
Tabular Representation, Noisy Operators, and Impacts
on Table Structure Understanding Tasks in LLMs

Ananya Singha
Microsoft, India

t-asingha@microsoft.com

José Cambronero
Microsoft, USA

jcambronero@microsoft.com

Sumit Gulwani
Microsoft, USA

sumitg@microsoft.com

Vu Le
Microsoft, USA

levu@microsoft.com

Chris Parnin
Microsoft,USA

chrisparnin@microsoft.com

Abstract

Large language models (LLMs) are increasingly applied for tabular tasks using
in-context learning. The prompt representation for a table may play a role in the
LLMs ability to process the table. Inspired by prior work, we generate a collection
of self-supervised table structure understanding tasks (e.g. navigate to a cell and
row; transpose the table) and evaluate the performance differences when using
eight formats. In contrast to past work, we introduce eight noise operations inspired
by real-world messy data and adversarial inputs, and show that these can impact
LLM performance across formats for different structural understanding tasks.

1 Introduction

Recent progress in large language models (LLMs) has enabled substantial gains when performing
data-related tasks, such as table question answering [7], semantic type annotation [13], and data
wrangling [9]—often with just in-context learning. However, data is also messy. Tabular data often
arrives in a semi-structured format, with inconsistent shapes, missing entries, and unnormalized or
inconsistently formatted values. This makes the task of processing and understanding tabular data
particularly challenging for any system, including LLMs. For example, based on product telemetry,
21% of Excel files imported using LLM-based Dataverse Copilot1 were missing headers. Furthermore,
in industrial settings, challenges such as privacy, compliance, and even potentially adversarial table
inputs constrain how data can be handled and processed [4].

In this work we systematically explore the impact that the tabular representation format and real-
world-inspired noise have on LLMs’ ability to perform basic structural table understanding tasks [14]
through in-context learning. Like prior work, we generate self-supervised structural table tasks
to assess structural understanding. In contrast to prior investigations, we incorporate eight noise-
inducing operations—such as renaming columns or transposing the table—that manipulate the table’s
structure in ways that emulate messy data [12] or even adversarial inputs.

We evaluate both fact-finding and transformation tasks over seven public datasets, eight table rep-
resentations commonly used in data-science and eight noise-inducing operations. In contrast to
prior work, we find that HTML does not seem to provide the best performance at fact-finding or
transformation tasks. We find that a dataframe-based format (DFLoader) obtains the highest overall
pass@1 (79.79%) in fact-finding tasks and the highest overall F1 score (98.55%) for transformation

1https://powerapps.microsoft.com/en-us/blog/introducing-an-easier-than-ever-
experience-to-import-data-from-excel/

Table Representation Learning Workshop at NeurIPS 2023

https://powerapps.microsoft.com/en-us/blog/introducing-an-easier-than-ever-experience-to-import-data-from-excel/
https://powerapps.microsoft.com/en-us/blog/introducing-an-easier-than-ever-experience-to-import-data-from-excel/

tasks. We find that applying noise operations to tables can affect performance in fact-finding and
transformation tasks. For example, introducing semi-structured content impacts data type detection
(e.g. JSON format’s pass@1 drops by 12.43%) and introducing sequential column naming can
degrade performance for a column reordering task (e.g. comma-separated-value format’s F1 score
degrades by 67.33%).

We believe future work can build on our findings by exploring the extent to which these structural
table understanding tasks relate to downstream task performance. Furthermore, such work should
include (and extend) our noise operations to evaluate the impact of structural changes.

