
GRAPH TRANSFORMERS EXPRESS MONADIC SECOND-
ORDER LOGIC

Tamara Drucks∗
Research Unit Machine Learning
TU Wien
Vienna, Austria
tamara.drucks@tuwien.ac.at

Mahito Sugiyama
National Institute of Informatics
SOKENDAI
Tokyo, Japan
mahito@nii.ac.jp

ABSTRACT

We quantify the expressive power of graph transformers by establishing a for-
mal connection to monadic second-order logic (MSO). Expressivity analysis for
graph learning algorithms commonly focuses on their ability to produce distinct
embeddings for non-isomorphic graphs. This line of research is well estab-
lished for message-passing graph neural networks and their tight connection to
the Weisfeiler-Leman color refinement algorithm. In contrast, graph transform-
ers have mostly been evaluated empirically, with little theoretical investigation
thus far. The expressive power of transformers can be quantified by their ability
to simulate certain formal languages in the context of natural language process-
ing. Here, we focus on graph learning and MSO and show that transformers can
produce distinct embeddings for graphs that differ in MSO-definable properties.
MSO is a powerful logic for graph-related tasks, as it allows to decide decision
problems for graphs with bounded treewidth in linear time.

1 INTRODUCTION

Recently, there have been several attempts to capture the expressivity of transformers in the context
of natural language processing through their ability to express certain formal languages (Chiang
et al., 2023) (please see (Strobl et al., 2024) for an overview). We extend this analysis to graph-
structured data. The expressivity analysis of graph learning algorithms is commonly conducted
through the lens of Weisfeiler-Leman (WL) tests, a hierarchy of increasingly expressive color re-
finement algorithms which test graph isomorphism. Xu et al. (2019) and Morris et al. (2019) have
shown that the expressive power of message-passing graph neural networks (GNNs) can be charac-
terized by the 1-dimensional WL test. Transformers can, very broadly, be seen as GNNs with some
attention mechanism as an aggregation function (Groß et al., 2023; Sáez de Ocáriz Borde, 2024).
However, since graph transformer architectures often use additional tools such as positional or struc-
tural encodings which increase their expressive power, it becomes challenging to directly analyze
the expressive power of graph transformers, leading to limited research in this area.

To address this challenge, we establish a formal connection between transformers and monadic
second-order logic (MSO), following the line of research that investigates the ability of general
transformers, including large language models (LLMs), to reason on graph-structured data (de Luca
& Fountoulakis, 2024; Sanford et al., 2024; Ye et al., 2024). We show that transformers can accept all
sentences definable in MSO. This implies that transformers are able to distinguish non-isomorphic
graphs that differ in any graph property which is definable in MSO. Graph properties that are de-
finable in MSO include p-colorability for fixed p, connectivity, and planarity. MSO is particularly
interesting as there exists a procedure to transform an MSO formula into a finite automaton which
decides many generally NP-hard decision problems in linear time for graphs of bounded treewidth.
Bounded treewidth graphs include a wide variety of natural graph classes such as outerplanar graphs,
which comprise the majority of molecular benchmark datasets (Bause et al., 2024, Table 1). Thus,
our contribution can provide a theoretical basis for the success of transformer-based models for, e.g.,
drug design (Cofala & Kramer, 2021; Mao et al., 2024; Lu et al., 2023; Pirnay et al., 2024).

∗Work done during an internship at NII

1

2 RELATED WORK

Graph transformers (GT) have been shown to be successful for many graph classification tasks,
often surpassing standard message-passing neural networks (MPNNs) (Müller et al., 2024a). In
general, graph transformers without additional positional encodings (PEs) have expressive power
equivalent to set-based architectures (cf. DeepSets (Zaheer et al., 2017) and are thus less expressive
than standard MPNNs. There has been a number of recently proposed architectures with provable
expressive power guarantees related to the WL-hierarchy. Ying et al. (2021), Kreuzer et al. (2021)
and Rampášek et al. (2022) propose GT with structural encodings and PEs that surpass MPNN
expressivity. Black et al. (2024) provide a theoretical investigation into the discriminative power of
different PEs. Kim et al. (2022) proposed a hierarchy of GT that aligns with k-IGNs (Maron et al.,
2019), thus establishing a connection between GT and the k-WL hierarchy. Müller et al. (2024b)
recently showed that GTs (more specifically the EdgeTransformer (Bergen et al., 2021)) are at least
as expressive as 3-WL, creating another direct link to classical GNN expressivity analysis. Cai et al.
(2023) show that MPNNs with virtual nodes can simulate certain GT. With sufficiently expressive
structural encodings GT can become universally expressive (Müller et al., 2024a). Rosenbluth
et al. (2024) showed that MPNNs endowed with the same structural information have equivalent
expressive power. All of the results above hold in the non-uniform setting, i.e., for fixed-size graphs.
In the uniform setting, i.e., one network for graphs of all sizes, Rosenbluth et al. (2024) provide
impossibility results for MPNNs and GT. They further show that in the uniform setting, MPNNs and
GT are incomparable in expressive power.

