connection
between width and continual learning in Feed-Forward Net-
works of arbitrary depth and nonlinear activations more
tightly. To circumvent the typical analytical difficulties of
continual learning, we use the well-observed empirical ob-
servation that wider models move less from initialization
during training. For completeness, we empirically verify
this relationship on Feed-Forward Networks trained with ei-
ther Stochastic Gradient Descent (SGD) or Adam (Kingma
& Ba, 2015) optimizers1. This lazy training phenomenon
has often been observed empirically in the literature (Zou

1https://github.com/vihan-lakshman/diminishing-returns-
wide-continual-learning

1



On the Diminishing Returns of Width for Continual Learning

et al., 2020; Nagarajan & Kolter, 2019; Li & Liang, 2018;
Neyshabur et al., 2018b; Chizat et al., 2019; Ghorbani et al.,
2019). Using this observation, we demonstrate that width
acts as a functional regularizer, preventing models trained on
subsequent tasks from being too functionally distant from
previous models. Specifically, our new guarantees formalize
this relationship between width and continual learning for
finite-width models with nonlinear activations and variable
depth, which do not exist in the literature for wide mod-
els. To our knowledge, this theoretical framework is one
of the first to provide provable guarantees on the continual
learning error of models.

Moreover, we empirically observe these diminishing returns.
Some existing works have tested hidden dimensions up to
2048 (Mirzadeh et al., 2020) where the diminishing returns
are not apparent. In particular, we measure the continual
learning capabilities of FFNs as the hidden dimension is
increased to 216, much larger than previously explored in
the literature to our knowledge. With these new expansive
experiments on standard CL benchmarks, we see this re-
lationship between width and continual learning predicted
by our theory. We also test the other correlations predicted
by our framework, such as the connections between model
depth, model sparsity, and the number of tasks on contin-
ual learning error. Our framework predicts that increasing
model depth or the number of tasks will also increase con-
tinual learning error, matching the empirical observations
in (Mirzadeh et al., 2022b). Moreover, our model predicts
increasing the row-wise sparsity in a model decreases the
continual learning error, such as used in (Serra et al., 2018).
Our experiments roughly corroborate all of these relation-
ships over several real datasets and model shapes. To our
knowledge, this is the first work to provably demonstrate
the effects of the number of tasks and row-wise sparsity on
continual learning error.

Our results contribute to the literature examining the rela-
tionship between neural network architectures and continual
learning performance. We provide one of the first theoretical
frameworks for analyzing catastrophic forgetting in Feed-
Forward Networks. While our theoretical framework does
not perfectly capture all information about continual forget-
ting empirically, it is a valuable step in analyzing continual
learning from a theoretical framework. As predicted by
our theoretical framework, we demonstrate empirically that
scaling width alone is insufficient for mitigating the effects
of catastrophic forgetting, providing a more nuanced un-
derstanding of finite-width forgetting dynamics than results
achieved in prior studies (Mirzadeh et al., 2022a; Ramasesh
et al., 2021). We also prove that our theoretical framework
predicts several other connections between model architec-
ture and catastrophic forgetting.

Contributions In summary, we make the following con-
tributions in our work.

1. We develop one of the first theoretical frameworks to
analyze catastrophic forgetting in Feed-Forward Net-
works. Our theoretical framework corroborates several
empirical findings, such as the connection between
depth, sparsity, and forgetting. Our theoretical frame-
work also predicts that models incur diminishing re-
turns in terms of continual learning capability as width
is increased.

2. Under this framework, we provably demonstrate that
the training of nonlinear, variable depth feed-forward
networks incurs continual learning error on the order
of O

(
tW−βα

1−2β
2

)
where t is the number of tasks

the model has been trained on, W is the width, α
is the sparsity percentage, and β is a data-dependent
positive value. To our knowledge, this is the first work
formalizing the connection between width, sparsity,
number of tasks, and continual learning for nonlinear
models of variable depth.

3. By testing at hidden dimensions not seen previously,
we empirically see the diminishing returns of continual
learning when increasing width. These experiments
hold across many different width Feed Forward Net-
works on datasets such as Rotated MNIST and Fashion
MNIST, Rotated SVHN, and the Rotated German Traf-
fic Signs Benchmark (GTSRB).

4. We empirically confirm the predictions of our theoret-
ical frameworks on the impact of depth, number of
tasks, and row-wise sparsity on the continual learning
error over the same host of datasets, demonstrating the
power of our theoretical framework.

2. Related Works
2.1. Continual Learning

We review several relevant works in the Continual Learn-
ing literature. The original works discussing Continual
Learning and Catastrophic Forgetting phenomenon are Ring
(1997), McCloskey & Cohen (1989) and Thrun & Mitchell
(1995). Perhaps most relevant to this work are Mirzadeh
et al. (2022b) and Mirzadeh et al. (2022a), which note the
positive correlation between the width of models and con-
tinual learning. However, their experiments are limited to
small widths, at a maximum of 2048 hidden dimension,
which is small relative to the current deep learning state of
the art. Moreover, their analysis is limited, only proving the
continual learning in the setting of two-layer linear networks
without nonlinear activation. Ramasesh et al. (2021) and
Yoon et al. (2018) discuss how scale broadly empirically af-
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fects continual learning but does not provide any theoretical
analysis nor focus specifically on width.

Bennani & Sugiyama (2020) and Doan et al. (2021) discuss
theoretical frameworks for continually learning models in
the infinitely wide or NTK regime. Several works have used
explicit functional regularization as a way to mitigate catas-
trophic forgetting (Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2018; Farajtabar et al., 2020; Khan & Swaroop, 2021;
Dhawan et al., 2023). Peng et al. (2023) provides a ro-
bust theoretical framework, their Ideal Continual Learner
framework, which attempts to develop a solid theoretical
framework for understanding different continual learning
methods. Mirzadeh et al. (2020) discuss the geometric simi-
larities between the different minima found in a continual
learning regime

2.2. Wide Networks

Here, we review essential works relevant to understanding
wide networks in the literature and different architectures.
Nguyen et al. (2020) discusses the effects of width and
depth on the learned representation of the model. Arora
et al. (2019) discusses the empirical benefits of using the
infinite-width Neural Tangent Kernel on different classi-
fication tasks. Novak et al. (2022) provides a method to
compute the infinite-width model with less memory and bet-
ter efficiency. Lee et al. (2019) discuss the training dynamics
of wide neural networks under gradient descent. Lu et al.
(2017) discuss the expressiveness of wide neural networks
and how wide neural networks can express certain functions
better than deep ones. Jacot et al. (2018), Allen-Zhu et al.
(2019), and Du et al. (2019) capture the training dynamics
of infinitely-wide neural networks under the Neural Tangent
Kernel Regime

3. Preliminary
3.1. Notation

Let our model Mt yielded after training on the tth task be
denoted as

Mt(x) = At,LϕL−1(At,L−1ϕL−2(. . .At,2ϕ1(At,1x))).

Here, x is an input of dimensionality dt. ϕi is the activa-
tion function for the ith layer of Li Lipschitz-Smoothness.
Moreover let W be the width of M such that the input layer
At,1 ∈ RW×dt , last layer At,L ∈ RKt×W , and all the mid-
dle layers At,l ∈ RW×W . Here, Kt is the dimensionality
of the output of the tth task. We will often index a matrix
by a set of rows. For example, if S is a set of row indeces,
At,l[S] denotes a matrix in R|S|×W that contains the ith
row from At,l if i ∈ S . Moreover, let L be the model depth.

3.2. Problem Setup

Here, we will formalize the problem setup of Contin-
ual Learning. Formally, say we have T training datasets
D1, . . . ,DT . The goal of continual learning is to design
a model M such that it performs well on all datasets Dt

for t ∈ [T ]. We will describe the tth task as a supervised
learning classification task where the dataset for the tth task
is Dt = (Xt,Yt). Here, Xt contains nt datapoints of dimen-
sion dt and Yt contains nt labels of dimension Kt. We wish
to form M by sequentially training it on each dataset in
increasing order from D1 to Dt. We will call Mt the model
outputted after training on the tth dataset. After retraining
a model on the new dataset, we want the new model to re-
member its behavior on the previous dataset. Namely, we
wish to reduce the continual learning error ϵt,t′ where t ≤ t′

and max
x∈Dt

∥Mt(x)−Mt′(x)∥2 ≤ ϵt,t′ . Here, after training

a model for t′ − t new datasets, we hope to ensure that the
outputs between the original model on the tth dataset and
the new model on the t′th dataset are similar. Given Mt is
trained to completion on dataset Dt and achieves low error,
if our new model Mt′ is close to Mt on all inputs from Dt,
it will also perform well on Dt. Therefore, the main ques-
tion is the correlation between W , the width of the model
M, and the continual learning error ϵt,t′ .