In summary, our key contributions are:

1. Extending self-supervised table structure understanding tasks by incorporating noise opera-
tions inspired by real-world noise

2. An extensive evaluation over eight table formats and eight noise-inducing operations

3. Our data and code to facilitate future work on structural table understanding 2

2 Related Work

Transformer architectures have led to state-of-the-art performance in NLP and other areas of machine
learning. This has motivated a line of research developing transformer models designed for tabular
tasks, such as table question answering. These models (e.g. TUTA [16], TAPAS [8]) are predomi-
nantly developed by training and fine-tuning on large corpus of data scraped from Wikipedia and
introducing different attention mechanisms. Prior work [10] has carried out a detailed analysis of
how these mechanisms work and how they affect table understanding tasks. In contrast, we focus
on a general LLM (GPT3) rather than ones designed for table tasks and carry out our experiments
using in-context learning. Importantly, we scope our experiments to understand the impact of table
representation format (subject to noise operations) on self-supervised table structure tasks.

Prior work has used in-context learning to carry out tasks on tabular data. For example, TableLLM
showed that LLMs can perform classification tasks over tabular datasets. Techniques like chain-
of-thought [17] have been further refined in the context of tabular data [18, 6]. More recently,
Table-GPT [11] showed that models such as GPT-3.5 can be further trained on table tasks to improve
overall tabular understanding. Their approach leverages both self-supervised style tasks and traditional
tasks like question-answering on tables. In contrast, we focus on self-supervised table structure tasks
and consider the impact of table formats and the robustness to noise inspired by real-world data issues
and adversarial behaviors.

The closest related work is [14], which examines LLM performance on structural understanding tasks
as a function of different tabular formats. Our work extends this line of research with other formats,
new fact-finding and transformation tasks, and noise operations inspired by messy data.

3 Methodology

To evaluate the extent to which different table representation formats and noise operations affect an
LLM’s ability to correctly answer structural table understanding tasks, we generate a collection of
self-supervised tasks (i.e. where we can derive the task and answer from the table without the need
for annotation). We now describe this approach in detail.

Let T be a flat table with a header, F be a set of table representation formats (e.g. JSON), each of
which transforms T into a corresponding string representation for the prompt. Let N be the set of
noise operations (e.g. shuffle header names), each of which transforms T into T ′. Let Q be the set of
self-supervised tasks (e.g. lookup the value at row X and column Y), each of which given a table
generates a collection {(t, a)} of self-supervised task question t and answer a pairs. We create an
evaluation benchmark for a given table of the form {(f(n(T)), t, a)| q ∈ Q, f ∈ F, n ∈ N, (t, a) ∈
q(f(n(T)))}. For each (t, a), we then compare a to the LLM’s answer given t and f(n(T)).

2https://github.com/microsoft/prose/tree/main/misc/TRL-neurips-2023

2

https://github.com/microsoft/prose/tree/main/misc/TRL-neurips-2023

3.1 Table and Formats

Tables: We scope our experiments to flat tables with a header row. Furthermore, each column must
contain a single datatype (e.g. string, numeric, date).

Figure 1: Our evaluation considers 8 different table representation formats that are popular in the
data science domain.

Formats: We represent these tables with the following 8 popular formats, summarized in Figure 1:
DFLoader, JSON, Data-Matrix, Markdown, Comma-Separated-Values, and Tab-Separated-Values
format. DFLoader corresponds to the associated Python code snippet to define the table using the
Pandas DataFrame API. Data-Matrix format represents each row as a mixed-type list of values.
HTML format represent the table using nested tags. HTML No Space inlines HTML by removing
whitespaces. Note that our tables include both headers and row indices.

3.2 Noise Operations

We explore the extent to which noise operations can impact the LLM’s ability to correctly perform
structural table tasks under varying table representation formats. We design noise operators that
emulate real world table challenges (e.g., uninformative sequential headers or merged cells) or
even adversarial behavior (e.g. shuffled or arbitrary column names). For example, 21% of files
uploaded to Dataverse Copilot lack headers – noise operators such as SequentialColumnNames and
ArbitraryColumnNames emulate such behavior. Similarly, our ColumnMerger and SerializeRow
operations emulate the mix of structured and semi-structured content in real user tables, which
presents another challenge for LLMs.