An equivalent notion to 1-WL is the two-variable fragment of first order logic with counting, denoted
by C2 (Cai et al., 1992): Two graphs are 1-WL-equivalent iff they satisfy the same set of sentences
in C2 (Barceló et al., 2020)1. Benedikt et al. (2024) build upon these results and show a link between
GNNs and Presburger logics, a decidable extension of first-order logic. Grohe (2023) analyze GNNs
through the lens of Boolean circuits and show that there is a TC0 upper bound for GNNs. Barlag
et al. (2024) showed that the expressive power of GNNs (not limited to message-passing) is equiva-
lent to that of arithmetic circuits over the reals (cf. AC0). Müller et al. (2024b) utilize the connection
of the EdgeTransformer and 3-WL to formalize systematic generalization through first-order logic
statements. Inspired by the zero-one convergence law for formal languages, a new line of research
studies the expressive power of probabilistic graph classifiers (Adam-Day & Ceylan, 2023; Adam-
Day et al., 2024). For their expressivity analysis, (Adam-Day et al., 2024) develop an aggregate term
language, which captures several GT architectures and for which they prove asymptotically almost
sure convergence (i.e., the output of the probabilistic graph classifiers which can be expressed in the
term language converges to a constant function as the size of the graphs increases).

Sanford et al. (2024); de Luca & Fountoulakis (2024); Ouyang et al. (2024) investigate the abili-
ties of transformers, not limited to graph transformers, on graph reasoning tasks, which is aligned
with our approach. In particular, Sanford et al. (2024) is the work closest to our analysis. Whereas
Sanford et al. (2024) focus on global graph properties relevant for graph reasoning tasks, we focus
on properties definable in MSO useful to distinguish between non-isomorphic graphs. Furthermore,
Sanford et al. (2024) provide bounds dependent on the arboricity of a graph while our theoretical re-
sults are for bounded treewidth graphs. Thanks to Courcelle’s theorem, this enables us to efficiently
compute these properties for bounded treewidth graphs.

3 PRELIMINARIES

Graph transformers. A transformer is a type of neural network that consists of alternating blocks
of attention heads and multi-layer perceptrons (MLPs) and is often used for sequence-to-sequence
tasks. Attention usually refers to the softmax function applied to a linear projection of queries, keys,
and values. More formally, a single attention head for a feature matrix X(t) ∈ Rn×d is defined as
follows

f(X(t)) = softmax
(
QKT

√
dk

)
V, (1)

1This is a bit of a simplification, please refer to Barceló et al. (2020) for more details on the relationship
between MPNNs and C2

2

where Q = X(t)WQ, K = X(t)WK, and V = X(t)WV with learnable weight matrices
WQ,WK ∈ Rd×dK

and WV ∈ Rd×d.

Multi-head attention is defined as the concatenation of multiple independent copies of a single at-
tention head followed by a linear layer, which we will denote as fattn. An L-layer transformer ftf is
defined as the composition of attention heads and MLPs, i.e.,

ftf =
(
id+f

(L)
mlp

)
◦
(
id+f

(L)
attn

)
◦
(
id+f

(L−1)
mlp

)
◦ . . . ◦

(
id+f

(1)
attn

)
◦ (id+P) , (2)

where id is the identity function representing residual connections and P is a positional encoding
of the sequence elements. In the context of graph learning, graph transformers are transformers that
are adapted to operate on graph-structured input data. This usually entails encoding the structure of
the graph as positional encodings. Please refer to Müller et al. (2024a); Black et al. (2024) for an
overview of commonly used positional encodings.

Monadic second-order logic. Monadic second-order logic (MSO) is a fragment of second-order
logic which allows quantification over sets. We assume familiarity with first-order logic (FO).