3.3. Training Setup

We will examine the setup where our model M is a Feed
Forward Network with some nonlinear activation. We ran-
domly initialize every layer in the entire model to train the
model on the first task M1. Before training, as is often done
in Continual Learning, we will choose a subset of rows to
be active. For every row with probability α, we will select
that row to be active. Otherwise, it will be inactive. Only
the active rows will be used for computation during training
and inference. Inactive rows will not change during training.
We will denote At,l as the set of rows active for task t at
layer l. We use this setup to capture the connections be-
tween row-wise sparsity and continual learning empirically
observed in continual learning literature (Serra et al., 2018).
Setting α to 1 will recover fully dense training. We then
train using Adam or SGD till convergence. To train on a
subsequent task, we replace the input and output layers to
match the dimensionality of the new tasks. Moreover, we
choose which rows will be active for this new task for the
intermediate layers. We then retrain till convergence with
Adam or SGD. We repeat this training procedure iteratively
for every task. For inference on the tth task, we take the
intermediate layers learned at the final task and replace the
input and output layers with the input and output layers
trained for the tth task to match the dimensionality of the
data from the tth task. We only use the active rows during
training for the tth task.
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4. Theoretical Analysis
We develop the theoretical connection between the width
of the intermediate layers W and the error of continual
learning ϵt,t′ for different task indices t and t′. We begin
by stating our final theorem and then provide a brief proof
sketch. We mention a complete proof in Appendix C.1.

4.1. Main Theorem

Here, we present our full theorem, Theorem 4.1

Theorem 4.1. (Informal) Say we generate a series of
models M1, . . . ,MT by training sequentially on datasets
D1, . . . ,DT according to Section 3.3. Let λl

i,j =
∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
denote the ratio of the spectral norms of the

weights of different row indices for different tasks. More-
over, let λ̄ = max

l∈[L],i,j∈[T ]
λl
i,j . For all input vectors from the

tth dataset ∀x ∈ Dt, the ℓ2 norm of the difference of the
outputs from models Mt and Mt′ such that t′ ≥ t are upper
bounded 2 by

E
[
∥Mt(x)−Mt′(x)∥2

]
=

O

(
(t′ − t)L2Lλ̄χ

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2

)
.

Here, χ denotes the maximum norm of the input in Dt, i.e.
χ = max

x∈Dt

∥x∥2. Here, γ, β are data-dependent positive real

values.

As the width of the layers increases, we see that the error
ϵt,t′ is decreased on the order of W−β . This formalization
furthermore formalizes the connection between the width
and the continual learning error ϵt,t′ . This theorem demon-
strates that the continual learning error will decrease slowly
as the width increases. As side effects of our analysis, we
also make explicit how this error scales over tasks. As the
number of datasets trained between Dt′ and Dt increases,
the continual learning error increases linearly. To our knowl-
edge, this linear increase in error over tasks is unique to this
analysis. Moreover, we have an exponential dependence on
L, denoting that increasing depth decreases continual learn-
ing ability. Mirzadeh et al. (2022b) also found that forgetting
increased as depth increased. We reproduce these experi-
ments on our datasets. Moreover, as the sparsity coefficient
is decreased, meaning the chance of a row being active is
decreased, the continual learning ability is increased as long
as 1−2β

2 is positive, which is often the case, in practice.
Thus, this suggests a tradeoff between continual learning
ability and accuracy, as increasing sparsity will increase
continual learning ability but decrease the capacity of the

2We can reduce the dependence on weight norms by using
noise stability properties. For more details, please see Section 4.3.

model to learn on a given task. We note some dependence
on the layers’ matrix norms, which may correlate with the
layers’ width, but this is usually initialization dependent
(Nagarajan & Kolter, 2019). We can change the dependence
on the weight norms using the noise stability property of
neural networks as observed in Arora et al. (2018) (for more
details, please see Section 4.3). Overall, this theorem makes
the relationship between several model parameters, such
as width and continual learning, concrete and makes the
diminishing returns more explicit.

4.2. Proof Sketch

Here, we present a brief proof sketch of Theorem 4.1 and
the intuition behind it. We will begin this proof by finding
the continual learning error between subsequentially trained
models Mt and Mt+1, i.e. ϵt,t+1, and then scale the analy-
sis to work over more tasks t′ ≥ t+1. To analyze ϵt,t+1, we
split the proof into three parts: (1) finding how many active
rows are shared between layers in subsequential models at
the same position, (2) finding how far these active rows can
change during training, and (3) combining the two parts
using perturbation analysis.

4.2.1. NUMBER OF SHARED ACTIVE ROWS

From Section 3.3, each row in a layer At,l is active with
probability α and inactive with probability 1 − α. More-
over, the activity of the rows are independent and identical
random variables. Therefore, over the randomness of row se-
lection, the expected number of shared active rows between
two consecutive models is shown in Lemma 4.2.

Lemma 4.2. For any two sequential task indices t and t+1
and layer l, the expected size of the intersection between the
sets of active rows At,l and At+1,l is E(|At,l ∩ At+1,l|) =
α2W .

4.2.2. DISTANCE BETWEEN ACTIVE ROWS AFTER
TRAINING

For rows in weight matrices in Mt and Mt+1 that are ac-
tive for both datasets Dt and Dt+1, we need to bound their
distance. Here, we use a critical empirical observation. As
observed in Zou et al. (2020); Nagarajan & Kolter (2019);
Li & Liang (2018); Neyshabur et al. (2018b); Chizat et al.
(2019), as the width of the neural network was increased, the
distance from initialization was observed to decrease. Sim-
ilar intuition on a ”lazy training regime” was presented in
Mirzadeh et al. (2022a). Still, they did not offer any formal
analysis based on this observation. Intuitively, as the width
of the neural network increases, the implicit regularization
of standard gradient-based learning methods finds models
closer to the initialization. While it is challenging to pro-
vide theoretical analyses of the connection between width,
implicit regularization, and the distance from initialization
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(b) Fashion MNIST

Figure 1. We plot the distance from initialization for both Rotated MNIST and Rotated Fashion MNIST experiments. We see that distance
from initialization decreases slowly as the width is increased for both datasets. For the constants discussed in Assumption 4.3, the best
fitting constants are γ = 0.013, β = 0.311 for Rotated MNIST and γ = 2.5, β = 0.12 for Fashion MNIST. We plot the predicted
relationship with such parameters from Assumption 4.3.

save for restricted settings (Li & Liang, 2018), empirically,
this is a well-observed phenomenon. For the sake of our
analysis, we take this as an assumption in Assumption 4.3
and build our analysis on top of it.

Assumption 4.3. Let t be any task index t ∈ [T ]. After
training on dataset Dt+1 with initialization Mt via gradient-
based learning methods to generate Mt+1, for all layers l,
we have that

∥Al,t+1[Al,t+1]−Al,t[Al,t+1]∥F
∥Al,t[Al,t+1]∥2

≤ γ|Al,t+1|−β

where W is the width of the layers of M where γ, β > 0.
Here, Al,t[Al,t+1] and Al,t+1[Al,t+1] denote matrices that
only contain the active rows from the weights at the lth layer
for the tasks t and t+ 1 respectively.

This assumption states that after training when indexed by
the active rows, the matrix norm of the difference between
the lth layer of Mt and the lth layer of Mi+1 normalized by
the initial matrix norm is bounded by some function which
is inversely proportional to the width. This relative distance
from initialization is well analyzed in the literature. For
more details on these values in practice, see Section 6. We
reiterate that this phenomenon has been observed across
the literature, and we reproduce this property empirically as
seen in Figure 1. Using this assumption, we can demonstrate
an upper bound in the matrix norm of the difference of the
weights at a layer for two sequentially trained models.

Lemma 4.4. Let λl
i,j =

∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
denote the ratio of the

spectral norms of the weights of different row indices for

different tasks. For any task t and layer l, we have

E
[
∥At,l[At,l]−At+1,l[At,l]∥2

∥At,l[At,l]∥2

]
≤ λl

t,t+1γW
−βα

1−2β
2 .

The matrix norm of the difference between two layers mea-
sures the functional distance of the two layers. Given this
upper bound on the matrix norm, we can use simple per-
turbation analysis to calculate how much the difference
between the two outputs of the two sequentially trained
models accumulates throughout the layers during inference.

4.2.3. WIDTH AS A FUNCTIONAL REGURALIZER

We now use simple perturbation analysis to see how far Mt

and Mt′ will be on input from Dt. Given the Lipschitz-
smoothness of the activation functions and a bound on
the matrix norm of the weights of different layers from
Lemma 4.4, we can use Lemma 2 from Neyshabur et al.
(2018b), to bound the continual learning error. This analysis
gives us a simple guarantee on the error ϵt,t+1. Moreover,
using simple triangle inequality, we expand this claim to
general ϵt,t′ where t′ > t. We state the continual learning
error between subsequent tasks using this analysis technique.