Spatial Invariance: Tables often need to be rearranged or transformed to be used. For example, long
tables with many columns may need to be transposed to faciliate plotting or for better readability.
Inspired by these challenges, we introduced the following noise operations:

• ShuffleRows: We randomly reorder table rows.

• ShuffleColumns: We randomize the order of columns within the table.

• TransposeTable: We transpose the table.

Headers: Table headers often play an important role in table understanding, providing pseudo-natural
language information about their content and facilitating referencing. However, in practice, user
tables may not always have informative or consistent headers, or adversarial actors may remove
header information altogether. To simulate such cases we introduce the following noise operations:

3

Figure 2: We apply eight different noise operations to test for the influence of spatial invariance, header
rows information, and the presence of semi-structured content on structural table task performance.

• ArbitraryColumnNames: We arbitrarily rename headers to randomly drawn alphanumeric
sequences.

• SequentialColumnNames: We rename headers to sequential entries of the form col_0,
col_1, so on.

• ShuffleColumnNames: We shuffle header names, while keeping data intact.

Semi-structured Content: Tables may contain columns that have semi-structured content (e.g.
phone numbers) or users may need to start by parsing the table from a semi-structured representation.
To induce such semi-structured data we use two noise operations:

• SerializeRow: We transform each row into a string of key-value pairs. The resulting table
has only one column in it.

• ColumnMerger: We merge randomly chosen 2, 3 and 4 contiguous columns together by
adding (within each row) a −−−−− between their values.

Figure 2 shows each of these noise operations applied to a table.

3.3 Self-Supervised Structural Tasks

We employ self-supervised structural tasks [14], which can be automatically generated, to evaluate the
extent to which formats and noise operations affect the LLM’s ability to understand table structure.

We consider the following structural fact-finding tasks:

• Navigation Test: Given row and column coordinates, retrieve the value at that location. The
model succeeds if it retrieves the value at those coordinates.

• Column Lookup Test: Given a value, retrieve the name of a column that contains that value.
The model succeeds if it retrieves the name of a column that contains that value.

• Row Lookup Test: Given a value, retrieve the row index for a row that contains it. The
model succeeds if it retrieves the index of a row that contains that value.

• Data Type Lookup Test: Given a column name, determine the associated Pandas API
datatype for the column values. The model succeeds if the datatype matches the groundtruth.

In addition to fact-finding tasks, we introduce transformation tasks that require manipulating the
whole table:

• Table Reconstruction Test: Given a table, we serialize it (applying the Serialize Rows
operation previously described and then joining rows with new line character). The model
must parse the table and generate its output in one of our 8 table formats.

4

Figure 3: We generate self-supervised structural table understanding tasks: fact-finding tasks (e.g.
navigation) and transformation tasks (e.g. table transposition).

• Table Transpose Test: Given a table, the model is tasked with transposing the table.

• Table Column Reordering Test: Given a table and a new (random) column order, the model
must reorder the columns to match the indicated order.

To measure the success of transformation tasks we compute precision, recall, and F1 score over the
table values based on coordinates. Figure 3 shows an example for each task.

4 Experimental Setup

Our evaluation is designed to answer the following research questions:

RQ1: How does the table format impact LLM performance for self-supervised structural table
understanding tasks?

RQ2: How do noise operations impact LLM performance across different table formats?

We use OpenAI’s GPT-3.5 (text-davinci-003 endpoint) [3]. Exploring cross-LLM behavior is left to
future work. We generate responses with temperature 0 to encourage deterministic behavior. Our
prompts have a token limit of 4097, as determined by the underlying LLM. For each (table, format,
noise operation, structural task) we generate 100 tests3 for fact-finding tasks and 25 tests for transfor-
mation tasks. For each fact-finding test we generate 15 completions and for each transformation test
we generate 5 completions.