MSO extends FO with second-order variables of arity 1. An MSO formula can contain both first-
order and second-order free variables. We write φ(x1, . . . , xm, X1, . . . , Xℓ) to denote that xi for
i = [m] = {1, . . . ,m} are free first-order variables and Xj for j = [ℓ] are free second-order
variables. Please refer to Section A.1.1 for the full definition. In the context of graphs, we often
distinguish between MSO1, which only allows quantification over vertices, and MSO2, which addi-
tionally allows quantification over edges. Note that MSO2 is more powerful than MSO1, e.g., we
can express the existence of a Hamiltonian cycle in MSO2, but not in MSO1.

For instance, we can express 3-colorability in MSO1 as follows:

φ = ∃X1∃X2∃X3 part(X1, X2, X3) ∧ ∀v∀wEvw =⇒
3∧

i=1

(Xiv ∧Xiw),

where Exy means that there is an edge between vertices x and y and

part(X1, X2, X3) = ∀vX1v ∨X2v ∨X3v ∧ ∀v¬(X1v ∧X2v)∧¬(X1v ∧X3v)∧¬(X2v ∧X3v)

denotes that X1, X2, X3 are disjoint partitions of the vertex set.

Fixed-parameter tractability and treewidth. We briefly introduce the concepts of fixed-
parameter tractability and treewidth. We assume some familiarity with graph theory and complexity
theory.
Definition 3.1 (FPT algorithm). An algorithm is fixed-parameter tractable (FPT) with respect to
some parameter k, if its runtime is bounded by f(k) poly(n) for some computable function f .

The treewidth of a graph G, denoted by tw(G), can be defined in terms of a tree decomposition.
Definition 3.2 (Robertson & Seymour (1986)). A tree decomposition of a graph G = (V, E) is a
pair (B,D), where D = (B,A) is a tree, and B = {Bi | i ∈ B} is a family of subsets of V , such that
(i)

⋃
i∈B

Bi = V , (ii) every edge of G has both of its endpoints in some Bi with i ∈ B, and (iii) for

all i, j, k ∈ I , if j lies on the path from i to k in D, then Bi ∩ Bk ⊆ Bj .
Definition 3.3. The treewidth of a tree decomposition is maxi∈B |Bi| − 1. The treewidth of G is
the minimum treewidth taken over all possible tree decompositions of G.

Intuitively, the treewidth of a graph specifies how tree-like it is; e.g., trees have treewidth 1, cycles
have treewidth 2. Many NP-complete decision problems can be decided in linear time for graphs
with bounded treewidth, as shown in the famous meta-theorem by Courcelle (1990).
Theorem 3.4 (Courcelle 1990). For an MSO1 sentence φ and a graph G, one can decide whether
G |= φ in time f(tw(G), |φ|)n for some function f .

Note that Theorem 3.4 can also be extended to MSO2. In fact, there are multiple variations of
Courcelle’s theorem, including optimization problems on graphs (Arnborg et al., 1991; Courcelle
et al., 2000) and modulo counting (Courcelle, 1990).

3

4 GRAPH TRANSFORMERS EXPRESS MSO

In this section, we present our main result: Graph transformers can express any graph property that
is definable in MSO and are thus able to solve, e.g., p-colorability for fixed p and graph connectivity.
To show this, we exploit the correspondence between MSO definability and tree automata. More
specifically, we show that, given a graph G and an MSO formula φ, a graph transformer can decide
whether G |= φ. We first define the concept of expressibility.
Definition 4.1. Let Gn be all graphs up to order n. We say that a function f : Gn → Rd expresses a
graph property P if for each G,G′ ∈ Gn, f(G) = f(G′) iff P (G) = P (G′).

For instance, the function f(G) = 1[|V | ≡ 1 mod 2] expresses the graph property odd number of
vertices. Next, we show that transformers are able to produce distinct embeddings for graphs with
different MSO-definable properties.
Theorem 4.2. For every n ∈ N and every MSO-definable property P , there exists a graph trans-
former GT : Gn → Rd that can express P for each G ∈ Gn.