Lemma 4.5. Let λ̄ = max
l∈[L],i,j∈[T ]

λl
i,j . For any input vector

from the dataset for the tth task x ∈ Dt, the ℓ2 norm of the
difference of the outputs from models Mt and Mt+1 are
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upper bounded by ∀x ∈ Dt,

E
[
∥Mt(x)−Mt+1(x)∥2

]
≤

L2Lχλ̄

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2 .

Here, χ denotes the maximum norm of the input in Dt, i.e.
χ = max

x∈Dt

∥x∥2.

This bound states that the difference between outputs in two
models can be tracked as the input flows through the models.
If the two models have close weights at each layer, they will
also have close outputs. Here, we see how width and sparsity
cause the layers to be similar, resulting in low continual
learning error between two sequential models. Using such a
bound, we can prove that the difference between the original
and the new model differs only so much. Moreover, we can
extend the above to compare models more than one task
apart, i.e., comparing Mt and Mt′ . Doing so yields our
final theorem. The implicit regularization of training large-
width networks to find minima close to initialization acts as
a functional regularization in the continual learning setting
on the order of W−β .

4.3. Extension to Noise Stability

The dependence on the weight norm is pessimistic in our
bounds since neural networks tend to be stable to noise in
the input (Arora et al., 2018). To remove such dependence,
we can rely on two terms: layer cushion and activation
contraction.

Definition 4.6. Let xt,l−1 be defined as the output of the
first l − 1 layers of Mt for some input x ∈ Dt. The
layer cushion of layer l of the model Mt on the task t
is defined to be the smallest number µt,l such that for all
inputs in x ∈ Dt, we have that ∥At,l∥2∥ϕl(xt,l−1)∥2 ≤
µt,l∥At,lϕl(xt,l−1)∥2.

Intuitively, the layer cushion constant µt,l is a data-
dependent constant that tightens the pessimistic analysis
of using the weight norms. Moreover, we will define the
activation contraction similarly as the following.

Definition 4.7. Let xt,l−1 be defined as the output of the
first l−1 layers of Mt for some input x ∈ Dt. The activation
contraction ct for layer l and model Mt is defined as the
smallest number such that for any layer l and any x ∈ Dt

such that ∥xt,l−1∥2 ≤ ct∥ϕl(xt,l−1)∥2.

This connection tightens the pessimistic analysis surround-
ing the activation layers. Combining these two definitions,
we can remove the dependence on the weight norm in our
bounds.

Theorem 4.8. Denote Γt = max
x∈Dt

∥Mt(x)∥2. Then, we

can characterize the continual learning error between two
subsequently trained models as

E [∥Mt(x)−Mt′(x)∥2] ≤ Γt(t
′ − t)γλ̄W−βα

1−2β
2 η,

where η =
(∏l

i=1 κi + κi(t
′ − t)γλ̄µt,i

)(∑l
i=1 κi

)
and

κi = Liciµi,t.

Empirically, such constants can improve upon the pes-
simistic analysis using weight norms. For more details
on the empirical value of these constants, please see Arora
et al. (2018).

5. Experiments
To empirically validate the theoretical results in this work,
we conducted a series of experiments across multiple estab-
lished continual learning benchmarks following prior work
Mirzadeh et al. (2022a;b). We find that while our theoretical
framework does not contain all information about catas-
trophic forgetting, it is roughly accurate in its predictions.
We conduct all experiments on a single AWS g5g.8xlarge
instance equipped with an NVIDIA A10 GPU.

5.1. Datasets and Metrics

Following the literature, we train models on four datasets:
Rotated MNIST, Rotated SVHN, Rotated Fashion MNIST,
and Rotated GTSRB. To construct each rotated dataset, we
construct five tasks comprising of the original images from
the dataset rotated by 0, 22.5, 45, 67.5, and 90 degrees. We
then train on each of these tasks in sequence. Following the
work of Mirzadeh et al. (2022a) we evaluate the efficacy of
a continual learning model via four metrics: Average Ac-
curacy (AA), Average Forgetting (AF), Learning Accuracy
(LA), and Joint Accuracy (JA). For more discussion on the
meaning of these metrics, please see Appendix A.

5.2. Modeling Setup

We utilize the same model architecture for all of the exper-
iments: a Feed Forward Network consisting of an input,
hidden, and output layer. Between each layer, we use ReLU
activations. We vary the width of the hidden layer in all
experiments while keeping all other hyperparameters fixed.
We train these models using the SGD optimizer as well as
Adam (Kingma & Ba, 2015), the latter of which we report
in the appendix. We train these models as classifiers on each
task using CrossEntropy Loss for 5 epochs. This training
paradigm is a standard modeling choice in the Continual
Learning literature (Mirzadeh et al., 2020). 3. To note, while

3These MLP models perform well short of state-of-the-art con-
volutional neural networks (LeCun et al., 1995) and vision trans-
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WIDTH AA AF LA JA

32 56.3 37.7 93.0 91.8
64 58.7 36.0 93.5 93.5
128 59.8 35.0 93.8 94.3
256 60.9 34.2 94.0 94.8
512 61.9 33.2 94.1 95.0
1024 62.7 32.6 94.2 95.3
2048 64.1 31.2 94.3 95.5
4096 65.3 30.2 94.5 95.7
8192 66.7 28.9 94.7 95.7
16384 68.0 27.9 94.9 95.9
32768 69.4 26.6 95.6 96.1
65536 69.6 26.7 95.6 96.2

(a) Rotated MNIST

WIDTH AA AF LA JA

32 37.7 46.0 82.1 77.8
64 37.9 46.0 82.4 80.0
128 38.2 46.0 82.5 79.4
256 38.4 45.9 82.7 79.8
512 38.8 45.6 82.9 79.9
1024 39.3 45.3 83.1 79.9
2048 39.9 44.8 83.3 79.1
4096 40.1 44.9 83.7 80.9
8192 40.8 44.5 83.9 80.2
16384 41.4 44.3 84.5 78.8
32768 41.9 44.3 84.9 79.9
65536 42.0 44.6 85.5 80.9

(b) Rotated Fashion MNIST

Table 1. Our Continual Learning experiments on varying width FFNs on Rotated MNIST and Rotated Fashion MNIST. We see that the
Average Forgetting slowly stops decreasing after a width of 210.
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Figure 3. We visualize the diminishing returns of increasing width across networks of varying depth. This corroborates our theoretical
analysis.

swapping out the input and output layers for each task is
standard, we found that doing so did not impact the results
significantly since each task has the same input and output
dimensionality, so we do not swap the input and output lay-
ers for each task to better align with the theoretical analysis.

6. Results
Distance From Initialization In Figure 1a and Figure 1b,
we note that a model’s distance from initialization tends to
decrease as a function of width, which provides empirical
evidence of Assumption 4.3. The numerator of our relative
distance metric is the Frobenius norm of the difference
between the hidden layers of the intermediate models trained
on the first task and second tasks. In the denominator of our
metric, we have the ℓ2 norm of the hidden layer of the model

former (Dosovitskiy et al., 2020) architectures. Nevertheless, our
work focuses on developing a rigorous and principled understand-
ing of the effect of width on the training dynamics of continual
learning.

trained on the first task. We see a slowly decreasing distance
as the width increases exponentially. To better understand
the constants in Assumption 4.3, we find what values of γ
and β best explain the curves seen in Figure 1a and Figure 1a.
We see values of γ = 2.5, β = 0.12 for Fashion MNIST
and γ = 0.013, β = 0.311 for MNIST. This finding also
validates the existing literature on the relationship between
width and distance from initialization (Nagarajan & Kolter,
2019; Mirzadeh et al., 2020). We plot the predicted line
denoting the predicted relationship from Assumption 4.3
using the best fitting parameters.

Dense Model Results Furthermore, in Table 1 and Fig-
ure 3, we see that increasing width helps with improving
forgetting early on but receives diminishing returns eventu-
ally. Looking specifically at Figure 3, we see a similar trend
for datasets MNIST, Fashion MNIST, and GTSRB. Namely,
we see that the increasing width decreases forgetting as
width increases, but the forgetting plateaus at larger widths.
This holds across one-layer, two-layer, and three-layer Feed
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Figure 4. We visualize the relationship between depth and task index on forgetting over several datasets. Figure 4b is only for Rotated
MNIST.