We report average performance metrics over tests. For fact-finding tasks we compute pass@1 [5] for
each test. For transformation tasks we compute cell-wise precision, recall and F1 per completion and
average them. Computing exact table match, as needed for pass@1 would not account for partial
performance. When reporting statistical significance, we perform comparisons using the t-test (SciPy
T-Test implementation) and perform Bonferroni correction for multiple comparisons [2].

We evaluate on 7 public datasets collected from the popular data-science website Kaggle [1]. We chose
datasets that are popularly used for both classification and regression tasks: AirQuality, HousingData,
Diabetes, Wine Testing, Iris, Titanic, and ENB2012_data. We remove all rows where null values are
present to avoid creating spurious tasks.

3For HTML format we generate 50 tests per (table, format, noise operation, structural task), due to token
limits and throttling

5

5 Results

5.1 RQ1: Impact of Formats on LLMs performance on Different Task

Fact-Finding Tasks: Table 1 summarizes pass@1 rates for different formats across our fact-finding
tasks. We find that performance can vary substantially by format and task. For example, while

Table 1: Average Pass@1 for fact-finding tasks. DFLoader provides overall high pass@1 performance.
Table Formats ColumnLookupTests DataTypeLookupTests NavigationTests RowLookupTests Overall

COMMASEPARATED 64.43 95.00 65.57 78.14 75.78
DFLOADER 72.71 95.29 68.29 82.86 79.79
DATAMATRIX 62.57 84.00 56.57 87.43 72.64
JSON 65.00 96.43 71.43 78.86 77.93
MARKDOWN 61.43 85.86 48.71 73.29 67.32
TABSEPARATED 67.00 94.00 64.43 78.14 75.8
HTML 79.83 94.67 58.83 52.33 71.4
HTMLNOSPACE 73.00 93.50 62.00 59.50 72.00

Markdown is a popular format for data scientists sharing results, using this format for tabular
representation results in the worst ColumnLookupTest performance — 18.4% points lower than the
best performing HTML format (p-value < 0.01

7).

In contrast to prior work [14], we found that the HTML format underperforms alternatives like the
JSON and DFLoader formats. However, HTML did result in the highest performance for one of our
fact-finding tests: ColumnLookUpTest, where the average pass@1 was 6.38% higher than the next
best (p-value < 0.01

7). A substantial downside of HTML as a table representation is its verbosity: in
our experiments, using HTML results in up to half as many rows being included compared to other
formats. Removing spaces in HTML improves this slightly but the challenge remains.

JSON format, which is a popular serialization format, outperformed alternatives in the Naviga-
tionTests: 5.86% higher than the Comma Separated format (p-value < 0.01

7). We hypothesize that
this performance stems from a combination of orderly structure and repeating navigation elements
(specifically headers). As shown in Figure 1, every row is laid out in a separate line with an associated
key (showing the row index) and each row contains a dictionary where keys are header names.

Our results further emphasize the brittleness of LLMs to minor changes in structure representation.
For example, while there is relatively little difference between the DataMatrix format and Comma
Separated format, RowLookup performance for Data Matrix was 9.3% higher (p-value < 0.01

7).

On average, across our fact-finding tasks, we found that DFLoader format, which is essentially a
code snippet in Pandas, demonstrates competitive results and may be a suitable choice for prompts
where the user does not yet known what kind of fact-finding knowledge is important for their task.

Finally, we find that all of our formats perform relatively well in our DataTypeLookUpTests, high-
lighting that different table formats may not play a substantially role in understanding the type of
values (e.g. string versus numeric).

Transformation Tasks: Our transformation tasks require that a format be suitable for whole-table
transformations. Our results are summarized in Table 2.

Overall, we found that DFLoader and JSON format outperformed alternatives for all the table
transformation tasks. We hypothesize that this stems from isolation and repetition of key structural
elements, which enable use of local context to carry out whole-table tasks: DFLoader presents each
column in a separate list, and JSON repeats headers locally. For example, TableTranspose over our
JSON format can effectively be carried out per-line, compared to transposition over a format like
comma separated values, which requires more complex retrievals (e.g. all header values are in first
row).