Proof sketch. The underlying idea of the proof for Theorem 4.2 is the following: Given a bounded
treewidth graph G and an MSO formula φ, we can build a tree automaton A that accepts G if
G |= φ and rejects G if G ̸|= φ. As an intermediate step, we construct a tree decomposition
(B,D) of G and map G and (B,D) to a labeled ordered binary tree t, which we can input into A.
The proof itself then consists of showing how to simulate this construction with a transformer. We
consider the computation of the tree decomposition and the labeled ordered binary tree as linear-time
preprocessing steps. It remains to show that a graph transformer can simulate a finite tree automaton
A that accepts or rejects t. This largely follows from Rizvi-Martel et al. (2024, Corollary 1), who
show that transformers can simulate weighted tree automata. See Theorem A.3 in the appendix for
the full proof.

Note that our proof of Theorem 4.2 depends on the computation of a tree decomposition of our input
graph. While we can compute a trivial tree decomposition of width O(n) for any graph, in practice,
it makes sense to focus on bounded treewidth graphs as model checking, i.e., verifying whether a
graph satisfies a formula, is FPT with respect to the treewidth of the graph and the length of the
formula.

In Corollary 4.1, we summarize some MSO-definable properties useful for graph classification tasks.
Corollary 4.1. Graph transformers can express each of the following properties: (i) connectivity,
(ii) p-colorability for fixed p, (iii) minor inclusion, (iv) planarity, (v) Hamiltonicity, and (vi)
perfect matching.

Corollary 4.1 provides a theoretical explanation for the experimental results conducted on connectiv-
ity conducted in Sanford et al. (2024) and on connectivity, Hamiltonian paths and perfect matchings
in Ouyang et al. (2024).

5 CONCLUSION

We have characterized the expressive power of graph transformers by establishing a formal connec-
tion to MSO. MSO is a powerful fragment of second-order logic and can be used to define many
interesting graph properties, such as connectivity and 3-colorability. Our results imply that trans-
formers can produce distinct embeddings for graphs with different MSO-definable properties. This
might provide a theoretical explanation for the empirical success of many generative graph trans-
formers. For future work, we plan to show that constructing tree decompositions and labeled binary
trees can be simulated by transformers as well. Additionally, we would like to investigate whether
there exist shortcut solutions similar to (Liu et al., 2022) and use our theoretical insights to design
novel GT architectures.

ACKNOWLEDGMENTS

We thank Maximilian Thiessen and Sagar Malhotra for valuable discussions and feedback. This
work was supported by JST, CREST Grant Number JPMJCR22D3, Japan (MS).

4

REFERENCES

Sam Adam-Day and Ismail Ceylan. Zero-one laws of graph neural networks. Advances in Neural
Information Processing Systems, 36:70733–70756, 2023.

Sam Adam-Day, Michael Benedikt, Ismail Ilkan Ceylan, and Ben Finkelshtein. Almost surely
asymptotically constant graph neural networks. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12(2):308–340, 1991. ISSN 0196-6774. doi: https://doi.org/10.1016/
0196-6774(91)90006-K.

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020.

Timon Barlag, Vivian Holzapfel, Laura Strieker, Jonni Virtema, and Heribert Vollmer. Graph neural
networks and arithmetic circuits. arXiv preprint arXiv:2402.17805, 2024.

Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, Nils Morten Kriege, Thomas Gärtner,
Pascal Welke, and Maximilian Thiessen. Maximally expressive GNNs for outerplanar graphs. In
TMLR, 2024.

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of graph neural net-
works via logical characterizations, 2024.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. Advances in Neural Information Processing Systems, 34:1390–1402, 2021.

Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing graph
transformers via positional encodings, 2024.

Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 226–234,
1993.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer, 2023.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. In International Conference on Machine Learning, pp. 5544–5562. PMLR, 2023.

Tim Cofala and Oliver Kramer. Transformers for molecular graph generation. In ESANN, 2021.

Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. ISSN 0890-5401. doi: https://doi.org/10.1016/
0890-5401(90)90043-H.

Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

Artur Back de Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
formers, 2024.

Rodney G Downey, Michael R Fellows, et al. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

5

Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theoretical Com-
puter Science, 366(3):228–247, 2006.

Martin Grohe. The descriptive complexity of graph neural networks. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14, 2023. doi: 10.1109/
LICS56636.2023.10175735.

Joschka Groß, Gerrit Großmann, and Verena Wolf. Elucidating the relationship between transform-
ers and gnns, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners, 2022.

Stephan Kreutzer. Algorithmic meta-theorems. Finite and algorithmic model theory, 379:177–270,
2011.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 21618–21629. Curran Associates, Inc., 2021.

Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Hao Lu, Zhiqiang Wei, Xuze Wang, Kun Zhang, and Hao Liu. Graphgpt: A graph enhanced gen-
erative pretrained transformer for conditioned molecular generation. International Journal of
Molecular Sciences, 24(23), 2023. ISSN 1422-0067.

Jiashun Mao, Jianmin Wang, Amir Zeb, Kwang-Hwi Cho, Haiyan Jin, Jongwan Kim, Onju Lee,
Yunyun Wang, and Kyoung Tai No. Transformer-based molecular generative model for antiviral
drug design. Journal of Chemical Information and Modeling, 64(7):2733–2745, 2024. doi: 10.
1021/acs.jcim.3c00536. PMID: 37366644.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 4602–4609. AAAI Press,
2019.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers, 2024a.

Luis Müller, Daniel Kusuma, Blai Bonet, and Christopher Morris. Towards principled graph trans-
formers, 2024b.

Sheng Ouyang, Yulan Hu, Ge Chen, and Yong Liu. Gundam: Aligning large language models with
graph understanding, 2024.

Jonathan Pirnay, Jan G. Rittig, Alexander B. Wolf, Martin Grohe, Jakob Burger, Alexander Mitsos,
and Dominik G. Grimm. Graphxform: Graph transformer for computer-aided molecular design
with application to extraction, 2024.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

6

Michael Rizvi-Martel, Maude Lizaire, Clara Lacroce, and Guillaume Rabusseau. Simulating
weighted automata over sequences and trees with transformers. In Sanjoy Dasgupta, Stephan
Mandt, and Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 2368–
2376. PMLR, 02–04 May 2024.

Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal
of algorithms, 7(3):309–322, 1986.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self attention vs. virtual nodes, 2024.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms, 2024.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? A survey. Trans. Assoc. Comput. Linguistics, 12:543–561, 2024. doi:
10.1162/TACL\ A\ 00663.

Haitz Sáez de Ocáriz Borde. Elucidating graph neural networks, transformers, and graph transform-
ers, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, 2019.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a
graph needs, 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation?, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

A APPENDIX

A.1 PRELIMINARIES

We briefly introduce monadic-second order logic (MSO) and tree automata. Please refer to (Libkin,
2004) and (Droste & Vogler, 2006) for more details.

A.1.1 MONADIC SECOND-ORDER LOGIC

Definition A.1 (MSO). MSO extends FO with second-order variables of arity 1. An MSO formula
can contain both first-order and second-order free variables. We write φ(x1, . . . , xm, X1, . . . , Xℓ)
to denote that xi for i = [m] = {1, . . . ,m} are free first-order variables and Xj for j = [ℓ] are
free second-order variables. Given a vocabulary σ consisting of relation and constant symbols, we
define MSO terms and formulae as follows:

• Every first-order variable x and every constant symbol c are first-order terms.

• There are three kinds of atomic formulae:

– FO atomic formulae:
* t = t′, where t, t′ are terms,
* R(t1, . . . , tk) where R ∈ σ, and

– X(t), where X is a second-order variable of arity 1. The free first-order variables of
this formula are free first-order variables of t, and the free second order variable is X .

• The formulae of MSO are closed under the Boolean connectives ∧,∨,¬ and first-order
quantification, with the usual rules for free variables.

7

• If φ(x1, . . . , xm, Y,X1, . . . , Xℓ) is a formula, then ∃Y φ(x1, . . . , xm, Y,X1, . . . , Xℓ)
and ∀Y φ(x1, . . . , xm, Y,X1, . . . , Xℓ) are formulae with free variables x1, . . . , xm and
X1, . . . , Xℓ.

A.1.2 TREE AUTOMATA

In the following, we define tree automata, which accept or reject labeled ordered binary trees and
operate in a bottom-up manner.

Let Σ be a finite nonempty alphabet, i.e., a finite set of symbols. A binary tree domain dom is a
prefix closed subset of {0, 1}∗ such that if si ∈ dom for s ∈ {0, 1}∗ and i ∈ {0, 1} then sj ∈ dom
for all j < i. Every nonempty tree domain has node ϵ, which is the root node. A tree t over Σ is
a mapping t : dom → Σ. We denote by TΣ the set of all Σ-trees. TΣ is the smallest set such that
Σ ⊂ TΣ and (t0, t1) ∈ TΣ for all t0, t1 ∈ TΣ.