Forward Networks. However, for SVHN, we see for the first
layer that width does not affect the forgetting much and even
increases the forgetting as width increases in two and three
layer networks. All four of these datasets demonstrate a find-
ing beyond the existing literature: increasing width does not
always decrease forgetting. In Table 1, we provide specific
numbers for one-layer networks on MNIST and Fashion
MNIST. For other datasets and depths, we relegate these
tables to the appendix for space purposes; see Figure 10
and Figure 11. We see specifically in both cases as width
approaches 216, the Average Forgetting begins to plateau,
as predicted by our theory. Despite the initial forgetting for
width 25 on both datasets beginning at different levels of
forgetting, they both exhibit a similar shape curve in the
forgetting, changing much less after a width of 211.

Forgetting over Time We briefly explore the error over
tasks: how much the final model forgets as the number of
tasks seen increases. We take the model trained on the final
task and compute its forgetting on each of the previous tasks.
For example, the forgetting on task index 5 is 0, and the
forgetting on task index 1 is the largest since that is the
oldest dataset the model has seen. For space, we include the
majority of the figures in the appendix. We plot the error
over the task indices in Figure 4b and Appendix B.3 for
FFNs of differing widths on all datasets. We see a roughly
linear increase in forgetting as the task index decreases, as
is expected. This relationship is seemingly independent of
width and dataset. This linear relationship independent of
width corroborates the theoretical analysis in Theorem 4.1,
which predicts a linear relationship. We include further
details in the appendix.

Connection between Forgetting and Depth Our model
roughly predicts an increase in forgetting as the depth of the
neural network is increased. This matches several empirical
results such as the results from Mirzadeh et al. (2022b) that
see an increase in forgetting as depth increases. We repro-
duce these experiments and report them in Figure 4a. Up to
a depth of 3, We see empirically that depth and forgetting
are positively correlated, roughly corroborating our theory.
Specifically, on Fashion MNIST and GTSRB, increasing the
number of layers from 1 to 3 roughly increases the forget-
ting. On datasets MNIST and SVHN, the impact of depth on
forgetting is too small to make any meaningful connection.
However, for all datasets besides MNIST, we see forgetting
decreases as depth is increased after 4 hidden layers. We
attribute this to the lower overall accuracy at these higher
depths due to vanishing gradients. At these high depths, van-
ishing gradients cause the overall accuracy to decrease. As
accuracy decreases in the high-depth regime, the forgetting
artificially decreases.

Connection between Forgetting and Sparsity We briefly
note that our theory predicts that inducing sparsity will
improve forgetting. In Table 5, when setting the sparsity
coefficient α = 0.1, forgetting decreases significantly. For
example, on MNIST, at width 214, the Average Forgetting
decreases to 0.2, compared to 27.9 in the dense setting.
This corroborates our analysis’s prediction of the connection
between sparsity and forgetting.

6.1. Experiments with Wide ResNet Models

In this section, we present the results from replacing the
FFN used in our primary experimental analysis with a Wide
Resnet model (Zagoruyko & Komodakis, 2016). While our
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WIDTH AA AF LA JA

1X 48.8 43.8 92.6 92.7
5X 49.0 43.3 92.3 93.6

10X 47.9 42.1 90.0 94.2
15X 49.6 43.1 92.7 94.0
20X 50.6 40.1 90.7 94.6

(a) Rotated SVHN

WIDTH AA AF LA JA

1X 43.8 45.6 89.4 89.0
5X 50.7 42.7 93.4 91.1

10X 52.1 41.5 93.6 92.4
15X 55.0 39.1 94.1 93.1
20X 53.1 40.9 94.0 89.1

(b) Rotated GTSRB

Table 2. We report the numbers from our continual learning experiments using a Wide ResNet model (Zagoruyko & Komodakis, 2016) on
the SVHN and GTSRB datasets. The width reported in the first column corresponds to the multiplicative amount applied to the width
factor parameter of the Wide ResNet model. We again see a similar trend of diminishing returns as we did in the MLP setting.

theoretical results focus solely on MLP models, we also
investigate whether our findings of dimishing returns of
width in continual learning also hold in the case of more
sophisticated convolutional networks, which achieve higher
accuracy and are much more commonly used in practice
for vision tasks (Krizhevsky et al., 2012). Following prior
work from (Mirzadeh et al., 2022a), we focus on the Wide
Resnet architecture due to the model’s strong empirical per-
formance and the ability to easily scale the model’s width
through a predefined multiplicative factor. In our experi-
ments, we focus on the same rotated SVHN and GTSRB
tasks considered earlier and maintain all other settings other
than the model architecture. Our findings are documented
in Table 2. For both datasets, we see that as the width is
increased greatly, the forgetting slowly decreases to 40.1
and 40.9 for SVHN and GTSRB respetively. From these
results, we do indeed see a similar diminishing returns phe-
nomenon in forgetting as we scale the width factor of the
ResNet model. These preliminary findings also suggest that
extending our theoretical results to other model architec-
tures more commonly found in practice might be a fruitful
direction for future work.

7. Discussion
We examine both empirically and theoretically the connec-
tion between continual learning and the width of a Feed
Forward Network. While our theoretical framework doesn’t
completely capture all information about catastrophic forget-
ting, it is a valuable first step to analyzing continual learning
theoretically. Increasing width receives diminishing returns
at some point. We empirically see these diminishing returns
at larger hidden dimensions than tested in previous literature.
A possible extension would be whether similar increases in
scale receive diminishing returns such as depth, number of
channels in CNNs, hidden dimension in LLMs, etc. Addi-
tionally, an important work could be to examine if width, in
conjunction with other functional regularization methods,
can reduce the effect of diminishing returns.

Limitations Our analysis relies on an assumption about
the distance from initialization seen during training, which
we have yet to prove rigorously. Moreover, our analysis
is restricted to FFNs and has yet to be extended to more
complex architectures such as Residual Networks or Atten-
tion networks. Furthermore, our analysis does not perfectly
predict the exact continual learning error.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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NOTATION MEANING LOCATION

Mt MODEL FOR tTH TASK SECTION 3.1
Li LIPSCHITZ-CONSTANTS IF iTH ACTIVATION FUNCTION SECTION 3.1
W WIDTH OF MODEL M SECTION 3.1
At,l lTH LAYER OF THE tTH MODEL SECTION 3.1
Dt tTH TRAINING DATASET SECTION 3.2
ϵt,t′ CONTINUAL LEARNING ERROR OF t′TH MODEL ON Dt SECTION 3.2
λl
i,j

∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
THEOREM 4.1

λ̄ MAXIMUM RATIO OF SPECTRA NORMS OF ALL MODELS AND LAYERS THEOREM 4.1
L DEPTH OF MODEL SECTION 3.1
γ, β CONSTANTS GOVERNING THE DISTANCE FROM INITIALIZATION ASSUMPTION 4.3
χ max

x∈Dt

∥x∥2 LEMMA C.3

µt,l LAYER CUSHION FOR LAYER l OF MODEL t DEFINITION 4.6
ct ACTIVATION CONTRACTION OF LAYER l DEFINITION 4.7
Γt max

x∈Dt

∥Mt(x)∥2 THEOREM 4.8

Table 3. Table of Notation used in Paper
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Figure 6. We plot the distance from initialization for both GTSRB and SVHN experiments. We see that distance from initialization
decreases slowly as the width is increased for both datasets.

A. Metrics
Average accuracy is defined as the mean test accuracy of the final model over all the tasks after training on all tasks
in sequence. Average forgetting is calculated as the mean difference over tasks between the accuracies obtained by the
intermediate model trained on that task and the final model. The learning accuracy of a given task measures the accuracy
that the model achieves immediately after training on that task. We also report learning accuracy as an average over all tasks.
Finally, we report Joint Accuracy, which is the accuracy of training a model on all of the combined datasets.

B. Additional Continual Learning Experiments
Here, we report several additional experiments to investigate the relationship between width and the ability to learn
continually. We demonstrate the relationship between SGD and this diminishing returns phenomenon by repeating the
experiments with Adam in Appendix B.1. Moreover, we test how inducing row-wise sparsity affects the relationship between
Continual Learning ability. Increasing the sparsity can significantly decrease the average forgetting, as predicted by our
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theoretical analysis. We demonstrate this in Appendix B.2.

Furthermore, we study the relationship between forgetting and the number of tasks trained. We report on this in Appendix B.3.

B.1. Adam and Diminishing Returns

To further investigate the connection between width and continual learning, we wish to see whether the phenomenon
of diminishing returns is visible in other optimization algorithms. In our theoretical analysis, we argue that the implicit
regularization of gradient-based optimizers finds minima closer to previous tasks, improving continual learning ability. In
our experiments in the main section, we conduct all experiments with SGD and empirically observe these diminishing
returns. We wish to examine if this implicit regularization and diminishing returns are unique to SGD or generalizes to
other optimization algorithms. To do so, we repeat the continual learning experiments in the main text with Adam as the
optimizer. We report our results in Table 4. Indeed, we see very similar results to SGD as in Table 4. We again observe
the diminishing returns for both datasets with Adam as the optimizer. This observation suggests that our analysis and this
phenomenon are not unique to SGD and extend to different optimizers.