Similarly to the fact-finding tasks, Markdown format results in low performance across all our tasks
providing further evidence that such a format should not be used for prompts for tabular data. For
example, Markdown’s F1 score for column reordering is 49.67% lower than JSON’s (p-value < 0.01

8).

6

Table 2: F1 scores for transformation tasks. DFLoader and JSON format, with structural element
isolation and repetition, enable high performance on average across transformation tasks.

Table TableColumnReorderTests TableReconstructionTests TableTransposeTests Overall

COMMASEPARATED 95.33 74.33 99.00 89.55
DFLOADER 99.33 98.00 98.33 98.55
DATAMATRIX 92.67 90.67 0.00 61.11
JSON 99.67 85.00 100.00 94.89
MARKDOWN 50.00 24.33 34.00 36.11
TABSEPARATED 93.33 92.33 50.00 78.55
HTML 50.00 86.00 83.33 73.11
HTMLNOSPACE 83.33 84.00 83.33 83.55

5.2 RQ2: Impact of Noise Operations on LLM’s Performance on Structural Tasks.

Fact-Finding Tasks: Table 3 presents results of the impact of different noise operations on a subset
of formats for our fact-finding tasks, chosen based on RQ1 performance. The first takeaway from
these experiments is that different noise operations have a different impact on formats and particular
fact-finding tasks. Furthermore, this impact can be both positive and negative.

For example, we find that transposing the input table and representing it as JSON results in an
improvement of 20.86% (p-value < 0.01

8) at the navigation tests compared to the original input.
However, this same transformation substantially degrades column and row lookup tests. After
inspecting generations, we found that the LLM’s generations for these tasks seem to ignore the
transposition and often reply with the former headers (now row indices) as column names and
viceversa.

For both the DataMatrix format and HTML formats, we found that introducing noise into the header
names through operations like shuffling column names, sequential column renaming, and arbitrary
column renaming resulted in degraded performance across our navigation and column lookup tests.
For example, the Data Matrix format with sequential column naming resulted in 38% (p-value < 0.01

8)
and 27.14% (p-value < 0.01

8) declines in navigation tests and column lookup tests, respectively.

Similarly, inducing semi-structured content can lower performance. Serializing rows results in worse
performance for data type detection across our formats. For example, JSON format’s pass@1 score
drops by 12.43% (p-value < 0.01

8). Merging cells impacts column lookup tests negatively, while not
impacting (or in some cases even improving) row lookup performance. For example, Data Matrix
format’s pass@1 score drops by 8% (p-value < 0.01

8) in column lookup tests after applying the column
merger noise operation.

Transformation Tasks: Table 4 presents our transformation task results after applying noise opera-
tions. We discuss multiple interesting trends.

First, we find that introducing sequence information into headers (through the sequential column
renaming noise operation) can significantly impact performance for the column reordering task
(which requires changing column order) for some formats. For example, for the comma separated
format, introducing sequential column renaming degrades column reordering F1-score by 67.33%
(p-value < 0.01

8). Column name shuffling and arbitrary column renaming, which do not introduce any
form of sequential bias reduce performance as well, but by a smaller margin.

Second, we find that table transpose performance can be significantly affected by transposing the
table initially. For example, transposing the table in JSON reduces the transpose task F1-score by 89%
(p-value < 0.01

8). This emphasizes that preprocessing may be necessary for tabular data, compared to
relying on the model to perform such transformations itself for downstream tasks.

Finally, we find that introducing unstructured content can impact transformation tasks. For example,
we find that JSON format, which obtains high table transposition performance, drops to zero (p-value
< 0.01

8), when the column merging noise operation is applied.