Definition A.2 (Deterministic finite tree automaton (DTA)). A DTA A is a tuple (Q,Σ, F, δ), where
Q is a finite set of states, Σ is a finite alphabet, F ⊆ Q is the set of final states and δ : Q2 ×Σ → Q
is a transition function. A DTA computes a function fA : TΣ → Q defined by fA(t) = µ(ϵ),
where the mapping µ : TΣ → Q is recursively defined as µ(σ) = qσ ∈ Q for all σ ∈ Σ and
µ(t) = δ(µ(t0), µ(t1), σ) for all t ∈ TΣ with children t0, t1 ∈ TΣ.

We define a run of A on a tree t ∈ TΣ as mapping ρ : dom → Q. A run ρ is successful whenever
ρ(ϵ) ∈ F and a tree is accepted if a successful run exists on it. The tree language recognized by A
consists of the trees accepted by A.

A.2 PROOFS

Theorem A.3 (Theorem 4.2). For every n ∈ N and every MSO-definable property P , there exists
a graph transformer GT : Gn → Rd that can express P for each G ∈ Gn.

Proof. Given a graph G = (V,E) and an arbitrary MSO formula φ, we perform the following
linear-time preprocessing steps: First, we compute the tree decomposition (B,D) of G (Bodlaender,
1993). Next, given G and (B,D), we compute the labeled ordered binary (LOB) tree t (Downey
et al., 2013, Thm. 12.7.1). Finally, we translate φ into a new formula φ∗ such that G |= φ iff t |= φ∗

(Kreutzer, 2011). Given LOB t and φ∗, we can construct a tree automaton A = (Σ, Q, F, δ), which
accepts t iff G |= φ (Libkin, 2004, Thm. 7.30). Recall that A accepts t if there exists a successful
run ρ of A on t. A run ρ is successful if ρ(ϵ) ∈ F , i.e., if the label of the root node ϵ is one of
the accepting states. We show in Theorem A.5 that a transformer can simulate A. It remains to be
shown is that we can map all accepting states qf ∈ F to the same output vector, and all other states
q ∈ Q \ F to different output vectors. This can be done by adding an additional MLP after the last
layer of the transformer which can approximate arbitrary functions (Hornik et al., 1989).

Definition A.4 (Simulation). Given a DTA A = (Q,Σ, F, δ), we say that a function f : T T
Σ → QT

simulates A at length T if for all trees t ∈ TΣ such that depth(t) ≤ T , f(t)i = µ(τi) for all subtrees
τi. Furthermore, we say that a family of functions F simulates DTAs with n states at length T if for
any DTA A with n states there exists a function f ∈ F that simulates A at length T .

Rizvi-Martel et al. (2024) define tree automata and simulation slightly differently; however, this
can be adapted to our setting. First of all, our tree automata are non-weighted and we thus omitted
the initial weight vectors α ∈ Rn in our definition. A classical tree automaton is equivalent to a
weighted tree automaton with weights in the Boolean semi-ring, which we can simulate with real
weights by interpreting non-zero weights as true and zero weights as false. Secondly, states are
represented as vectors vσ ∈ Rn; we can encode each q ∈ Q as, e.g., one-hot encoding.

Theorem A.5 (Rizvi-Martel et al. 2024, Corollary 1, slightly re-written). Given a tree automaton
A with n states and depth T , there exists a transformer with O(n) embedding dimension, O(n)
attention width, O(n3) MLP width, O(1) attention heads and O(T) depth that simulates A up to
arbitrary precision ε > 0.

Proof. See (Rizvi-Martel et al., 2024, Appendix C) for the proof of Theorem A.5.

8

Corollary A.1 (Corollary 4.1). Graph transformers can express each of the following properties: (i)
connectivity, (ii) p-colorability for fixed p, (iii) minor inclusion, (iv) planarity, (v) Hamiltonicity,
and (vi) perfect matching.

Proof. This follows from the fact that connectivity, p-colorability for fixed p, minor inclusion (and
thus planarity), Hamiltonicity, and perfect matching are MSO-definable properties (Courcelle &
Engelfriet, 2012).

9

	Introduction
	Related work
	Preliminaries
	Graph transformers express MSO
	Conclusion
	Appendix
	Preliminaries
	Monadic second-order logic
	Tree automata

	Proofs