WIDTH AA AF LA JA

32 51.3 43.9 94.6 91.1
64 51.5 43.9 94.7 92.5

128 52.2 43.2 94.8 94.1
256 51.4 44.0 94.6 94.0
512 56.3 39.3 94.9 93.7

1024 52.9 42.5 94.9 93.8
2048 52.4 43.4 95.1 93.7
4096 54.1 41.5 94.9 94.3
8192 53.6 42.0 95.1 94.1

16384 51.0 44.7 95.0 93.7
32768 55.2 40.7 95.2 94.0
65536 54.9 41.0 95.4 93.1

(a) Rotated MNIST

WIDTH AA AF LA JA

32 33.95 52.01 84.57 77.8
64 33.66 53.04 85.48 79.7

128 35.64 51.73 86.18 79.4
256 33.3 54.19 86.32 79.8
512 34.27 53.39 86.52 79.9

1024 36.31 51.33 86.62 79.1
2048 35.73 51.77 86.53 80.9
4096 37.47 50.2 86.66 80.2
8192 33.25 54.32 86.37 78.8

16384 33.98 53.71 86.57 79.9
32768 33.95 53.65 86.49 80.9
65536 36.91 50.69 86.53 79.0

(b) Rotated Fashion MNIST

Table 4. Continual Learning Results with Adam optimizer training. We see that despite changing the optimizer to Adam, we see very
similar results, including the diminishing returns trend. This suggests that the diminishing returns phenomenon is not optimizer-dependent.

B.2. Sparsity and Width

In Table 5, we report the results of our investigation into the power of row-wise sparsity to mitigate the effects of catastrophic
forgetting, as predicted by our theory. For these experiments, we utilize the BOLT deep learning library (Meisburger et al.
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(2023)) which allows for explicitly setting row-wise activatins. To summarize our earlier discussion, we define row-wise
sparsity as activated only a subset of the hidden layer neurons in our feedforward model architecture. We select a fraction α
of the hidden layer neurons for each task to be active uniformly at random. Note that some neurons may be shared across
multiple tasks, which leads to some amount of forgetting, but at a significantly reduced rate to what we observed in the
dense case. Moreover, the overall learning accuracy is not decreased despite fewer neurons being used during training. In
these experiments, we also apply sparsity to the output layer such that each task has a distinct set of output classes. As
predicted by our theory, we observe that sparsity can counterweight the diminishing returns on reducing forgetting purely
through width alone. However, some effects of diminishing returns can still be seen in both datasets.

WIDTH AA AF LA JA

32 68.5 5.4 73.9 93.8
64 75.6 13.3 88.9 95.8

128 82.0 9.8 91.8 96.7
256 86.2 6.8 83.1 97.3
512 91.2 3.3 94.5 97.7

1024 94.6 1.3 95.9 97.9
2048 95.5 1.3 96.7 98.1
4096 96.4 1.0 97.3 98.0
8192 97.1 0.5 97.6 98.1

16384 97.7 0.2 97.9 98.0
32768 97.6 0.3 98.0 98.2

(a) Rotated MNIST

WIDTH AA AF LA JA

32 55.7 6.0 61.7 77.8
64 58.7 13.9 72.6 79.7

128 74.6 6.0 80.6 79.4
256 69.9 12.7 82.6 79.8
512 76.5 7.5 84.1 79.9

1024 79.1 5.7 84.8 79.1
2048 77.7 7.6 85.4 80.9
4096 82.3 3.7 85.9 80.2
8192 79.6 6.9 86.5 78.8

16384 78.4 8.5 86.8 79.9
32678 78.4 8.5 86.8 80.9

(b) Rotated Fashion MNIST

Table 5. Continual Learning experiments with Row-Wise Sparsity with α = 0.1. We see that increasing row-wise sparsity can significantly
decrease forgetting while not decreasing overall learning accuracy. This corroborates our theoretical results. We still do see diminishing
returns in terms of increasing width and continual learning.

B.3. Accuracy over number of tasks

We measure the accuracies of the final learned model over all tasks and plot how the accuracy decreases. We do this over
GTSRB and Fashion MNIST. We conducted this experiment over several different width networks. Our analysis predicts
that there should be a roughly linear relationship between the accuracy and the number of tasks. With more intermediate
tasks between an initial task and the final task, the model will decrease roughly linearly in accuracy.

Moreover, our analysis predicts that this error should be independent of the width. We report the results of our experiments in
Appendix B.3. We see in both experiments that the accuracy roughly decreases as the number of tasks increases. Moreover,
this relationship holds across all the widths tested. This observation corroborates our theory.

B.4. Continual Learning Experiments on Additional Datasets and Depth

We report the numbers from all remaining experiments. In Figure 10, we report all additional experiments on Fashion
MNIST and MNIST. We also report numbers for two and three layer networks. We also report the numbers for one, two, and
three layer networks on datasets SVHN and GTRSB in Figure 11. We see that the trend of diminishing returns in terms of
width across many of the datasets. We also see that this trend remains apparent among different layer networks. Moreover,
we see that as depth increasing, the forgetting numbers tend to increase across many of the datasets.

B.5. Effect of Dropout on Distance from Initialization

We explore how Dropout affects the distance from initialization. Dropout is also a common technique employed to enforce
sparsity in a trained network. To test the connection between Dropout values and distance from initialization, we train
networks of varying widths with Dropout probabilities in 0.1, 0.2 and 0.3. We plot the results of these experiments in
Figure 12. We see that across different Dropout probabilities, the connection between Distance from Initialization and
network width holds. We also add the predicted curve formed from Assumption 4.3.
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(b) GTSRB

WIDTH AA AF LA JA

32 54.8 40.1 93.7 93.1
64 57.5 37.8 94.3 94.7

128 61.0 34.9 94.9 95.6
256 61.3 34.9 95.1 96.1
512 62.9 33.5 95.4 96.5

1024 64.0 32.5 95.5 96.7
2048 64.5 32.1 95.6 96.6
4096 65.7 31.0 95.8 96.8
8192 66.9 30.0 95.8 97.0

16384 68.4 28.6 96.2 97.1
32768 67.2 30.2 96.5 97.1

(a) Rotated MNIST (2 Layers)

WIDTH AA AF LA JA

32 32.1 51.9 82.4 81.1
64 32.8 51.8 82.9 82.2

128 35.2 49.4 83.1 83.4
256 33.9 51.1 83.5 84.5
512 35.6 49.8 83.8 84.5

1024 36.2 49.3 83.6 84.6
2048 36.5 49.0 84.3 85.0
4096 36.2 49.7 84.6 85.1
8192 38.0 48.5 85.1 86.0

16384 38.9 47.6 85.3 86.1
32768 39.2 47.8 85.8 85.9

(b) Rotated Fashion MNIST (2 Layers)

WIDTH AA AF LA JA

32 56.5 39.0 91.8 93.1
64 60.6 35.3 92.6 95.2

128 61.2 35.4 93.8 95.9
256 64.9 31.9 94.4 96.3
512 63.7 33.2 95.5 96.5

1024 65.8 31.4 95.9 97.1
2048 66.0 31.3 96.2 97.2
4096 68.2 29.2 96.5 97.4
8192 69.2 28.4 96.7 97.3

16384 68.8 28.9 96.9 97.4

(c) Rotated MNIST (3 Layers)

WIDTH AA AF LA JA

32 31.0 53.2 82.1 81.3
64 31.7 52.8 82.5 82.9

128 32.7 52.4 83.1 83.8
256 33.6 51.9 83.5 84.5
512 33.8 52.0 83.8 84.3

1024 35.2 50.9 84.5 85.3
2048 36.6 49.7 84.6 85.5
4096 37.6 48.9 85.1 85.9
8192 38.3 48.6 85.6 85.8

16384 39.4 47.9 85.9 85.9

(d) Rotated Fashion MNIST (3 Layers)

Figure 10. We report the numbers from our experiments on more layers on Fashion MNIST and MNIST. We see that the trend of
diminishing returns holds. We also see that increasing depth often leads to an increase in forgetting.