6 Conclusion

We evaluated LLM performance on self-supervised structural table understanding tasks using different
formats and noise operations. Our results show that different formats obtain varying performance and
noise operations can change results (both positively and negatively). We observed that two formats

7

Table 3: Average pass@1 delta from original to noisy for fact-finding tasks. Statistically significant
values (p-value < 0.01

8) are marked with "**".
Table Format Table Manipulation NavigationTests ColumnLookupTests RowLookupTests DataTypeLookupTests

JSON

OriginalData 71.43 65.00 78.86 96.43

ShuffleRows +0.57 +1.43 -6.57 +0.14
ShuffleColumns 0.00 +1.14 -6.72 -1.86
ShuffleColumnNames -1.57 +1.43 -6.57 -8.86**
SequentialColumnNames -1.72 +24.57** -4.29 -1.01
ArbitraryColumnNames -4.43 +23.14** -10.43** +0.57
TransposeTable +20.86** -65.00** -76.29** -33.86**
ColumnMerger +7.28** -7.71** +2.28 -5.57**
SerializeRow +16.57** +3.14** +2.57 -12.43**

DFLOADER

OriginalData 68.29 72.71 82.86 95.29

ShuffleRows -23.29** -4.85 -44.57** +1.42
ShuffleColumns +2.42 +4.72 -0.86 +2.85
ShuffleColumnNames +3.14 -3.57 -10.43** -3.86**
SequentialColumnNames +2.28 +11.43** -10.72** 0.00
ArbitraryColumnNames +2.14 +0.58 -11.29** +1.28
TransposeTable +3.00 -52.85** -69.29** -29.43**
ColumnMerger -7.72** -4.57 -3.43 -2.15
SerializeRow -3.86 +10.58** -15.86** -16.00**

DATAMATRIX

OriginalData 56.57 62.57 87.43 84.00

ShuffleRows -17.43** -4.00 -31.72** +2.29
ShuffleColumns -6.57 -2.14 -0.72 +1.12
ShuffleColumnNames -20.57** -23.14** -1.86 -15.00**
SequentialColumnNames -38.00** -27.14** +2.28 -7.43**
ArbitraryColumnNames -17.71** -23.71** -1.57 -2.43
TransposeTable -4.57 -60.00** -85.14** -22.00**
ColumnMerger -10.71** -8.00** -2.00 +4.86
SerializeRow -22.57** +8.72** -39.57** -1.00

HTML

OriginalData 58.83 79.83 52.33 94.67

ShuffleRows -1.50 -1.50 -3.50 +1.83
ShuffleColumns -1.16 -2.33 +4.00 -0.34
ShuffleColumnNames -20.50** -27.16** -11.66** -15.67**
SequentialColumnNames -27.66** -36.16** +9.34** -19.67**
ArbitraryColumnNames -12.16** -30.58 -7.33 -2.00
TransposeTable -25.08 -79.83 -9.83 -49.92
ColumnMerger +13.17** -25.83** +3.17 -6.34**
SerializeRow +24.84** +3.50 -1.33 -18.67**

in particular, DFLoader and JSON, seem to be well-suited for LLMs, performing well across tasks.
However, like other formats these can still be affected by adversarial noise operations. Future work
should consider cross-LLM performance, further exploring what format properties correlate with
performance, and evaluating whether performance on table structure understanding tasks correlates
with performance on downstream table task such as question answering or NL-to-code generation.

7 Limitation

Our current work focused on identifying the impact of table formats and several adversarial noise
operations on LLMs’ ability to correctly carry out self-supervised structural tasks. Whether perfor-
mance on such structural tasks correlates with downstream tasks, such as table question answering,
remains an open question.

Similarly, our experiments are carried out using GPT-3.5 (text-davinci-003 endpoint). It is
possible that different architectures, model families, and sizes would behave differently. Future work
should consider evaluating popular open source models such as Llama [15] and large closed models
like GPT-4 on these same tasks.

8

Table 4: Average F1 score delta from original to noisy for transformation tasks. Statistically significant
values (p-value < 0.01

8) are marked with "**".
Table Formats Table Manipulation TableColumnReorderTests TableReconstructionTests TableTransposeTests

JSON

OriginalData 99.67 85.00 100.00

ShuffleRows -1.00 -45.00∗∗ -13.33**
ShuffleColumns +0.33 -19.00 -40.67**
ShuffleColumnNames -0.34 -13.67 -29.33**
SequentialColumnNames +0.33 -9.00 -2.00
ArbitraryColumnNames +0.33 -4.33 -0.67
TransposeTable -89.00** -78.33** -42.00**
ColumnMerger +0.33 -85.00** -75.33**
SerializeRow -59.00** -46.33** -100.00**

DFLOADER

OriginalData 99.33 98.00 98.33

ShuffleRows +0.67 -78.67** -16.33**
ShuffleColumns +0.67 -34.00** -34.33**
ShuffleColumnNames +0.67 -31.33** -26.33**
SequentialColumnNames +0.67 -54.67** -1.00
ArbitraryColumnNames +0.67 -18.00** -0.33
TransposeTable -43.33** -98.00** -83.00**
ColumnMerger +0.67 -98.00** -81.00**
SerializeRow -33.33** -73.33** -60.33**

COMMASEPARATED

OriginalData 95.33 74.33 99.00

ShuffleRows -7.33 -41.66** -70.33**
ShuffleColumns -4.66 -19.00 -33.00**
ShuffleColumnNames -32.00** -9.66 -47.00**
SequentialColumnNames -67.33** -13.00 -24.33**
ArbitraryColumnNames -28.66** +4.34 -21.67**
TransposeTable +2.00 -65.00** -98.33**
ColumnMerger -4.66 -74.33** -80.33**
SerializeRow -95.33** -57.66** -99.00**

TABSEPARATED

OriginalData 93.33 92.33 50.00

ShuffleRows -4.00 -57.00** -34.67**
ShuffleColumns -6.00 -31.00** -6.00**
ShuffleColumnNames -59.33** -29.66** 0.00
SequentialColumnNames -68.00** -27.00** -7.33**
ArbitraryColumnNames -45.33** -13.00** -2.00**
TransposeTable -44.66** -83.00** -50.00**
ColumnMerger -41.33** -92.33** -48.00**
SerializeRow -93.33** -91.66** -50.00**

9

References
[1] Kaggle. https://www.kaggle.com. Accessed on 2023-10-02.

[2] C. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R
Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62, 1936.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[4] J. Cahoon, A. Savelieva, A. C. Mueller, A. Floratou, C. Curino, H. Patel, J. Henkel, M. Weimer,
N. Gustafsson, R. Wydrowski, et al. The need for tabular representation learning: An industry
perspective. In NeurIPS 2022 First Table Representation Workshop, 2022.

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[6] W. Chen. Large language models are few (1)-shot table reasoners. arXiv preprint
arXiv:2210.06710, 2022.

[7] W. Chen. Large language models are few(1)-shot table reasoners, 2023.

[8] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos. Tapas: Weakly supervised
table parsing via pre-training. arXiv preprint arXiv:2004.02349, 2020.

[9] G. Jaimovitch-López, C. Ferri, J. Hernández-Orallo, F. Martínez-Plumed, and M. J. Ramírez-
Quintana. Can language models automate data wrangling? Machine Learning, 112(6):2053–
2082, 2023.

[10] A. Koleva, M. Ringsquandl, and V. Tresp. Analysis of the attention in tabular language models.
In NeurIPS 2022 First Table Representation Workshop, 2022.

[11] P. Li, Y. He, D. Yashar, W. Cui, S. Ge, H. Zhang, D. R. Fainman, D. Zhang, and S. Chaudhuri.
Table-gpt: Table-tuned gpt for diverse table tasks. arXiv preprint arXiv:2310.09263, 2023.