B.6. Results at larger depths

As an extension to the experiments in the main body of this paper, we run our experiments at larger depths. Specifically,
we train networks of depths 4, 5, and 6. We plot our results in Figure 13. Across most datasets and widths, we see that
diminishing returns in terms of forgetting occurs as width increases. We highlight that at 6 hidden layers, we see that the
results are relatively noisy. This may be explained by the vanishing gradients that occurs at this depth.
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WIDTH AA AF LA JA

32 28.8 44.8 69.8 62.2
64 31.5 44.4 72.6 66.5

128 32.7 45.3 73.7 71.1
256 34.8 43.5 74.9 73.0
512 33.6 45.2 73.9 72.0

1024 34.7 43.9 74.2 73.0
2048 34.4 44.6 74.7 72.7
4096 34.7 44.8 75.0 73.5
8192 34.7 44.3 74.2 73.2

16384 33.5 44.8 73.5 70.1
32768 30.3 48.4 73.8 72.9
65536 35.6 43.7 73.4 73.6

(a) Rotated SVHN

WIDTH AA AF LA JA

32 46.3 31.2 72.4 67.1
64 49.9 28.4 72.8 72.1

128 50.6 26.8 72.8 68.4
256 51.1 26.8 73.3 67.1
512 51.4 26.2 73.4 71.5

1024 49.9 27.2 73.0 69.2
2048 51.7 25.6 72.8 68.4
4096 50.4 26.4 72.6 71.0
8192 51.98 26.0 73.8 71.3

16384 52.2 25.6 74.4 70.8
32768 54.5 24.0 74.9 72.5
65536 54.5 23.8 74.3 74.1

(b) Rotated GTSRB

WIDTH AA AF LA JA

32 30.6 42.4 69.9 61.0
64 32.5 44.2 72.1 70.4

128 34.9 43.8 74.4 72.9
256 33.4 45.7 75.7 75.7
512 36.5 43.5 76.7 77.2

1024 37.2 44.2 76.7 78.7
2048 36.5 44.3 77.9 77.8
4096 38.3 43.1 77.5 79.1
8192 36.8 44.9 78.9 78.4

16384 36.0 46.2 80.0 79.6
32768 37.7 45.1 80.5 80.4

(c) Rotated SVHN (2 Layers)

WIDTH AA AF LA JA

32 41.1 35.8 70.6 66.9
64 43.0 33.6 70.2 65.6

128 46.4 31.6 72.6 66.3
256 45.5 32.4 72.1 70.5
512 42.9 34.0 71.4 68.5

1024 47.0 32.1 73.8 65.9
2048 46.2 32.7 72.2 73.8
4096 48.0 29.8 72.6 73.0
8192 48.6 30.3 73.9 72.4

16384 48.9 30.1 74.4 70.0
32768 49.4 30.8 75.9 74.4

(d) Rotated GTSRB (2 Layers)

WIDTH AA AF LA JA

32 29.7 42.5 68.3 63.4
64 32.1 44.5 72.0 70.5

128 34.1 44.3 75.7 74.9
256 35.9 43.9 75.5 77.6
512 36.9 44.2 76.3 77.5

1024 37.0 44.5 77.1 79.8
2048 37.1 44.7 77.9 79.8
4096 37.8 43.1 77.8 80.0
8192 38.5 44.4 78.3 80.3

16384 38.7 44.0 79.7 80.5
32768 39.7 43.0 80.0 81.7

(e) Rotated SVHN (3 Layers)

WIDTH AA AF LA JA

32 39.9 33.8 66.6 67.4
64 40.6 34.5 68.2 67.5

128 43.0 32.8 69.5 68.9
256 44.1 31.8 69.6 69.3
512 43.0 33.9 69.4 73.3

1024 41.3 36.9 71.4 72.0
2048 45.2 32.0 70.7 73.0
4096 44.3 33.7 72.5 71.4
8192 44.7 34.6 72.9 72.3

16384 43.1 35.6 73.5 74.8
32768 46.6 33.9 75.8 72.8

(f) Rotated GTSRB (3 Layers)

Figure 11. We report the numbers from our experiments on more layers on SVHN and GTRSB. We see that the trend of diminishing
returns holds. We also see that increasing depth often leads to an increase in forgetting.

C. Theoretical Analysis
We will first prove the main claim connecting width and continual learning Theorem 4.1 in Appendix C.1. We then extend
this analysis to noise stability in Appendix C.2.
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(a) .1 Dropout Probability
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Figure 12. Distance from Initialization for different Dropout probabilities.
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Figure 13. We plot forgetting as width of the network is increased for different number of hidden layers.
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Figure 14. Average Forgetting as Depth is increased. We see that as depth is increased, forgetting increases. However, as depth is increased
further, the accuracy goes down due to vanishing gradients. This artificially causes the forgetting to decrease.

C.1. Proof of Theorem 4.1

We formalize the proof of Theorem 4.1 given the intuition from proof sketch of from the main body. To do the analysis for
ϵt,t+1, we split the proof into three parts: (1) finding how many active rows are shared between anything two layers, (2)
finding how far these active rows can change during training, and (3) combining the two parts together using perturbation
analysis.
Lemma C.1. For any two sequential task indices t and t+ 1 and layer l, the expected size of the intersection between the
sets of active rows At,l and At+1,l is E(|At,l ∩ At+1,l|) = α2W .

Proof. Let Ii be the indicator random variable of whether a row i is active in both models Mt and Mt+1, i.e. Ii if
i ∈ At,l ∧ i ∈ At′,l and 0 otherwise. Therefore, the expected value of the size of the intersection of the two sets At,l and
At′ is

E(|At,l ∩ At′,l|) = E

 ∑
i∈[W ]

Ii


=
∑
i∈[W ]

E [Ii]

Now, given that the probability that each row i is in a given active set with probability α, the probability a row is randomly
in both active sets is α2, i.e. E(Ii) = α2. Given there are W total rows this yields E(|At,l ∩ At′,l|) = α2W .

Lemma C.2. Let λl
i,j =

∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
denote the ratio of the spectral norms of the weights of different row indices for

different tasks. For any task t and layer l, we have

E
[
∥At,l[At,l]−At+1,l[At,l]∥2

∥At,l[At,l]∥2

]
≤ λl

t,t+1γW
−βα

1−2β
2 .

19



On the Diminishing Returns of Width for Continual Learning

Proof. Now, in expectation, the size of At,l is αW , i.e.

E(|At,l|) = αW .

Only α2W of the αW active rows At,l will intersect At+1,l in expectation, from Lemma 4.2. Therefore, when training
Mt+1 only α2W of the αW rows in expectation will change from its initialization. The rest of the rows will stay unchanged
during training for task t+ 1. Now, At,l[At,l](x)−At+1,l[At,l] is a matrix in RAt,l×W . Moreover, this matrix will have
α(1− α)W rows of all 0’s in expectation. For the other rows, we know from Assumption 4.3, the difference of the two
layers indexed by At+1,l is bounded by

∥Al,t+1[Al,t+1]−Al,t[Al,t+1]∥F
∥Al,t[Al,t+1]∥2

≤ γ[αW ]−β

By the definition of Frobenius Norm∑
i∈Al,t+1

∥Al,t+1[i]−Al,t[i]∥22 = ∥Al,t+1[Al,t+1]−Al,t[Al,t+1]∥2F

≤ γ2[αW ]−2β∥Al,t[Al,t+1]∥22

Since the expectation of sum is the sum of expectation, we have that

E

 ∑
i∈Al,t+1

∥Al,t+1[i]−Al,t[i]∥22

 =
∑

i∈Al,t+1

E
(
∥Al,t+1[i]−Al,t[i]∥22

)
.

Since all rows are exchangeable under training, we have that the expected ℓ2 norm of a row is upper bounded by

E
[
∥Al,t+1[i]−Al,t[i]∥22

]
≤ γ2[αW ]−2β−1∥Al,t[Al,t+1]∥22.

Therefore, for rows in both active sets Al,t+1 ∪ Al,t, the expected ℓ2 norm of the difference of the rows in Mt and Mt+1 is
γ2[αW ]−2β−1. For notational ease, let I = At,l∩At+1,l denote the intersection of the active rows while O = At,l∩AC

t+1,l

denote the active rows not in the active task. Therefore,

E [∥At,l[At,l]−At+1,l[At,l]∥2]
≤ E

[
∥At,l[I]−At+1,l[I]∥2 + ∥At,l[O]−At+1,l[O]∥2

]
(1)

= E
[
∥At,l[I]−At+1,l[I]∥2

]
(2)

≤ E
[
∥At,l[I]−At+1,l[I]∥F

]
≤
√∑

i∈I
E
[
∥At,l[i]−At+1,l[i]∥22

]
(3)

≤
√
α2W · γ2[αW ]−2β−1∥Al,t[Al,t+1]∥22

≤ γW−βα
1−2β

2 ∥Al,t[Al,t+1]∥2
= γW−βα

1−2β
2 ∥Al,t[Al,t]∥2λl

t,t+1

Here, Equation (1) comes from splitting the matrix-multiply by different rows, Equation (2) comes from seeing that all rows
in O will remain unchanged after training, and Equation (3) comes from E(

√
X) ≤

√
E(X) by Jensen’s Inequality for a

random variable X .