[12] Microsoft. Top Ten Ways to Clean Your Data, n.d. Accessed on 2023-10-02.

[13] Y. Suhara, J. Li, Y. Li, D. Zhang, c. Demiralp, C. Chen, and W.-C. Tan. Annotating columns
with pre-trained language models. In Proceedings of the 2022 International Conference on
Management of Data, SIGMOD ’22, page 1493–1503, New York, NY, USA, 2022. Association
for Computing Machinery.

[14] Y. Sui, M. Zhou, M. Zhou, S. Han, and D. Zhang. Evaluating and enhancing structural
understanding capabilities of large language models on tables via input designs, 2023.

[15] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[16] Z. Wang, H. Dong, R. Jia, J. Li, Z. Fu, S. Han, and D. Zhang. Tuta: Tree-based transformers for
generally structured table pre-training. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pages 1780–1790, 2021.

[17] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

[18] L. Zha, J. Zhou, L. Li, R. Wang, Q. Huang, S. Yang, J. Yuan, C. Su, X. Li, A. Su, et al.
Tablegpt: Towards unifying tables, nature language and commands into one gpt. arXiv preprint
arXiv:2307.08674, 2023.

10

https://www.kaggle.com

A Appendix

Example Prompt Template for Self-Supervised Structural Tasks

Figure 4: An example template for NavigationTests when the data is represented in the Markdown-
Format. The placeholder [Data_format] is replaced by the Data in Markdownformat. Further the
placeholder [Ques] is replaced with the "What value is at row [ROW_NUMBER] and column
[COLUMN_NAME]?". The [ROW_NUMBER] and [COLUMN_NAME] are assigned based on the data.

Figure 5: An example template for ColumnLookupTests when the data is represented in the Mark-
downFormat. The placeholder [Data_format] is replaced by the Data in Markdownformat. Further
the placeholder [Ques] is replaced with the "What column is the value [VALUE] in?". The
[VALUE] is assigned based on the data.

11

Figure 6: An example template for RowLookupTests when the data is represented in the Markdown-
Format. The placeholder [Data_format] is replaced by the Data in Markdownformat. Further
the placeholder [Ques] is replaced with the "What row is the value [VALUE] in?". The
[VALUE] is assigned based on the data.

Figure 7: An example template for DataTypeLookupTests when the data is represented in the
MarkdownFormat. The placeholder [Data_format] is replaced by the Data in Markdownformat.
Further the placeholder [Ques] is replaced with the "What type (using Pandas datatype
notation) is column [COLUMN_NAME]?". The [COLUMN_NAME] is assigned based on the data.

12

Figure 8: An example template for TransposeTests when the data is represented in the Markdown-
Format. The placeholder [Data_format] is replaced by the Data in Markdownformat. Further the
placeholder [Ques] is replaced with the "Can you transpose the table?"

Figure 9: An example template for TableColumnReorderTests when the data is represented in the
MarkdownFormat. The placeholder [Data_format] is replaced by the Data in Markdownformat.
Further the placeholder [Ques] is replaced with the "Can you reorder the table such that
the column are in the new order [COLUMN_ORDER]?". The [COLUMN_ORDER] is assigned
with new desired column order list based on the data.

13

Figure 10: An example template for TableReconstructionTests when the data is represented in the
MarkdownFormat. The placeholder [Data_format] is replaced by the Data in Markdownformat.
Further the placeholder [Ques] is replaced with the "Can you reconstruct the table by
deserializing the table above?"

14

	Introduction
	Related Work
	Methodology
	Table and Formats
	Noise Operations
	Self-Supervised Structural Tasks

	Experimental Setup
	Results
	RQ1: Impact of Formats on LLMs performance on Different Task
	RQ2: Impact of Noise Operations on LLM's Performance on Structural Tasks.

	Conclusion
	Limitation
	Appendix