From here, we have that

E
[
∥At,l[At,l]−At+1,l[At,l]∥2

∥Al,t[Al,t]∥2

]
≤ γW−βα

1−2β
2 λl

t,t+1
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Lemma C.3. Say we generate a series of models M1, . . . ,MT by training sequentially on datasets D1, . . . ,DT . Let
λl
i,j =

∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
denote the ratio of the spectral norms of the weights of different row indeces for different tasks. Moreover,

let λ̄ = max
l∈[L],i,j∈[T ]

λl
i,j . For any input vector from the ith dataset x ∈ Di, the ℓ2 norm of the difference of the outputs from

models Mt and Mt+1 are upper bounded by

∀x ∈ Dt, E [∥Mt(x)−Mt+1(x)∥2] ≤ L2Lλ̄χ

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2 .

Proof. We will begin by proving the perturbation analysis The first part of this proof mainly follows from Neyshabur et al.
(2018a). We restate it here with the differing notation for clarity and completeness. We will prove the induction hypothesis
that for any x ∈ Dt,

∥Mt,l(x)−Mt+1,l(x)∥2 ≤ 2l∥x∥2

(
l∏

i=1

Li∥At,l[At,l]∥2

)
l∑

i=1

∥At,l[At,l]−At+1,l[At,l]∥2
∥At,l[At,l]∥2

.

Here, Mt,l and Mt+1,l denote the models Mt and Mt′ respectively with only the first l layers. The base case of
induction trivially holds, given that ∥Mt,0(x) − Mt+1,0(x)∥2 = 0 by definition. Now, we prove the induction step.
Assume that the induction hypothesis holds for l − 1. We will prove that it holds for l. For notational ease, denote
Ut,l = At,l[At,l]−At+1,l[At,l], xt,l = Mt,l(x), and xt+1,l = Mt+1,l(x). We have that

∥xt,l − xt+1,l∥2
≤ ∥ (At,l[At,l] +Ut,l)ϕl(xt+1,l−1)−At,l[At,l]ϕl(xt,l−1)∥2
≤ ∥ (At,l[At,l] +Ut,l) (ϕl(xt+1,l−1)− ϕl(xt,l−1)) +Ut,lϕl(xt,l−1)∥2
≤ (∥At,l[At,l]∥2 + ∥Ut,l∥2) ∥ϕl(xt+1,l−1)− ϕl(xt,l−1)∥2 + ∥Ut,l∥2∥ϕl(xt,l−1)∥2
≤ Ll (∥At,l[At,l]∥2 + ∥Ut,l∥2) ∥xt+1,l−1 − xt,l−1∥2 + Ll∥Ut,l∥2∥xt,l−1∥2 (4)
≤ 2Ll (∥At,l[At,l]∥2) ∥xt+1,l−1 − xt,l−1∥2 + Ll∥Ut,l∥2∥xt,l−1∥2

≤ 2Ll (∥At,l[At,l]∥2)
(
1 +

1

L

)l−1

∥xt,0∥2

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,l∥2
∥At,i[At,i]∥2

+ Ll∥Ut,l∥2∥xt,l−1∥2 (5)

≤ 2lLl

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,i∥2
∥At,i[At,i]∥2

∥xt,0∥2

+ Ll∥xt,0∥2∥Ut,l∥2
l−1∏
i=1

Li∥At,i[At,i]∥2

≤ 2lLl

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,l∥2
∥At,i[At,i]∥2

∥xt,0∥2

+ ∥xt,0∥2
∥Ut,l∥2

∥At,l[At,l]∥2

l∏
i=1

Li∥At,i[At,i]∥2

≤ 2L

(
l∏

i=1

Li∥At,i[At,i]∥2

)
l∑

i=1

∥Ut,l∥2
∥At,i[At,i]∥2

∥xt,0∥2

Here, Equation (4) comes from the fact that ϕl is Ll-Lipschitz smooth and that ϕl(0) = 0. Moreover, Equation (5) comes
from applying the induction hypothesis. Therefore, we have proven the induction hypothesis for all layers. We have

∀x ∈ Dt, ∥Mt(x)−Mt+1(x)∥2 ≤ 2L∥x∥2

(
L∏

l=1

Ll∥At,l[At,l]∥2

)
L∑

l=1

∥Ut,l∥2
∥At,l[At,l]∥2

.
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Denoting χ = maxx∈Dt
∥x∥2 and using Lemma 4.4

∀x ∈ Dt, E [∥Mt(x)−Mt+1(x)∥2] ≤ 2Lχ

(
L∏

l=1

Ll∥At,l[At,l]∥2

)
L∑

l=1

λl
t,t+1γW

−βα
1−2β

2 .

Here, we reminded the reader that λl
i,j =

∥Al,i[Al,i]∥2

∥Al,i[Al,j ]∥2
denotes the ratio of the spectral norms of the weights of different

row indeces for different tasks. Moreover, for any matrix, removing rows cannot increase the matrix norm, we have that
∥At,l∥2 ≥ ∥At,l[At,l∥2. Therefore, we have

L∏
l=1

∥At,l[At,l]∥2 ≤
L∏

l=1

∥At,l∥2.

Given λ̄ = max
l∈[L],i,j∈[T ]

λl
i,j ,

∀x ∈ Dt, E [∥Mt(x)−Mt+1(x)∥2] ≤ L2Lλ̄χ

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2 .

Theorem 4.1. (Informal) Say we generate a series of models M1, . . . ,MT by training sequentially on datasets D1, . . . ,DT

according to Section 3.3. Let λl
i,j =

∥Al,j [Al,i]∥2

∥Al,i[Al,i]∥2
denote the ratio of the spectral norms of the weights of different row

indices for different tasks. Moreover, let λ̄ = max
l∈[L],i,j∈[T ]

λl
i,j . For all input vectors from the tth dataset ∀x ∈ Dt, the ℓ2

norm of the difference of the outputs from models Mt and Mt′ such that t′ ≥ t are upper bounded 4 by

E
[
∥Mt(x)−Mt′(x)∥2

]
=

O

(
(t′ − t)L2Lλ̄χ

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2

)
.

Here, χ denotes the maximum norm of the input in Dt, i.e. χ = max
x∈Dt

∥x∥2. Here, γ, β are data-dependent positive real

values.

Proof. We need only repeat the proof above but with a different perturbation to account for the number of tasks. We repeat
it for clarity. We will prove the induction hypothesis that for any x ∈ Dt,

∥Mt,l(x)−Mt′,l(x)∥2 ≤ 2l∥x∥2

(
l∏

i=1

Li∥At,l[At,l]∥2

)
l∑

i=1

∥At,l[At,l]−At′,l[At,l]∥2
∥At,l[At,l]∥2

.

Here, Mt,l and Mt′,l denote the models Mt and Mt′ respectively with only the first l layers. The base case of induction
trivially holds, given that ∥Mt,0(x) − Mt′,0(x)∥2 = 0 by definition. Now, we prove the induction step. Assume
that the induction hypothesis holds for l − 1. We will prove that it holds for l. For notational ease, denote Ut,l =

4We can reduce the dependence on weight norms by using noise stability properties. For more details, please see Section 4.3.
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At,l[At,l]−At′,l[At,l], xt,l = Mt,l(x), and xt′,l = Mt′,l(x). We have that

∥xt,l − xt′,l∥2
≤ ∥ (At,l[At,l] +Ut,l)ϕl(xt′,l−1)−At,l[At,l]ϕl(xt,l−1)∥2
≤ ∥ (At,l[At,l] +Ut,l) (ϕl(xt′,l−1)− ϕl(xt,l−1)) +Ut,lϕl(xt,l−1)∥2
≤ (∥At,l[At,l]∥2 + ∥Ut,l∥2) ∥ϕl(xt′,l−1)− ϕl(xt,l−1)∥2 + ∥Ut,l∥2∥ϕl(xt,l−1)∥2
≤ Ll (∥At,l[At,l]∥2 + ∥Ut,l∥2) ∥xt′,l−1 − xt,l−1∥2 + Ll∥Ut,l∥2∥xt,l−1∥2 (6)
≤ 2Ll (∥At,l[At,l]∥2) ∥xt′,l−1 − xt,l−1∥2 + Ll∥Ut,l∥2∥xt,l−1∥2

≤ 2Ll (∥At,l[At,l]∥2)
(
1 +

1

L

)l−1

∥xt,0∥2

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,l∥2
∥At,i[At,i]∥2

+ Ll∥Ut,l∥2∥xt,l−1∥2 (7)

≤ 2lLl

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,i∥2
∥At,i[At,i]∥2

∥xt,0∥2

+ Ll∥xt,0∥2∥Ut,l∥2
l−1∏
i=1

Li∥At,i[At,i]∥2

≤ 2lLl

(
l−1∏
i=1

Li∥At,i[At,i]∥2

)
l−1∑
i=1

∥Ut,l∥2
∥At,i[At,i]∥2

∥xt,0∥2

+ ∥xt,0∥2
∥Ut,l∥2

∥At,l[At,l]∥2

l∏
i=1

Li∥At,i[At,i]∥2

≤ 2L

(
l∏

i=1

Li∥At,i[At,i]∥2

)
l∑

i=1

∥Ut,l∥2
∥At,i[At,i]∥2

∥xt,0∥2

Here, Equation (6) comes from the fact that ϕl is Ll-Lipschitz smooth and that ϕl(0) = 0. Moreover, Equation (7) comes
from applying the induction hypothesis. Therefore, we have proven the induction hypothesis for all layers. We have

∀x ∈ Dt, ∥Mt(x)−Mt′(x)∥2 ≤ 2L∥x∥2

(
L∏

l=1

Ll∥At,l[At,l]∥2

)
L∑

l=1

∥Ut,l∥2
∥At,l[At,l]∥2

.

Now,

∥Ut,l∥2
∥At,l[At,l]∥2

=
∥At,l[At,l]−At′,l[At,l]∥2

∥At,l[At,l]∥2

=

∥∥∥∑t′−1
i=t Ai,l[Ai,l]−Ai+1,l[Ai+1,l]

∥∥∥
2

∥At,l[At,l]∥2

≤
∑t′−1

i=t ∥Ai,l[Ai,l]−Ai+1,l[Ai+1,l]∥2
∥At,l[At,l]∥2

Therefore, in expectation,

E
[

∥Ut,l∥2
∥At,l[At,l]∥2

]
≤ (t′ − t)λ̄γW−βα

1−2β
2

Denoting χ = maxx∈Dt
∥x∥2 and using Lemma 4.4

∀x ∈ Dt, E [∥Mt(x)−Mt′(x)∥2] ≤ L2Lχ

(
L∏

l=1

Ll∥At,l[At,l]∥2

)
(t′ − t)λ̄γW−βα

1−2β
2 .

23



On the Diminishing Returns of Width for Continual Learning

Here, we reminded the reader that λl
i,j =

∥Al,i[Al,i]∥2

∥Al,i[Al,j ]∥2
denotes the ratio of the spectral norms of the weights of different

row indeces for different tasks. Moreover, for any matrix, removing rows cannot increase the matrix norm, we have that
∥At,l∥2 ≥ ∥At,l[At,l∥2. Therefore, we have

L∏
l=1

∥At,l[At,l]∥2 ≤
L∏

l=1

∥At,l∥2.

Given λ̄ = max
l∈[L],i,j∈[T ]

λl
i,j ,

∀x ∈ Dt, E [∥Mt(x)−Mt′(x)∥2] ≤ (t′ − t)L2Lλ̄χ

(
L∏

l=1

Ll∥At,l∥2

)
γW−βα

1−2β
2 .

C.2. Noise Stability

Theorem 4.8. Denote Γt = max
x∈Dt

∥Mt(x)∥2. Then, we can characterize the continual learning error between two

subsequently trained models as

E [∥Mt(x)−Mt′(x)∥2] ≤ Γt(t
′ − t)γλ̄W−βα

1−2β
2 η,

where η =
(∏l

i=1 κi + κi(t
′ − t)γλ̄µt,i

)(∑l
i=1 κi

)
and κi = Liciµi,t.

Proof. We will prove the induction hypothesis that

∥Mt,l(x)−Mt′,l(x)∥2 ≤ ϵl∥Mt,l(x)∥2,

where ϵl =
∏l

i ai

(∑l
i=1 bi

)
where ai = ciµi,tLi +

Liµi,l∥Ui,l∥2cl
∥Ai,l[Ai,l]∥2

and bi =
Liµi,l∥Ui,l∥2cl
∥Ai,l[Ai,l]∥2

. The base case trivially holds
given ∥Mt,0(x)−Mt′,0(x)∥2 = 0. Here, Mt,l and Mt′,l denote the models Mt and Mt′ respectively with only the first l
layers. We now perform our induction.

∥Mt,l(x)−Mt′,l(x)∥2 = ∥(At,l[At,l]−Ut,l)ϕl(xt′,l−1)−At,l[At,l]ϕl(xt,l−1)∥2
≤ ∥(At,l[At,l](ϕl(xt′,l−1)− ϕl(xt,l−1))−Ut,lϕl(xt′,l−1)∥2
≤ ∥At,l[At,l]∥2∥ϕl(xt′,l−1)− ϕl(xt,l−1)∥2 + ∥Ut,l∥2∥ϕl(xt′,l−1)∥2
≤ Ll∥At,l[At,l]∥2∥xt′,l−1 − xt,l−1∥2 + Ll∥Ut,l∥2∥xt′,l−1∥2 (8)
≤ Llϵl−1∥At,l[At,l]∥2∥xt,l−1∥2 + (1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2 (9)
≤ clLlϵl−1∥At,l[At,l]∥2∥ϕl(xt,l−1)∥2 + (1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2 (10)
≤ clµt,lLlϵl−1∥At,l[At,l]ϕl(xt,l−1)∥2 + (1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2 (11)
≤ clµt,lLlϵl−1∥xt,l∥2 + (1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2

Here, Equation (8) comes from the Lipschitz-Smoothness of the activation layers, Equation (9) comes from applying
our induction hypothesis from the previous layer, Equation (10) comes from applying the activation contraction from
Definition 4.7, Equation (11) comes from applying the layer cushion from Definition 4.6. We also note that the ratio outputs
of two subsequential layers is bounded as in the following.

∥xt,l−1∥2
∥xt,l∥2

≤ cl∥ϕl(xt,l−1)∥2
∥xt,l∥2

(12)

≤ clµt,l

∥At,l[At,l]∥2
(13)
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Here, Equation (12) come from applying the activation contraction from Definition 4.7 and Equation (13) comes from
applying the layer cushion from Definition 4.6. Therefore, we have that

ϵl ≤
clµt,lLlϵl−1∥xt,l∥2 + (1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2

∥xt,l∥2

≤ clµt,lLlϵl−1 +
(1 + ϵl−1)Ll∥Ut,l∥2∥xt,l−1∥2

∥xt,l∥2

≤ clµt,lLlϵl−1 +
(1 + ϵl−1)µt,lLl∥Ut,l∥2cl

∥At,l[At,l]∥2

For mathematical ease, denote al = clµt,lLl +
Llµt,l∥Ut,l∥2cl
∥At,l[At,l]∥2

and bl =
Llµt,l∥Ut,l∥2cl
∥At,l[At,l]∥2

. Thus, we have

ϵl ≤ alϵl−1 + bl

≤
l∏
i

ai

l−1∑
i=1

bi + bl

≤
l∏
i

ai

(
l−1∑
i=1

bi + bl

)

≤
l∏
i

ai

(
l∑

i=1

bi

)

We have thus proved our hypothesis. We will now simplify the bound. We have that

E [al] = E
[
clµt,lLl +

Llµt,l∥Ut,l∥2cl
∥At,l[At,l]∥2

]
≤ clµt,lLl + Llµt,l(t

′ − t)γλ̄W−βα
1−2β

2 (14)
≤ clµt,lLl + Llclµt,l(t

′ − t)γλ̄

Here, Equation (14) comes from Theorem 4.1. Similarly, we can bound bl such that

E [bl] = E
[
Llµt,l∥Ut,l∥2cl
∥At,l[At,l]∥2

]
≤ Llclµt,l(t

′ − t)γλ̄W−βα
1−2β

2

Therefore, putting it all together yields

E [ϵl] ≤

(
l∏

i=1

ciµt,iLi + Liciµt,i(t
′ − t)γλ̄

)(
l∑

i=1

Lici(t
′ − t)γλ̄W−βα

1−2β
2 µt,i

)

≤ (t′ − t)γλ̄W−βα
1−2β

2

(
l∏

i=1

ciµt,iLi + Li(t
′ − t)γλ̄µt,i

)(
l∑

i=1

Liµt,i

)

We now have that ∀x ∈ Dt,

E [∥Mt(x)−Mt′(x)∥2] ≤ max
x∈Dt

∥Mt(x)∥2 ·(t′−t)γλ̄W−βα
1−2β

2

(
l∏

i=1

ciµt,iLi + Lici(t
′ − t)γλ̄µt,i

)(
l∑

i=1

Liciµt,i

)
.
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